The present invention relates to novel systems and methods for providing personal property security. More specifically the present invention relates to a device for providing automated notice of disturbances to personal property and automated tracking of movement of the personal property and to a method and system for remotely managing the device.
Many personal, corporate or government property items of all types are vulnerable to theft and vandalism with no effective or economical means of protecting them. Monitored security systems are seldom effective and usually expensive. Such monitored security systems are also not mobile and are slow to respond to trouble. Thieves and vandals of small items are seldom caught, and the personal property is seldom recovered. The police are frustrated and often ineffective in recovering stolen personal property.
What is needed is a device for securing personal property that is portable, simple, inconspicuous, effective, and economical and that can be managed remotely, inexpensively and efficiently. Such a device may be highly effective in providing notification of disturbances to personal property and may be sufficiently economical to be purchased by a wide cross-section of consumers. Such a device may inconspicuously protect a wide array of personal property, including vehicles, power tools, bicycles, trailers, boats, stereos, and televisions. Such a device may be manageable remotely through various access and management mechanisms including by means of computers and communications and data networks. Upon disturbance of personal property, such a device might be effective to provide notification of the disturbance and provide tracking information regarding any movement of the personal property to enable identification and apprehension of the perpetrator(s) and enable quick recovery of the property.
The security system of the present invention allows a user to develop a security monitoring system for securing or monitoring personal property without subscribing to a security monitoring company or undertaking rigorous installation of sensors and infrastructure. In addition, the security system of the present invention allows a user to augment the personal property protection system by interfacing the system with communications and data networks. The present invention allows a user to (i) purchase or otherwise procure a security module that couples to a cellular or other wireless transceiver and is operational over generally available wireless communications and data networks, (ii) attach or have attached the security device (e.g., security module and wireless transceiver, or alternatively, an integrated composition of both functionalities) to personal property or even to a person, (iii) activate a detection sensor within the security module either through direct interaction with the security module or through a communications or data network, and (iv) upon triggering of an alarm, the security module initiates a dialing command to the wireless transceiver, which either executes a dialing command received from the security module or employs a preprogrammed dialing string within the wireless transceiver to establish a communication link with the user telephone over a wireless (e.g., cellular, PCS, satellite, etc.) network directly to the user by means of the communication link or indirectly to the user through a computer processing application and interface.
The user receives a call from the security device directly by the communications link, or receives an alert or other notification, either spontaneously or as a result of a query by the user, through a communications or data network. Depending on the information transmitted in the call, the user may evaluate the legitimacy of the alarm state by various means, including listening to audible sounds originating in the proximity of the security device, or monitoring the sensors of the security device through communications interfaces, including an Internet web or voice interface. The user may also employ optional interrogation sensors (e.g., imagery, infrared, motion, temperature, etc.) located about the security device to further legitimize the alarm state.
Once an alarm has been verified, a location identifier within the security device may be activated to enable tracking of the personal property by the user. Tracking may activated by the user initiating a decodable keypad sequence recognized by the security device, or by a computer program or data or voice communications protocol decodable by the device, or activation may be time delayed or even immediate upon detection of an alarm condition. Tracking may assume one of several approaches, such as a transmitting beacon located within the security device that may be detected by a tracking receiver used by the user, or a receiving location-based system (e.g., a global positioning satellite or GPS unit) that allows the coordinates of the security device to be determined and forwarded to the user over the communication link.
The apparatus of the present invention has been developed in response to the present state of the art, and in particular in response to the problems and needs in the art that have not yet been fully solved by currently available personal property security devices and systems. Thus, the present invention provides a personal property security device for use with personal property without the problems described above. These and other features and advantages of the present invention will become more fully apparent from the following description, or may be learned by the practice of the invention as set forth hereinafter.
To further clarify the above and other advantages and features of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
It will be readily understood that the components and systems of the present invention, as generally described and illustrated in the Figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the system and method of the present invention, as represented in the Figures, is not intended to limit the scope of the invention. The scope of the invention is as broad as claimed. The illustrations are merely representative of certain embodiments of the invention. Those embodiments of the invention may best be understood by reference to the drawings, wherein like parts are designated by like numerals throughout.
