The present invention is generally directed to personal mobility vehicle suspension systems and, more specifically, to a personal mobility vehicle suspension system that compensates for irregularities in a surface during travel thereover by the personal mobility vehicle.
Personal mobility vehicles (PMVs) typically provide mobility for persons having a limited ability to walk or who are completely unable to walk on their own. Such PMVs typically include a relatively sturdy frame supported on wheels with at least one motor for powered movement. A seat is mounted on the frame, and user controls are conveniently located on the personal mobility vehicle within easy reach of the user to regulate operation.
One of the problems associated with conventional PMVs is that there is a tendency to jar a user and tip backwards or forwards when irregularities in a surface are encountered, or when negotiating steeply inclined ramps or other surfaces. Various suspension mechanisms have been developed to increase vehicle stability and to reduce vibrations transmitted to a user. However, such systems still tend to have a relatively rough ride (i.e., tend to transmit a high amount of vibration to a user, and to cause a rocking and tippy ride) when traveling over irregularities. This results in such suspension systems requiring frequent recalibration, repair, spring replacement, and/or replacement of other worn parts.
It would be advantageous to provide a PMV having a suspension system that compensates for irregularities to allow generally smooth traversing of ground surface obstacles encountered by the PMV, and which specifically provides greater wheel contact with the ground surface, for enhanced stability. It is also preferable that such a suspension be relatively durable and sturdy.
Briefly stated, the present invention is directed to a personal mobility vehicle (PMV) including a vehicle frame having spaced apart lateral sides, with suspension assemblies located on each of the lateral sides. Each suspension assembly includes a main pivot arm having first and second main-arm-ends, an intermediate portion, and a first wheel connected to the first main-arm-end. The intermediate portion is pivotally connected to a respective one of the lateral sides, with the first main-arm-end and first wheel extending in a first direction from the vehicle frame. A center drive wheel is located on the second main-arm-end of the main pivot arm for generally vertical movement relative to the vehicle frame. A wheel support arm is provided having first and second support-arm-ends and a second wheel connected to the second support arm end. The wheel support arm is pivotally connected to the respective one of the lateral sides, and the first support-arm-end is slidably engaged with the main pivot arm. The second support-arm-end and the second wheel extend in a second direction, generally opposite the first direction, from the vehicle frame.
In another aspect, the present invention is directed to a PMV including a vehicle frame having spaced apart lateral sides. Suspension assemblies connected to the frame each include a main pivot arm having a main-arm-pivot-point located at an intermediate position between first and second main-arm-ends. The main-arm-pivot-point is pivotally connected to a respective one of the lateral sides of the vehicle frame. The first main-arm-end extends generally rearwardly from the vehicle frame and is connected to a rear caster wheel having a rear-wheel-axis-of-rotation. A first distance is defined between the main-arm-pivot-point and the rear-wheel-axis-of-rotation. A center drive wheel is located on the second end of the main pivot arm for generally vertical movement relative to the vehicle frame. A front wheel support arm has a support-arm-pivot-point located at an intermediate position between first and second support-arm-ends. The support-arm-pivot-point is pivotally attached to the respective lateral side of the vehicle frame. A connector located on the first support-arm-end is slideably connected with the main pivot arm. A second distance is defined between the support-arm-pivot-point and the connector. The second support-arm-end of the front wheel support arm extends generally forwardly from the vehicle frame and is connected to a front caster wheel having a front-wheel-axis-of-rotation. A third distance is defined between the support-arm-pivot-point and the front-wheel-axis-of-rotation.
The foregoing summary, as well as the following detailed description of the preferred embodiments of the present invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings embodiments which are presently preferred. It is understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:
Certain terminology is used in the following description for convenience only and is not limiting. The words “right,” “left,” “top,” and “bottom” designate directions in the drawings to which reference is made. The words “inwardly” and “outwardly” refer to directions toward and away from, respectively, the geometric center of the PMV and designated parts thereof. The word “caster wheel” means “any secondary wheel, anti-tip wheel, roller, anti-tip roller, or conventional wheel typically used with wheel chairs, other transport vehicles, or the like.” The words “a” and “one” are defined as including one or more of the referenced item unless specifically stated otherwise. This terminology includes the words above specifically mentioned, derivatives thereof, and words of similar import. The phrase “at least one” followed by a list of two or more items, such as A, B, or C, means any individual one of A, B or C as well as any combination thereof.
Referring to
It is preferred that the various components of the suspension system 22 are formed of a durable, strong material, such as steel. Alternatively, those of ordinary skill in the art will appreciate that other structural materials, such as aluminum, stainless steel, suitable polymers, advanced composites or the like, can be used without departing from the scope of the present invention. The wheels of the PMVs 10, 110 can be of any known suitable type.
Referring to
Referring to
The first-main-arm-end 26A extends generally rearwardly from the vehicle frame 14 to support a rear caster wheel 32. The rear caster wheel 32 has a rear-wheel-axis-of-rotation 34. Referring still to
As shown in
Referring to
Referring to
The first support-arm-end 40A is slideably engaged with the main pivot arm 24. It is preferred that a connector 44 is located on the first support-arm-end 40A and is slideably and pivotally engaged with a slot 52 in the second end 26B of the main pivot arm 24 the connector 44 is preferably a steel pin, with a steel roller bushing over it, that rides in the slot. However, it could be formed by a roller bearing or other movable connection. In
Referring to
Referring to
Referring to
For example, starting from a generally neutral position, such as when the PMV 10 is on a flat surface, as shown in
Referring to
As shown in
Referring to
Referring specifically to
Preferably, the ratio of the third distance X to the second distance Y is between approximately one to one (1:1) and approximately one to three (1:3). It is more preferred that the ratio of the third distance X to the second distance Y is between approximately one to one point five (1:1.5) and one to two (1:2). It is most preferred that the ratio of the third distance X to the second distance Y is approximately one to one point seven five (1:1.75).
