Personal cleansing bar with free fatty acid and quaternary surfactant synergism

Information

  • Patent Grant
  • 8017567
  • Patent Number
    8,017,567
  • Date Filed
    Friday, August 18, 2006
    18 years ago
  • Date Issued
    Tuesday, September 13, 2011
    13 years ago
Abstract
A personal care cleansing composition having enhanced perceptible skin benefits, for example, by selecting certain ratios of quaternary ammonium compounds and free fatty acids. Additionally, in accordance with various aspects of the present invention, the present inventors have discovered that the addition of talc in varying percentages increases qualities to the user such as freshness, smoothness, lather and creaminess. Additionally, aspects relating to fragrance retention, deposition and the amounts perceived are improved.
Description
FIELD OF INVENTION

The present invention relates generally to personal care cleansing compositions having enhanced skin feel attributes, and more particularly to such compositions in solid form and even more particularly to soap bars exhibiting enhanced skin feel attributes, aesthetic qualities and processing capabilities.


BACKGROUND OF THE INVENTION

Personal care compositions such as toilet soaps are of course well known. Toilet soaps in bar form are usually formulated with a large variety of additives to provide benefits that are not inherent in the soap itself. For example, additives are employed to enhance the lathering of the soap, to enhance the mildness of the soap, to enhance its antibacterial effectiveness and numerous other benefits for the user. Additionally, various additives, such as talc, may be employed to reduce cost and provide various benefits to the user.


Commercial soap bars conventionally comprise one or more “soaps,” which, for purposes of describing this component of the compositions of the present invention, have the meaning as normally understood in the art: monovalent salts of monocarboxylic fatty acids.


The counterions of the salts generally include sodium, potassium, ammonium and alkanol ammonium ions, but may include other suitable ions known in the art. The soap bars may also include optional adjuvant ingredients such as moisturizers, humectants, antibacterials, water, fillers, polymers, dyes, fragrances and the like, to effect cleansing and/or conditioning of the skin of the user.


Typically, the soap components in conventional soap bars comprise salts of long chain fatty acids having chain links of the alkyl group of the fatty acids from about 8 carbon atoms, to about 18 carbon atoms in length. The particular length of the alkyl chain of the soaps is selected for various reasons including cleansing capability, lather capability, cost, and the like.


Among the additives employed in the production of toilet soap bars are free fatty acids (FFA) which serve to enhance the lathering or foaming ability of the bars. Such fatty acids also have an affect on the mildness of the soap. Quaternary ammonium compounds (Quat) and other cationic cosmetic ingredients have been used in “wash-off” cleansing products such as liquid body washes for their enhanced deposition on skin due to the ionic attraction between the cationic quaternary ammonium compound and skin protein.


However, many cationic cosmetic materials are not compatible in soap, combars (mixtures of soap and synthetic detergents) and even syndet cleansing compositions due to the anionic materials in most of these matrices.


Accordingly, there is a need for cleansing compositions such as toilet soap bars that exhibit enhanced skin feel attributes.


SUMMARY OF THE INVENTION

The present inventors have discovered that there is surprising and unexpected synergy believed to be a result of interaction between certain Quats and FFAs, namely, enhanced perceptible skin benefits in personal cleansing soap bar compositions. It is believed that such benefits may also apply to a combar and/or a synthetic detergent composition containing soap in some proportion. The inventors have found that by selecting certain ratios of Quat and FFAs, and when such additives are employed in certain definitive proportions in personal care compositions, resulting data nearly uniformly supports the unexpected finding of enhanced perceptible skin benefits. As described herein, resulting data supports the same.


Additionally, in accordance with various aspects of the present invention, the present inventors have discovered that the addition of talc in varying percentages increases qualities to the user such as freshness, smoothness, lather and creaminess. Additionally, aspects relating to fragrance retention, deposition and the amounts perceived are improved.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention may be derived by referring to the detailed description and claims when considered in connection with the Figures, where like reference numbers refer to similar elements throughout the Figures, and wherein FIG. 1 is a response contour plot which visually shows the testing results.





DETAILED DESCRIPTION

The following description is of exemplary embodiments only and is not intended to limit the scope, applicability or configuration of the invention in any way. Rather, the following description provides a convenient illustration for implementing exemplary embodiments of the invention. Various changes to the described embodiments may be made in the function and arrangement of the elements described without departing from the scope of the invention as set forth in the appended claims.


