Applicants hereby notify the USPTO that the claims of the present application are different from those of the aforementioned related applications. Therefore, Applicant rescinds any disclaimer of claim scope made in the parent application or any other predecessor application in relation to the present application. The Examiner is therefore advised that any such disclaimer and the cited reference that it was made to avoid may need to be revisited at this time. Furthermore, the Examiner is also reminded that any disclaimer made in the present application should not be read into or against the parent application, the grandparent application or any other related application.
The invention generally relates to electronic authentication, and more specifically, to secure authentication using biometric verification. In particular, the present invention relates to the initialization and registration of personal digital keys.
Optimizing sales transactions and providing secure access to physical and/or digital assets are challenges faced by many businesses and organizations. Ensuring these processes are safe, efficient and simple is important to merchants, providers, users and consumers alike. Conventionally, technologies such as magnetic cards (e.g., credit cards, debit cards, ATM cards, and employee badges) have been used in attempt to address these needs. More recently, various contactless cards or tokens requiring placement near compatible readers have been used.
Each of these technologies, however, has inherent problems in providing secure transaction processing and access control. In particular, the conventional technologies fail to sufficiently ensure that individuals attempting to perform a transaction are associated with the access device and are authorized to do so. Conventional attempts to address this issue include requiring users to provide Personal Identification Numbers (PINs) or passwords in conjunction with account numbers. While in some instances, these options have helped to combat fraudulent activity, these solutions add unwanted complexity and delay to transactions. With the growing need to memorize various PINs and passwords, individuals tend to repeatedly use the same, simple phrase to protect many items, or worse, keep the written phrases in their purse/wallet or next to their computer. Thus, the use of PINs and passwords are often defeated.
A technology better suited to address the issue of authenticating users is biometrics. In biometric authentication, physical and/or behavioral characteristics of an individual are analyzed to uniquely identify the individual. For example, biometric characteristics can include fingerprint, retinal, iris, face, palm, DNA, voice or signature characteristics that can each be uniquely associated with the individual. However, traditional biometric authentication solutions also suffer from significant problems. First, traditional biometric authentication techniques typically expose the participating parties to serious liabilities, risks and inefficiencies. Conventional biometric authentication techniques nearly always require users to release personal, private and unchangeable data to a controlling-entity (e.g., a merchant or business authority) or to a third-party relied upon by the controlling-entity. This exposes an individual's personal biometric information to the possibility of theft and fraudulent use. Further, controlling entities must either assume the risks and liabilities of storing this data, or trust the data to a third-party's care.
Second, conventional biometric authentication techniques generally require an individual to submit biometric information (e.g., a fingerprint, retinal scan, facial scan, or signature) for storage in a database that can then be later used for comparison with biometric data acquired at the point of transaction. This “enrollment” process is time-consuming, risky, error-prone and considered intrusive by many individuals. Further, the enrollment process must be repeated for each individual for every intended use. For example, a user may need to enroll for biometric authentication with his/her company (e.g., for secure access to facilities or digital files), and separately enroll with various merchants using biometric authentication for transactions. Thus, the individual has to spend significant time completing each separate enrollment, and additionally must trust each entity with his/her personal biometric information. For these reasons alone many individuals do not even consider these options.
The above-defined issues represent serious roadblocks to the widespread deployment and acceptance of conventional biometric authentication options. Unless the identified deficiencies are addressed, the full potential of biometric solutions will never be realized. Therefore, a new technology is needed that provides highly reliable, safe and efficient secure authentication for transaction-processing and/or access control. Moreover, the new technology should allow for a simple and efficient enrollment process that does not put an individual's highly personal information at risk of identity theft or other fraudulent use.
A system and method provide efficient, secure and highly reliable authentication for transaction processing and/or access control applications. A portable physical device, referred to herein as a Personal Digital Key or “PDK”, stores one or more profiles (e.g., a biometric profile) in a tamper-proof memory. The biometric profile is acquired in a secure trusted process and is uniquely associated with an individual that is authorized to use and is associated with the PDK. The PDK can wirelessly transmit the identification information including a unique PDK identification number and the biometric profile over a secure wireless channel for use in an authentication process. Additionally, the PDK can store other information such as credit/debit card information, bank information, or personal information in a memory for use in authorizing or completing a transaction.
Typically, a receiving device, referred to herein as a Reader, wirelessly receives the profile from the PDK in order to process a transaction or provide access to secure digital or physical assets. In one embodiment, the Reader acquires a biometric input from the individual carrying the PDK at the point of transaction. The biometric input can be acquired by, for example, a fingerprint scan, iris scan, retinal scan, palm scan, face scan, DNA analysis, signature analysis, voice analysis or any other input mechanism that provides physical or behavioral characteristics uniquely associated with the individual. The Reader compares the biometric profile received from the PDK to the biometric input obtained at the point of transaction to determine if a transaction should be authorized.
In one embodiment, the Reader is further adapted to communicate with one or more remote registries to provide an additional layer of security in the authentication process. Information transmitted from the PDK can be compared to entries stored in the registries to ensure the PDK (and its owner) have not participated in any fraudulent use and that the PDK is not invalid, lost or stolen. In yet another embodiment, one or more biometric authentications, remote registry authentications or other types of authentication are used in combination.
The PDK is programmed by a programming device referred to herein as a “Programmer” during initialization and registration processes. In one embodiment, the programming process is witnessed and authenticated by a specialized trusted Notary. In one embodiment of the initialization process, the Programmer is communicatively coupled with a PDK from the user and a PDK from the Notary. Information is read from the user PDK to determine if the PDK is authorized for initialization and Notary information is read from the Notary PDK to determine if the Notary is authorized to perform the initialization. If both the user and the Notary are authorized, the Programmer prompts the user to provide a biometric input. The Notary witnesses the biometric acquisition process either in person or remotely to ensure the information can be trusted. The Programmer then writes biometric profile data to a memory in the user PDK. In one embodiment, the Programmer does not store the personal biometric data.
In registration, the Programmer communicates to the Central Registry and/or one or more private entries to create or update entries associated with the user PDK. Registration allows the PDK owner to be authenticated for transactions requiring registry authentication. A registry entry may include, for example, a unique PDK ID, purchasing information associated with the user and personal information associated with the user.
The initialization and registration processes further enhance security by storing initialization/registration history data to both the user PDK and the Programmer memory. This data includes, for example, the user PDK ID, the Notary PDK ID, the programmer ID, a site ID, or other information associated with programming including software revisions, checksums and other metrics intended to verify the current software versions used in both the Programmer and the PDK. The history can be recalled in the future for auditing purposes.
The features and advantages described in the specification are not all inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the inventive subject matter.
The figures depict various embodiments of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein.
The system 100 addresses applications where it is important to ensure a specific individual is authorized to perform a given transaction. A transaction as used herein can include executing a purchase or financial dealing, enabling access to physical and/or digital items, verifying identification or personal information or executing other tasks where it is important to authenticate an individual for use. Generally, the Reader 108 wirelessly receives information stored in the PDK 102 that uniquely identifies the PDK 102 and the individual carrying the PDK 102. The Reader 108 can also receive a biometric input 104 from the individual. Based on the received information, the Reader 108 determines if the transaction should be authorized. Beneficially, the system 100 provides comprehensive authentication without the need for PINs or passwords. Moreover, personal biometric information need not be stored in any local or remote storage database and is only stored on the user's own PDK. Furthermore, in one embodiment, purchase transactions can be efficiently completed without requiring the use of physical credit cards, tokens or other user action beyond initiating the transaction.
The credibility of the system 100 is ensured by the use of a PDK 102 that stores trusted information. The PDK 102 is a compact, portable uniquely identifiable wireless device typically carried by an individual. The PDK 102 stores digital information in a tamper-proof format that uniquely associates the PDK 102 with an individual. Example embodiments of PDKs are described in more detail in U.S. patent application Ser. No. 11/292,330, entitled “Personal Digital Key And Receiver/Decoder Circuit System And Method” filed on Nov. 30, 2005; U.S. patent application Ser. No. 11/620,581 entitled “Wireless Network Synchronization Of Cells And Client Devices On A Network” filed on Jan. 5, 2007; and U.S. patent application Ser. No. 11/620,577 entitled “Dynamic Real-Time Tiered Client Access” filed on Jan. 5, 2007, the entire contents of which are all incorporated herein by reference.
To establish the trust, credibility and confidence of the authentication system, information stored in the PDK 102 is acquired by a process that is trusted, audited and easily verified. The process is ensured by a trusted third-party system, referred to herein as a Notary, that administers the acquisition and storage of information in the PDK 102 according to defined security protocols. In one embodiment, the Notary is a system and/or a trusted individual that witnesses the acquisition and storage either in person or remotely. In another embodiment, the Notary comprises trusted hardware that administers the initialization process by an automated system. Thus, once initialized by the trusted process, the PDK 102 can prove that the information it stores is that of the individual. Example embodiments of the initialization process are described in more detail below with reference to
The Reader 108 wirelessly communicates with the PDK 102 when the PDK 102 is within a proximity zone of the Reader 108. The proximity zone can be, for example, several meters in radius and can be adjusted dynamically by the Reader 108. Thus, in contrast to many conventional RF ID devices, the Reader 108 can detect and communicate with the PDK 102 without requiring the owner to remove the PDK 102 from his/her pocket, wallet, purse, etc. Generally, the Reader 108 receives uniquely identifying information from the PDK 102 and initiates an authentication process for the individual carrying the PDK 102. In one embodiment, the Reader 108 is adapted to receive a biometric input 104 from the individual. The biometric input 104 comprises a representation of physical or behavioral characteristics unique to the individual. For example, the biometric input 104 can include a fingerprint, a palm print, a retinal scan, an iris scan, a photograph, a signature, a voice sample or any other biometric information such as DNA, RNA or their derivatives that can uniquely identify the individual. The Reader 108 compares the biometric input 104 to information received from the PDK 102 to determine if a transaction should be authorized. Alternatively, the biometric input 104 can be obtained by a biometric reader on the PDK 102 and transmitted to the Reader 108 for authentication. In additional alternative embodiment, some or all of the authentication process can be performed by the PDK 102 instead of the Reader 108.
The Reader 108 is further communicatively coupled to the network 110 in order to receive and/or transmit information to remote databases for remote authentication. In an alternative embodiment, the Reader 108 includes a non-volatile data storage that can be synchronized with one or more remote databases 112 or registries 114-116. Such an embodiment alleviates the need for a continuous connection to the network 110 and allows the Reader 108 to operate in a standalone mode and for the local data storage to be updated when a connection is available. For example, a standalone Reader 108 can periodically download updated registry entries and perform authentication locally without any remote lookup.
The network 110 provides communication between the Reader 108 and the validation database 112, Central Registry 114 and one or more private registries 116. In alternative embodiments, one or more of these connections may not be present or different or additional network connections may be present. In one embodiment, the network 110 uses standard communications technologies and/or protocols. Thus, the network 110 can include links using technologies such as Ethernet, 802.11, 802.16, integrated services digital network (ISDN), digital subscriber line (DSL), asynchronous transfer mode (ATM), etc. Similarly, the networking protocols used on the network 110 can include the transmission control protocol/Internet protocol (TCP/IP), the hypertext transport protocol (HTTP), the simple mail transfer protocol (SMTP), the file transfer protocol (FTP), etc. The data exchanged over the network 110 can be represented using technologies and/or formats including the hypertext markup language (HTML), the extensible markup language (XML), etc. In addition, all or some of links can be encrypted using conventional encryption technologies such as the secure sockets layer (SSL), Secure HTTP and/or virtual private networks (VPNs). In another embodiment, the entities can use custom and/or dedicated data communications technologies instead of, or in addition to, the ones described above.
The validation database 112 stores additional information that may be used for authorizing a transaction to be processed at the Reader 108. For example, in purchase transactions, the validation database 112 is a credit card validation database that is separate from the merchant providing the sale. Alternatively, a different database may be used to validate different types of purchasing means such as a debit card, ATM card, or bank account number.
The registries 114-116 are securely-accessible databases coupled to the network 110 that store, among other items, PDK, Notary, and Reader information. In one embodiment, the registries 114-116 do not store biometric information. In an alternative embodiment, a registry stores biometric information in an encoded format that can only be recovered using an algorithm or encoding key stored in the PDK 102. Information stored in the registries can be accessed by the Reader 108 via the network 110 for use in the authentication process. There are two basic types of registries illustrated: private registries 116 and the Central Registry 114. Private registries 116 are generally established and administered by their controlling entities (e.g., a merchant, business authority, or other entity administering authentication). Private registries 116 can be custom configured to meet the specialized and independent needs of each controlling entity. The Central Registry 114 is a single highly-secured, centrally-located database administered by a trusted third-party organization. In one embodiment, all PDKs 102 are registered with the Central Registry 114 and may be optionally registered with one or more selected private registries 116. In alternative embodiments, a different number or different types of registries may be coupled to the network 110.
Turning now to
The memory 210 can be a read-only memory, a once-programmable memory, a read/write memory or any combination of memory types including physical access secured and tamperproof memories. The memory 210 typically stores a unique PDK ID 212 and one or more profiles 220. The PDK ID 212 comprises a public section and a private section of information, each of which can be used for identification and authentication. In one embodiment, the PDK ID 212 is stored in a read-only format that cannot be changed subsequent to manufacture. The PDK ID 212 is used as an identifying feature of a PDK 102 and distinguishes between PDKs 102 in private 116 or Central 114 registry entries. In an alternative embodiment, the registries can identify a PDK 102 by a different ID than the PDK ID 212 stored in the PDK 102, or may use both the PDK ID 212 and the different ID in conjunction. The PDK ID 212 can also be used in basic PDK authentication to ensure that the PDK 102 is a valid device.
The profile fields 220 can be initially empty at the time of manufacture but can be written to by authorized individuals (e.g., a Notary) and/or hardware (e.g., a Programmer). In one embodiment, each profile 220 comprises a profile history 222 and profile data 230. Many different types of profiles 220 are possible. A biometric profile, for example, includes profile data 230 representing physical and/or behavioral information that can uniquely identify the PDK owner. A PDK 102 can store multiple biometric profiles, each comprising a different type of biometric information. In one embodiment, the biometric profile 220 comprises biometric information transformed by a mathematical operation, algorithm, or hash that represents the complete biometric information (e.g., a complete fingerprint scan). In one embodiment, a mathematical hash is a “one-way” operation such that there is no practical way to re-compute or recover the complete biometric information from the biometric profile. This both reduces the amount of data to be stored and adds an additional layer of protection to the user's personal biometric information. In one embodiment, the biometric profile is further encoded using a encoding key and/or algorithm that is stored with the biometric profile data. Then, for authentication, both the biometric profile data and the encoding key and/or algorithm are passed to the Reader 108.
In one embodiment the PDK 102 also stores one or more biometric profile “samples” associated with each biometric profile. The biometric profile sample is a subset of the complete profile that can be used for quick comparisons of biometric data. In one embodiment, the profile samples can be transmitted over a public communication channel or transmitted with reduced level of encryption while the full biometric profiles are only transmitted over secure channels. In the case of fingerprint authentication, for example, the biometric profile sample may represent only small portion area of the full fingerprint image. In another embodiment, the fingerprint profile sample is data that describes an arc of one or more lines of the fingerprint. In yet another embodiment, the fingerprint profile sample can be data representing color information of the fingerprint.
