This invention relates to a device and method for production of a custom cosmetic composition based on user-specified preferences. The device is intended for countertop use to formulate on-demand, customized cosmetic compositions.
Typically, the cosmetics industry has provided for retail sale of pre-packaged, pre-formulated cosmetic compositions. These one-size-fits-all formulations are not ideal for all consumers, and many consumers struggle to find the right products for their unique needs and wants. As a result, there is increasing consumer interest in personalized cosmetic offerings that will satisfy their desire for user-controlled cosmetic product specifications, including desired color, coverage level, texture, finish (e.g., gloss vs. matte), effects (e.g., pearlescent effects pigments), and use of ingredients appropriate for their skin types (e.g., oily vs. dry skin).
In addition, as consumer demand grows for more diversified and unique product offerings, manufacturers are faced with increasing inventory carrying costs associated with expanded product ranges, each serving progressively smaller market segments. Such diversification risks becoming cost prohibitive using conventional manufacturing practices. As such, there is a need for a solution that allows for satisfaction of diverse and unique consumer demands in a more cost-effective manner.
Prior art exists for such devices primarily intended for retail point-of-sale custom cosmetic formulations. These primarily relate to production of custom color-matched foundations and color cosmetic products such as nail enamel. Other online services allow users to specify some product features and to receive a curated product in the mail. These devices and services fail to provide the degree of control, choice, and convenience craved by modern consumers. The few available at-home solutions have other associated limitations described below.
U.S. Patent Application No. 2019/0377368 by Besen et al. discloses a custom cosmetic dispenser that is clearly intended for in-store use whose design is too cumbersome to be adapted to at-home personal use.
U.S. Patent Application No. 2019/0200733 by Thiebaut et al. discloses an apparatus for personalizing cosmetic compositions based on a handheld microfluidic design. The design is focused on portability and is configured for production of a single use cosmetic application. Thus, it will not allow for effective storage and preservation of a larger travel quantity of a desired product, making it inconvenient for many users having to carry the device at all times.
U.S. Pat. No. 10,366,513 by Nichol et al. discloses a portioning machine with external reservoirs for providing a custom cosmetic. This device is likewise clearly designed for retail use and is too cumbersome to be adapted to at-home personal use.
U.S. Pat. No. 10,022,741 by Fuller et al. discloses an apparatus for selectively dispensing fluids to create a personalized skincare regimen. Mixing is accomplished with a static mixer that may not be ideal to achieve sufficient mixing of high viscosity ingredients such as those found in color cosmetics. In addition, the design is configured for production of a single use cosmetic application and will not allow for effective storage and preservation of a larger travel quantity of a desired product, adding to the inconvenience of the design.
U.S. Pat. No. 9,808,071 by Thiebaut et al. discloses an apparatus for dispensing cosmetic material through a manifold into a detachable container. As designed, the machine houses just three ingredient cartridges requiring the use of pre-mixed colorant mixtures that limit the range of custom cosmetic features able to be produced by this system (e.g., cannot control coverage level). The ability to produce a wide variety of finished products such as foundations and lip products would require frequent substitution of cartridges, proving excessively inconvenient for consumer home use. The variety of product options required to satisfy consumers' desire for novelty would necessitate a much greater number of ingredient cartridges than those provided in this design. In addition, the design is configured for production of a single use cosmetic application and will not allow for effective storage and preservation of a larger travel quantity of a desired product, adding to the inconvenience of the design. As the container is not an airless system, storage of product for any length of time will risk product oxidation, deterioration, and color change. Furthermore, the design utilizes expensive and/or complicated mechanisms such as optical encoders and gear-dependent lead screws, potentially increasing the finished cost and limiting marketability to cost-conscious consumers.
U.S. Pat. No. 9,691,213 by Bartholomew et al. discloses a retail point-of-sale device that uses a robotic arm to produce a custom color cosmetic product. This device is intended for in-store use and its design is clearly too cumbersome to be adapted to at-home personal use.
U.S. Pat. No. 9,671,795 by Igarashi et al. likewise discloses a retail point-of-sale device intended to produce color-matched foundations in-store. The claims disclose use of a color-measuring device configured to acquire a color composition of a target that is utilized by a foundation software module to match the color composition to a custom cosmetic product. The device uses peristaltic pumps that were largely developed for medical and laboratory single use with disposable tubing. These would have several disadvantages for a personal device that is designed for frequent user-specified formulation changes. Peristaltic pump mechanisms are prone to tube wear. If tubing is not replaced regularly, these pumps can suffer from unacceptable degradation in accuracy and efficiency, resulting in unacceptable tolerances for the micro-fluid volumes required for at-home dosing. In addition, their pulsating dispense can cause splashing. Tubing is also difficult to clean and replace in a closed system, resulting in unacceptable maintenance requirements for a personal consumer product. Finally, smaller scale peristaltic pumps are expensive and would potentially add significantly to the finished cost.