As noted above, the present inventors have discovered an unexpected synergistic result when employing certain levels of Quats and FFAs to give a superior skin feel to users of cleansing products employing such a combination. More specifically, surprisingly, users find an enhanced skin benefit of improved wet skin feel when bathing with personal care products (i.e., soap) having this combination. As used herein, “wet skin feel” means a positively perceived wet skin feel after washing or bathing with such compositions and thereafter rinsing the skin.


In accordance with various embodiments of the present invention as discussed below, this enhanced skin feel was perceived, near uniformily, when the level of Quats in the composition ranges from about 0.03% to about 1.5% by weight of the composition and the level of FFA ranges from about 4% to in excess of about 8%, most preferred from about 4.5% to about 7.5% of weight. The ratio of the FFA to the Quat should range from about 4:1 to about 195:1 with a preferred ratio of about 4:1 to about 19:1. The foregoing is based on 100% active components.


Quaternary Ammonium Compounds


The Quats useful in this invention are positively charged tetra substituting nitrogen derivatives of the following class:




embedded image


In which R, R′, R″ and R′″, may be the same or different alkyl groups may not be hydrogen and in which X is a typical anion such as chloride or methosulfate. The particular Quat used in the following examples in the testing was Sunflowerseedamidopropyl Ethyldimonium Ethosulfate (INCI name) and available as Mackernium SFES from McIntyre Group. This commercial product contains about 70-75% of the active quaternary and about 25-30% by weight of PEG-9. The structure for this quaternary is [RC(O)—NH(CH2)3—N(CH3)2—CH2—CH3]+CH3—CH2—OSO3, or otherwise expressed as:




embedded image


Alternative aliphatic groups may be substituted for those derived from sunflowerseed oil in this quaternary structure and the synergistic interaction with FFA is still expected to provide wet skin feel benefits. These aliphatic groups are of the structure RCO— where R is a C6 to C26 alkyl, alkenyl, alkadienyl, alkapolyenyl radical (straight or branched chain) or mixtures thereof.


Exemplary, additional Quats, that is a long chain alkylamidopropyl ethyldimonium ethosulfates having alkyl groups derived from various sources may be employed in this invention and include:


Apricotamidopropyl Ethyldimonium Ethosulfate


Behenamidopropyl Ethyldimonium Ethosulfate


Canolamidopropyl Ethyldimonium Ethosulfate.


C10-40 Isoalkylamidopropylethyldimonium Ethosulfate


C14-20 Isoalkylamidopropylethyldimonium Ethosulfate


C18-22 Isoalkylamidopropylethyldimonium Ethosulfate


Cocamidopropyl Ethyldimonium Ethosulfate


Isononamidopropyl Ethyldimonium Ethosulfate


Isostearamidopropyl Ethyldimonium Ethosulfate


Lanolinamidopropyl Ethyldimonium Ethosulfate


Linoleamidopropyl Ethyldimonium Ethosulfate


Methyleicosamidopropyl Ethyldimonium Ethosulfate


Minkamidopropyl Ethyldimonium Ethosulfate


Oleamidopropyl Ethyldimonium Ethosulfate


Rapeseedamidopropyl Ethyldimonium Ethosulfate


Ricinoleamidopropyl Ethyldimonium Ethosulfate


Saffloweramidopropyl Ethyldimonium Ethosulfate


Soyamidopropyl Ethyldimonium Ethosulfate


Stearamidopropyl Ethyldimonium Ethosulfate


Wheatgermamidopropyl Ethyldimonium Ethosulfate


That said, the foregoing exemplary compositions are non-limiting, and those skilled in the art may find alternative examples, and still fall within the scope of the present invention.


The following oils may also be a source of the fatty acids for “RCO—” in the above formula:


Black currant seed oil


Borage seed oil


Corn oil


Evening primrose oil


Grapeseed oil


Kukui nut oil


Peanut oil


Again, the foregoing exemplary compositions are non-limiting, and those skilled in the art may find alternative examples, and still fall within the scope of the present invention.


