The present invention pertains to a personal respiratory protection device that has an attachment system that inhibits inadvertent removal of an engaged bayonet-style component. The personal respiratory protection device may be, for example, a respirator that has attached filter cartridges.
Respirators and other types of respiratory protection equipment have been used to protect wearers from breathing airborne contaminants such as suspended particulates, toxic fumes, organic vapors, biological hazards, and the like. Many types of respiratory equipment are known for providing clean air to the wearer. This equipment may include full face respirators, half mask respirators, supplied air hoods, powered air purifying respirators (PAPRs), and self contained breathing apparatus (SCBA), including full containment suits. The particular equipment selected for use may vary with the ambient environment, the contaminant to be removed, and the amount of contaminant desired to be removed.
A common personal respiratory protection device is known as a “respirator”, which may be furnished to the user in either a half-face or full-face configuration. A half-face or half-mask respirator, such as shown in
The mask bodies have fittings for receiving the filter cartridge(s). The fittings and cartridges sometimes have complementary mating threads that permit filter cartridge to be screwed or threaded into position. When these replaceable filter cartridges are secured to the mask, however, opportunities exist for air leakage to occur if the cartridge is improperly cross-threaded or is not screwed on sufficiently tight. Threaded cartridges are typically circular in shape to facilitate rotational attachment during mounting.
Alternatively, a filter cartridge may be attached to a face mask using a “bayonet” system. A bayonet system also uses rotation to mount the cartridge but typically does not employ threads and does not need multiple turns to secure the cartridge to the mask body. In a bayonet system, a quick rotational turn, for example, a 45 to 90 degree turn, can attach the cartridge to the mask. Sometimes the bayonet cartridge is oblong in shape to aid in seating and turning, but circular cartridges may also be used. A plurality of tabs, typically three, are present on the outer surface of the cheek fitting, each of which corresponds to a notch, or tab receptacle, formed in the bayonet cartridge. When the tabs are aligned with the notches, the cartridge can be positioned in place and rotated for attachment. The tabs and corresponding tab receptacles are typically designed to allow only one orientation of the cartridge on the mask body. The bayonet cartridges are very popular with respirator wearers because the cartridges can be easily removed and replaced with a simple twist. Commercial products that use a bayonet system for securing filter cartridges include the 6000 Series™ and 7000. Series™ respirators sold by the 3M Company of St. Paul, Minn.
A bayonet-type system is also described in U.S. Pat. Nos. 4,850,346 and 4,934,361. These patents describe the use of such a system to attach filter cartridges to an inhalation valve fitting on a respiratory mask. To connect the filtration cartridges to the inhalation valve fittings, an audible detent means is used to indicate when each cartridge is properly secured to the respiratory fitting. As the parts are rotated relative to each other, deflections of a rib and lug occur until the rib abruptly drops off the end of a cam, producing an audible click. The cam and rib yieldably hold the cartridge in position so that the cartridge cannot be uncoupled unless a positive and deliberate torque is applied.
Occasions may arise, however, where a positive torque could be inadvertently applied to a cartridge on a mask. The cartridge could bump or rub against an adjacent object when the wearer moves, causing the cartridge to twist and become loosened from the facepiece. In some applications, where tight quarters or other personal protective equipment is present, a system to permanently lock the cartridges in place may be desirable. When the wearer is working in a very hazardous environment, opportunities for inadvertent cartridge loosening must be avoided. The invention described below addresses a security feature that enables the wearer to be confident that the bayonet connection has been seated correctly and that the connection cannot be inadvertently loosened.
In brief summary, the present invention provides a personal respiratory protection device that comprises:
The present invention provides a security feature for coupling personal respiratory protection device components that utilize a bayonet-style attachment system. The security feature inhibits accidental disengagement of the bayonet connection, and, in some embodiments, eliminates disengagement. The connection cannot be loosened or unlocked without destructive breaking of a portion of the bayonet attachment system or without use of a key. The connection therefore cannot be inadvertently disengaged or unlocked through accidental positive torque. Such a connection is referred to herein as a “permanent”, “locked”, or “locking” connection. Once disengaged, the bayonet connection is disabled and inhibits future connections unless a semi-permanent connection is provided whereby a separate key or tool is needed to intentionally disengage the securing feature.
The inventive bayonet attachment system thus provides a more secure coupling of personal respiratory components, so that the positive disengagement cannot inadvertently happen. Additionally, sabotage or misuse of spent or contaminated components can be avoided.
The invention also may allow for improved workplace management of the respiratory equipment.
The attachment system incorporating the security feature may be used in the full range of personal respiratory protective equipment. The attachment system can be used, for example, to couple respirator cartridges or hoses to the face piece of a respirator, to couple a PAPR blower to attachments such as hoses and filter cartridges, and to secure SCBA air sources to air supply components.
The following terms, as used in reference to the invention, are defined as set forth below:
The invention may be better understood by reference to the drawings, wherein:
In the practice of the present invention, the security feature of the inventive bayonet attachment system may take the form of, for example, a mechanical, structural element that assists in permanently retaining the two bayonet portions of the personal respiratory device together. In one embodiment, one or both portions of the personal respiratory protection device may include an element(s) that provides the security feature for a permanent bayonet connection. That is, the security feature may be integral with or integrated into one or both of the bayonet portions. The term “integral” is used herein to mean manufactured as a single part. The term “integrated into” means the security feature may be made separately but is subsequently joined together to form a single part. After the first portion and the second portion of the bayonet attachment system have been locked, the bayonet connection cannot be opened without destroying one of the first portion, the second portion, or both. Preferably, only one of the portions is destroyed. The security feature may be part of a system that is designed so that a key or tool, acting on the personal respiratory device, is used to unlock the bayonet connection.
