This invention relates to a personal identity authentication process and system.
The problem of computerized personal identity authentication has received considerable attention over recent years, finding numerous commercial and law enforcement applications.
By way of illustration, these include the verification of credit cards, passports, driver's licenses and the like, matching of controlled photographs such as mud shots, recognition of suspects from CCTV video against a database of known face images and control of access to buildings and teleservices, such as bank teller machines.
A paper entitled “Face Recognition: Features versus Templates” by R Brunelli and T Poggio in IEEE trans on PAMI, Vol 15 pp 1042-1052, 1993 presents a comparison of two basic approaches; namely, a geometric-feature based approach and a template or statistical-feature matching approach, the latter being favoured by the authors.
The most commonly used statistical representation for face authentication is the Karhunen-Loeve expansion, know also as Principal Component Analysis (PCA), by which face images are represented in a lower-dimensional sub-space using PCA bases defined by eigenvectors, often referred to as ‘eigenfaces’.
Although this approach provides a very efficient means of data compression, it does not guarantee the most efficient compression of discriminatory information.
More recently, the technique of linear discriminant analysis (LDA) has been adapted to the problem of face recognition. Again, the face images are represented in a lower dimensional sub-space, but using LDA bases defined by eigenvectors which are often referred to as ‘fisher faces’, and these have been demonstrated to far outperform the PCA representation using ‘eigenfaces’. However, conventional LDA representations involve use of multiple, shared ‘fisher faces’, necessitating complex and computationally intensive matrix operations, and this presents a significant technical problem in terms of performance, processing speed and ease of adding to, or updating the database of face images against which a probe image is tested.
According to a first aspect of the invention there is provided a personal identity authentication process comprising the steps of using linear discriminant analysis (LDA) to derive a class-specific linear discriminant transformation ai from N vectors zj (j=1,2 . . . N) defining respective training images, there being m different classes of said training images with the ith classes ωi containing a respective number Ni of said training images such that
projecting a vector zp defining a probe image onto said class-specific linear discriminant transformation ai, comparing the projected vector
with a reference vector for the ith class ωi and evaluating authenticity of the probe image with respect to the ith class in dependence on the comparison.
According to another aspect of the invention there is provided a personal identity authentication system comprising data storage and data processing means for carrying out the process defined in accordance with said first aspect of the invention.
According to a third aspect of the invention there is provided a personal identity authentication system for evaluating authenticity of a probe image with respect to one or more of m different classes of training images, wherein said training images are defined by respective vectors zj (j=1,2 . . . N), there being a total of N vectors zj, and the number of training images in the ith class ωi is Ni such that
the personal identity authentication system comprising data storage means for storing a class-specific linear discriminant ai, as defined in accordance with said first aspect of the invention, for each of said classes ωi (i=1,2 . . . m), and data processing means for accessing a said class-specific linear discriminant transformation ai from said data storage means, projecting a vector zp defining said probe image onto the accessed class-specific linear discriminant transformation ai, comparing the projected vector
with a reference vector for the ith class ωi and evaluating authenticity of the probe image with respect to the ith class ωi in dependence on the comparison.
According to year a further aspect of the invention there is provided a computer readable medium containing computer executable instructions for carrying out a process as defined in accordance with said first aspect of the invention.
An embodiment of the invention will now be described, by way of example only, with reference to the accompanying drawings of which:
a shows a histogram of a test statistic ti for projected imposter faces images,
b shows a histogram of the same test statistic for projected client face images, and
In this embodiment of the invention, it will be assumed that there is a total of N training images representing m different individuals, referred to herein as ‘clients’. The total number of training images N is given by the expression:
where Ni is the number of training images representing the ith client, defining a distinct client class ωi. The number Ni of training images need not be the same for each client class. Typically, N might be of the order of 103 and m might be of the order 102.
The training images are derived from some biometric data, assumed to be appropriately registered and normalised photometrically.
In this embodiment, frontal face images are used; however, images of other biometric data could alternatively be used—e.g. profile facial images.
As will be explained, the described personal identity authentication process and system can be used to evaluate authenticity of a probe face image presented as being that of one of the clients, either accepting or rejecting the claimed identity. This process finds application, inter alia, in the verification of credit cards, passports, driver's licences and the like.
Each training face image is defined by a two-dimensional D×D array of grey level intensity values which can be thought of as a d-dimensional vector z, where d=D2. Typically, d may be of the order of 214 and an ensemble of face images will map into a collection of points within this huge d-dimensional space.
Face images, being similar in overall configuration, will not be randomly distributed within this space, and thus can be defined in terms of a relatively low-dimensional sub-space. Conventionally, the d-dimensional vectors z are projected into a lower dimensional sub-space spanned by the training face images, and this is accomplished using a PCA projection matrix U generated using the aforementioned Principal Component Analysis (PCA).