In another embodiment, the stored profiles 220 include a PIN profile that stores one or more PINs or passwords associated with the PDK owner. Here, the number or password stored in the PIN profile can be compared against an input provided by the user at the point of transaction to authenticate the user. In one embodiment, a PIN profile sample is also stored with the PIN profile that comprises a subset of the full PIN. For example, a PIN profile sample can be only the first two numbers of the PIN that can be used to quickly compare the stored PIN profile to a PIN obtained at the point of transaction.
In yet another embodiment, the PDK 102 stores a picture profile that includes one or more pictures of the PDK owner. In a picture profile authentication, the picture stored in the PDK 102 is transmitted to a display at the point of transaction to allow an administrator (e.g., a clerk or security guard) to confirm or reject the identity of the individual requesting the transaction. In another embodiment, an image is captured of the individual at the point of transaction and compared to the picture profile by an automated image analysis means. Furthermore, picture profiles could be used, for example, in place of conventional passports or drivers licenses to authenticate the identity of an individual and allow for remote identification of individuals. For example, a police officer following a vehicle could obtain an image and identity of the driver while still maintaining a safe distance from the vehicle. In the hospitality industry, a host could greet a guest at the door of a hotel, casino or restaurant and easily recognize the guest by obtaining the guest's picture profile as he/she enters.
A registry or database profile typically stores information associating the user with a registry. The registry profile can be used to determine if the individual is associated with the controlling entity for that registry and if different types of transactions are authorized for the individual. A registry profile can further include additional user information for use with the registry. For example, a private registry profile associated with a particular merchant may include a credit card number that the user has selected as a default for that merchant. In one embodiment, a profile can further include spending limits that limits the amount of purchases a user can make with a particular vendor or using a particular profile.
A profile can further include personal identification information such as name, address, phone number, etc., bank information, credit/debit card information, or membership information. This information can be useful for certain types of transactions. For example, with purchases that require delivery, a PDK 102 can automatically transmit address information to the Reader 108 at the point of transaction. In one embodiment, a profile can store multiple addresses. At the point of transaction, the Reader 108 displays the address options and allows the user to select which address to use.
Generally, some types of profile information (e.g., a biometric profile) can only be acquired during a trusted initialization process that is administered by a trusted Notary. In one embodiment, other secure information such as credit card information are also stored to the PDK in the presence of a Notary. Alternatively, certain types of low-risk information can be added by the user without a Notary, such as, for example a change of address. In another embodiment, once an initial profile has been stored to the PDK 102, a user can add information to the PDK 102 using a Programmer without a Notary through self-authentication. For example, in one embodiment, a PDK 102 that has a stored biometric profile can be “unlocked” by providing a matching biometric input. Then, once unlocked, the user can add or remove additional profiles, credit cards, personal information, etc. to the PDK 102 using a Programmer. For example, in one embodiment, a user that has unlocked his/her own PDK 102 can store additional biometric information (such as fingerprint information for other fingers) in his/her PDK 102. In another example, a user that cancels a credit card, can unlock his/her PDK 102 to remove the credit card information. In another embodiment, the user can make copies of the PDK 102 or move profiles from one PDK 102 to another once the PDK 102 is unlocked.
The profile history 222 includes a programmer ID field 224, a Notary ID 226, and a site ID field 228. The profile history 222 relates to the specific hardware, Notary, and site used at the time the profile data was created and stored to the PDK. Typically each profile 220 stores its specific profile history 222 along with the profile data 230. The profile history 222 can be recalled for auditing purposes at a later time to ensure the credibility of the stored data. In one embodiment, transaction history can also be stored to the PDK memory 210. Here, the PDK 102 stores information associated with any transactions made with the PDK 102 such as the name of the merchant, the purchase amount, credit card used, etc.
The PDK 102 also includes a programmer I/O 240 that provides an interface to a trusted Programmer (not shown). The Programmer comprises trusted hardware that is used to program the memory 210 of the PDK 102. An example embodiment of a Programmer is described in more detail below with reference to
The control logic 250 coordinates between functions of the PDK 102. In one embodiment, the control logic 250 facilitates the flow of information between the programmer I/O 240, transceiver 260 and memory 210. The control logic 250 can further process data received from the memories 210, programmer I/O 240 and transceiver 260. Note that the control logic 250 is merely a grouping of control functions in a central architecture, and in other embodiments, the control functions can be distributed between the different modules of the PDK 102. The operation of the control logic will be understood to those skilled in the art based on the description below corresponding to
The transceiver 260 is a wireless transmitter and receiver for wirelessly communicating with a Reader 108 or other wireless device. The transceiver 260 can send and receive data as modulated electromagnetic signals. Moreover, the data can be encrypted by the transceiver 260 and transmitted over a secure link. Further, the transceiver 260 can actively send connection requests, or can passively detect connection requests from another wireless source. In one embodiment, the transceiver 260 is used in place of a separate programmer I/O 240 and is used to wirelessly communicate with the Programmer for programming. In one embodiment, the transceiver 260 is adapted to communicate over a range of up to around 5 meters.
Optionally, a PDK 102 can also include a built in biometric reader (not shown) to acquire a biometric input from the user. The biometric input can be used to unlock the PDK 102 for profile updates, or for various types of authentication. For example, in one embodiment, a biometric input is received by the PDK 102 and compared to stored biometric information. Then, if the user is authenticated, the PDK 102 can indicate to the Reader 108 that the user is authenticated and transmit additional information (e.g., a credit card number) needed to complete a transaction.
Turning now to
The RDC 304 provides the wireless interface to the PDK 102. Generally, the RDC 304 wirelessly receives data from the PDK 102 in an encrypted format and decodes the encrypted data for processing by the processor 306. An example embodiment of an RDC is described in U.S. patent application Ser. No. 11/292,330 entitled “Personal Digital Key And Receiver/Decoder Circuit System And Method”, the entire contents of which are incorporated herein by reference. Encrypting data transmitted between the PDK 102 and Reader 108 minimizes the possibility of eavesdropping or other fraudulent activity. In one embodiment, the RDC 304 is also configured to transmit and receive certain types of information in an unencrypted, or public, format.
The biometric reader 302 receives and processes the biometric input 104 from an individual at the point of transaction. In one embodiment, the biometric reader 302 is a fingerprint scanner. Here, the biometric reader 302 includes an image capture device adapted to capture the unique pattern of ridges and valleys in a fingerprint also known as minutiae. Other embodiments of biometric readers 302 include retinal scanners, iris scanners, facial scanner, palm scanners, DNA/RNA analyzers, signature analyzers, cameras, microphones, and voice analyzers. Furthermore, the Reader 108 can include multiple biometric readers 302 of different types. In one embodiment, the biometric reader 302 automatically computes mathematical representations or hashes of the scanned data that can be compared to the mathematically processed biometric profile information stored in the PDK 102.
The processor 306 can be any general-purpose processor for implementing a number of processing tasks. Generally, the processor 306 processes data received by the Reader 108 or data to be transmitted by the Reader 108. For example, a biometric input 104 received by the biometric reader 302 can be processed and compared to the biometric profile 220 received from the PDK 102 in order to determine if a transaction should be authorized. In different embodiments, processing tasks can be performed within each individual module or can be distributed between local processors and a central processor. The processor 306 further includes a working memory for use in various processes such as performing the method of
The network interface 308 is a wired or wireless communication link between the Reader 108 and one or more external databases such as, for example, a validation database 112, the Central Registry 114 or a private registry 116. For example, in one type of authentication, information is received from the PDK 102 at the RDC 304, processed by the processor 306, and transmitted to an external database 112-116 through the network interface 308. The network interface 308 can also receive data sent through the network 110 for local processing by the Reader 108. In one embodiment, the network interface 308 provides a connection to a remote system administrator to configure the Reader 108 according to various control settings.
The I/O port 312 provides a general input and output interface to the Reader 108. The I/O port 312 may be coupled to any variety of input devices to receive inputs such as a numerical or alphabetic input from a keypad, control settings, menu selections, confirmations, and so on. Outputs can include, for example, status LEDs, an LCD, or other display that provides instructions, menus or control options to a user.
The credit card terminal I/O 310 optionally provides an interface to an existing credit card terminal 314. In embodiments including the credit card terminal I/O 310, the Reader 108 supplements existing hardware and acts in conjunction with a conventional credit card terminal 314. In an alternative embodiment, the functions of an external credit card terminal 314 are instead built into the Reader 108. Here, a Reader 108 can completely replace an existing credit card terminal 314.
In one embodiment, a Reader 108 is adapted to detect and prevent fraudulent use of PDKs that are lost, stolen, revoked, expired or otherwise invalid. For example, the Reader 108 can download lists of invalid PDKs IDs 212 from a remote database and block these PDKs 102 from use with the Reader 108. Furthermore, in one embodiment, the Reader 108 can update the blocked list and/or send updates to remote registries 114-116 or remote Readers 108 upon detecting a fraudulently used PDK 102. For example, if a biometric input 104 is received by the Reader 108 that does not match the biometric profile received from the PDK 102, the Reader 108 can obtain the PDK ID 212 and add it to a list of blocked PDK IDs 212. In another embodiment, upon detecting fraudulent use, the Reader 108 can send a signal to the PDK 102 that instructs the PDK 102 to deactivate itself. The deactivation period can be, for example, a fixed period of time, or until the rightful owner requests re-activation of the PDK 102. In yet another embodiment, the Reader 108 can send a signal instructing the fraudulently obtained PDK 102 to send alarm signals indicating that the PDK 102 a stolen device. Here, a stolen PDK 102 can be tracked, located and recovered by monitoring the alarm signals. In one embodiment, the Reader 108 stores biometric or other identifying information from an individual that attempts to fraudulently use a PDK 102 so that the individual's identity can be determined.
Generally, the Reader 108 is configured to implement at least one type of authentication prior to enabling a transaction. In many cases, multiple layers of authentication are used. A first layer of authentication, referred to herein as “device authentication”, begins any time a PDK 102 moves within range of a Reader 108. In device authentication, the Reader 108 and the PDK 102 each ensure that the other is valid based on the device characteristics, independent of any profiles stored in the PDK 102. In some configurations, when fast and simple authentication is desirable, only device authentication is required to initiate the transaction. For example, a Reader 108 may be configured to use only device authentication for low cost purchases under a predefined amount (e.g., $25). The configuration is also useful in other types of low risk transactions where speed is preferred over additional layers of authentication.
Other configurations of the Reader 108 require one or more additional layers of authentication, referred to herein as “profile authentication” based on one or more profiles stored in the PDK 102. Profile authentication can include, for example, a biometric authentication, a PIN authentication, a photo authentication, a registry authentication, etc. or any combination of the above authentication types. Profile authentications are useful when a more exhaustive authentication process is desired, for example, for high purchase transactions or for enabling access to classified assets.
In step 404, a device authentication is performed. Here, the Reader 108 establishes if the PDK 102 is a valid device and PDK 102 establishes if the Reader 108 is valid. Furthermore, device authentication determines if the PDK is capable of providing the type of authentication required by the Reader 108.
An example embodiment of a method for performing 404 device authentication is illustrated in
Turning back to
The method next determines 410 whether profile authentication is required based on the configuration of the Reader 108, the type of transaction desired or by request of a merchant or other administrator. If the Reader 108 configuration does not require a profile authentication in addition to the PDK authentication, then the Reader 108 proceeds to complete the transaction for the PDK 102. If the Reader 108 does require profile authentication, the profile authentication is performed 412 as will be described below with references to
Turning now to
In a first configuration, a trigger is required to continue the process because of the type of authentication being used. For example, in biometric authentication, the authentication process cannot continue until the Reader detects a biometric contact and receives biometric information. It is noted that biometric contact is not limited to physical contact and can be, for example, the touch of a finger to a fingerprint scanner, the positioning of a face in front of a facial or retinal scanner, the receipt of a signature, the detection of a voice, the receipt of a DNA sample, RNA sample, or derivatives or any other action that permits the Reader 108 to begin acquiring the biometric input 104. By supplying the biometric contact, the user indicates that the authentication and transaction process should proceed. For example, a PDK holder that wants to make a withdrawal from an Automated Teller Machine (ATM) equipped with a Reader 108 initiates the withdrawal by touching a finger to the Reader 108. The ATM then begins the transaction process for the withdrawal.
In a second configuration, some other user action is required as a trigger to proceed with the transaction even if the authentication process itself doesn't necessarily require any input. This can be used for many purchasing transactions to ensure that the purchase is not executed until intent to purchase is clear. For example, a Reader 108 at a gas station can be configured to trigger the transaction when a customer begins dispensing gas. At a supermarket, a Reader 108 can be configured to trigger the transaction when items are scanned at a checkout counter.
In a third configuration, no trigger is used and the Reader 108 automatically completes the remaining authentication/transaction with no explicit action by the user. This configuration is appropriate in situations where the mere presence of a PDK 102 within range of the Reader 108 is by itself a clear indication of the PDK owner's desire to complete a transaction. For example, a Reader 108 can be positioned inside the entrance to a venue hosting an event (e.g., a sporting event, a concert, or a movie). When a PDK owner walks through the entrance, the Reader 108 detects the PDK 102 within range, authenticates the user, and executes a transaction to purchase an electronic ticket for the event. In another embodiment, the electronic ticket can be purchased in advance, and the Reader 108 can confirm that the user is a ticket holder upon entering the venue. Other examples scenarios where this configuration is useful include boarding a transportation vehicle (e.g., a train, bus, airplane or boat), entering a hotel room, or accessing secure facilities or other assets. Thus, if no trigger is required, the process next performs 614 the requested profile authentication tests.
If a trigger is required, the Reader monitors 610 its inputs (e.g., a biometric reader, key pad, etc.) and checks for the detection 612 of a trigger. If the required trigger is detected, the process continues to perform 614 one or more profile authentication test.
Referring first to
Furthermore, in one embodiment, scanning 704 also includes obtaining a biometric input sample from the biometric input according to the same function used to compute the biometric profile sample stored in the PDK 102. Optionally, the Reader 108 receives 708 a biometric profile sample from the PDK 102 and determines 710 if the biometric profile sample matches the biometric input sample. If the biometric profile sample does not match the input sample computed from the scan, the profile is determined to be invalid 718. If the biometric profile sample matches, the full biometric profile 712 is received from the PDK 102 to determine 714 if the full biometric profile 712 matches the complete biometric input 104. If the profile 712 matches the scan, the profile 712 is determined to be valid 720, otherwise the profile 712 is invalid 718. It is noted that in one embodiment, steps 708 and 710 are skipped and only a full comparison is performed. In one embodiment, the biometric profile and/or biometric profile sample is encoded and transmitted to the Reader 108 along with an encoding key and/or algorithm. Then, the Reader 108 uses the encoding key and/or algorithm to recover the biometric profile and/or biometric profile sample. In another alternative embodiment, only the encoding key and/or algorithm is transmitted by the PDK 102 and the biometric profile data is recovered from a remote database in an encoded form that can then be decoded using the key and/or algorithm.