Preferably, the ratio of the distance Y to the average B of the distances B1 and B2 is between approximately one to two (1:2) and approximately 2 to 1 (2:1). It is more preferred that the ratio of the distance Y to the average B is approximately one to one (1:1).
Additionally, it is preferred that the ratio of the average B to the distance A is between approximately one to two (1:2) and approximately two to one (2:1). It is more preferred that the ratio of the average B to the first distance A is approximately one to one (1:1).
It is preferred that the ratio of the sum of the distances A and X to the sum of the distances Y and the average B is between approximately one to two (1:2) and approximately one to one (1:1). It is more preferred the ratio of the sum of the distances A and X to the sum of the distances Y and B is approximately one to one point two five (1:1.25).
Preferably, the ratio of the distance X to the distance A is between approximately two to one (2:1) and approximately one to two (1:2). It is more preferred that the ratio of the distance X to the distance A is between approximately one to one point six (1:1.6) and one to one point nine (1:1.9).
By varying the configuration and pivot points of the front wheel support arm 38 and the main pivot arm 24, the above ratios can be varied in order to change the ride characteristics of the PMV 10. For example, varying the ratio of the distance X to the distance A or varying the ratio of the distance Y to the distance B results in different ride characteristics for the PMV 10, such as providing a stiffer or softer response to bumps, or more or less tilt adjustment as a perturbation is traversed. For example, when the sum of the distances A and X is increased relative to the sum of distance Y and average B, the ride of the PMV 10 will be softer. Conversely, when the sum of the distances A and X is reduced relative to the sum of the distance Y and average B, the ride of the PMV 10 will be stiffer.
Referring to
While the caster wheels 48, 32 have been defined as being front or rear wheels, those of ordinary skill in the art will appreciate that either end of the PMV 10, 110 can serve as the front thereof. Accordingly, the recitation of first and second caster wheels in some of the claims further emphasizes that either side of the PMV shown in the drawings can be considered the front thereof. Additionally, the motor 20 can be mounted either on a rear or front portion of the PMV 10, 110 without departing from the present invention. While a powered PMV is the preferred application for the suspension system of the invention, the present invention does not require a powered center wheel.
Referring to
It should also be realized that the two sides of the vehicle's suspension operate independently of one another, and as such, would allow one side's suspension to articulate upward while simultaneously allowing the other side's suspension to articulate downward, as if the vehicle were to traverse a bump on one side while simultaneously traversing a rut on the other side.
It will be recognized by those skilled in the art that changes may be made to the above described embodiments of the invention without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but is intended to cover all modifications which are within the spirit and scope of the invention as defined by the appended claims and/or shown in the attached drawings.
This application claims the benefit of U.S. Provisional Application No. 60/621,224, filed Oct. 22, 2004, which is incorporated by reference as if fully set forth.
Number | Name | Date | Kind |
---|---|---|---|
2264023 | Farber | Nov 1941 | A |
2371864 | Woolson et al. | Mar 1945 | A |
4128137 | Booth | Dec 1978 | A |
4245847 | Knott | Jan 1981 | A |
4310167 | McLaurin | Jan 1982 | A |
5435404 | Garin, III | Jul 1995 | A |
5556121 | Pillot | Sep 1996 | A |
5575348 | Goertzen et al. | Nov 1996 | A |
5772237 | Finch et al. | Jun 1998 | A |
D397645 | Schaffner | Sep 1998 | S |
5848658 | Pulver | Dec 1998 | A |
5851019 | Gill et al. | Dec 1998 | A |
5853059 | Goertzen et al. | Dec 1998 | A |
D404693 | Schaffner | Jan 1999 | S |
5944131 | Schaffner et al. | Aug 1999 | A |
5964473 | Degonda et al. | Oct 1999 | A |
6047979 | Kraft et al. | Apr 2000 | A |
6129165 | Schaffner et al. | Oct 2000 | A |
6176335 | Schaffner et al. | Jan 2001 | B1 |
6186252 | Schaffner et al. | Feb 2001 | B1 |
6199647 | Schaffner et al. | Mar 2001 | B1 |
6234507 | Dickie et al. | May 2001 | B1 |
6341657 | Hopely, Jr. et al. | Jan 2002 | B1 |
6412804 | Dignat | Jul 2002 | B1 |
6454286 | Hosino | Sep 2002 | B1 |
6460641 | Kral | Oct 2002 | B1 |
6533306 | Watkins | Mar 2003 | B2 |
6543798 | Schaffner et al. | Apr 2003 | B2 |
6554086 | Goertzen et al. | Apr 2003 | B1 |
7040429 | Molnar | May 2006 | B2 |
7175193 | Wu | Feb 2007 | B2 |
7264272 | Mulhern et al. | Sep 2007 | B2 |
7374002 | Fought | May 2008 | B2 |
20010011613 | Schaffner et al. | Aug 2001 | A1 |
20020030343 | Schaffner et al. | Mar 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20060097475 A1 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
60621224 | Oct 2004 | US |