Fatty Acid Components


The FFA employed in the examples is palm acid which is a mixture of fatty acids derived from palm oil. It is commercially available from The Dial Corporation as “Palm Stearin Fatty Acid.” Other exemplary useful fatty acids include, but are not limited to:


Arachidic Acid


Arachidonic Acid


Beeswax Acid


Behenic Acid


Capric Acid


Caproic Acid


Caprylic Acid


C10-40 Hydroxyalkyl Acid


C10-40 Isoalkyl Acid


C32-36 Isoalkyl Acid


Coconut Acid


Corn Acid


Cottonseed Acid


Erucic Acid


Hydrogenated Coconut Acid


Hydrogenated Menhaden Acid


Hydrogenated Palm Acid


Hydrogenated Tallow Acid


Hydroxystearic Acid


Isomerized Linoleic Acid


Isomerized Safflower Acid


Isostearic Acid


Lauric Acid


Linoleic Acid


Linolenic Acid


Linseed Acid


Myristic Acid


Oleic Acid


Olive Acid


Palmitic Acid


Palm Kernel Acid


Peanut Acid


Pelargonic Acid


Rapeseed Acid


Rice Bran Acid


Ricinoleic Acid


Safflower Acid


Soy Acid


Stearic Acid


Sunflower Seed Acid


Tall Oil Acid


Tallow Acid


Undecanoic Acid


Undecylenic Acid


Wheat Germ Acid


And again, the foregoing exemplary compositions are non-limiting, and those skilled in the art may find alternative examples, and still fall within the scope of the present invention.


As noted above, when maintaining the ratios of Quats to FFAs described herein, surprisingly, an enhanced skin benefit was found. It is believed that is, at least in part, the maintenance of these ratios which results in a synergy, providing such benefits.


In support, to predict various soap bar formulas with consumer preference sensory benefits a Design of Experiment (DOE) approach was used. One of the key desired sensory attributes was, “liking of wet skin feel during bar use.” The test involved eleven soap bar products as shown in the following chart:












DOE Personal Cleansing Bar Formulas






















1
2
3
4
5
6









Bar:
















2% Mackernium


2% Mackernium



Control
Prototype 1
SFES
4% PEG-12
7.2% FFA pellet
4% PEG-12


Component
Weight %
Weight %
Weight %
Weight %
Weight %
Weight %





Sodium Soap
81.39
80.40
79.40
77.65
78.22
75.65


Palm Stearin Free Fatty Acid
2.82
2.82
2.82
2.82
6.00
2.82


Water
11.63
11.63
11.63
11.63
11.63
11.63


Perfume
1.50
1.50
1.50
1.50
1.50
1.50


Titanium Dioxide
0.40
0.40
0.40
0.40
0.40
0.40








Glycerin
Less than 1%


Sorbitol
1-2%


Sodium Chloride
Less Than 1%


Aloe barbadensis leaf juice
Less Than 1%


Pentasodium Pentetate
Less Than 1%


Tetrasodium Etidronate
Less Than 1%


Chromium hydroxide green
Less Than 1%


Yellow 5
Less Than 1%


New Ingredients May Include:














Mackernium SFES
0.00
1.00
2.00
0.00
0.00
2.00


PEG-12
0.00
0.00
0.00
4.00
0.00
4.00


Total:
100.00
100.00
100.00
100.00
100.00
100.00
















7
8
9
10
11









Bar:















2% Mackernium
1% Mackernium




2% Mackernium
4% PEG-12
4% PEG-12
2% PEG-12
1% Mackernium



7.2% FFA pellet
7.2% FFA pellet
7.2% FFA Pellets
5.1% FFA Pellets
2% PEG-12


Component
Weight %
Weight %
Weight %
Weight %
Weight %





Sodium Soap
76.22
74.47
72.47
77.07
78.65


Palm StearIn Free Fatty Acid
6.00
6.00
6.00
4.40
2.82


Water
11.63
11.63
11.63
11.63
11.63


Perfume
1.50
1.50
1.50
1.50
1.50


Titanium Dioxide
0.40
0.40
0.40
0.40
0.40








Glycerin
Less Than 1%


Sorbitol
1-2%


Sodium Chloride
Less Than 1%


Aloe barbadensis leaf juice
Less Than 1%


Pentasodium Pentetate
Less Than 1%


Tetrasodium Etidronate
Less Than 1%


Chromium hydroxide green
Less Than 1%


Yellow 5
Less Than 1%


New Ingredients May Include:













Mackernium SFES
2.00
0.00
2.00
1.00
1.00


PEG-12
0.00
4.00
4.00
2.00
2.00


Total:
100.00
100.00
100.00
100.00
100.00









The panelists were females ages 18-54 with a total of 200 panelists for each of the 11 bar products. Each panelist used 6 of the 11 bar soaps during a sequential monadic one week use period. The panelists were asked various questions about their perception of the sensory benefits. A key question was, “overall how much did you like or dislike the way your wet skin felt after washing and rinsing?” Responses were on a 1-9 point scale with 1 being “disliked extremely” and 9 being “liked extremely.”