It will be apparent to one of ordinary skill that in alternative embodiments, some of the steps in the biometric profile authentication process can be performed by the PDK 102 instead of the Reader 108 or by an external system coupled to the Reader 108. For example, in one embodiment, the biometric input 104 can be scanned 704 using a biometric reader built into the PDK 102. Furthermore, in one embodiment, the steps of computing the mathematical representation or hash of the biometric input and/or the steps of comparing the biometric input to the biometric profile can be performed by the PDK 102, by the Reader 108, by an external system coupled to the Reader 108, or by any combination of the devices. In one embodiment, at least some of the information is transmitted back and forth between the PDK 102 and the Reader 108 throughout the authentication process. For example, the biometric input 104 can be acquired by the PDK 102, and transmitted to the Reader 108, altered by the Reader 108, and sent back to the PDK 102 for comparison. Other variations of information exchange and processing are possible without departing from the scope of the invention. The transfer of data between the PDK 102 and the Reader 108 and/or sharing of processing can provide can further contribute to ensuring the legitimacy of each device.
Turning now to
Generally, the system 800 is adapted to initialize and/or register a user PDK 802 through a secure trusted process. Initialization includes configuring a user PDK 802 for at least its most basic use and can include acquiring one or more biometric profiles (or other profile) from the user according to a trusted process. The registration process registers a user PDK 802 with the Central Registry 114 and/or one or more private registries 116. Additionally, registration can include programming profile memory fields 232 in the user PDK 802 to store, for example, credit card information, personal information or other information used for authentication or transaction purposes.
As previously mentioned, in one embodiment, the initialization process is administered and witnessed by a trusted third-party referred to as a Notary. Conceptually, a Notary can be thought of as an enhanced public notary that can be trusted to verify that an individual's identification has been properly authenticated prior to the execution of a transaction. Instead of witnessing an individual sign a legally-binding document, the Notary witnesses the acquisition and storage of an authenticated individual's biometric profile. The Notary ensures that the individual's identification and biometric profile comply with, and have been acquired and processed according to defined security protocols. In one embodiment, various requirements may be imposed on the Notary to be eligible for administering initialization and the requirements may be definable for different types of initialization. For example, in one embodiment a Notary has to pass an extensive background check, receive training, or provide signatures agreeing to fulfill the duties of a trusted Notary. Furthermore, regular audits may be performed on Notaries to ensure that they can be trusted and are not associated with any fraudulent activity. It is noted that not all types of initialization and registration require a Notary.
The initialization and registration processes are enabled by using a Programmer 810 to write initialization and registration information to a user PDK 802. In one embodiment, the Programmer 810 also communicates with a Notary PDK 806 belonging to a Notary that verifies the processes and ensures that the initialization and registration information can be trusted. For registration, the Programmer 810 communicates to the Central Registry 114, one or more validation databases 112 or one or more private registries 116 through the network 110.
It is noted that some of the modules of the Programmer 810 operate similarly to modules of the Touch Reader 108 previously described. For example, the biometric reader 902, network interface 908 and processor 906 can be similar in architecture to the biometric reader 302, network interface 308 and processor 306 of the Touch Reader 108. However, the operation of these components is as described below with reference to
The control interface 912 receives control inputs 808 from a user or from a Notary and outputs status indicators. Control inputs 808 can include, for example, programming settings, menu selections, confirmations and so on. Outputs can include, for example, status LEDs, an LCD with or without a touchscreen interface, or other display that provides instructions, menus or programming options to the user and/or Notary.
The storage module 910 temporarily stores user information during programming. In one embodiment, the storage module 910 includes volatile and non-volatile memory. Typically, biometric information or other highly personal information is erased from the storage module 910 upon completion of programming or removal of the Notary PDK 806 or user PDK 802. In one embodiment, the storage module 910 includes long-term storage for storing programming history information. Programming history can include, for example, the PDK ID, Notary ID, site ID, and timestamps associated with the programming of any PDK. The programming history can be recalled at a later time for auditing purposes.
Turning now to
The steps of
In one embodiment, validation further includes the PDK 802/806 validating that the Programmer 810 is a valid trusted device. This validation ensures that the Programmer 810 has not been tampered with for fraudulent use. Various device authentication processes are possible such as, for example, a challenge-response authentication. Further, the Programmer 810 can be validated by a remote registry to ensure its software is update, the device has not been tampered with or the hardware has not been reported as lost, stolen, expired or revoked. If any fraudulent activity is detected with the Programmer, the Programmer can be automatically disabled.
Initialization optionally includes acquiring 1006 biometric information to be stored in the biometric profile of the user PDK 802 as illustrating in
Additional types of profiles can also be similarly stored to the user PDK 802. For example, a PIN profile can be added by prompting the user to enter a PIN or password. A photo profile can be added by capturing an image of the user, checking the quality of the image and recapturing the image if necessary.
In one embodiment, initialization history information is also written to the Notary PDK 806. Here, a Notary PDK 806 can store a record of every initialization performed by the Notary. This information can be used for auditing purposes in the future. For example, if a Notary's rights are revoked, any initializations performed by that Notary can be recovered from the Notary's PDK 806. Then, user PDKs 802 initialized by that Notary may need to be disabled until re-initialized by the user.
It is noted that although in many embodiments of the present invention, the Notary performs the initialization and registration process in person, it is also possible for the Notary to operate from a remote location. For example, in one embodiment, a user can enter an initialization booth with a camera and a Programmer 810. The user enters the user PDK 802 into the Programmer 810 and begins the initialization session. A Notary at a remote location can monitor the operation and if necessary provide instructions to the user. Alternatively, the initialization and registration can be administered by a completely automated process that can be recalled and reviewed at a later time to ensure the user followed the appropriate procedures. In another embodiment, a human Notary is not required, and the initialization and/or registration processes are performed entirely by trusted hardware.
The order in which the steps of the methods of the present invention are performed is purely illustrative in nature. The steps can be performed in any order or in parallel, unless otherwise indicated by the present disclosure. The methods of the present invention may be performed in hardware, firmware, software, or any combination thereof operating on a single computer or multiple computers of any type. Software embodying the present invention may comprise computer instructions in any form (e.g., source code, object code, interpreted code, etc.) stored in any computer-readable storage medium (e.g., a ROM, a RAM, a magnetic media, a compact disc, a DVD, etc.). Such software may also be in the form of an electrical data signal embodied in a carrier wave propagating on a conductive medium or in the form of light pulses that propagate through an optical fiber.
While particular embodiments of the present invention have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made without departing from this invention in its broader aspect and, therefore, the appended claims are to encompass within their scope all such changes and modifications, as fall within the true spirit of this invention.
In the above description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one skilled in the art that the invention can be practiced without these specific details. In other instances, structures and devices are shown in block diagram form in order to avoid obscuring the invention.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
Some portions of the detailed description are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
The present invention also relates to an apparatus for performing the operations herein. This apparatus can be specially constructed for the required purposes, or it can comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program can be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus.
The algorithms and modules presented herein are not inherently related to any particular computer or other apparatus. Various general-purpose systems can be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatuses to perform the method steps. The required structure for a variety of these systems will appear from the description below. In addition, the present invention is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages can be used to implement the teachings of the invention as described herein. Furthermore, as will be apparent to one of ordinary skill in the relevant art, the modules, features, attributes, methodologies, and other aspects of the invention can be implemented as software, hardware, firmware or any combination of the three. Of course, wherever a component of the present invention is implemented as software, the component can be implemented as a standalone program, as part of a larger program, as a plurality of separate programs, as a statically or dynamically linked library, as a kernel loadable module, as a device driver, and/or in every and any other way known now or in the future to those of skill in the art of computer programming. Additionally, the present invention is in no way limited to implementation in any specific operating system or environment.
It will be understood by those skilled in the relevant art that the above-described implementations are merely exemplary, and many changes can be made without departing from the true spirit and scope of the present invention. Therefore, it is intended by the appended claims to cover all such changes and modifications that come within the true spirit and scope of this invention.