Those of ordinary skill in the art will appreciate that various modifications to the details of the Figures may made without departing from the essential characteristics of the invention. Thus, the following description of the Figures is intended only by way of example, and illustrates certain embodiments consistent with the invention as claimed.
Upon the triggering or happening of certain events or conditions, the security device 106 autonomously contacts the user 102 by initiating a communication link through a communication network 108 to a user transceiver 110 or a computing device 116. Upon such notification, the user 102 may perceive audible and/or other surroundings about the security device 106 including information prepared and delivered by the security device 106 to the user transceiver 110 or the computing device 116. The user 102 may respond to such information in various manners. The user 102 may evaluate audible sounds and determine whether such audible information necessitates further reactions such as notifying proper authorities or if the personal property 104 has been removed to another location, identifying such location either through the use of the detection of a tracking signal 112 emanating from the security device 106 through the use of a tracking receiver 114 or through the evaluation of other packaged location information dispatched from the security device 106 either through a separate communication channel or through the communication network 108 to the user transceiver 110 or the computing device 116.
Referring now to
In one embodiment of the present invention, when the transceiver 200 receives a disturbance signal from a triggering device or detection sensor 212, the transceiver 200 automatically initiates a connection to a computing device 116 and remains on and in the transmitting mode. The computing device may recognize where the communication originated via a device address, readily known caller identification system or global positioning data, as may be obtained from the Global Positioning System (“GPS”) provided by the transceiver 200. The user 102 may also listen to the audio data transmitted by the transceiver 200 to detect noises corresponding to activity in the vicinity of the security device 106. The user may be able to determine from the sounds in the area of the security device whether the signal was a false alarm or whether the security device 106 has initiated communication because of attempted theft, vandalism, or other trouble.
As shown in
First, the security device 106 may include a triggering device or detection sensor 212, such as a motion sensor, a shock sensor or the like, and may take several different forms as needed for the specific use of the security device. The detection sensor 212 may take many different forms as the specific need of the security device 106 may dictate and may be activated or deactivated by means of the remotely controlled on/off activation switch 224. In operation, when the security device 106 is activated and in the ready mode, a bump, shock, or jarring, or a movement in the area of the security device may cause the detection sensor 212 to signal the transceiver 200 to initiate communication with computing device 116 in an attempt to request help. In certain embodiments, the detection sensors may be a simple panic button for a lady jogger to use if being attacked, or the detection sensor could be a special switch that detects water to signal a mother when her child who is wearing the security device falls into water or the like.
Second, the security device 106 may include a location identifier 218, which in one embodiment assumes the form of a tracking transmitter. One example of tracking transmitters includes devices similar to tracking devices used to tag and track wildlife or sophisticated receiver-based tracking devices that use GPS. The detection sensors may be configured to activate the location identifier to enable the tracking of movements of the security device. The location identifier is preferably silent in operation.
For an embodiment that includes a tracking transmitter, the tracking transmitter typically emits a silent radio signal that is capable of being tracked by a directional tracking device such as the tracking receiver 114. For example, a simple animal tracking collar has been found to be effective in tracking movements of a security device for distances of several miles to tens of miles or more so long as substantial line of sight between the tracking transmitter and the directional tracking device was maintained. Systems capable of tracking movements of a security device at distances beyond many miles are also currently available. Another tracking embodiment uses a receiver-based location identifier to track movements of the personal property asset. One such embodiment employs the GPS system to track movements. In such an embodiment, the security device 106 relays positioning data to the computing device 116, which may then be used in conjunction with tracking or mapping systems to locate the security device 106.
Third, as depicted in
As described above, the security system may include a directional tracking receiver 114 in
The tracking receiver 114 may be activated by the user when the security device 106 provides notification of a disturbance to the personal property. The tracking receiver 114 indicates which direction the personal property has been moved. The tracking receiver 114 may be designed to pick up the signal given off by the location identifier (e.g., tracking transmitter) 218. If the user has several security devices, multiple or a single location identifier (e.g., tracking receiver) may be configured to track any of the security devices in use. In embodiments that incorporate GPS technology, a screen on the computing device 116 may display the position of the security device. Typical embodiments of the security devices may be built small and compact enough to be inconspicuous and able to be attached to most anything that a person would want to protect from theft or vandalism, or as the case may be, from other hazards.
