The present invention relates to electronically monitoring the location of personal items, and more particularly to a personal item monitor using radio frequency identification to electronically monitor the location of personal items.
It is common for people to carry small objects on their person such as, for example, keys, wallets, cellular phones, PDAs, purses, and glasses. Unfortunately, due to their small size, it is not uncommon for these personal items to be misplaced. If these objects are lost or stolen, it is at best very inconvenient and at worst financially destructive. Accordingly, a system which automatically warns the user when a personal item carried on the person is missing would be very useful.
Currently, there are some products that exist that attempt to address this issue. For example, one such product includes a transmitter and receiver. The receiver is carried with the user and the transmitter is placed in the user's personal item, typically a purse. When the transmitter is moved more than certain distance away from the receiver, the receiver sounds an alarm, thus indicating that the purse or other large item has been left behind. However, there are several limitations to these devices. For example, the transmitter is much too large to monitor small devices such as keys, wallets, or glasses. Moreover, both the transmitter and the receiver must use battery power at each end for the system to operate (and batteries are relatively bulky and periodically require replacement). If the user fails to carry the receiver, the system is useless. Finally, both the receiver and the transmitter must be turned on for each use.
With the above limitations of the current technology in mind, there is room in the art for a personal item monitor that overcomes these limitations.
A personal item monitoring system includes a monitor having a transmitter and a receiver located therein. At least one radio frequency identification tag is adapted to be coupled to a personal item. Alternatively, the radio identification tag may be preinstalled into the item. The monitor emits a radio frequency received by the radio frequency identification tag, and the radio frequency identification tag emits a responding signal if within a detection range. The monitor then alerts a user if the radio identification tag leaves the range of detection.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
With reference to
The RFID tags 14 of the present invention include a small electronic chip (not shown) with a radio frequency transponder (not shown). Preferably, the RFID tags 14 include an adhesive sticker (which may include a printed logo) having the electronic chip embedded therein. The RFID tags 14 may then be adhesively attached to any number of items, for example, a first item 16, a second item 18, a third item 20, and a fourth item 22. As illustrated in
The monitor 12 emits a radio signal that is received by the RFID tags 14. The electronic radio frequency transponder located within the RFID tags 14 in turn responds with a returning radio signal. This returning radio signal from the RFID tags 14 is received by the monitor 12.
Turning to
Turning to
The monitor 12 further includes an audio output 32 (e.g. a speaker), a display device 34 (e.g. a screen), a keypad 36, and an audio input 38 (e.g. a microphone), all in electronic communication with the control module 26.
To enter a specific RFID tag 14 into the PIMS 10, a user enters a menu system (or other software hierarchy) displayed on the display device 34. For each RFID tag 14 within the area of detection 24 (
When a particular RFID tag 14 leaves the area of detection 24 (as illustrated in
In the case where the monitor 12 is a cellular phone, the alert may consist of ringing the cellular phone as if a call were present and using speech synthesis to inform the user which item is missing and for how long the item has been missing. This feature can also be used to provide an alert if the cellular phone is stolen, e.g., by making the system call a pre-selected phone number when the cellular phone and RFID tags 14 become separated. Furthermore, to prevent unauthorized usage in such circumstances, the cellular phone could disable itself unless a password is entered.
The PIMS 10 may further include a relay 40. The relay 40 is a remote device having an independent power source and transceiver. The relay 40 is in wireless electronic communication with the transceiver 28 of the monitor 12 and has an area of detection (not shown) similar in use to the area of detection 24 in
In the event of a “reader collision” (e.g. more than one monitor transmitting a signal on the frequency used by the RFID tags 14), the control module 26 preferably includes an algorithm for deactivating the signal from the monitor 12. For example, the transceiver 28 will receive the broadcast signal from another transmitting monitor or other device. The control module 26 will then know the monitor 12 is in a “hot spot” (e.g., an area where a signal using the same frequency as the RFID tags 14 already exists). The control module 26 then suspends the signal from the monitor 12 until such time as the monitor 12 is no longer within the “hot spot”. This feature will prevent “reader collision” and save power during the suspended use.
The user can deactivate monitoring any individual RFID tag 14 in the event that the user is not carrying a particular item by deactivating or removing the item from the monitor 12. Moreover, a clock in the monitor 12 can be programmed to look for a user's item at a certain time, for example, in the morning before leaving the house, such that the user does not forget to take the item with the user. Finally, the PIMS 10 may be used to find lost items that have been tagged with one of the RFID tags 14. By moving the location of the monitor 12, the user can determine if the particular item missing is within the area of detection 26 and the monitor 12 may be programmed to alert the user with an audible noise or using speech synthesis to indicate that the item is nearby. By monitoring the strength of the returning radio signal from the RFID tag 14, the monitor 12 can notify the user whether the user is getting closer or farther away.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5939981 | Renney | Aug 1999 | A |
6133832 | Winder et al. | Oct 2000 | A |
6331817 | Goldberg | Dec 2001 | B1 |
6501378 | Knaven | Dec 2002 | B1 |
6624752 | Klitsgaard et al. | Sep 2003 | B1 |
6674364 | Holbrook et al. | Jan 2004 | B1 |
6788199 | Crabtree et al. | Sep 2004 | B1 |
6850151 | Calhoun et al. | Feb 2005 | B1 |
20020174025 | Hind et al. | Nov 2002 | A1 |
20030120745 | Katagishi et al. | Jun 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20050148339 A1 | Jul 2005 | US |