This application is a continuation of and claims priority to U.S. application Ser. No. 16/503,066, entitled Personal Digital Key Initialization and Registration for Secure Transactions,” filed on Jul. 3, 2019, which is a continuation of U.S. application Ser. No. 14/986,306, entitled, “Personal Digital Key Initialization and Registration for Secure Transactions,” filed on Dec. 31, 2015, which is a continuation of U.S. application Ser. No. 14/448,891, entitled, “Personal Digital Key Initialization and Registration for Secure Transactions,” filed on Jul. 31, 2014, which is a continuation of U.S. application Ser. No. 13/791,553, entitled, “Personal Digital Key Initialization and Registration for Secure Transactions,” filed on Mar. 8, 2013, which is a continuation of U.S. application Ser. No. 11/744,832, entitled “Personal Digital Key Initialization and Registration for Secure Transactions” filed, May 5, 2007, which claims the benefit of U.S. Provisional Application No. 60/798,172 entitled “Touch Pay” filed on May 5, 2006; U.S. Provisional Application No. 60/798,843 entitled “Touch Pay” filed on May 8, 2006; U.S. Provisional Application No. 60/838,788 entitled “Personal Digital Key Accessible Storage Device and Processor” filed on Aug. 17, 2006; U.S. Provisional Application No. 60/824,758 entitled “Truprox Touch Technology” filed on Sep. 6, 2006; and U.S. Provisional Application No. 60/894,608 entitled “TruProx Stored-Photo Extension” filed on Mar. 13, 2007, the entire contents of which are all herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3665313 | Trent | May 1972 | A |
3739329 | Lester | Jun 1973 | A |
3761883 | Alvarez et al. | Sep 1973 | A |
3906166 | Cooper et al. | Sep 1975 | A |
4101873 | Anderson et al. | Jul 1978 | A |
4430705 | Cannavino et al. | Feb 1984 | A |
4476469 | Lander | Oct 1984 | A |
4598272 | Cox | Jul 1986 | A |
4661821 | Smith | Apr 1987 | A |
4759060 | Hayashi et al. | Jul 1988 | A |
4814742 | Morita et al. | Mar 1989 | A |
4871997 | Adriaenssens et al. | Oct 1989 | A |
4993068 | Piosenka et al. | Feb 1991 | A |
5043702 | Kuo | Aug 1991 | A |
5187352 | Blair et al. | Feb 1993 | A |
5224164 | Elsner | Jun 1993 | A |
5296641 | Stelzel | Mar 1994 | A |
5307349 | Shloss et al. | Apr 1994 | A |
5317572 | Satoh | May 1994 | A |
5325285 | Araki | Jun 1994 | A |
5392287 | Tiedemann et al. | Feb 1995 | A |
5392433 | Hammersley et al. | Feb 1995 | A |
5410588 | Ito | Apr 1995 | A |
5416780 | Patel | May 1995 | A |
5422632 | Bucholtz et al. | Jun 1995 | A |
5428684 | Akiyama et al. | Jun 1995 | A |
5450489 | Ostrover et al. | Sep 1995 | A |
5473690 | Grimonprez et al. | Dec 1995 | A |
5481265 | Russell | Jan 1996 | A |
5506863 | Meidan et al. | Apr 1996 | A |
5517502 | Bestler et al. | May 1996 | A |
5541583 | Mandelbaum | Jul 1996 | A |
5544321 | Theimer et al. | Aug 1996 | A |
5552776 | Wade et al. | Sep 1996 | A |
5563947 | Kikinis | Oct 1996 | A |
5589838 | McEwan | Dec 1996 | A |
5594227 | Deo | Jan 1997 | A |
5598474 | Johnson | Jan 1997 | A |
5611050 | Theimer et al. | Mar 1997 | A |
5619251 | Kuroiwa et al. | Apr 1997 | A |
5623552 | Lane | Apr 1997 | A |
5629980 | Stefik et al. | May 1997 | A |
5644354 | Thompson et al. | Jul 1997 | A |
5666412 | Handelman et al. | Sep 1997 | A |
5689529 | Johnson | Nov 1997 | A |
5692049 | Johnson et al. | Nov 1997 | A |
5719387 | Fujioka | Feb 1998 | A |
5729237 | Webb | Mar 1998 | A |
5760705 | Glessner et al. | Jun 1998 | A |
5760744 | Sauer | Jun 1998 | A |
5773954 | Vanhorn | Jun 1998 | A |
5784464 | Akiyama et al. | Jul 1998 | A |
5799085 | Shona | Aug 1998 | A |
5821854 | Dorinski et al. | Oct 1998 | A |
5825876 | Peterson, Jr. | Oct 1998 | A |
5835595 | Fraser et al. | Nov 1998 | A |
5838306 | O'Connor et al. | Nov 1998 | A |
5854891 | Postlewaite et al. | Dec 1998 | A |
5857020 | Peterson, Jr. | Jan 1999 | A |
5886634 | Muhme | Mar 1999 | A |
5892825 | Mages et al. | Apr 1999 | A |
5892900 | Ginter et al. | Apr 1999 | A |
5894551 | Huggins et al. | Apr 1999 | A |
5898880 | Ryu | Apr 1999 | A |
5910776 | Black | Jun 1999 | A |
5917913 | Wang | Jun 1999 | A |
5923757 | Hocker et al. | Jul 1999 | A |
5928327 | Wang et al. | Jul 1999 | A |
5991399 | Graunke et al. | Nov 1999 | A |
5991749 | Morrill, Jr. | Nov 1999 | A |
6016476 | Maes | Jan 2000 | A |
6018739 | McCoy et al. | Jan 2000 | A |
6025780 | Bowers et al. | Feb 2000 | A |
6035038 | Campinos et al. | Mar 2000 | A |
6035329 | Mages et al. | Mar 2000 | A |
6038334 | Hamid | Mar 2000 | A |
6038666 | Hsu et al. | Mar 2000 | A |
6040786 | Fujioka | Mar 2000 | A |
6041410 | Hsu et al. | Mar 2000 | A |
6042006 | Van Tilburg et al. | Mar 2000 | A |
6055314 | Spies et al. | Apr 2000 | A |
6068184 | Barnett | May 2000 | A |
6070796 | Sirbu | Jun 2000 | A |
6076164 | Tanaka et al. | Jun 2000 | A |
6088450 | Davis et al. | Jul 2000 | A |
6088730 | Kato et al. | Jul 2000 | A |
6104290 | Naguleswaran | Aug 2000 | A |
6104334 | Allport | Aug 2000 | A |
6110041 | Walker et al. | Aug 2000 | A |
6121544 | Petsinger | Sep 2000 | A |
6134283 | Sands et al. | Oct 2000 | A |
6137480 | Shintani | Oct 2000 | A |
6138010 | Rabe et al. | Oct 2000 | A |
6148142 | Anderson | Nov 2000 | A |
6148210 | Elwin et al. | Nov 2000 | A |
6161179 | Seidel | Dec 2000 | A |
6175921 | Rosen | Jan 2001 | B1 |
6177887 | Jerome | Jan 2001 | B1 |
6185316 | Buffam | Feb 2001 | B1 |
6189105 | Lopes | Feb 2001 | B1 |
6209089 | Selitrennikoff et al. | Mar 2001 | B1 |
6219109 | Raynesford et al. | Apr 2001 | B1 |
6219439 | Burger | Apr 2001 | B1 |
6219553 | Panasik | Apr 2001 | B1 |
6237848 | Everett | May 2001 | B1 |
6240076 | Kanerva et al. | May 2001 | B1 |
6247130 | Fritsch | Jun 2001 | B1 |
6249869 | Drupsteen et al. | Jun 2001 | B1 |
6256737 | Bianco et al. | Jul 2001 | B1 |
6266415 | Campinos et al. | Jul 2001 | B1 |
6270011 | Gottfried | Aug 2001 | B1 |
6279111 | Jensenworth et al. | Aug 2001 | B1 |
6279146 | Evans et al. | Aug 2001 | B1 |
6295057 | Rosin et al. | Sep 2001 | B1 |
6307471 | Xydis | Oct 2001 | B1 |
6325285 | Baratelli | Dec 2001 | B1 |
6336121 | Lyson et al. | Jan 2002 | B1 |
6336142 | Kato et al. | Jan 2002 | B1 |
6343280 | Clark | Jan 2002 | B2 |
6345347 | Biran | Feb 2002 | B1 |
6363485 | Adams et al. | Mar 2002 | B1 |
6367019 | Ansell et al. | Apr 2002 | B1 |
6369693 | Gibson | Apr 2002 | B1 |
6370376 | Sheath | Apr 2002 | B1 |
6381029 | Tipirneni | Apr 2002 | B1 |
6381747 | Wonfor et al. | Apr 2002 | B1 |
6385596 | Wiser et al. | May 2002 | B1 |
6392664 | White et al. | May 2002 | B1 |
6397387 | Rosin et al. | May 2002 | B1 |
6401059 | Shen et al. | Jun 2002 | B1 |
6411307 | Rosin et al. | Jun 2002 | B1 |
6424249 | Houvener | Jul 2002 | B1 |
6424715 | Saito | Jul 2002 | B1 |
6425084 | Rallis et al. | Jul 2002 | B1 |
6434403 | Ausems et al. | Aug 2002 | B1 |
6434535 | Kupka et al. | Aug 2002 | B1 |
6446004 | Cao et al. | Sep 2002 | B1 |
6446130 | Grapes | Sep 2002 | B1 |
6463534 | Geiger et al. | Oct 2002 | B1 |
6480101 | Kelly et al. | Nov 2002 | B1 |
6480188 | Horsley | Nov 2002 | B1 |
6484182 | Dunphy et al. | Nov 2002 | B1 |
6484260 | Scott et al. | Nov 2002 | B1 |
6484946 | Matsumoto et al. | Nov 2002 | B2 |
6487663 | Jaisimha et al. | Nov 2002 | B1 |
6490443 | Freeny, Jr. | Dec 2002 | B1 |
6510350 | Steen et al. | Jan 2003 | B1 |
6522253 | Saltus | Feb 2003 | B1 |
6523113 | Wehrenberg | Feb 2003 | B1 |
6529949 | Getsin et al. | Mar 2003 | B1 |
6546418 | Schena et al. | Apr 2003 | B2 |
6550011 | Sims, III | Apr 2003 | B1 |
6563465 | Frecska | May 2003 | B2 |
6563805 | Ma et al. | May 2003 | B1 |
6564380 | Murphy | May 2003 | B1 |
6577238 | Whitesmith et al. | Jun 2003 | B1 |
6593887 | Luk et al. | Jul 2003 | B2 |
6597680 | Lindskog et al. | Jul 2003 | B1 |
6607136 | Atsmon et al. | Aug 2003 | B1 |
6628302 | White et al. | Sep 2003 | B2 |
6632992 | Hasegawa | Oct 2003 | B2 |
6633981 | Davis | Oct 2003 | B1 |
6645077 | Rowe | Nov 2003 | B2 |
6647417 | Hunter et al. | Nov 2003 | B1 |
6657538 | Ritter | Dec 2003 | B1 |
6658566 | Hazard | Dec 2003 | B1 |
6667684 | Waggamon et al. | Dec 2003 | B1 |
6669096 | Saphar et al. | Dec 2003 | B1 |
6671808 | Abbott et al. | Dec 2003 | B1 |
6683954 | Searle | Jan 2004 | B1 |
6697944 | Jones et al. | Feb 2004 | B1 |
6709333 | Bradford et al. | Mar 2004 | B1 |
6711464 | Yap et al. | Mar 2004 | B1 |
6714168 | Berenbaum | Mar 2004 | B2 |
6715246 | Frecska et al. | Apr 2004 | B1 |
6728397 | McNeal | Apr 2004 | B2 |
6737955 | Ghabra et al. | May 2004 | B2 |
6758394 | Maskatiya et al. | Jul 2004 | B2 |
6771969 | Chinoy et al. | Aug 2004 | B1 |
6775655 | Peinado et al. | Aug 2004 | B1 |
6785474 | Hirt et al. | Aug 2004 | B2 |
6788640 | Celeste | Sep 2004 | B2 |
6788924 | Knutson et al. | Sep 2004 | B1 |
6795425 | Raith | Sep 2004 | B1 |
6804825 | White et al. | Oct 2004 | B1 |
6806887 | Chernock et al. | Oct 2004 | B2 |
6839542 | Sibecas et al. | Jan 2005 | B2 |
6850147 | Prokoski et al. | Feb 2005 | B2 |
6853988 | Dickinson et al. | Feb 2005 | B1 |
6859812 | Poynor | Feb 2005 | B1 |
6861980 | Rowitch et al. | Mar 2005 | B1 |
6873975 | Hatakeyama et al. | Mar 2005 | B1 |
6879567 | Callaway et al. | Apr 2005 | B2 |
6879966 | Lapsley et al. | Apr 2005 | B1 |
6886741 | Salveson | May 2005 | B1 |
6889067 | Willey | May 2005 | B2 |
6891822 | Gubbi et al. | May 2005 | B1 |
6892307 | Wood et al. | May 2005 | B1 |
6930643 | Byrne et al. | Aug 2005 | B2 |
6947003 | Huor | Sep 2005 | B2 |
6950941 | Lee et al. | Sep 2005 | B1 |
6957086 | Bahl et al. | Oct 2005 | B2 |
6961858 | Fransdonk | Nov 2005 | B2 |
6963270 | Gallagher et al. | Nov 2005 | B1 |
6963971 | Bush et al. | Nov 2005 | B1 |
6973576 | Giobbi | Dec 2005 | B2 |
6975202 | Rodriguez et al. | Dec 2005 | B1 |
6980087 | Zukowski | Dec 2005 | B2 |
6983882 | Cassone | Jan 2006 | B2 |
6999032 | Pakray et al. | Feb 2006 | B2 |
7012503 | Nielsen | Mar 2006 | B2 |
7020635 | Hamilton et al. | Mar 2006 | B2 |
7031945 | Donner | Apr 2006 | B1 |
7049963 | Waterhouse et al. | May 2006 | B2 |
7055171 | Martin et al. | May 2006 | B1 |
7058806 | Smeets et al. | Jun 2006 | B2 |
7061380 | Orlando et al. | Jun 2006 | B1 |
7068623 | Barany et al. | Jun 2006 | B1 |
7072900 | Sweitzer et al. | Jul 2006 | B2 |
7079079 | Jo et al. | Jul 2006 | B2 |
7080049 | Truitt et al. | Jul 2006 | B2 |
7082415 | Robinson et al. | Jul 2006 | B1 |
7090126 | Kelly et al. | Aug 2006 | B2 |
7090128 | Farley et al. | Aug 2006 | B2 |
7100053 | Brown et al. | Aug 2006 | B1 |
7107455 | Merkin | Sep 2006 | B1 |
7107462 | Fransdonk | Sep 2006 | B2 |
7111789 | Rajasekaran et al. | Sep 2006 | B2 |
7112138 | Hedrick et al. | Sep 2006 | B2 |
7119659 | Bonalle et al. | Oct 2006 | B2 |
7123149 | Nowak et al. | Oct 2006 | B2 |
7130668 | Chang et al. | Oct 2006 | B2 |
7131139 | Meier | Oct 2006 | B1 |
7137008 | Hamid et al. | Nov 2006 | B1 |
7137012 | Kamibayashi et al. | Nov 2006 | B1 |
7139914 | Arnouse | Nov 2006 | B2 |
7150045 | Koelle et al. | Dec 2006 | B2 |
7155416 | Shatford | Dec 2006 | B2 |
7159114 | Zajkowski et al. | Jan 2007 | B1 |
7159765 | Frerking | Jan 2007 | B2 |
7167987 | Angelo | Jan 2007 | B2 |
7168089 | Nguyen et al. | Jan 2007 | B2 |
7176797 | Zai et al. | Feb 2007 | B2 |
7191466 | Hamid et al. | Mar 2007 | B1 |
7209955 | Major et al. | Apr 2007 | B1 |
7218944 | Cromer et al. | May 2007 | B2 |
7225161 | Lam et al. | May 2007 | B2 |
7230908 | Vanderaar et al. | Jun 2007 | B2 |
7231068 | Tibor | Jun 2007 | B2 |
7231451 | Law et al. | Jun 2007 | B2 |
7239226 | Berardi et al. | Jul 2007 | B2 |
7242923 | Perera et al. | Jul 2007 | B2 |
7249177 | Miller | Jul 2007 | B1 |
7272723 | Abbott et al. | Sep 2007 | B1 |
7277737 | Vollmer et al. | Oct 2007 | B1 |
7278025 | Saito et al. | Oct 2007 | B2 |
7283650 | Sharma et al. | Oct 2007 | B1 |
7295119 | Rappaport et al. | Nov 2007 | B2 |
7305560 | Giobbi | Dec 2007 | B2 |
7310042 | Seifert | Dec 2007 | B2 |
7314164 | Bonalle et al. | Jan 2008 | B2 |
7317799 | Hammersmith et al. | Jan 2008 | B2 |
7319395 | Puzio et al. | Jan 2008 | B2 |
7330108 | Thomas | Feb 2008 | B2 |
7333002 | Bixler et al. | Feb 2008 | B2 |
7333615 | Jarboe | Feb 2008 | B1 |
7336181 | Nowak et al. | Feb 2008 | B2 |
7336182 | Baranowski et al. | Feb 2008 | B1 |
7337326 | Palmer et al. | Feb 2008 | B2 |
7341181 | Bonalle et al. | Mar 2008 | B2 |