The resulting data supports a conclusion that cleansing products in accordance with the present invention result, surprisingly and nearly uniformly, in exhibiting the enhanced skin benefit of wet skin feel. In this regard, it would appear that a synergistic effect results when the ranges of Quats and FFAs are maintained as disclosed herein, perhaps because of interaction between FFA and Quats. This is best seen on a response contour plot of the consumer test data. Increasing the level of Quat had a larger affect on wet skin feel liking as the FFA level increased. PEG-12 did not show a significant affect on “liking wet skin feel.”



FIG. 1 illustrates the response contour plot that visually shows the effect of SFES and FFA levels on consumer's “liking wet skin feel” score. This plot represents the mathematically predicted score for all possible combinations of Mackernium SFES and FFA based on the actual data from the 11 bars tested in the DOE. Horizontal line A (x axis) shows the percent of Mackernium SFES used in the various bars and vertical line C (y axis) shows the percent of the free fatty acid used in the bars. Each contour line represents a different score for “like wet skin feel”. Any combination of SFES and FFA along each line should provide a wet skin benefit with that liking score. In general, the score goes up as you increase FFA and SFES. However, the plot shows that the use of SFES at low levels of FFA provided little benefit to improving the liking wet skin feel score. More than about 4% by weight of the fatty acid was required to get a significant increase in wet skin feel benefit in combination with the SFES quaternary. This graph also shows that a significant positive benefit was found at a level of about 5% by weight of the free fatty acid in combination with the SFES quaternary.


The mathematical model for “liking wet skin feel” score derived from the test data was statistically significant (p-value=0.015). The full model equation is as follows:

Like SF Wet=6.053−(0.115×% SFES)+(0.012×% FFA)+(0.030×.% SFES×.% FFA)


This equation indicated that SFES and FFA each had individual affects on “liking wet skin feel,” and SFES and FFA in combination also had a synergistic affect. The score for “like wet skin feel” can be predicted using this equation for any combination of SFES and FFA. Scoring is on a 1-9 scale with 1 being “disliked extremely” and 9 being “liked extremely.” The 6.053 number indicated the baseline score for wet skin feel with the minimum amount of the ingredient variables tested; 0% SFES and 3% FFA. The “+” sign or “−” sign in front of each constant in the equation indicates, if that ingredient (or combination of ingredients) increases, the “liking wet skin feel” score either increases or decreases (respectively) by that constant times the % of those ingredients in the cleansing formula. As can be seen by the “−” sign in front of the SFES factor, SFES used alone has a negative affect on “like wet skin feel.” But as can be seen by the “+” sign in front of the (SFES×FFA) factor, SFES interacting with FFA has a positive synergistic affect on “liking wet skin feel.” FFA also individually has a positive affect on “liking wet skin feel.” In order to increase the “liking wet skin feel” score above the baseline score of 6.053, the levels of SFES and FFA need to have a net positive affect on the score.


In addition to Mackernium SFES, other similar quaternaries, as listed previously, would also be expected to have a synergistic positive benefit when used with FFA. The levels that have the net positive benefit can be predicted from the mathematical model equation. Such levels are:

    • Total level (proportion) of Quat is about 0.03% to about 1.50%, with a preferred range of about 0.35% to about 1.1 % (based on a 100% active quat).
    • Total level of FFAs is about 4% to about 8% by weight with a preferred range of about 4.5% to about 7.5%.
    • The ratio of the FFA to the Quat is from about 4:1 to about 195:1 with a preferred ratio of about 4:1 to about 19:1.


      Talc Components


As noted above, the addition of talc to cleansing bars in accordance with various embodiments of the present invention, results in user perceived benefits such as freshness, smoothness, lather generation and creaminess. Additionally, aspects relating to fragrance retention, deposition and the amounts perceived are improved. Further still the addition of talc may result in substantial costs savings. For example, the level of talc in cleansing bars such as those described above ranges from about 5% to about 10% by weight of the composition, and preferably about 7% by weight of the composition.


In accordance with various aspects of the present invention, improved processing techniques for the addition of talc are provided for herein. For example, beginning with a personal cleansing bar in comprises about 1% by weight of 1% Mackemium SFES (Sunflowerseedamidopropyl Ethylidimonium Ethosulfate), about 2% PEG 12, and soap pellets with about 2.8% by weight FFA and 1.5% by weight fragrance.