Operationally in a digital network embodiment, if the security device 106 is activated and detects a disturbance or is triggered it will automatically send data to the computing system 122. The computing system 122 may comprise a computer network, such as the Internet 118, and an application server 120. The security device 106 when communicating to the computing system 122 may transmit data identifying the security device 106 and alerting the user 102 of a disturbance of the personal property item 104. The user can then determine if he wishes to call the police or respond to the signal himself. The user may decide to go to the location of the item being disturbed and find the thief still in the process of stealing the personal property item 104.
Once triggered, the security device 106 may also transmit to the user via the computing system 122 any sounds that it picks up in its vicinity thereby allowing the user to listen in on what is taking place and help determine if the disturbance is a false alarm. The security device 106 can be totally silent so that the thief may never know that he has been detected. The user can then determine if he wants to call the police or if the disturbance was a false alarm. The security device 106 may also have activated its tracking transmitter when it was disturbed thereby allowing the user, if the personal property had already been removed, to track or follow the security device 106 to its new location. This would allow the user to contact the police and have the thief arrested and the personal property 106 to be recovered.
The security device 106 may have extremely wide application, as it is adaptable to be useful to almost everyone for a wide variety of protection uses. It may assume a small and compact embodiment thereby enabling it to be attached in inconspicuous places where a thief will not likely see it. It can be attached to vehicles, mobile trailers, power tools, bicycles, stereos, TVs, boats, motorcycles, etc. It may even be adapted to be activated with a panic button or water sensor and attached to children or joggers or even old persons, and the like. The security device 106 may facilitate alerting people when a wearer is disturbed or a child has fallen into water such that location may be determined quickly and easily via the tracking capabilities already described. A user 102 of the security device 106 or parent of a child using the device can be more assured of knowing when trouble has occurred and can respond to the exact location of the trouble quickly. A user may desire to use many security devices to monitor the safety and location of several items of personal property in various locations.
Each security device may be designed to transfer a unique identifier to enable a user 102 to determine immediately what personal property or persons are being disturbed or are distressed. The security device 106 may be designed to be small, compact and totally self-contained, making it portable and independent of outside power sources except for the need to be recharged periodically or may draw power from some other source. These features make embodiments of the security device 106 extremely mobile and versatile.
In
The security module 202 is comprised of a controller 210 and detection or triggering sensors 212. The detection sensors 212 may be autonomous sensors that provide an interrupt or other signal to the controller 210 or may be monitored under the direction of the controller 210 and implemented as a peripheral device whose state is monitored by the controller 210. The controller 210 interfaces with the wireless transceiver 204 via an interface 214. Upon the detection of sensor information, the controller 210 may initiate a direct digital data connection using a communications protocol such as the Internet Protocol (“IP”) or may initiate a dialing sequence using the wireless transceiver 204, which causes the wireless transceiver 204 to initiate a call using a preset number or preprogrammed dialing string 216, which may correspond to the routing or phone number of the user transceiver 110 (
The security module 202 may further comprise a location identifier 218 which may be under the control of the controller 210 or may be autonomous and be activated by the controller 210 or, alternatively, may provide information to the controller 210 in the form of location data. The present invention contemplates at least two embodiments of the location identifier 218. In a first embodiment, the location identifier 218 is implemented as a tracking transmitter or beacon that, when activated, broadcasts a tracking signal 112 that may be detected and located through the use of a tracking receiver 114 (
In an alternate embodiment, the location identifier 218 assumes a receiver role in which the remote location transmitters 220 transmit signals 222 that are received at the location identifier 218 and may be read and provide location data to the controller 210 for forwarding over the communication network 108 (
Additional features contemplated by the present invention include activation circuitry 224 that allows the user 102 or another entity, such as the computing system 122 (
While the user 102 may rely upon the information provided via the detection sensors 212, and audible information from the microphone 206, a further embodiment of the present invention contemplates the inclusion of interrogation sensors 236 that may take the form of image-creating peripherals such as cameras or other sensor devices even including temperature sensors for monitoring the safety of the environment about the security device 106, or other data-providing sensors such as security networks location data generating devices for use in interrogating mobile or in-transit security devices as well as other sensors, known by those of skill in the art. The security device 106 may optionally include a power module 238 for use in powering the transceiver 200 and the security module 202. Alternatively, the power module 238 may be externally provided to the security device 106. The power module 238 may include a battery or capacitor, or a combination of both. The battery or capacitor may be replaceable. The batter or capacitor may incorporate or be connected to a charger, or may be connected to a backup power source, or may be powered by the item being protected.