U.S. Pat. No. 7,445,372 by Engel et al. discloses a liquid dispensing machine for personal use that also makes use of a spinning element contained within the housing for mixing of the dispensed liquids. The spinning element as designed is not ideal for mixing of high viscosity ingredients as can be found in many cosmetic formulations. In addition, since many cosmetic formulations specify exceedingly small colorant volumes, retention of any colorant ingredient within the housed mixing chamber may unacceptably alter the color composition of the end product. As designed, the machine comprises just four pumps for four ingredient cartridges that would severely limit the type and variety of custom cosmetic products able to be produced by this system. The variety of product options required to satisfy consumers' desire for novelty would necessitate a much greater number of ingredient cartridges than those provided in this design.
U.S. Pat. No. 6,935,386 by Miller et al. discloses an automated cosmetics dispenser for retail point-of-sale cosmetics products using a nutating pump with rotating disc or turntable to move a container under each nozzle for individual dispensing. Such a design would also be too costly, cumbersome and unsuitable for home use.
U.S. Pat. No. 6,856,861 by Dirksing et al. discloses an apparatus for providing personalized cosmetics. Although the apparatus is designed for at-home use, it uses a dispensing and mixing technology that make the design unsuitable for a personal consumer product. Once the appropriate fluids are released from the cartridges, they are pushed through a piping system and ejector to be dispensed. As with the patent to Engel et al. above, such a mixing design is unsuitable for dispensing of color cosmetic formulations. Since many cosmetic formulations specify exceedingly small colorant volumes, retention of any colorant ingredient within the housed piping system may unacceptably alter the color composition of the end product.
The known related art fails to disclose the principles of the present invention. In short, the prior art fails to disclose a comprehensive, technology-driven, at-home solution that will allow users to create the full plethora of desired liquid cosmetic products (e.g., foundation, concealer, highlighter, contour, lip product, blush, eyeshadow, etc.) in a convenient and cost-efficient form factor. Users should be able to control every aspect of their desired cosmetic, including color, coverage, texture, finish, ingredients, and effects. Moreover, users should be able to effectively preserve and store a quantity of their preferred products at a volume comparable to what is currently available in the retail setting. In view of the foregoing, there is a need for such a user-specified custom cosmetic solution provided in a small footprint and able to allow convenient, fast, and reproducible at-home custom cosmetic dispensing.
The documents cited in this application are incorporated in their entireties by reference herein.
The aforementioned problems are overcome by the present invention which specifies a custom cosmetic dispensing device comprising a wireless-enabled automated dispenser for dispensing a user-specified cosmetic product. The dispenser comprises a housing containing one or more of a plurality of liquid ingredient cartridges removably coupled to a plurality of motors, each used to dispense a specified volume of said ingredients. The dispenser interfaces with a software application that accepts, stores and interprets user inputs, assists users in custom formulation, and relays said inputs to the device controller unit for production of a customized cosmetic formula. The software application allows for retention and transmission of user data and preferences and allows for multiple users of one device to facilitate simple dispensing of preferred products. The software application also assists with inventory control and convenient ordering of ingredients from the company's e-commerce site by providing alerts to users when ingredients levels are low.
A customizing and dispensing device for custom cosmetics may include:
A customizing and dispensing device for custom cosmetics includes:
The device has a lower support surface with a flat support surface with non-raised markings to align a bottom of the receiving chamber with an area below the output piping. A single stop line or stop shape may be provided to catch the back of the liquid ingredient-containing cartridge. A shape matching the bottom of the receiving chamber may also be used to position the receiving chamber. Each liquid ingredient-containing cartridge may be removably engaged with respect to a single motor that causes processor-controlled discharge of the individual liquids. The device has a memory which stores multiple proportional volumetric combinations of the liquids, and the device has a user input control which has selection capability to initiate a single combination for mixing of the liquids from among the multiple proportional combinations of the liquids.
The user input control has an alphanumeric, ikon, symbol, or textual display for identifying individual ones of the multiple proportional combinations of the liquids. The user input control may be a button, series of buttons or rotating switch that progresses through the multiple proportional combinations of the liquids or a touch display. A display panel may be on or in communication with the processor (e.g., communication may be to a personal device such as smart phone, pad, tablet or the like) that displays a color or number or name for the initiated single combination of liquids. The display panel may also be integrated on the machine (as a touch screen) and/or in communication with wireless device.