In running bars of the forgoing formula, as shown in below, it was found that processing speeds on the soap finishing line fell approximately 20% when compared to a control bar (a no additive soap formula with only color and fragrance). It was found that the addition of talc (e.g., Magnesium Silicate), greatly improved the soap finishing line efficiency as measured in extruded bar slugs per minute when either about 10% or about 15% talc was added to the amalgamator (see e.g., FIGS. 2 and 3) to the forgoing formula.


Benefits of such processing techniques result in soap bars that tend not to crack or slough, i.e., get soft or mushy in the presence of water. Additionally, as noted above, surprisingly, high levels of talc in the soap bars additionally offer improved amounts of small bubble, creamy lather. The increase in lather is a novel finding since one would normally expect less lather as the soap is replaced by a generally inert filler. Test data confirms the same; hand wash panels and tests in agitated, graduated cylinders demonstrate the product improvement in amount of small bubble, creamy lather and the quantity of lather. Additionally, the use of talc to replace soap, results in significant cost savings. For example, stearilized talc or antibacterial bars costing $0.18/lb. and non-stearilized costing 0.10/lb. versus soap at $0.32/lb., the cost savings are significant, particularly in the context of large scale manufacturing.


Exemplary Compositions


The following tables illustrate exemplary compositions in accordance with the present invention.


EXAMPLE 1
















Component/INCI





Name
Function
Weight, %




















Soap (sodium cocoate,
Cleansing, lather,
70.64285



sodium palm kernalate,
foam



sodium palmate, sodium



tallowate



Water (Aqua)
Processing aid
11.96353



Talc
Filler/Skin Feel
5.02636



Coconut Acid, Palm Acid,
Lather enhancer,
4.56369



Tallow Acid
emollient



PEG-6 Methyl Ether
Solvent/Processing
4.01810




aid



Perfume (Parfum)
Perfume, smell
1.10200



Glycerin
Moisturizer,
0.00005




processing aid



Sorbitol
Moisturizer,
0.92194




processing aid



Triclocarban
Antibacterial agent
0.77963



Sodium Chloride
Processing aid
0.77295



Pentasodium Pentetate
Chelating agent
0.09692



Tetrasodium Etidronate
Chelating agent
0.09583



Yellow No. 5 (CI 19140)
Colorant
0.01332



Yellow No. 8 (CI45350)
Colorant
0.00212



Red No. 4 (CI 14700)
Colorant
0.00071










EXAMPLE 2
















Component/INCI





Name
Function
Weight, %




















Soap (sodium cocoate,
Cleansing, lather,
71.33758



sodium palm kernalate,
foam



sodium palmate, sodium



tallowate



Water (Aqua)
Processing aid
12.20687



Talc
Filler/Skin Feel
5.07580



Coconut Acid, Palm Acid,
Lather enhancer,
4.60857



Tallow Acid
emollient



PEG-12
Humectant/
2.15023




Moisturizer



Theobroma Cacao
Skin care additive
1.27507



(Cocoa) Seed Butter



Fragrance (Parfum)
Perfume, smell
1.16293



Glycerin
Moisturizer,
0.00003




processing aid



Sorbitol
Moisturizer,
0.93099




processing aid



Sodium Chloride
Processing aid
0.78055



Decyl Glucoside
Lather booster
0.10001



Extract Blend
Skin care additive
0.10001



Pentasodium Pentetate
Chelating agent
0.09788



Tetrasodium Etidronate
Chelating agent
0.09677



Titanium Dioxide (CI
Brightener/Colorant
0.07001



77891)



Iron Oxide (CI 77491) &
Colorant
0.00670



Talc (CI 77718)










EXAMPLE 3
















Component/INCI





Name
Function
Weight, %




















Soap (sodium cocoate,
Cleansing, lather,
72.36887



sodium palm kernalate,
foam



sodium palmate, sodium



tallowate



Water (Aqua)
Processing aid
13.06276



Talc
Filler/Skin Feel
5.14918



Coconut Acid, Palm Acid,
Lather enhancer,
4.67520



Tallow Acid
emollient



Fragrance (Parfum)
Perfume, smell
1.41004



Glycerin
Moisturizer,
0.89683




processing aid



Sorbitol
Moisturizer,
0.94444




processing aid



Sodium Chloride
Processing aid
0.79183



Titanium Dioxide (CI
Brightener/Colorant
0.29997



77891)



Pentasodium Pentetate
Chelating agent
0.09929



Tetrasodium Etidronate
Chelating agent
0.09817



Ultramarines (CI 77007)
Colorant
0.15136



Chromium Hydroxide
Colorant
0.05206



Green (CI 77289)










Last, in the foregoing specification, the invention has been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification is to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of the present invention.