7342503 | Light et al. | Mar 2008 | B1 |
7349557 | Tibor | Mar 2008 | B2 |
7356393 | Schlatre et al. | Apr 2008 | B1 |
7356706 | Scheurich | Apr 2008 | B2 |
7361919 | Setlak | Apr 2008 | B2 |
7363494 | Brainard et al. | Apr 2008 | B2 |
7370366 | Lacan et al. | May 2008 | B2 |
7378939 | Sengupta et al. | May 2008 | B2 |
7380202 | Lindhorst et al. | May 2008 | B1 |
7382799 | Young et al. | Jun 2008 | B1 |
7387235 | Gilbert et al. | Jun 2008 | B2 |
7401731 | Pletz et al. | Jul 2008 | B1 |
7404088 | Giobbi | Jul 2008 | B2 |
7424134 | Chou | Sep 2008 | B2 |
7437330 | Robinson et al. | Oct 2008 | B1 |
7447911 | Chou | Nov 2008 | B2 |
7448087 | Ohmori et al. | Nov 2008 | B2 |
7458510 | Zhou | Dec 2008 | B1 |
7460836 | Smith et al. | Dec 2008 | B2 |
7461444 | Deaett et al. | Dec 2008 | B2 |
7464053 | Pylant | Dec 2008 | B1 |
7464059 | Robinson et al. | Dec 2008 | B1 |
7466232 | Neuwirth | Dec 2008 | B2 |
7472280 | Giobbi | Dec 2008 | B2 |
7512806 | Lemke | Mar 2009 | B2 |
7525413 | Jung et al. | Apr 2009 | B2 |
7529944 | Hamid | May 2009 | B2 |
7533809 | Robinson et al. | May 2009 | B1 |
7545312 | Kiang et al. | Jun 2009 | B2 |
7565329 | Lapsley et al. | Jul 2009 | B2 |
7573382 | Choubey et al. | Aug 2009 | B2 |
7573841 | Lee et al. | Aug 2009 | B2 |
7574734 | Fedronic et al. | Aug 2009 | B2 |
7583238 | Cassen et al. | Sep 2009 | B2 |
7583643 | Smith et al. | Sep 2009 | B2 |
7587502 | Crawford et al. | Sep 2009 | B2 |
7587611 | Johnson et al. | Sep 2009 | B2 |
7594611 | Arrington, III | Sep 2009 | B1 |
7595765 | Hirsch et al. | Sep 2009 | B1 |
7603564 | Adachi | Oct 2009 | B2 |
7606733 | Shmueli et al. | Oct 2009 | B2 |
7617523 | Das et al. | Nov 2009 | B2 |
7620184 | Marque Pucheu | Nov 2009 | B2 |
7624073 | Robinson et al. | Nov 2009 | B1 |
7624417 | Dua | Nov 2009 | B2 |
7640273 | Wallmeier et al. | Dec 2009 | B2 |
7644443 | Matsuyama et al. | Jan 2010 | B2 |
7646307 | Plocher et al. | Jan 2010 | B2 |
7652892 | Shiu et al. | Jan 2010 | B2 |
7676380 | Graves et al. | Mar 2010 | B2 |
7689005 | Wang et al. | Mar 2010 | B2 |
7706896 | Music et al. | Apr 2010 | B2 |
7711152 | Davida | May 2010 | B1 |
7711586 | Aggarwal et al. | May 2010 | B2 |
7715593 | Adams et al. | May 2010 | B1 |
7724713 | Del Prado Pavon et al. | May 2010 | B2 |
7724717 | Porras et al. | May 2010 | B2 |
7724720 | Korpela et al. | May 2010 | B2 |
7764236 | Hill et al. | Jul 2010 | B2 |
7765164 | Robinson et al. | Jul 2010 | B1 |
7765181 | Thomas et al. | Jul 2010 | B2 |
7773754 | Buer et al. | Aug 2010 | B2 |
7774613 | Lemke | Aug 2010 | B2 |
7780082 | Handa et al. | Aug 2010 | B2 |
7796551 | Machiraju et al. | Sep 2010 | B1 |
7813822 | Hoffberg | Oct 2010 | B1 |
7865448 | Pizarro | Jan 2011 | B2 |
7865937 | White et al. | Jan 2011 | B1 |
7883003 | Giobbi et al. | Feb 2011 | B2 |
7883417 | Bruzzese et al. | Feb 2011 | B2 |
7904718 | Giobbi et al. | Mar 2011 | B2 |
7943868 | Anders et al. | May 2011 | B2 |
7957536 | Nolte | Jun 2011 | B2 |
7961078 | Reynolds et al. | Jun 2011 | B1 |
7984064 | Fusari | Jul 2011 | B2 |
7996514 | Baumert et al. | Aug 2011 | B2 |
8026821 | Reeder et al. | Sep 2011 | B2 |
8036152 | Brown et al. | Oct 2011 | B2 |
8077041 | Stern et al. | Dec 2011 | B2 |
8081215 | Kuo et al. | Dec 2011 | B2 |
8082160 | Collins et al. | Dec 2011 | B2 |
8089354 | Perkins | Jan 2012 | B2 |
8112066 | Ben Ayed | Feb 2012 | B2 |
8125624 | Jones et al. | Feb 2012 | B2 |
8135624 | Ramalingam et al. | Mar 2012 | B1 |
8171528 | Brown | May 2012 | B1 |
8193923 | Rork et al. | Jun 2012 | B2 |
8200980 | Robinson et al. | Jun 2012 | B1 |
8215552 | Rambadt | Jul 2012 | B1 |
8219129 | Brown et al. | Jul 2012 | B2 |
8248263 | Shervey et al. | Aug 2012 | B2 |
8258942 | Lanzone et al. | Sep 2012 | B1 |
8294554 | Shoarinejad et al. | Oct 2012 | B2 |
8296573 | Bolle et al. | Oct 2012 | B2 |
8307414 | Zerfos et al. | Nov 2012 | B2 |
8325011 | Butler et al. | Dec 2012 | B2 |
8340672 | Brown | Dec 2012 | B2 |
8352730 | Giobbi | Jan 2013 | B2 |
8373562 | Heinze | Feb 2013 | B1 |
8387124 | Smetters et al. | Feb 2013 | B2 |
8390456 | Puleston et al. | Mar 2013 | B2 |
8395484 | Fullerton | Mar 2013 | B2 |
8410906 | Dacus | Apr 2013 | B1 |
8412949 | Giobbi et al. | Apr 2013 | B2 |
8421606 | Collins et al. | Apr 2013 | B2 |
8424079 | Adams et al. | Apr 2013 | B2 |
8432262 | Talty et al. | Apr 2013 | B2 |
8433919 | Giobbi et al. | Apr 2013 | B2 |
8448858 | Kundu et al. | May 2013 | B1 |
8457672 | Brown et al. | Jun 2013 | B2 |
8473748 | Sampas | Jun 2013 | B2 |
8484696 | Gatto et al. | Jul 2013 | B2 |
8494576 | Bye | Jul 2013 | B1 |
8508336 | Giobbi et al. | Aug 2013 | B2 |
8511555 | Babcock et al. | Aug 2013 | B2 |
8519823 | Rinkes | Aug 2013 | B2 |
8522019 | Michaelis | Aug 2013 | B2 |
8558699 | Butler | Oct 2013 | B2 |
8572391 | Golan | Oct 2013 | B2 |
8577091 | Ivanov | Nov 2013 | B2 |
8646042 | Brown | Feb 2014 | B1 |
8659427 | Brown et al. | Feb 2014 | B2 |
8678273 | McNeal | Mar 2014 | B2 |
8717346 | Claessen | May 2014 | B2 |
8738925 | Park et al. | May 2014 | B1 |
8799574 | Corda | Aug 2014 | B2 |
8838993 | Giobbi et al. | Sep 2014 | B2 |
8856539 | Weiss | Oct 2014 | B2 |
8857716 | Giobbi et al. | Oct 2014 | B1 |
8886954 | Giobbi | Nov 2014 | B1 |
8907861 | Hirt | Dec 2014 | B2 |
8914477 | Gammon | Dec 2014 | B2 |
8918854 | Giobbi | Dec 2014 | B1 |
8931698 | Ishikawa et al. | Jan 2015 | B2 |
8979646 | Moser et al. | Mar 2015 | B2 |
9020854 | Giobbi | Apr 2015 | B2 |
9037140 | Brown | May 2015 | B1 |
9042819 | Dua | May 2015 | B2 |
9049188 | Brown | Jun 2015 | B1 |
9113464 | Brown et al. | Aug 2015 | B2 |
9165233 | Testanero | Oct 2015 | B2 |
9189788 | Robinson | Nov 2015 | B1 |
9230399 | Yacenda | Jan 2016 | B2 |
9235700 | Brown | Jan 2016 | B1 |
9251326 | Giobbi et al. | Feb 2016 | B2 |
9251332 | Giobbi | Feb 2016 | B2 |
9265043 | Brown et al. | Feb 2016 | B2 |
9265450 | Giobbi | Feb 2016 | B1 |
9269221 | Brown et al. | Feb 2016 | B2 |
9276914 | Woodward et al. | Mar 2016 | B2 |
9298905 | Giobbi | Mar 2016 | B1 |
9305312 | Kountotsis et al. | Apr 2016 | B2 |
9322974 | Giobbi | Apr 2016 | B1 |
9405898 | Giobbi | Aug 2016 | B2 |
9418205 | Giobbi | Aug 2016 | B2 |
9450956 | Giobbi | Sep 2016 | B1 |
9542542 | Giobbi et al. | Jan 2017 | B2 |
9613483 | Giobbi | Apr 2017 | B2 |
9679289 | Brown | Jun 2017 | B1 |
9728080 | Giobbi et al. | Aug 2017 | B1 |
9807091 | Giobbi | Oct 2017 | B2 |
9830504 | Masood et al. | Nov 2017 | B2 |
9892250 | Giobbi | Feb 2018 | B2 |
9904816 | Giobbi et al. | Feb 2018 | B1 |
9990628 | Giobbi | Jun 2018 | B2 |
10026253 | Giobbi | Jul 2018 | B2 |
10073960 | Brown | Sep 2018 | B1 |
10110385 | Rush et al. | Oct 2018 | B1 |
10171460 | Giobbi | Jan 2019 | B2 |
10217339 | Giobbi | Feb 2019 | B1 |
10229294 | Giobbi et al. | Mar 2019 | B1 |
10313336 | Giobbi | Jun 2019 | B2 |
10334541 | Brown | Jun 2019 | B1 |
10374795 | Giobbi et al. | Aug 2019 | B1 |
10383112 | Brown et al. | Aug 2019 | B2 |
10403128 | Giobbi et al. | Sep 2019 | B2 |
10437976 | Giobbi | Oct 2019 | B2 |
10455533 | Brown | Oct 2019 | B2 |
10469456 | Giobbi | Nov 2019 | B1 |
10698989 | Giobbi | Jun 2020 | B2 |
10764044 | Giobbi et al. | Sep 2020 | B1 |
10769939 | Brown et al. | Sep 2020 | B2 |
10817964 | Guillama et al. | Oct 2020 | B2 |
10909229 | Giobbi | Feb 2021 | B2 |
10943471 | Giobbi et al. | Mar 2021 | B1 |
20010000535 | Lapsley et al. | Apr 2001 | A1 |
20010021950 | Hawley et al. | Sep 2001 | A1 |
20010024428 | Onouchi | Sep 2001 | A1 |
20010026619 | Howard et al. | Oct 2001 | A1 |
20010027121 | Boesen | Oct 2001 | A1 |
20010027439 | Holtzman et al. | Oct 2001 | A1 |
20010044337 | Rowe et al. | Nov 2001 | A1 |
20020004783 | Paltenghe et al. | Jan 2002 | A1 |
20020007456 | Peinado et al. | Jan 2002 | A1 |
20020010679 | Felsher | Jan 2002 | A1 |
20020013772 | Peinado | Jan 2002 | A1 |
20020014954 | Fitzgibbon et al. | Feb 2002 | A1 |
20020015494 | Nagai et al. | Feb 2002 | A1 |
20020019811 | Lapsley et al. | Feb 2002 | A1 |
20020022455 | Salokannel et al. | Feb 2002 | A1 |
20020023032 | Pearson et al. | Feb 2002 | A1 |
20020023217 | Wheeler | Feb 2002 | A1 |
20020026424 | Akashi | Feb 2002 | A1 |
20020037732 | Gous et al. | Mar 2002 | A1 |
20020052193 | Chetty | May 2002 | A1 |
20020055908 | Di Giorgio et al. | May 2002 | A1 |
20020056043 | Glass | May 2002 | A1 |
20020059114 | Cockrill | May 2002 | A1 |
20020062249 | Iannacci | May 2002 | A1 |
20020068605 | Stanley | Jun 2002 | A1 |
20020069364 | Dosch | Jun 2002 | A1 |
20020071559 | Christensen et al. | Jun 2002 | A1 |
20020073042 | Maritzen et al. | Jun 2002 | A1 |
20020080969 | Giobbi | Jun 2002 | A1 |
20020083178 | Brothers | Jun 2002 | A1 |
20020083318 | Larose | Jun 2002 | A1 |
20020086690 | Takahashi et al. | Jul 2002 | A1 |
20020089890 | Fibranz et al. | Jul 2002 | A1 |
20020091646 | Lake et al. | Jul 2002 | A1 |
20020095586 | Doyle | Jul 2002 | A1 |
20020095587 | Doyle | Jul 2002 | A1 |
20020097876 | Harrison | Jul 2002 | A1 |
20020098888 | Rowe et al. | Jul 2002 | A1 |
20020100798 | Farrugia et al. | Aug 2002 | A1 |
20020103027 | Rowe et al. | Aug 2002 | A1 |
20020103881 | Granade et al. | Aug 2002 | A1 |
20020104006 | Boate | Aug 2002 | A1 |
20020104019 | Chatani et al. | Aug 2002 | A1 |
20020105918 | Yamada et al. | Aug 2002 | A1 |
20020108049 | Xu et al. | Aug 2002 | A1 |
20020109580 | Shreve et al. | Aug 2002 | A1 |
20020111919 | Weller et al. | Aug 2002 | A1 |
20020112183 | Baird et al. | Aug 2002 | A1 |
20020116615 | Nguyen et al. | Aug 2002 | A1 |
20020124251 | Hunter et al. | Sep 2002 | A1 |
20020128017 | Virtanen | Sep 2002 | A1 |
20020129262 | Kutaragi et al. | Sep 2002 | A1 |
20020138438 | Bardwell | Sep 2002 | A1 |
20020138767 | Hamid et al. | Sep 2002 | A1 |
20020140542 | Prokoski et al. | Oct 2002 | A1 |
20020141586 | Margalit et al. | Oct 2002 | A1 |
20020143623 | Dayley | Oct 2002 | A1 |
20020143655 | Elston et al. | Oct 2002 | A1 |
20020144116 | Giobbi | Oct 2002 | A1 |
20020144117 | Faigle | Oct 2002 | A1 |
20020147653 | Shmueli et al. | Oct 2002 | A1 |
20020148892 | Bardwell | Oct 2002 | A1 |
20020150282 | Kinsella | Oct 2002 | A1 |
20020152391 | Willins et al. | Oct 2002 | A1 |
20020153996 | Chan et al. | Oct 2002 | A1 |
20020158121 | Stanford-Clark | Oct 2002 | A1 |
20020158750 | Almalik | Oct 2002 | A1 |
20020158765 | Pape et al. | Oct 2002 | A1 |
20020160820 | Winkler | Oct 2002 | A1 |
20020174348 | Ting | Nov 2002 | A1 |
20020177460 | Beasley et al. | Nov 2002 | A1 |
20020178063 | Gravelle et al. | Nov 2002 | A1 |
20020184208 | Kato | Dec 2002 | A1 |
20020187746 | Cheng et al. | Dec 2002 | A1 |
20020191816 | Maritzen et al. | Dec 2002 | A1 |
20020196963 | Bardwell | Dec 2002 | A1 |
20020199120 | Schmidt | Dec 2002 | A1 |
20030022701 | Gupta | Jan 2003 | A1 |
20030034877 | Miller et al. | Feb 2003 | A1 |
20030036416 | Pattabiraman et al. | Feb 2003 | A1 |
20030036425 | Kaminkow et al. | Feb 2003 | A1 |
20030046228 | Berney | Mar 2003 | A1 |
20030046237 | Uberti | Mar 2003 | A1 |
20030046552 | Hamid | Mar 2003 | A1 |
20030048174 | Stevens et al. | Mar 2003 | A1 |
20030051173 | Krueger | Mar 2003 | A1 |
20030054868 | Paulsen et al. | Mar 2003 | A1 |
20030054881 | Hedrick et al. | Mar 2003 | A1 |
20030055689 | Block et al. | Mar 2003 | A1 |
20030055792 | Kinoshita et al. | Mar 2003 | A1 |
20030061172 | Robinson | Mar 2003 | A1 |
20030063619 | Montano et al. | Apr 2003 | A1 |
20030079133 | Breiter et al. | Apr 2003 | A1 |
20030087601 | Agam et al. | May 2003 | A1 |
20030088441 | McNerney | May 2003 | A1 |
20030105719 | Berger et al. | Jun 2003 | A1 |
20030109274 | Budka et al. | Jun 2003 | A1 |
20030115351 | Giobbi | Jun 2003 | A1 |
20030115474 | Khan et al. | Jun 2003 | A1 |
20030117969 | Koo et al. | Jun 2003 | A1 |
20030117980 | Kim et al. | Jun 2003 | A1 |
20030120934 | Ortiz | Jun 2003 | A1 |
20030127511 | Kelly et al. | Jul 2003 | A1 |
20030128866 | McNeal | Jul 2003 | A1 |
20030137404 | Bonneau et al. | Jul 2003 | A1 |