The projection matrix U is derived form the mixture covariance matrix Σ, given by the expression:
where zj is the d-dimensional vector defining the jth training face image and μ is the global mean vector given by the expression:
If, as here, the dimensionality d of the image vectors z is larger than the number of training images N, the mixture covariance matrix Σ will have n≦N non-zero eigenvalues. The respective eigenvectors u1,u2 . . . un associated with these non-zero eigenvalues (ranked in order of decreasing size) define the PCA bases used to represent the sub-space spanned by the training face images and, to this end, are used to construct the PCA projection matrix U, which takes the form
U=[u1,u2 . . . un].
As described in a paper entitled “Introduction to Statistical Pattern Recognition” by K Fukunaga, Academic Press, New York, 1990 the eigenvalue analysis of the mixture covariance matrix Σ may, for reasons of computational convenience, be carried out in a sub-space of dimension d′, where d′<d.
Each eigenvector u is of dimension d and will be representative of an image having a face-like appearance, resembling the face images from which it is derived. It is for this reason that the eigenvectors u are sometimes referred to as “eigenfaces”.
Having obtained the PCA projection matrix U, the N vectors zj (j=1,2 . . . N) defining the training face images are projected, after centralization, into the lower-dimensional sub-space spanned by the eigenvectors u1,u2 . . . un to generate N corresponding n-dimensional vectors xj, given by the expression:
xf=UT(zf−μ) for j=1,2 . . . N (2)
At this stage, it has been hitherto customary to apply linear discriminant analysis (LDA). The LDA bases used to represent the sub-space spanned by the vectors xj are defined by m−1 eigenvectors v1,v2 . . . vm−1 associated with the non-zero eigenvalues of a matrix Φ−1SB, where Φ is the mixture covariance matrix of the vectors xj, given by the expression:
and SB is the between-class scatter matrix derived from the mean νi of the projected vectors x in each said client class ωi, where i=1,2,3 . . . m, and νi is given by the expression:
Again, each eigenvector v is representative of an image having a somewhat face-like appearance and is sometimes referred to as a ‘fisher face’, and these vectors are used to construct a LDA projection matrix V=[v1,v2 . . . vm−1]. Adopting the conventional approach, a vector zp defining a probe face image; that is, face image presented as being that of one of the m clients whose authenticity is to be evaluated, is initially projected into the n-dimensional sub-space defined by the ‘eigenfaces’of the PCA projection matrix U and is then projected into the m−1 dimensional sub-space defined by the ‘fisher faces’ of the LDA projection matrix V to generated a projected vector yp given by the expression:
yp=VTUT(zp−μ)
Verification, or otherwise, of the claimed identity is then carried out by testing the projected vector yp against a projected mean γi for the relevant client class ωi, where
γi=VTνi
Then, if the projected vector y is within a predetermined distance of the projected mean γi authenticity of the probe image is accepted as being that of the ith client (i.e. the claimed identity is accepted); otherwise, authenticity of the probe image is rejected as being that of an imposter (i.e. the claimed identity is rejected).
Inspection of Equation 5 above shows that the conventional computational process involves multiple shared ‘fisher faces’ represented by the eigenvectors v1,v2 . . . vm−1 defining the projection matrix V and is always the same regardless of the client class ωi against which a probe face image is being tested. this approach is computationally intensive involving complex matrix operations and therefore generally unsatisfactory.
In contrast to this conventional approach, which requires the processing of multiple shared ‘fisher faces’, the present invention adopts an entirely different approach which involves processing a single, class-specific ‘fisher face’ defined by a one-dimensional linear discriminant transformation. This approach avoids the use of multiple, shared fisher faces given a considerable saving in computational complexity. To this end, the personal identity of authentication process is redefined in terms of a two-class problem; that is, the client class ωi containing the Ni training face images of the ith client and an imposter class Ωi based on the N-Ni remaining training face images. Clearly, there will be a client class 107i and an associated imposter class Ωi for each of the m clients (i=1,2 . . . m).
With this formulation, the mean νΩ
which, by comparison with Equation 4 above, can be expressed in terms of νi as
Thus, the mean of the ith imposter class Ωi is shifted in the opposite direction to the mean of the ith client class Ωi, the magnitude of the shift being given by the ration of the respective numbers of training face images Ni, N-Nj in the two classes. This ratio will normally be small and so the mean of the imposter class Ωi will stay close to the origin irrespective of the client class Ωi against which a probe face image is being tested.
The between-class scatter matrix Mi for the two classes ωi,Ωi can be expressed as:
which can be reduced to
Also, the covariance matrix ΦΩ of the imposter class Ωi estimated as:
can be expressed in terms of the mixture covariance matrix Φ by rewriting equation 11 above as
where the vectors in the second sum belong to the client class. In fact, the second sum is related to the covariance matrix Φi for the client class ωi, i.e.
