1. Technical Field
The disclosure generally relates to a personal listening device having self-adjusting of the sound volume thereof.
2. Description of Related Art
Headphones and earphones are commonly used as personal listening devices. A typical headphone or earphone has a small-sized built-in speaker, and thus has a size and a shape suitable for attachment to a human ear. These personal listening devices directly output sound received from a sound playing device, such as an MP3 (Moving Picture Experts Group, audio layer 3) player. The personal listening device is worn close to the eardrum, and the sound vibration experienced by the eardrum may be great. Therefore, when a user wears the personal listening device for a long time or uses it at high volume, the eardrum may endure strong vibrations. The user may feel uncomfortable to the point of fatigue, and may even experience illness. Although users may adjust the sound volume by operating a volume control switch, many users still fail to regulate the volume when they are not paying full attention to the sound.
The accompanying drawings are included to provide a further understanding of the disclosure. The drawings illustrate embodiments of the disclosure and, together with the description, serve to explain the principles of the disclosure.
Reference will be made to the drawings to describe certain exemplary embodiments of the present disclosure in detail.
In the present disclosure, the personal listening device can include a pair of earphones or only one earphone, or a pair of headphones or only one headphone, with or without wires. When the personal listening device is of a wireless type, only one earphone is generally required. In the following description, the personal listening device has a pair of earphones with a pair of earphone wires, as an example.
Referring to
Referring also to
The transducer 23 includes a magnet 231, a vibration coil 233, and a vibration plate 235. The magnet 231 is a permanent magnet for generating a magnetic field. The vibration coil 233 is disposed within the magnetic field. Two ends of the vibration coil 233 serve as the input terminals 201, 202, and are electrically connected to the two signal lines 101, 102 to form a circuit branch. When the received audio signals flow through the circuit branch or the vibration coil 233, the received audio signals cause varying magnetic force, so as to generate vibrations. The vibration plate 235 is in contact with the vibration coil 233, and outputs vibrations according to the vibrations of the vibration coil 233, and thus audible sound is output to the ear. In the embodiment, the vibration coil 233 is a spiral winding surrounding the magnet 231. Preferably, the vibration coil 233 surrounds and is spaced from the magnet 231. A circular inner circumference of the vibration plate 235 are in contact with the vibration coil 233.
In the present disclosure, the transducer 23 has a thermo-sensitive element in the circuit branch defined between the two input terminals 201 and 202. The thermo-sensitive element is capable of changing the resistance value of the circuit branch according to any temperature change in the transducer 23. More particularly, when the temperature of the transducer 23 increases so as to reach a predetermined critical threshold value, the resistance value of the thermo-sensitive element increases sharply. Accordingly, the resistance value of the circuit branch is also increased, and the amount of current flowing through the vibration coil 233 is thereby reduced. In that case, the amplitude of the vibration coil 233 is decreased, and the volume of sound being output into the ear is correspondingly reduced. When the temperature of the transducer 23 is anywhere below the critical value, the thermo-sensitive element substantially maintains its original resistance value, and the resistance value of the circuit branch is substantially maintained. In such case, the vibration amplitude of the vibration coil 233 does not change or changes only slightly. That is, the personal listening device 1 keeps its original sound volume.
In the embodiment, the vibration coil 233 is made from a thermo-sensitive material so as to function as the thermo-sensitive element of the personal listening device 1. More particularly, the vibration coil 233 is made from a thermo-sensitive material having a positive temperature coefficient. The thermo-sensitive material can for example be BaTiO3 ceramics. The equivalent resistor of the vibration coil 233 is similar to a thermistor, and the equivalent resistance value of the circuit branch between the two input terminals 201, 202 is substantially equal to the resistance value of the vibration coil 233, as shown in
Referring to
When the personal listening device 1 is working over a long period of time, the temperature of the transducer 23 gradually increases to become very hot. The thermo-sensitive element senses the temperature change, and increases the resistance value of the circuit branch sharply when the temperature reaches the critical value. At that point, the sound volume is automatically reduced to protect the user's ear, and this event reminds the user of the amount of time that the earphone assembly 20 has been working.
Although numerous characteristics and advantages of the present embodiments have been set out in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only; and changes may be made in detail, especially in the matters of shape, size and arrangement of parts within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2011 1 0074806 | Mar 2011 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
2237448 | Reinhard | Apr 1941 | A |
4084474 | Leslie | Apr 1978 | A |
4864624 | Tichy | Sep 1989 | A |
5532437 | Simplicean et al. | Jul 1996 | A |
5793874 | Camire | Aug 1998 | A |
7630505 | Shimamura | Dec 2009 | B2 |
20030156728 | Chatani et al. | Aug 2003 | A1 |
20080025525 | Tsai | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
2448506 | Apr 1976 | DE |
Number | Date | Country | |
---|---|---|---|
20120250891 A1 | Oct 2012 | US |