20030139190 | Steelberg et al. | Jul 2003 | A1 |
20030146835 | Carter | Aug 2003 | A1 |
20030149744 | Bierre et al. | Aug 2003 | A1 |
20030156742 | Witt et al. | Aug 2003 | A1 |
20030159040 | Hashimoto et al. | Aug 2003 | A1 |
20030163388 | Beane | Aug 2003 | A1 |
20030167207 | Berardi et al. | Sep 2003 | A1 |
20030169697 | Suzuki et al. | Sep 2003 | A1 |
20030172028 | Abell | Sep 2003 | A1 |
20030172037 | Jung et al. | Sep 2003 | A1 |
20030174839 | Yamagata et al. | Sep 2003 | A1 |
20030176218 | Lemay et al. | Sep 2003 | A1 |
20030177102 | Robinson | Sep 2003 | A1 |
20030186739 | Paulsen et al. | Oct 2003 | A1 |
20030195842 | Reece | Oct 2003 | A1 |
20030199267 | Iwasa et al. | Oct 2003 | A1 |
20030204526 | Salehi-Had | Oct 2003 | A1 |
20030213840 | Livingston et al. | Nov 2003 | A1 |
20030223394 | Parantainen et al. | Dec 2003 | A1 |
20030225703 | Angel | Dec 2003 | A1 |
20030226031 | Proudler et al. | Dec 2003 | A1 |
20030233458 | Kwon et al. | Dec 2003 | A1 |
20040002347 | Hoctor et al. | Jan 2004 | A1 |
20040015403 | Moskowitz et al. | Jan 2004 | A1 |
20040022384 | Flores et al. | Feb 2004 | A1 |
20040029620 | Karaoguz | Feb 2004 | A1 |
20040029635 | Giobbi | Feb 2004 | A1 |
20040030764 | Birk et al. | Feb 2004 | A1 |
20040030894 | Labrou et al. | Feb 2004 | A1 |
20040035644 | Ford et al. | Feb 2004 | A1 |
20040039909 | Cheng | Feb 2004 | A1 |
20040044627 | Russell et al. | Mar 2004 | A1 |
20040048570 | Oba et al. | Mar 2004 | A1 |
20040048609 | Kosaka | Mar 2004 | A1 |
20040059682 | Hasumi et al. | Mar 2004 | A1 |
20040059912 | Zizzi | Mar 2004 | A1 |
20040064728 | Scheurich | Apr 2004 | A1 |
20040068656 | Lu | Apr 2004 | A1 |
20040073792 | Noble et al. | Apr 2004 | A1 |
20040081127 | Gardner et al. | Apr 2004 | A1 |
20040082385 | Silva et al. | Apr 2004 | A1 |
20040090345 | Hitt | May 2004 | A1 |
20040098597 | Giobbi | May 2004 | A1 |
20040114563 | Shvodian | Jun 2004 | A1 |
20040117644 | Colvin | Jun 2004 | A1 |
20040123106 | D'Angelo et al. | Jun 2004 | A1 |
20040123127 | Teicher et al. | Jun 2004 | A1 |
20040127277 | Walker et al. | Jul 2004 | A1 |
20040128162 | Schlotterbeck et al. | Jul 2004 | A1 |
20040128389 | Kopchik | Jul 2004 | A1 |
20040128500 | Cihula et al. | Jul 2004 | A1 |
20040128508 | Wheeler et al. | Jul 2004 | A1 |
20040128519 | Klinger et al. | Jul 2004 | A1 |
20040129787 | Saito et al. | Jul 2004 | A1 |
20040132432 | Moores et al. | Jul 2004 | A1 |
20040137912 | Lin | Jul 2004 | A1 |
20040153649 | Rhoads et al. | Aug 2004 | A1 |
20040158746 | Hu et al. | Aug 2004 | A1 |
20040166875 | Jenkins et al. | Aug 2004 | A1 |
20040167465 | Mihai | Aug 2004 | A1 |
20040181695 | Walker | Sep 2004 | A1 |
20040193925 | Safriel | Sep 2004 | A1 |
20040194133 | Ikeda et al. | Sep 2004 | A1 |
20040203566 | Leung | Oct 2004 | A1 |
20040203923 | Mullen | Oct 2004 | A1 |
20040208139 | Iwamura | Oct 2004 | A1 |
20040209690 | Bruzzese et al. | Oct 2004 | A1 |
20040209692 | Schober et al. | Oct 2004 | A1 |
20040214582 | Lan et al. | Oct 2004 | A1 |
20040215615 | Larsson et al. | Oct 2004 | A1 |
20040217859 | Pucci et al. | Nov 2004 | A1 |
20040218581 | Cattaneo | Nov 2004 | A1 |
20040222877 | Teramura et al. | Nov 2004 | A1 |
20040230488 | Beenau et al. | Nov 2004 | A1 |
20040230809 | Lowensohn et al. | Nov 2004 | A1 |
20040234117 | Tibor | Nov 2004 | A1 |
20040243519 | Perttila et al. | Dec 2004 | A1 |
20040246103 | Zukowski | Dec 2004 | A1 |
20040246950 | Parker et al. | Dec 2004 | A1 |
20040250074 | Kilian-Kehr | Dec 2004 | A1 |
20040252012 | Beenau et al. | Dec 2004 | A1 |
20040252659 | Yun et al. | Dec 2004 | A1 |
20040253996 | Chen et al. | Dec 2004 | A1 |
20040254837 | Roshkoff | Dec 2004 | A1 |
20040255139 | Giobbi | Dec 2004 | A1 |
20040255145 | Chow | Dec 2004 | A1 |
20050001028 | Zuili | Jan 2005 | A1 |
20050002028 | Kasapi et al. | Jan 2005 | A1 |
20050005136 | Chen et al. | Jan 2005 | A1 |
20050006452 | Aupperle et al. | Jan 2005 | A1 |
20050009517 | Maes | Jan 2005 | A1 |
20050021561 | Noonan | Jan 2005 | A1 |
20050025093 | Yun et al. | Feb 2005 | A1 |
20050028168 | Marcjan | Feb 2005 | A1 |
20050035897 | Perl et al. | Feb 2005 | A1 |
20050039027 | Shapiro | Feb 2005 | A1 |
20050040961 | Tuttle | Feb 2005 | A1 |
20050044372 | Aull et al. | Feb 2005 | A1 |
20050044387 | Ozolins | Feb 2005 | A1 |
20050047386 | Yi | Mar 2005 | A1 |
20050049013 | Chang et al. | Mar 2005 | A1 |
20050050208 | Chatani | Mar 2005 | A1 |
20050050324 | Corbett et al. | Mar 2005 | A1 |
20050054431 | Walker et al. | Mar 2005 | A1 |
20050055242 | Bello et al. | Mar 2005 | A1 |
20050055244 | Mullan et al. | Mar 2005 | A1 |
20050058292 | Diorio et al. | Mar 2005 | A1 |
20050074126 | Stanko | Apr 2005 | A1 |
20050076242 | Breuer | Apr 2005 | A1 |
20050081040 | Johnson et al. | Apr 2005 | A1 |
20050084137 | Kim et al. | Apr 2005 | A1 |
20050086115 | Pearson | Apr 2005 | A1 |
20050086515 | Paris | Apr 2005 | A1 |
20050089000 | Bae et al. | Apr 2005 | A1 |
20050090200 | Karaoguz et al. | Apr 2005 | A1 |
20050091338 | De La Huerga | Apr 2005 | A1 |
20050091553 | Chien et al. | Apr 2005 | A1 |
20050094657 | Sung et al. | May 2005 | A1 |
20050097037 | Tibor | May 2005 | A1 |
20050105600 | Culum et al. | May 2005 | A1 |
20050105734 | Buer | May 2005 | A1 |
20050108164 | Salafia et al. | May 2005 | A1 |
20050109836 | Ben-Aissa | May 2005 | A1 |
20050109841 | Ryan et al. | May 2005 | A1 |
20050113070 | Okabe | May 2005 | A1 |
20050114149 | Rodriguez et al. | May 2005 | A1 |
20050114150 | Franklin | May 2005 | A1 |
20050116020 | Smolucha et al. | Jun 2005 | A1 |
20050117530 | Abraham et al. | Jun 2005 | A1 |
20050119979 | Murashita et al. | Jun 2005 | A1 |
20050124294 | Wentink | Jun 2005 | A1 |
20050125258 | Yellin et al. | Jun 2005 | A1 |
20050137977 | Wankmueller | Jun 2005 | A1 |
20050138390 | Adams et al. | Jun 2005 | A1 |
20050138576 | Baumert et al. | Jun 2005 | A1 |
20050139656 | Arnouse | Jun 2005 | A1 |
20050141451 | Yoon et al. | Jun 2005 | A1 |
20050152394 | Cho | Jul 2005 | A1 |
20050154897 | Holloway et al. | Jul 2005 | A1 |
20050161503 | Remery | Jul 2005 | A1 |
20050165684 | Jensen | Jul 2005 | A1 |
20050166063 | Huang | Jul 2005 | A1 |
20050167482 | Ramachandran | Aug 2005 | A1 |
20050169292 | Young | Aug 2005 | A1 |
20050177716 | Ginter et al. | Aug 2005 | A1 |
20050180385 | Jeong et al. | Aug 2005 | A1 |
20050182661 | Allard et al. | Aug 2005 | A1 |
20050182975 | Guo et al. | Aug 2005 | A1 |
20050187792 | Harper | Aug 2005 | A1 |
20050192748 | Andric et al. | Sep 2005 | A1 |
20050195975 | Kawakita | Sep 2005 | A1 |
20050200453 | Turner et al. | Sep 2005 | A1 |
20050201389 | Shimanuki et al. | Sep 2005 | A1 |
20050203682 | Omino et al. | Sep 2005 | A1 |
20050203844 | Ferguson et al. | Sep 2005 | A1 |
20050210270 | Rohatgi et al. | Sep 2005 | A1 |
20050212657 | Simon | Sep 2005 | A1 |
20050215233 | Perera et al. | Sep 2005 | A1 |
20050216313 | Claud et al. | Sep 2005 | A1 |
20050216639 | Sparer et al. | Sep 2005 | A1 |
20050218215 | Lauden | Oct 2005 | A1 |
20050220046 | Falck et al. | Oct 2005 | A1 |
20050221869 | Liu et al. | Oct 2005 | A1 |
20050229007 | Bolle et al. | Oct 2005 | A1 |
20050229240 | Nanba | Oct 2005 | A1 |
20050242921 | Zimmerman et al. | Nov 2005 | A1 |
20050243787 | Hong et al. | Nov 2005 | A1 |
20050249385 | Kondo et al. | Nov 2005 | A1 |
20050251688 | Nanavati et al. | Nov 2005 | A1 |
20050253683 | Lowe | Nov 2005 | A1 |
20050257102 | Moyer et al. | Nov 2005 | A1 |
20050264416 | Maurer | Dec 2005 | A1 |
20050268111 | Markham | Dec 2005 | A1 |
20050269401 | Spitzer | Dec 2005 | A1 |
20050272403 | Ryu et al. | Dec 2005 | A1 |
20050281215 | Budampati et al. | Dec 2005 | A1 |
20050281320 | Neugebauer | Dec 2005 | A1 |
20050282558 | Choi et al. | Dec 2005 | A1 |
20050284932 | Sukeda et al. | Dec 2005 | A1 |
20050287985 | Balfanz et al. | Dec 2005 | A1 |
20050288069 | Arunan et al. | Dec 2005 | A1 |
20050289473 | Gustafson et al. | Dec 2005 | A1 |
20060001525 | Nitzan et al. | Jan 2006 | A1 |
20060014430 | Liang et al. | Jan 2006 | A1 |
20060022042 | Smets et al. | Feb 2006 | A1 |
20060022046 | Iwamura | Feb 2006 | A1 |
20060022800 | Krishna et al. | Feb 2006 | A1 |
20060025180 | Rajkotia et al. | Feb 2006 | A1 |
20060026673 | Tsuchida | Feb 2006 | A1 |
20060030279 | Leabman | Feb 2006 | A1 |
20060030353 | Jun | Feb 2006 | A1 |
20060034250 | Kim et al. | Feb 2006 | A1 |
20060041746 | Kirkup et al. | Feb 2006 | A1 |
20060046664 | Paradiso et al. | Mar 2006 | A1 |
20060058102 | Nguyen et al. | Mar 2006 | A1 |
20060063575 | Gatto et al. | Mar 2006 | A1 |
20060064605 | Giobbi | Mar 2006 | A1 |
20060069814 | Abraham et al. | Mar 2006 | A1 |
20060072586 | Callaway et al. | Apr 2006 | A1 |
20060074713 | Conry et al. | Apr 2006 | A1 |
20060076401 | Frerking | Apr 2006 | A1 |
20060078176 | Abiko | Apr 2006 | A1 |
20060087407 | Stewart et al. | Apr 2006 | A1 |
20060089138 | Smith et al. | Apr 2006 | A1 |
20060097949 | Luebke et al. | May 2006 | A1 |
20060110012 | Ritter | May 2006 | A1 |
20060111955 | Winter et al. | May 2006 | A1 |
20060113381 | Hochstein et al. | Jun 2006 | A1 |
20060116935 | Evans | Jun 2006 | A1 |
20060117013 | Wada | Jun 2006 | A1 |
20060120287 | Foti et al. | Jun 2006 | A1 |
20060129838 | Chen et al. | Jun 2006 | A1 |
20060136728 | Gentry et al. | Jun 2006 | A1 |
20060136742 | Giobbi | Jun 2006 | A1 |
20060143441 | Giobbi | Jun 2006 | A1 |
20060144943 | Kim | Jul 2006 | A1 |
20060156027 | Blake | Jul 2006 | A1 |
20060158308 | McMullen et al. | Jul 2006 | A1 |
20060163349 | Neugebauer | Jul 2006 | A1 |
20060165060 | Dua | Jul 2006 | A1 |
20060169771 | Brookner | Aug 2006 | A1 |
20060170530 | Nwosu et al. | Aug 2006 | A1 |
20060170565 | Husak et al. | Aug 2006 | A1 |
20060172700 | Wu | Aug 2006 | A1 |
20060173846 | Omae et al. | Aug 2006 | A1 |
20060173991 | Piikivi | Aug 2006 | A1 |
20060183426 | Graves et al. | Aug 2006 | A1 |
20060183462 | Kolehmainen | Aug 2006 | A1 |
20060184795 | Doradla | Aug 2006 | A1 |
20060185005 | Graves et al. | Aug 2006 | A1 |
20060187029 | Thomas | Aug 2006 | A1 |
20060190348 | Ofer et al. | Aug 2006 | A1 |
20060190413 | Harper | Aug 2006 | A1 |
20060194598 | Kim et al. | Aug 2006 | A1 |
20060195576 | Rinne et al. | Aug 2006 | A1 |
20060198337 | Hoang et al. | Sep 2006 | A1 |
20060200467 | Ohmori et al. | Sep 2006 | A1 |
20060205408 | Nakagawa et al. | Sep 2006 | A1 |
20060208066 | Finn et al. | Sep 2006 | A1 |
20060208853 | Kung et al. | Sep 2006 | A1 |
20060222042 | Teramura et al. | Oct 2006 | A1 |
20060226950 | Kanou et al. | Oct 2006 | A1 |
20060229909 | Kaila et al. | Oct 2006 | A1 |
20060236373 | Graves et al. | Oct 2006 | A1 |
20060237528 | Bishop et al. | Oct 2006 | A1 |
20060238305 | Loving et al. | Oct 2006 | A1 |
20060268891 | Heidari-Bateni et al. | Nov 2006 | A1 |
20060273176 | Audebert et al. | Dec 2006 | A1 |
20060274711 | Nelson et al. | Dec 2006 | A1 |
20060279412 | Holland et al. | Dec 2006 | A1 |
20060286969 | Talmor et al. | Dec 2006 | A1 |
20060288095 | Torok et al. | Dec 2006 | A1 |
20060288233 | Kozlay | Dec 2006 | A1 |
20060290580 | Noro et al. | Dec 2006 | A1 |
20060293925 | Flom | Dec 2006 | A1 |
20060294388 | Abraham et al. | Dec 2006 | A1 |
20070003111 | Awatsu et al. | Jan 2007 | A1 |
20070005403 | Kennedy et al. | Jan 2007 | A1 |
20070007331 | Jasper et al. | Jan 2007 | A1 |
20070008070 | Friedrich | Jan 2007 | A1 |
20070008916 | Haugli et al. | Jan 2007 | A1 |
20070011724 | Gonzalez et al. | Jan 2007 | A1 |
20070016800 | Spottswood et al. | Jan 2007 | A1 |
20070019845 | Kato | Jan 2007 | A1 |
20070029381 | Braiman | Feb 2007 | A1 |
20070032225 | Konicek et al. | Feb 2007 | A1 |
20070032288 | Nelson et al. | Feb 2007 | A1 |
20070033072 | Bildirici | Feb 2007 | A1 |
20070033150 | Nwosu | Feb 2007 | A1 |
20070036396 | Sugita et al. | Feb 2007 | A1 |
20070038751 | Jorgensen | Feb 2007 | A1 |
20070043594 | Lavergne | Feb 2007 | A1 |
20070050259 | Wesley | Mar 2007 | A1 |