An alternative description of the present technology may be as a customizing and dispensing device for custom cosmetics which may include:
Each motor and coupled gear pump is linked in communication with a processor with memory. At least one user input control is on an external surface of the dispensing device. The panel should have manual controls to switch from individual recipes or compositions at the choice of the user, and there should be a visual display of numbers, colors or composition names that a user can relate to specific color choices available from memory.
The user input control in communication with the processor is to direct activation and control of each coupled motor-driven gear pump according to an order and percentage of liquid to be used in any single specific composition and color selected.
The processor has an external input-output wired or wireless communication link engageable with a source of data transmission. Any wired or wireless communication link can be used, such as: LAN, WAN, Bluetooth, Apple, Sysco and any other commercial systems.
The memory is configured to store at least one set of instructions (at least two and storage of ten or a hundred or more compositions is more likely) to activate motors to dispense specific amounts of the individual liquid-compositions from the respective liquid-containing ingredient cartridges into the respective nozzles. The nozzles from each of the respective liquid-containing ingredient cartridges leading to a manually moveable receiving chamber; and
The above device may have each respective liquid-containing cartridge comprise a piston slideably engaged within a liquid-containing reservoir, the motor-driven gear pump positioned at a bottom of the reservoir to withdraw liquid in the reservoir into the respective nozzles.
The device may include a trough within the device between the reservoir and the nozzles, each reservoir depositing liquid into and through the trough before being dispensed through the nozzle. This trough area was designed to reduce constraint on fluid flow, transport the fluids into the nozzles and not necessarily for containment of fluids The motor-driven gear pump may be connected to an external coupler through a pin, the external coupler driven by a single motor within the device, and the external coupler rotating the pin, which then drives the motor-driven gear pump within the respective liquid-containing cartridge. The engaging function between couplers (disc-like elements, pins, cylindrical elements) on the pump and motors need not be a tooth-engaged gear, but may connect through friction engagement (such as abrasion-grit coated surfaces and roughness) as the contact does not need to be perfectly aligned, should be slip free and still does not require teeth to connect.
The respective nozzles may have a self-closing diaphragm distal from the reservoir that opens with increased liquid pressure within the respective nozzle and closes when liquid pressure within the respective nozzle ceases.
Another aspect of the present technology is as a method of customizing and dispensing custom cosmetics from a mechanical device comprising:
The method may be further advanced by each respective liquid-containing cartridge including a piston slideably engaged within a liquid-containing reservoir, the motor-driven gear pump positioned at a bottom of the reservoir to withdraw liquid in the reservoir into the respective nozzles and the command activating each individual gear pump is separately activated by the motor according to an ordered series of steps for each liquid-containing cartridge. The method may also include activation of the gear pump withdrawing liquid from the liquid-containing cartridge into the respective nozzle and lowering a level of liquid within the cartridge draws down a piston over the level of liquid within the cartridge. The primary purpose of the piston is to create an air tight cartridge and preserve liquids. It does not have to assist in pumping liquids as a piston pump would. However, it could add some limited amount of pressure to act as a bias, so that less pressure might be needed to be provided by the pumps, as the piston may provide a base pressure below that necessary to push liquid through the diaphragm.
Reference to the Figures will assist in an appreciation and understanding of the invention. All identical numbers in different Figures refer to identical or similar elements.
The custom dispensing device is a small footprint countertop wireless-enabled appliance. The device is configured to be controlled via either a wired or wireless interface, or via both wired and wireless systems.
In
A motor with a drive spindle 436 engages a gear 434 which in turn engages a drive 422 which rotates shaft 420 which in turn rotates contact drive 414 which rotates the gear pin shaft driver 412 which in turn drives the gears 410 which assist in providing pressure to the cosmetic component within the opening 406 to the liquid component volume.
In the preferred embodiment, one motor is designated for each ingredient cartridge unit so that the correct pump can be engaged by the control unit to allow for flow of the correct ingredient. In another embodiment, one motor may drive multiple interchangeable ingredient cartridge units. Ingredient cartridges may be easily attached and detached to the ingredient carousel via a click-type ejection lever or other common form of attachment for easy disposal and replacement of used cartridges. Ideally, the device will house as many ingredient cartridges as possible in order to maximize the number of unique formulations available and minimize inconvenience associated with changing out cartridges. In the preferred embodiment, the device may house 8 cartridges at one time, including primary colorants sufficient to formulate any color of base or accent cosmetic, as well as effects pigments to transmit the desired degree of shimmer, sheen, or other cosmetic effects. This will potentially allow far greater breadth of choice and control in determining a user's preferred formulation.