Thus, simplifying Equation 12 above, it can be shown that:
The within-class scatter matrix Σi for the ith client class is now obtained by a weighted averaging of the covariance matrices of the imposter and client classes i.e.
and by substituting from Equation 15 above, and simplifying, it can be shown that
A class specific linear discriminant transformation ai for this two class problem can be obtained from the eigenvectors of matrix
associated with nonzero eigenvalues. In fact, in this two class problem there is only one such eigenvector vi that satisfies the equation
with λ≠0 provided νi is non zero. As there is only one solution to the eigenvalue problem it can be easily shown that the eigenvector vi can be found directly, without performing any eigenanalysis, as
This becomes apparent by substituting for vi in Equations 18 and 19 above and for Mi from Equation 10 above, i.e.
which also shows that the eigenvalue λ is given by
The eigenvector vi is used as the base for a linear discriminant transformation ai for the ith client class ωi given by the expression:
ai=Uvi, (22)
and it is this transformation ai that defines a one-dimensional, class-specific ‘fisher face’ used to test the authenticity of a probe image face in accordance with the present invention.
In one approach, referred to herein as “the client acceptance” approach, a vector zp defining a probe image face is projected onto the class specific ‘fisher face’ using the transformation ai and the projected vector
is tested against the projected mean
for the respective class (the ith class, in this illustration).
To this end, a difference value dc given by the expression:
is computed. If the text statistic dc is greater than a predetermined threshold, tc i.e. (if dc≦tc) authenticity of the probe face image is accepted i.e. the claimed identity (that of the client ith client) is accepted; otherwise (i.e. dc>tc) authenticity of the probe face image is rejected i.e. the claimed identity is rejected.
The threshold value tc is chosen to achieve a specified operating point; that is, a specified relationship between false rejection of true claims and false acceptance of imposter claims. The operating point is determined from the ‘receiver operating characteristics’ (ROC) curve which plots the relationship between these two error rates as a function of decision threshold. The ROC curve is computed using an independent face image set, know as an evaluation set.
Typically the operating point will be set at the ‘equal error rate’ (EER) where both the false rejection and false acceptance rates are the same.
In another approach, referred to herein as the ‘imposter rejection’ approach, the projected vector
is tested against the projected mean of imposters i.e.
To this end, a difference value di given by the expression:
is computed. In this case, the projected vector
for an imposter is expected to be close to the projected mean of imposters. this, if the text statistic di is greater than a predetermined threshold ti (i.e. di>ti) the authenticity of the probe face image is accepted i.e. the claimed identity (that of the ith client) is accepted; otherwise (i.e. di≦ti) authenticity of the probe face is rejected i.e. the claimed identity is rejected. When the number of training face images N is large the mean of imposters will be close to the origin and the second term in Equation 24 can be neglected. In this case, the difference value di will simply be the absolute value of the projected vector
a) and 1(b) respectively show histograms of the test statistic ti for probe face images of imposters and probe face images of clients obtained using the ‘imposter rejection’ approach. As expected, the probe face images of imposters cluster at the origin. i.e. the mean of imposters μΩ (
It has been found that the ‘client acceptance’ approach and the ‘imposter rejection’ approach are complimentary and can be combined or fused. An example of the ‘fused’ approach is a simple serial fusion scheme. More specifically, a probe face image is initially tested using the ‘imposter rejection’ approach. If the probe face image fails the test i.e. the claimant is rejected as an imposter, authenticity of the prove face image is accepted. If, on the other hand, the probe face image passes the test i.e. the claimant is accepted as an imposter, the probe face image is tested again using the ‘client acceptance’ approach. If the probe face image passes this second test i.e. the claimant is accepted as a client, authenticity of the probe face image is accepted; otherwise, authenticity is rejected.
In this illustration, different threshold values tc and ti were used for the ‘client acceptance’ and ‘imposter rejection’ approaches respectively. However, since the client and imposter probe vectors zp are both projected into the same one-dimensional space it should be possible to find a common threshold value for both approaches which separate the client and imposter images at given operating point error rates.
The described personal identity authentication processes have been tested by conducting verification experiments according to the so-called Lausanne protocol described in a paper entitled “XM2VTSDB: The Extended M2VTS Database” by K Messer et al Proc of AVBPA '99 pp 72-77, 1999.
This protocol provides a standard frame work for performance characterization of personal identity authentication algorithms so that the results of different approaches are directly comparable. The protocol specifies a partitioning of the database into three different sets; namely, a training set containing 200 clients, an evaluation set containing 200 clients and 25 imposters and a test set containing 200 clients and 70 imposters.