20070050398 | Mochizuki | Mar 2007 | A1 |
20070051794 | Glanz et al. | Mar 2007 | A1 |
20070051798 | Kawai et al. | Mar 2007 | A1 |
20070055630 | Gauthier | Mar 2007 | A1 |
20070060095 | Subrahmanya et al. | Mar 2007 | A1 |
20070060319 | Block et al. | Mar 2007 | A1 |
20070064742 | Shvodian | Mar 2007 | A1 |
20070069852 | Mo et al. | Mar 2007 | A1 |
20070070040 | Chen et al. | Mar 2007 | A1 |
20070072636 | Worfolk et al. | Mar 2007 | A1 |
20070073553 | Flinn et al. | Mar 2007 | A1 |
20070084523 | McLean et al. | Apr 2007 | A1 |
20070084913 | Weston | Apr 2007 | A1 |
20070087682 | Dacosta | Apr 2007 | A1 |
20070087834 | Moser et al. | Apr 2007 | A1 |
20070100507 | Simon | May 2007 | A1 |
20070100939 | Bagley et al. | May 2007 | A1 |
20070109117 | Heitzmann et al. | May 2007 | A1 |
20070112676 | Kontio et al. | May 2007 | A1 |
20070118891 | Buer | May 2007 | A1 |
20070120643 | Lee | May 2007 | A1 |
20070132586 | Plocher et al. | Jun 2007 | A1 |
20070133478 | Armbruster et al. | Jun 2007 | A1 |
20070136407 | Rudelic | Jun 2007 | A1 |
20070142032 | Balsillie | Jun 2007 | A1 |
20070152826 | August et al. | Jul 2007 | A1 |
20070156850 | Corrion | Jul 2007 | A1 |
20070157249 | Cordray et al. | Jul 2007 | A1 |
20070158411 | Krieg, Jr. | Jul 2007 | A1 |
20070159301 | Hirt et al. | Jul 2007 | A1 |
20070159994 | Brown et al. | Jul 2007 | A1 |
20070164847 | Crawford et al. | Jul 2007 | A1 |
20070169121 | Hunt et al. | Jul 2007 | A1 |
20070174809 | Brown et al. | Jul 2007 | A1 |
20070176756 | Friedrich | Aug 2007 | A1 |
20070176778 | Ando et al. | Aug 2007 | A1 |
20070180047 | Dong et al. | Aug 2007 | A1 |
20070187266 | Porter et al. | Aug 2007 | A1 |
20070192601 | Spain et al. | Aug 2007 | A1 |
20070194882 | Yokota et al. | Aug 2007 | A1 |
20070198436 | Weiss | Aug 2007 | A1 |
20070204078 | Boccon-Gibod et al. | Aug 2007 | A1 |
20070205860 | Jones et al. | Sep 2007 | A1 |
20070205861 | Nair et al. | Sep 2007 | A1 |
20070207750 | Brown et al. | Sep 2007 | A1 |
20070213048 | Trauberg | Sep 2007 | A1 |
20070214492 | Gopi et al. | Sep 2007 | A1 |
20070218921 | Lee et al. | Sep 2007 | A1 |
20070219926 | Korn | Sep 2007 | A1 |
20070220272 | Campisi et al. | Sep 2007 | A1 |
20070229268 | Swan et al. | Oct 2007 | A1 |
20070245157 | Giobbi et al. | Oct 2007 | A1 |
20070245158 | Giobbi et al. | Oct 2007 | A1 |
20070247366 | Smith et al. | Oct 2007 | A1 |
20070258626 | Reiner | Nov 2007 | A1 |
20070260883 | Giobbi et al. | Nov 2007 | A1 |
20070260888 | Giobbi et al. | Nov 2007 | A1 |
20070266257 | Camaisa et al. | Nov 2007 | A1 |
20070268862 | Singh et al. | Nov 2007 | A1 |
20070271194 | Walker et al. | Nov 2007 | A1 |
20070271433 | Takemura | Nov 2007 | A1 |
20070277044 | Graf et al. | Nov 2007 | A1 |
20070280509 | Owen et al. | Dec 2007 | A1 |
20070285212 | Rotzoll | Dec 2007 | A1 |
20070285238 | Batra | Dec 2007 | A1 |
20070288263 | Rodgers | Dec 2007 | A1 |
20070288752 | Chan | Dec 2007 | A1 |
20070293155 | Liao et al. | Dec 2007 | A1 |
20070294755 | Dadhia et al. | Dec 2007 | A1 |
20070296544 | Beenau et al. | Dec 2007 | A1 |
20080001783 | Cargonja et al. | Jan 2008 | A1 |
20080005432 | Kagawa | Jan 2008 | A1 |
20080008359 | Beenau et al. | Jan 2008 | A1 |
20080011842 | Curry et al. | Jan 2008 | A1 |
20080012685 | Friedrich et al. | Jan 2008 | A1 |
20080012767 | Caliri et al. | Jan 2008 | A1 |
20080016004 | Kurasaki et al. | Jan 2008 | A1 |
20080019578 | Saito et al. | Jan 2008 | A1 |
20080028227 | Sakurai | Jan 2008 | A1 |
20080028453 | Nguyen et al. | Jan 2008 | A1 |
20080046366 | Bemmel et al. | Feb 2008 | A1 |
20080046715 | Balazs et al. | Feb 2008 | A1 |
20080049700 | Shah et al. | Feb 2008 | A1 |
20080061941 | Fischer et al. | Mar 2008 | A1 |
20080071577 | Highley | Mar 2008 | A1 |
20080072063 | Takahashi et al. | Mar 2008 | A1 |
20080088475 | Martin | Apr 2008 | A1 |
20080090548 | Ramalingam | Apr 2008 | A1 |
20080095359 | Schreyer et al. | Apr 2008 | A1 |
20080107089 | Larsson et al. | May 2008 | A1 |
20080109895 | Janevski | May 2008 | A1 |
20080111752 | Lindackers et al. | May 2008 | A1 |
20080127176 | Lee et al. | May 2008 | A1 |
20080129450 | Riegebauer | Jun 2008 | A1 |
20080148351 | Bhatia et al. | Jun 2008 | A1 |
20080149705 | Giobbi et al. | Jun 2008 | A1 |
20080150678 | Giobbi et al. | Jun 2008 | A1 |
20080156866 | McNeal | Jul 2008 | A1 |
20080164997 | Aritsuka et al. | Jul 2008 | A1 |
20080169909 | Park et al. | Jul 2008 | A1 |
20080186166 | Zhou et al. | Aug 2008 | A1 |
20080188308 | Shepherd et al. | Aug 2008 | A1 |
20080195863 | Kennedy | Aug 2008 | A1 |
20080201768 | Koo et al. | Aug 2008 | A1 |
20080203107 | Conley et al. | Aug 2008 | A1 |
20080209571 | Bhaskar et al. | Aug 2008 | A1 |
20080218416 | Handy et al. | Sep 2008 | A1 |
20080222701 | Saaranen et al. | Sep 2008 | A1 |
20080223918 | Williams et al. | Sep 2008 | A1 |
20080228524 | Brown | Sep 2008 | A1 |
20080235144 | Phillips | Sep 2008 | A1 |
20080238625 | Rofougaran et al. | Oct 2008 | A1 |
20080250388 | Meyer et al. | Oct 2008 | A1 |
20080251579 | Larsen | Oct 2008 | A1 |
20080278325 | Zimman et al. | Nov 2008 | A1 |
20080289030 | Poplett | Nov 2008 | A1 |
20080289032 | Aoki et al. | Nov 2008 | A1 |
20080303637 | Gelbman et al. | Dec 2008 | A1 |
20080313728 | Pandrangi et al. | Dec 2008 | A1 |
20080314971 | Faith | Dec 2008 | A1 |
20080316045 | Sriharto et al. | Dec 2008 | A1 |
20090002134 | McAllister | Jan 2009 | A1 |
20090013191 | Popowski | Jan 2009 | A1 |
20090016573 | McAfee et al. | Jan 2009 | A1 |
20090024584 | Dharap et al. | Jan 2009 | A1 |
20090033464 | Friedrich | Feb 2009 | A1 |
20090033485 | Naeve et al. | Feb 2009 | A1 |
20090036164 | Rowley | Feb 2009 | A1 |
20090041309 | Kim et al. | Feb 2009 | A1 |
20090045916 | Nitzan et al. | Feb 2009 | A1 |
20090052389 | Qin et al. | Feb 2009 | A1 |
20090070146 | Haider et al. | Mar 2009 | A1 |
20090076849 | Diller | Mar 2009 | A1 |
20090081996 | Duggal et al. | Mar 2009 | A1 |
20090096580 | Paananen | Apr 2009 | A1 |
20090121890 | Brown et al. | May 2009 | A1 |
20090125401 | Beenau et al. | May 2009 | A1 |
20090140045 | Evans | Jun 2009 | A1 |
20090157512 | King | Jun 2009 | A1 |
20090165123 | Giobbi | Jun 2009 | A1 |
20090176566 | Kelly | Jul 2009 | A1 |
20090177495 | Abousy et al. | Jul 2009 | A1 |
20090195461 | Hirt | Aug 2009 | A1 |
20090199206 | Finkenzeller et al. | Aug 2009 | A1 |
20090206992 | Giobbi et al. | Aug 2009 | A1 |
20090237245 | Brinton et al. | Sep 2009 | A1 |
20090237253 | Neuwirth | Sep 2009 | A1 |
20090239667 | Rowe et al. | Sep 2009 | A1 |
20090253516 | Hartmann et al. | Oct 2009 | A1 |
20090254971 | Herz et al. | Oct 2009 | A1 |
20090264712 | Baldus et al. | Oct 2009 | A1 |
20090310514 | Jeon et al. | Dec 2009 | A1 |
20090313689 | Nystroem et al. | Dec 2009 | A1 |
20090319788 | Zick et al. | Dec 2009 | A1 |
20090320118 | Mueller et al. | Dec 2009 | A1 |
20090322510 | Berger et al. | Dec 2009 | A1 |
20090328182 | Malakapalli et al. | Dec 2009 | A1 |
20100005526 | Tsuji et al. | Jan 2010 | A1 |
20100007498 | Jackson | Jan 2010 | A1 |
20100022308 | Hartmann et al. | Jan 2010 | A1 |
20100023074 | Powers et al. | Jan 2010 | A1 |
20100037255 | Sheehan et al. | Feb 2010 | A1 |
20100062743 | Jonsson | Mar 2010 | A1 |
20100077214 | Jogand-Coulomb et al. | Mar 2010 | A1 |
20100117794 | Adams et al. | May 2010 | A1 |
20100134257 | Puleston et al. | Jun 2010 | A1 |
20100169442 | Liu et al. | Jul 2010 | A1 |
20100169964 | Liu et al. | Jul 2010 | A1 |
20100172567 | Prokoski | Jul 2010 | A1 |
20100174911 | Isshiki | Jul 2010 | A1 |
20100188226 | Seder et al. | Jul 2010 | A1 |
20100214100 | Page | Aug 2010 | A1 |
20100277283 | Burkart et al. | Nov 2010 | A1 |
20100277286 | Burkart et al. | Nov 2010 | A1 |
20100291896 | Corda | Nov 2010 | A1 |
20100305843 | Yan et al. | Dec 2010 | A1 |
20100328033 | Kamei | Dec 2010 | A1 |
20110072034 | Sly et al. | Mar 2011 | A1 |
20110072132 | Shafer et al. | Mar 2011 | A1 |
20110082735 | Kannan et al. | Apr 2011 | A1 |
20110085287 | Ebrom et al. | Apr 2011 | A1 |
20110091136 | Danch et al. | Apr 2011 | A1 |
20110116358 | Li et al. | May 2011 | A9 |
20110126188 | Bernstein et al. | May 2011 | A1 |
20110221568 | Giobbi | Sep 2011 | A1 |
20110227740 | Wohltjen | Sep 2011 | A1 |
20110238517 | Ramalingam et al. | Sep 2011 | A1 |
20110246790 | Koh et al. | Oct 2011 | A1 |
20110266348 | Denniston, Jr. | Nov 2011 | A1 |
20110307599 | Saretto et al. | Dec 2011 | A1 |
20120028609 | Hruska | Feb 2012 | A1 |
20120030006 | Yoder et al. | Feb 2012 | A1 |
20120069776 | Caldwell et al. | Mar 2012 | A1 |
20120086571 | Scalisi et al. | Apr 2012 | A1 |
20120182123 | Butler et al. | Jul 2012 | A1 |
20120212322 | Idsoee | Aug 2012 | A1 |
20120226451 | Bacot et al. | Sep 2012 | A1 |
20120226565 | Drozd | Sep 2012 | A1 |
20120226907 | Hohberger et al. | Sep 2012 | A1 |
20120238287 | Scherzer | Sep 2012 | A1 |
20120278188 | Attar et al. | Nov 2012 | A1 |
20120300753 | Brown et al. | Nov 2012 | A1 |
20120310720 | Balsan et al. | Dec 2012 | A1 |
20130019295 | Park et al. | Jan 2013 | A1 |
20130019323 | Arvidsson et al. | Jan 2013 | A1 |
20130044111 | Vangilder et al. | Feb 2013 | A1 |
20130111543 | Brown et al. | May 2013 | A1 |
20130135082 | Xian et al. | May 2013 | A1 |
20130179201 | Fuerstenberg et al. | Jul 2013 | A1 |
20130219186 | Giobbi et al. | Aug 2013 | A1 |
20130276140 | Coffing et al. | Oct 2013 | A1 |
20130297514 | Giobbi | Nov 2013 | A1 |
20130315210 | Brown et al. | Nov 2013 | A1 |
20130331063 | Cormier et al. | Dec 2013 | A1 |
20140074696 | Glaser | Mar 2014 | A1 |
20140147018 | Argue et al. | May 2014 | A1 |
20140266604 | Masood et al. | Sep 2014 | A1 |
20140266713 | Sehgal et al. | Sep 2014 | A1 |
20140337920 | Giobbi | Nov 2014 | A1 |
20150026480 | Giobbi et al. | Jan 2015 | A1 |
20150039451 | Bonfiglio | Feb 2015 | A1 |
20150294293 | Signarsson | Oct 2015 | A1 |
20150310385 | King et al. | Oct 2015 | A1 |
20150310440 | Hynes et al. | Oct 2015 | A1 |
20160133123 | Giobbi et al. | May 2016 | A1 |
20160171200 | Giobbi | Jun 2016 | A1 |
20160203349 | Giobbi | Jul 2016 | A1 |
20160205682 | Brown et al. | Jul 2016 | A1 |
20160210614 | Hall | Jul 2016 | A1 |
20160300236 | Wiley et al. | Oct 2016 | A1 |
20160306956 | Giobbi | Oct 2016 | A1 |
20170041315 | Giobbi | Feb 2017 | A1 |
20170085564 | Giobbi et al. | Mar 2017 | A1 |
20170091548 | Agrawal et al. | Mar 2017 | A1 |
20170270738 | Giobbi | Sep 2017 | A1 |
20170309165 | Brown et al. | Oct 2017 | A1 |
20180019998 | Giobbi | Jan 2018 | A1 |
20180129799 | Giobbi | May 2018 | A1 |
20180322718 | Qian et al. | Nov 2018 | A1 |
20180357475 | Honda et al. | Dec 2018 | A1 |
20190065721 | Giobbi | Feb 2019 | A1 |
20190172281 | Einberg et al. | Jun 2019 | A1 |
20190260724 | Hefetz et al. | Aug 2019 | A1 |
20190289562 | Brown | Sep 2019 | A1 |
20200351873 | Brown et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
1536306 | Jun 2005 | EP |
10-049604 | Feb 1998 | JP |
9956429 | Nov 1999 | WO |
0062505 | Oct 2000 | WO |
0122724 | Mar 2001 | WO |
0135334 | May 2001 | WO |
0175876 | Oct 2001 | WO |
0177790 | Oct 2001 | WO |
2004010774 | Feb 2004 | WO |
2004038563 | May 2004 | WO |
WO-2005031663 | Apr 2005 | WO |
2005050450 | Jun 2005 | WO |
2005086802 | Sep 2005 | WO |
2007087558 | Aug 2007 | WO |
Entry |
---|
Liu et al., “A Practical Guide to Biometric Security Technology,” IT Pro, vol. 3, No. 1, Jan./Feb. 2001, pp. 27-32. |
Machine translation of JPH10049604, 27 pages. |
McIver et al., “Identification and Verification Working Together,” Bioscrypt, White Paper: Identification and Verification Working Together, Aug. 27, 2004, retrieved from www.ibia.org/membersadmin/whitepapers/pdf/15/Identification%20and%20Verification%20Working%20Together.pdf on Jan. 7, 2007, 5 pgs. |
Micronas, “Micronas and Thomson Multimedia Showecase a New Copy Protection System that Will Drive the Future of Digital Television,” Jan. 8, 2002, retrieved from www.micronas.com/press/pressreleases/printer.php?ID=192 on Mar. 4, 2002, 3 pgs. |