Users will have the ability to customize all aspects of their products, including color, coverage, texture, finish, ingredients, and effects. Once users have compiled one or more custom cosmetic formulas, these formulas are transmitted by the software application to the custom dispensing device control unit for production. The formulas may be saved and edited as needs or preferences change. In the preferred embodiment, coverage level will be controlled by varying the total volume of colorant material dispensed into the pre-loaded storage container. In an alternate embodiment, the container is not pre-loaded with base material but, rather, base material is dispensed from one of the cartridges. In the preferred embodiment, in the event that a user wishes to modify the color of a previously dispensed product, the software will provide for selection of a ‘color shot’ allowing dispensing or one or more multiples of a fixed volume of a single colorant at a time.
In the preferred embodiment, ingredients may be dispensed simultaneously into a mixing container placed on a base under the pump outlet nozzles. For reasons of speed and efficiency, a simultaneous dispensing mechanism is the preferred embodiment. The ingredient carousel may contain one or more of many available ingredient cartridges with liquid additives that may be dispensed together to form a custom cosmetic composition. For example, compositions from common cosmetic categories that may be produced include, but are not limited to: cleansers and makeup removers, toners, acne and anti-bacterial components, moisturizing components, anti-inflammatory components, anti-oxidant and anti-aging components, sebum-control components, skin lightening products, sun protective products, exfoliants, lip balms or other lip color products, face oils, body lotions, various face serums, face masks, lotions, and creams, pore correctors, tinting or bronzing products, foundations, primers, concealers, color correctors, contour products, highlighters, blushes, liquid eyeshadows, products that convey shimmer, and other makeup or cosmetic products. One familiar with the art will understand that any number of various products can be formulated using this device and should not be limited by this list. In one embodiment, the device is able to detect both the type and amount of ingredients contained in each ingredient cartridge by utilizing programmable radiofrequency identification (RFID), near field communication (NFC), or other similar technology for identification of ingredient-related information with each cartridge read by the device. In this embodiment, a remote RFID/NFC antenna is positioned inside the housing to wirelessly interact with the RFID/NFC tags embedded in each cartridge and with the controller module on the control board.
Instead, software monitoring the revolutions and run time of the motors, electronic switches, weight sensitive elements, pressure-sensitive elements, or internal light-reflecting sensors-receptors can be used to indicate volume levels in the cartridges. Information from the sensors create information which is relayed via the control board through the software application to alert users to near-empty cartridges and to ensure that appropriate cartridges are installed correctly to support the desired product. Cartridges come preloaded with ingredient information whose identity is loaded to its corresponding RFID/NFC tag for automatic detection from the sensors by the device. In one embodiment, cartridge installation is detected by an ejection spring linked to a photo interrupter. In a preferred embodiment, the correct cartridge placement is identified by physical means such as a unique coupling method for each cartridge type or by corresponding labels such as unique names or colors. There may also be different connectors for each cartridge so that only appropriate cartridges
The controller comprises a microprocessor embedded control mainframe unit that may be optionally controlled wirelessly via Bluetooth, WIFI, or other common means of wireless communication. In various embodiments, system controls and user inputs may be both wireless, or integrated, or both. The control unit has switch outputs to drive electro-mechanical components such as pumps and valves. The control unit can accept quantity-based ingredient formulations. It executes the formula by simultaneously driving individual DC motors corresponding to specific cartridges. In the preferred embodiment, the control unit will run each motor for a specified amount of time depending on the output required of each ingredient. The motors, in turn, will drive designated pumps to allow flow of the correct volume of each ingredient. The designated cartridge may be mapped for location and proper positioning within the device by RFID/NFC system feedback in one embodiment.
In operation, after transmission of commands to the control unit, ingredients are transmitted via pumps in prescribed amounts from one or more ingredient cartridges into a mixing container that is separate from the device and placed under the outlet nozzles. Pumps are rated to dispense ingredients of varying viscosities at microliter volumes with a high degree of accuracy and reproducibility. As such, only certain types of micro pumps are appropriate for such use. In one embodiment, the pumps may comprise one of many types of microfluid mechanical pumps such as rotary pumps (e.g., internal gear pumps) or reciprocating pumps (e.g., micro piston/micro linear pumps). In an alternate embodiment, non-mechanical pumps (e.g., electro-hydrodynamic or electro-osmotic pumps) are used. In the preferred embodiment, rotary gear pumps are driven by DC motors.