Benefits, other advantages, and solutions to the problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature or element of any or all the claims. As used herein, the terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.

Claims
  • 1. A bar soap composition comprising: at least one alkylamidopropyl ethyldimonium ethosulfate compound in an amount of from about 0.1% to about 1.5% by weight of the bar soap composition and selected from the group consisting of canolamidopropyl ethyldimonium ethosulfate, linoleamidopropyl ethyldimonium ethosulfate, oleamidopropyl ethyldimonium ethosulfate, ricinoleamidopropyl ethyldimonium ethosulfate, saffloweramidopropylethyldimonium ethosulfate, sunflowerseedamidopropyl ethyldimonium ethosulfate, and soyamidopropyl ethyldimonium ethosulfate;a free fatty acid in an amount of about 4.7% to about 7.2% by weight of the bar soap composition and selected from the group consisting of palm stearin, linoleic acid, myristic acid, oleic acid, palmitic acid, and stearic acid, and mixtures thereof, said free fatty acid in a ratio with said alkylamidopropyl ethyldimonium ethosulfate in a range from about 4:1 to about 19:1 andtalc in an amount of from about 5% to 10% by weight of the personal cleansing composition.
  • 2. The bar soap composition according to claim 1, wherein said talc is about 5% by weight of the bar soap composition.
  • 3. The bar soap composition according to claim 1 further comprising PEG-9, wherein a ratio of said alkylamidopropyl ethyldimonium ethosulfate to said PEG-9 ranges from about 7:3 to about 3:1.
  • 4. The bar soap composition according to claim 1 further comprising PEG-12 in an amount of less than about 4% by weight of the bar soap composition.
  • 5. A bar soap composition comprising: at least one alkylamidopropyl ethyldimonium ethosulfate compound in an amount of from about 0.1% to about 1.5% by weight of the bar soap composition and selected from the group consisting of canolamidopropyl ethyldimonium ethosulfate, linoleamidopropyl ethyldimonium ethosulfate, oleamidopropyl ethyldimonium ethosulfate, ricinoleamidopropyl ethyldimonium ethosulfate, saffloweramidopropylethyldimonium ethosulfate, sunflowerseedamidopropyl ethyldimonium ethosulfate, and soyamidopropyl ethyldimonium ethosulfate; anda free fatty acid in an amount of about 4.7% to about 7.2% by weight of the bar soap composition and selected from the group consisting of palm stearin, linoleic acid, myristic acid, oleic acid, palmitic acid, and stearic acid, and mixtures thereof, said free fatty acid in a ratio with said alkylamidopropyl ethyldimonium ethosulfate in a range from about 4:1 to about 19:1.
  • 6. The bar soap composition according to claim 5, further comprising PEG-9, wherein a ratio of said alkylamidopropyl ethyldimonium ethosulfate to said PEG-9 ranges from about 7:3 to about 3:1.
  • 7. The bar soap composition according to claim 5, further comprising PEG-12 in an amount of less than about 4% by weight of the bar soap composition.
  • 8. The bar soap composition according to claim 5, wherein the at least one alkylamidopropyl ethyldimonium ethosulfate comprises sunflowerseedamidopropyl ethyldimonium ethosulfate.
US Referenced Citations (20)
Number Name Date Kind
5154849 Visscher et al. Oct 1992 A
5496488 Kacher et al. Mar 1996 A
5653970 Vermeer Aug 1997 A
5720961 Fowler et al. Feb 1998 A
6491933 Lorenzi et al. Dec 2002 B2
6534687 Schultz et al. Mar 2003 B2
6537954 Schultz et al. Mar 2003 B2
6589923 Lenuck et al. Jul 2003 B2
6616922 Taylor et al. Sep 2003 B2
6846787 Farrell et al. Jan 2005 B1
6949493 Zhang et al. Sep 2005 B1
20020016271 Racherla Feb 2002 A1
20020039977 Farrell et al. Apr 2002 A1
20020045555 Andreas et al. Apr 2002 A1
20020098995 Goo et al. Jul 2002 A1
20030104958 Puvvada et al. Jun 2003 A1
20030134762 Finucane et al. Jul 2003 A1
20050123574 Abbas et al. Jun 2005 A1
20070042919 Schmit et al. Feb 2007 A1
20080125340 Dail May 2008 A1
Related Publications (1)
Number Date Country
20070042920 A1 Feb 2007 US
Provisional Applications (1)
Number Date Country
60709718 Aug 2005 US