Muller, “Desktop Encyclopedia of the Internet,” 1999, Artech House Inc., Norwood, MA, all pages. |
National Criminal Justice Reference Service, “Antenna Types,” Dec. 11, 2006, online at http://ncjrs.gov/pdfffiles1/nij/185030b.pdf, retrieved from http://web.archive.erg/web/*/http://www.ncjrs.gov/pdffiles1/nij/185030b.pdf on Jan. 12, 2011, 1 pg. |
Nel et al., “Generation of Keys for use with the Digital Signature Standard (DSS),” Communications and Signal Processing, Proceedings of the 1993 IEEE South African Symposium, Aug. 6, 1993, pp. 6-11. |
Nerd Vittles, “magicJack: Could It Be the Asterisk Killer?” Aug. 1, 2007, retrieved from http://nerdvittles.com/index.php?p=187 on or before Oct. 11, 2011, 2 pgs. |
Nilsson et al., “Match-on-Card for Java Cards,” Precise Biometrics, white paper, Apr. 2004, retrieved from www.ibia.org/membersadmin/whitepapers/pdf/17/Precise%20Match-on-Card%20for%20Java%20Cards.pdf on Jan. 7, 2007, 5 pgs. |
Noore, “Highly Robust Biometric Smart Card Design.” IEEE Transactions on Consumer Electronics, vol. 46, No. 4, Nov. 2000, pp. 1059-1063. |
Nordin, “Match-on-Card Technology,” Precise Biometrics, white paper, Apr. 2004, retrieved from www.ibia.org/membersadmin/whitepapers/pdf/17/Precise%20Match-on-Card%20technology.pdf on Jan. 7, 2007, 7 pgs. |
Paget, “The Security Behind Secure Extranets,” Enterprise Systems Journal, vol. 14, No. 12, Dec. 1999, 4 pgs. |
Pash, “Automate proximity and location-based computer actions,” Jun. 5, 2007, retrieved from http://lifehacker.com/265822/automate-proximity-and-location+based-computer-actionson or before Oct. 11, 2011, 3 pgs. |
Pope et al., “Oasis Digital Signature Services: Digital Signing without the Headaches,” IEEE Internet Computing, vol. 10, Sep./Oct. 2006, pp. 81-84. |
SAFLINK Corporation, “SAFModule™: A Look Into Strong Authentication,” white paper, retrieved from www.ibia.org/membersadmin/whilepapers/pdf/6/SAFmod_WP.pdf on Jan. 7, 2007, 8 pgs. |
Sapsford, “E-Business: Sound Waves Could Help Ease Web-Fraud Woes,” Wall Street Journal, Aug. 14, 2000, p. B1. |
Singh et al., “A Constraint-Based Biometric Scheme on ATM and Swiping Machine,” 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT), Mar. 11, 2016, pp. 74-79. |
Smart Card Alliance, “Contactless Technology for Secure Physical Access: Technology and Standards Choices,” Smart Card Alliance, Oct. 2002, pp. 1-48. |
Smart Card Alliance, “Smart Cards and Biometrics White Paper: Smart Card Alliance,” May 2002, retrieved from http://www.securitymanagement.com/librarylsmartcard_faqte- ch0802.pdf on Jan. 7, 2007, 7 pgs. |
Smart Card Alliance, “Alliance Activities: Publications: Identity: Identity Management Systems, Smart Cards and Privacy,” 1997-2007, retrieved from www.smartcardalliance.org/pages/publications-identity on Jan. 7, 2007, 3 pgs. |
SplashID, “SplashID—Secure Password Manager for PDA's and Smartphones,” Mar. 8, 2007, retrieved from http://www.splashdata/com/splashid/ via http://www.archive.org/ on or before Oct. 11, 2011, 2 pgs. |
Srivastava, “Is Internet security a major issue with respect to the slow acceptance rate of digital signatures,” Jan. 2, 2005, Computer Law & Security Report, pp. 392-404. |
Thomson Multimedia, “Thomson multimedia unveils copy protection proposal designed to provide additional layer of digital content security,” retrieved from www.thompson-multimedia.com/gb/06/c01/010530.htm on Mar. 4, 2002, May 30, 2001, 2 pgs. |
Unixhelp, “What is a file?” Apr. 30, 1998, retrieved from unixhelp.ed.ac.uk/editors/whatisafile.html.accessed on Mar. 11, 2010, via http://waybackmachine.org/19980615000000*/http://unixhelp.ed.ac.uk/editors/whatisafile.html on Mar. 11, 2011, 1 pg. |
Vainio, “Bluetooth Security,” Helsinki University of Technology, May 25, 2000, 17 pgs. |
Van Winkle, “Bluetooth: The King of Connectivity,” Laptop Buyer's Guide and Handbook, Jan. 2000, pp. 148-153. |
Wade, “Using Fingerprints to Make Payments at POS Slowly Gaining Popularity,” Credit Union Journal, International Biometric Group, Apr. 21, 2003, retrieved from http://www.biometricgroup.com/in_the_news/04.21.03.html on Jan. 7, 2007, 3 pgs. |
Wallace, “The Internet Unplugged,” InformationWeek, vol. 765, No. 22, Dec. 13, 1999, pp. 22-24. |
Weber, “In the Age of Napster, Protecting Copyright is a Digital Arms Race,” Wall Street Journal, Jul. 24, 2000, B1, 2 pgs. |
White, “How Computers Work,” Millennium Edition, 1999, Que Corporation, Indianapolis, IN, all pages. |
Yoshida, “Content Protection Plan Targets Wireless Home Networks,” EE Times, Jan. 11, 2002, retrieved from www.eetimes.com/story/OEG20020111S0060 on Mar. 4, 2002, 2 pgs. |
Anonymous, “Applying Biometrics to Door Access,” Security Magazine, Sep. 26, 2002, retrieved from http://www.securitymagazine.com/CDA/Articles/Technologies/3ae610eaa34d8010VgnVCM100000f932a8c0_ on Jan. 7, 2007, 5 pgs. |
Anonymous, “Firecrest Shows How Truly Commercially-Minded Companies Will Exploit the Internet,” Computergram International, Jan. 18, 1996, 2 pgs. |
Anonymous, “IEEE 802.15.4-2006—Wikipedia, the free encyclopedia,” Wikipedia, last modified Mar. 21, 2009, retrieved from http://en.wikipedia.org/wiki/IEEE_802.15.4-2006 on Apr. 30, 2009, 5 pgs. |
Antonoff, “Visiting Video Valley,” Sound & Vision, Nov. 2001, pp. 116, 118-119. |
Apple et al., “Smart Card Setup Guide,” 2006, downloaded from http://manuals.info.apple.com/en_US/Smart_Card_Setup_Guide.pdf on or before May 3, 2012, 16 pgs. |
Balanis, “Antenna Theory: A Review,” Jan. 1992, Proceedings of the IEEE, vol. 80, No. 1, p. 13. |
Beaufour, “Personal Servers as Digital Keys,” Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PERCOM'04), Mar. 14-17, 2004, pp. 319-328. |
Biopay, LLC, “Frequently Asked Questions (FAQs) About BioPay,” retrieved from http://www.biopay.com/faqs-lowes.asp on Jan. 7, 2007, 5 pgs. |
Blueproximity, “BlueProximity—Leave it—it's locked, come back, it's back too . . . ” Aug. 26, 2007, retrieved from http://blueproximity.sourceforge.net/viahttp://www.archive.org/ on or before Oct. 11, 2011, 1 pg. |
Bluetooth Sig, Inc., “Bluetooth,” www.bluetooth.com, Jun. 1, 2000, 8 pgs. |
Bluetooth Sig, Inc., “Say Hello to Bluetooth,” retrieved from www.bluetooth.com, at least as early as Jan. 14, 2005, 4 pgs. |
Blum, “Digital Rights Management May Solve the Napster ‘Problem,’” Technology Investor, Oct. 2000, pp. 24-27. |
Bohrsatom et al., “Automatically unlock PC when entering proximity,” Dec. 7, 2005, retrieved from http://salling.com/forums/viewtopic.php?t=3190 on or before Oct. 11, 2011, 3 pgs. |
Brown, “Techniques for Privacy and Authentication in Personal Communication Systems,” Personal Communications, IEEE, Aug. 1995, vol. 2, No. 4, pp. 6-10. |
Chen et al., “On Enhancing Biometric Authentication with Data Protection,” KES2000, Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies Proceedings (Cat. No. 00TH8516), vol. 1, Aug. 1, 2000, pp. 249-252. |
Cisco Systems, Inc., “Antenna Patterns and Their Meaning,” 1992-2007, p. 10. |
Costa, “Imation USB 2.0 Micro Hard Drive,” Nov. 22, 2005, retrieved from http://www.pcmag.com/article2/0,2817,1892209,00.asp on or before Oct. 11, 2011, 2 pgs. |
Dagan, “Power over Ethernet (PoE) Midspan—The Smart Path to Providing Power for IP Telephony,” Product Manager, Systems, Aug. 2005, Power Dsine Inc., 28 pgs. |
Dai et al., “Toward Blockchain-Based Accounting and Assurance,” Journal of Information Systems, vol. 31, No. 3, Fall 2017, pp. 5-21. |
Debow, “Credit/Debit Debuts in Midwest Smart Card Test,” Computers in Banking, vol. 6, No. 11, Nov. 1989, pp. 10-13. |
Dennis, “Digital Passports Need Not Infringe Civil Liberties,” Newsbytes, NA, Dec. 2, 1999, 2 pgs. |
Derfler, “How Networks Work,” Bestseller Edition, 1996, Ziff-Davis Press, Emeryville, CA, all pages. |
Farouk et al., “Authentication Mechanisms in Grid Computing Environment: Comparative Study,” IEEE, Oct. 2012, pp. 1-6. |
Fasca, “S3, Via Formalize Agreement,” Electronic News, The Circuit, 45(45, Nov. 8, 1999), p. 20. |
Giobbi, Specification of U.S. Appl. No. 60/824,758, filed Sep. 6, 2006, all pages. |
Govindan et al. “Real Time Security Management Using RFID, Biometric and Smart Messages.” 2009 3rd International Conference on Anti-Counterfeiting, Security, and Identification in Communication, Aug. 20, 2009, pp. 282-285. |
Gralla, “How the Internet works,” Millennium Edition, 1999, Que Corporation, Indianapolis, IN, all pages. |
Hendron, “File Security, Keychains, Encryptioin, and More with Mac OS X (10.3+)” Apr. 4, 2005, downloaded from http://www.johnhendron.net/documents/OSX_Security.pdf on or before May 3, 2012, 30 pgs. |
IEEE Computer Society, “IEEE Std 802.15.4™-Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs),” The Institute of Electrical and Electronics Engineers, Inc., New York, NY, Oct. 1, 2003, 679 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US04/38124, dated Apr. 7, 2005, 10 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US05/00349, dated Mar. 19, 2008, 10 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US05/07535, dated Dec. 6, 2005, 6 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US05/43447, dated Feb. 22, 2007, 7 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US05/46843, dated Mar. 1, 2007, 10 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US07/11102, dated Oct. 3, 2008, 11 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US07/11103, dated Apr. 23, 2008, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US07/11104, dated Jun. 26, 2008, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US07/11105, dated Oct. 20, 2008, 10 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US08/83060, dated Dec. 29, 2008, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US08/87835, dated Feb. 11, 2009, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US09/34095, dated Mar. 25, 2009, 11 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2009/039943, dated Jun. 1, 2009, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2014/037609, dated Dec. 9, 2014, 13 pgs. |
International Search Report for International Patent Application No. PCT/US2001/049916, dated Apr. 25, 2002, 1 pg. |
Jeyaprakash et al., “Secured Smart Card Using Palm Vein Biometric On-Card-Process,” 2008 International Conference on Convergence and Hybrid Information Technology, 2008, pp. 548-551. |
Katz et al., “Smart Cards and Biometrics in Privacy-Sensitive Secure Personal Identification System,” May 2002, Smart Card Alliance, p. 1-29. |
Kontzer, “Thomson Bets on Smart Cards for Video Encryption,” www.informationweek.com, Jun. 7, 2001, 1 pg. |
Lake, “Downloading for Dollars: Who said buying music off the Net would be easy?” Sound & Vision, Nov. 2000, pp. 137-138. |
Lee et al., “Effects of dielectric superstrales on a two-layer electromagnetically coupled patch antenna,” Antennas and Propagation Society International Symposium, Jun. 1989, AP-S. Digest, vol. 2, pp. 26-30, found at http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1347. |
Lewis, “Sony and Visa in On-Line Entertainment Venture,” New York Times, vol. 145, Thurs. Ed., Nov. 16, 1995, 1 pg. |
Schneier, Applied Cryptography, Second Edition: Protocols, Algorithms, and Source Doe in C, Jan. 1, 1996, John Wiley & Sons, Inc., 1027 pgs. |
Number | Date | Country | |
---|---|---|---|
20200304301 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
60798172 | May 2006 | US | |
60798843 | May 2006 | US | |
60838788 | Aug 2006 | US | |
60824758 | Sep 2006 | US | |
60894608 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16503066 | Jul 2019 | US |
Child | 16893155 | US | |
Parent | 14986306 | Dec 2015 | US |
Child | 16503066 | US | |
Parent | 14448891 | Jul 2014 | US |
Child | 14986306 | US | |
Parent | 13791553 | Mar 2013 | US |
Child | 14448891 | US | |
Parent | 11744832 | May 2007 | US |
Child | 13791553 | US |