The imposter images in the evaluation and test sets are independent of each other and are distinct from the client set. the training set was used to evaluate the client ‘fisher faces’, defined by the transformations ai, as already described. The evaluation set was used to determine the thresholds ti,tc and the test set was used to evaluate the false acceptance and false rejection rates on independent data.
Prior to testing, the face images were correctly registered to within one pixel to eliminate any contributory affects on performance due to misalignment, and each image was photometrically normalized either by removing image mean or by histogram equalisation.
It has been found that when the ‘client acceptance’ approach is adopted the optimum results are obtaining using photometrically normalised images, with histogram equalisation giving the best results, whereas when the ‘imposter rejection’ approach is adopted the optimum results are obtained using images that are unnormalised.
The test results show that the ‘imposter rejection’ approach gives lower levels of false rejection/false acceptance than the ‘client acceptance’ approach, and that even lower levels can be achieved using the ‘fused’ approach, these levels also being lower than levels that can be obtained using conventional LDA authentication processes.
As already described, conventional LDA personal identity authentication processes involve use of multiple, shared ‘fisher faces’ spanning a sub-space having dimensions of 100 or more, necessitating complex and computationally intensive matrix operations. In contrast to this, the present invention involves use of a class-specific ‘fisher face’ defined by a transformation ai which only occupies a one-dimensional sub-space. This has important implications for computational efficiency of the authentication process; more specifically, because computational complexity in the operation phase (i.e. after the ‘fisher faces’ have been generated) is linearly proportional to sub-space dimensionality, the class-specific approach of the present invention should operate at more than 100 times faster than the conventional approach.
Moreover, because the test statistics dc,di are one-dimensional there is no need to compute a Euclidean distance in ‘fisher space’—a decision can be reached by a simple comparison of the test statistic dc,di with a threshold tc,ti, giving further computational gains. Furthermore, the projections of client and imposter mean
can be pre-computed and, again, this leads to faster processing.
Also, during the training phase, the class-specific ‘fisher faces’ a can be evaluated in a relatively straightforward manner, without the need to solve an eigenvalue analysis problem. This is particularly so when the number N of training face images is large; then, the between-class scatter matrix Mi tends to zero and the within-class scatter matrix
simply becomes the mixture covariance matrix Φ which is common to all classes, giving yet further computational gains.
A further consequence of using a class-specific ‘fisher face’ ai, as described, is that each such ‘fisher face’ can be computed and independently of any other ‘fisher face’. This makes enrollment of new clients relatively straightforward compared with the above-described conventional LDA approach involving use of multiple, shared ‘fisher faces’. Therefore, the present invention finds particular, though not exclusive, application in situations where the client population is continuously changing and the database of training face images need to be added to or updated.
The personal identity authentication process of the invention ay be implemented in a variety of different ways.
In a fully centralised personal identity authentication system a probe face image is transmitted to a remove control processing station which stores details of all the clients and carried out the necessary processing to arrive at a decision as to authenticity.
Alternatively, a semi-centralised system could be used, as shown schematically in
In a yet further approach, a fully localised system could be used. In this case, all the necessary data is stored and processed in a smart card. With this approach, the present invention which involves processing class-specific ‘fisher faces’ ai should be m times more efficient than the conventional LDA approach which involves processing multiple, shared ‘fisher faces’, both in terms of data storage and processing speed.
Furthermore, enrollment of new clients in, or updating of the smart card database, impractical using the conventional LDA approach, becomes feasible. Therefore, the present invention opens the possibility of personal identity authentication systems having non-centralised architectures.
In the foregoing implementations of the invention, the probe face image is presented as being that of one of m clients know to the authentication system, and this image is tested against the respective client class. In another implementation of the invention, the identity of the probe face image is unknown; in this case, the probe face image is tested against one or more of the client classes with a view to finding a match and establishing identity. This implementation finds application, inter alia, in matching of controlled photographs such as mug shots and recognition of suspects from CCTV video against a database of known face images.
It will be understood that the invention also embraces computer readable media such as CD ROM containing computer executable instructions for carrying out personal identity authentication processes according to the invention.
Number | Date | Country | Kind |
---|---|---|---|
0013016.1 | May 2000 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB01/02324 | 5/25/2001 | WO | 00 | 11/26/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO01/91041 | 11/29/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5164992 | Turk et al. | Nov 1992 | A |
5561718 | Trew et al. | Oct 1996 | A |
5771307 | Lu et al. | Jun 1998 | A |
6175818 | King | Jan 2001 | B1 |
6594629 | Basu et al. | Jul 2003 | B1 |
6625303 | Young et al. | Sep 2003 | B1 |
6671404 | Kawatani et al. | Dec 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20030172284 A1 | Sep 2003 | US |