In the preferred embodiment, the ingredients are independently deposited into a discrete mixing and storage container placed on a base under the outlet nozzles. The mixing container is completely detached from the device body. In one embodiment, a switch integrated into the enclosure can detect the correct placement of the container. If the container is not placed on the base or directly under the nozzles, a warning would alert the user to place or align the container correctly and would not dispense until corrected. This technology can include a mechanical or electrical switch as well as an electric sensor such as magnetic, proximity, photo interrupter, etc. After deposition of the appropriate ingredients, the contents of the container are mixed. Various mixing methods are possible in which shaking, vibration, rotation, gyroscopic movement, or other form of motion is applied in order to obtain sufficient mixing of component ingredients. In one embodiment, the storage container may contain a pre-loaded quantity of base material. In another embodiment, the container may include a pre-loaded mixing device, such as fins, blades, mixing balls, or other forms of mixing mechanisms sufficient to create agitation.
In normal operation, at the time of dispensing, one or more motors controlling the pumps may execute a partial reverse rotation or ‘suck back’ to avoid dripping, drying, or encrustation of fluid within the dispensing nozzle. An advantage of the preferred embodiment is complete isolation of the fluid path for each cartridge. As such, there is no need for a cleaning or flush cycle between dispense cycles and no risk of contamination of one cartridge's fluid path with the contents of any other adjacent cartridge.
The software application comprises the user device control interface. Multiple users can create accounts and log in to a single device. The software application saves user account information and interfaces with the company website to allow for automated order fulfillment, payment processing, customer service interaction, direct marketing touch points, etc. User-saved preferences for custom created formulations are stored through the software application. These may be uploaded and shared with the user community through the software application or via common social media websites. Daily use of the software application is designed to be as user-friendly as possible with one-touch dispensing of the desired formula. Formulas may also be easily updated and saved and adapted for frequent changes as desired. The software application menu may limit or adjust available formulas based on the ingredients currently loaded into the ingredient carousel. The electronic tagging of ingredient cartridges facilitates unique identification of ingredients to allow for easy inventory control and to avoid cross contamination of ingredients. In various embodiments, these system controls may be wireless, integrated, or both. In one embodiment, as the control board determines the identity of each loaded cartridge, this information is mapped and relayed to the software application, which can then update the menu based on ingredients currently available. This affords accurate real-time monitoring of current inventory. In an alternate embodiment, real-time monitoring of remaining cartridge contents is determined by a counter that counts the run time of each motor driver, estimates the ingredient volume remaining, and relays such information to the software. If users select an ingredient during new product formulation for which ingredients are not presently available, an alert will be issued and the user will be prompted to either order the ingredient or change the formula. If, at any point during operation, a cartridge becomes empty or is disconnected, the control board will trigger an alert.
The present disclosure may be highly specific in some regards, but the scope of the invention is not limited to specific dimensions or limitations, and terms are assumed to be generic, wherever used in the description.
This application claims priority from U.S. Provisional Patent Application Ser. No. 62/982,747.
Number | Name | Date | Kind |
---|---|---|---|
5934344 | Wainberg | Aug 1999 | A |
5938080 | Haaser | Aug 1999 | A |
7185789 | Mink | Mar 2007 | B2 |
11666133 | Matsui | Jun 2023 | B2 |
20050189037 | Cortes Ferriz | Sep 2005 | A1 |
20060118581 | Clark | Jun 2006 | A1 |
20080029541 | Wallace | Feb 2008 | A1 |
20080257446 | Oakes | Oct 2008 | A1 |
20080305241 | Trevino, III | Dec 2008 | A1 |
20090145926 | Klopfenstein | Jun 2009 | A1 |
20100185322 | Bylsma | Jul 2010 | A1 |
20130074982 | Echterling | Mar 2013 | A1 |
20130255831 | Shibasaki | Oct 2013 | A1 |
20150107678 | Igarashi | Apr 2015 | A1 |
20150314246 | Lehtonen | Nov 2015 | A1 |
20160052007 | Fuller | Feb 2016 | A1 |
20170246602 | Dean | Aug 2017 | A1 |
20180280277 | Lu | Oct 2018 | A1 |
20190143285 | Sang | May 2019 | A1 |
20200215568 | Waldo | Jul 2020 | A1 |
20210024243 | Bourne | Jan 2021 | A1 |
20210024343 | Pettipher | Jan 2021 | A1 |
20220212153 | Oh | Jul 2022 | A1 |
Number | Date | Country | |
---|---|---|---|
20210268458 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
62982747 | Feb 2020 | US |