Referring to
Alternatively, referring to
After initial detection and notification of an alarm condition in procedure 320 or after further enhanced interrogation in procedure 340, a user may determine whether or not a sensed alarm condition is an actual alarm condition as described in procedure 370 (see
In procedures 380 (see
An alternate tracking scenario is illustrated as procedure 400 (see
In yet another tracking scenario depicted as procedure 420 (see
In yet another tracking scenario depicted as procedure 440 (see
As described above, a user when notified of an alarm condition may determine that such alarm condition is in fact benign and was generated either as the result of inadvertent sensor activation or as a result of overly sensitive sensors or transient alarm conditions acceptable to the user. Procedure 500 (see
In a step 622, a user enters a keypad sequence or initiates a communication link to the security device 106. A communication link is established over the communication network 108 in steps 624 and 626. Once a communication link has been established between the user transceiver 110 or computing device 116 and the wireless transceiver 204, a sensor such as the microphone 206 detects sounds, in a step 628, and forwards those sounds/data, in steps 630 and 632, to the user transceiver 110 or computing device 116 for perception and evaluation by the user 102. Should the user desire enhanced interrogation, the user may proceed to query the interrogation sensors 236 according to the procedure 240 described above. When a user concludes audible interrogation and any optional enhanced interrogation, the user terminates the call in a step 634 and the system resumes its monitoring state. Alternatively, when a communication link is established, the user deactivates the sensors 212 or performs other controlling functions relating to the security device through the use of a keypad sequence or communications link, such as placing security device into a standby or inactive state.
Another scenario may include automation by the security device 106. The security device 106 could be used to activate or deactivate, depending on conditions detected in the vicinity of the security device 106, one or more other devices such as lights, heaters, sounding devices, relays, switches, detectors or other electromechanical devices.
Also illustrated in
While the present illustration contemplates an integrated transceiver, it is also contemplated that general transceiver functionality may be provided in a “raw” circuit board configuration to be further packaged in another form-factor exhibiting similar functionality. Also contemplated is an embodiment that integrates the transceiver functionality and the security module functionality into a single integrated device. Further contemplated is an embodiment that is integrated within a larger assembly, such as a vehicle or other device, wherein the control functionality such as an on-board computer may be utilized to provide controller functionality and share yet other sensors, transceivers and the like.
The present invention may be embodied in other specific forms without departing from its structures, methods, or other essential characteristics as broadly described herein and claimed hereinafter. The described embodiments are to be considered in all respects only as illustrative, and not restrictive. The scope of the invention is, therefore, indicated by the appended claims, rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/738,437, filed Dec. 17, 2003, which is a continuation-in-part of U.S. patent application Ser. No. 10/636,348 filed Aug. 7, 2003, which is a continuation-in-part of U.S. patent application Ser. No. 09/943,913 filed Aug. 31, 2001, now U.S. Pat. No. 6,864,789.” These prior applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 10738437 | Dec 2003 | US |
Child | 11090668 | Mar 2005 | US |
Parent | 10636348 | Aug 2003 | US |
Child | 10738437 | Dec 2003 | US |
Parent | 09943913 | Aug 2001 | US |
Child | 10636348 | Aug 2003 | US |