In another embodiment, the personal respiratory protection device uses a third piece as the security feature, in addition to the two portions of the respirator with bayonet attachment, to provide a permanent bayonet connection. After the first portion and the second portion of the bayonet attachment system have been locked, in conjunction with the third part, the bayonet connection cannot be opened without destroying at least one of the first portion, the second portion, or the third part locking device. Preferably, either the locking device or one of the first or second portions is destroyed or a combination of the components. The security feature may be part of a system that is designed so that a key or tool, acting on the personal respiratory device or the third-piece locking device, is used to unlock the bayonet connection.
Preferably, the portion that is destroyed is on the filter cartridge. This would enable the mask to be reused. Although the inventive security feature can be used to couple or join various respiratory components together, the bayonet attachment system described below is shown applied to a half-face respirator that uses filter cartridges.
On each side of the mask body 11, approximately over the wearer's cheek, is a cheek aperture (not shown) to allow transfer of non-contaminated air into the mask interior. To substantially minimize, and preferably eliminate, contaminants in the air from being inhaled, a non-contaminated-breathing-gas supply source such as filter cartridges 18 are operably positioned in fluid communication with each aperture. The filter cartridges 18 thus separate the ambient external air space from the interior gas space that resides between the mask body 11 and the wearer's nose and mouth. Cartridge 18 is designed to filter either particulate contaminants or vapors, or both, from the air that passes through the apertures. Air that passes through the aperture therefore first passes through cartridge 18 before entering the wearer's respiratory system. Alternatively, a hose from a PAPR or SCBA could be attached or otherwise be placed in fluid communication with the aperture to provide a non-contaminated air or oxygen to a wearer.
Air exhaled by the wearer exits the mask interior through outlet valve 16 located at the center front of the mask 10 on a rigid nosepiece or insert 19. Outlet valve 16 is a unidirectional valve that only allows exiting air to pass therethrough. The outlet valve may be a conventional button style valve or it may be a cantilevered or flapper valve such as the valves shown in U.S. Pat. Nos. 5,325,892 and 5,509,436 to Japuntich et al. or RE37,974E to Bowers. As described above, air entering mask 10 passes through the aperture and filter cartridge 18. A mask body 11 that has a rigid insert 19 supporting a compliant facepiece 12 is described in U.S. Pat. No. 5,062,421 to Burns and Reischel.
The filter cartridges 18 are joined to the mask body 11 through a bayonet attachment system.
Cartridge 18, in particular housing 20 of cartridge 18, defines a first portion of the bayonet attachment system. The first portion is configured for attachment to a second portion of the bayonet attachment system. Details regarding the first and second portions of the bayonet attachment system are described below.
One typical and common filter cartridge, designed for removing organic vapors from the air, utilizes granulated charcoal particles as the media within the cartridge. Granulated charcoal, and other sorbent material, adsorb or absorb chemical contaminants (such as acids, bases, NOx, etc.). To produce such a filter cartridge, the general procedure includes providing at least one layer of fabric, for example, knitted, woven, or non-woven material, as the bottom layer in the housing. The housing is filled with granulated charcoal or other adsorbent material and pressure is applied to tightly compact the material. It is desired to have as dense of a packing as possible, with little or no space between the individual granules, in order to increase the contaminant removal efficiency of filter cartridge. Usually after the sorbent material has been compacted, at least one more fabric layer(s) is placed over the outer surface of the carbon. A cover is then secured to housing. The resulting assembled cartridge may be attached to the mask body.
Often, the pressure created by the packed sorbent media is sufficiently large to cause both the cover and the housing bottom 21 to bulge out somewhat. Because of this pressure, radial ribs 24 may be positioned within the aperture area 25 of the housing to provide further support for the bottom fabric layer so that the fabric and activated carbon do not pass through the aperture. Although three intersecting ribs 24 are shown in
The filter cartridge 18 shown in
To attach a filter cartridge 18 to the mask body 11, the filter cartridge 18 and mask body 11 are brought together so that attachment fitting 30 is axially aligned with the aperture 25 such that tabs 36 fit within the void of notches 26. Cartridge 18 and mask body 11 are manipulated so that the body 32 and the tabs 36 of fitting 30 pass into and through notches 26 and aperture 25 of cartridge housing 20. As shown in
As shown in
As indicated above, the present invention can eliminate the possibility of inadvertent removal of cartridge 18 from mask 10. This can be accomplished, in one embodiment, by using an optional locking element in conjunction with the tab/notch system of the bayonet connection just described.
The locking feature also may be integral with or integrated into the cartridge housing 20. If the system employs a third component as an optional part for achieving a permanent connection or demand or when desired, it may be a non-integral or separate device (i.e., a third piece) that can be inserted into an existing or conventional bayonet systems to permanently lock bayonet cartridge 18 to attachment 30 on mask 10. Destroying one or more of the pieces may provide two or three pieces, however, the pieces would not be in their initial original state. When utilizing a separate locking feature of the present invention, housing 20 is mechanically locked to, and is not removable from, attachment fitting 30 once the two arts have been joined together, unless perhaps a key is employed as described in more detail below. Housing 20 thus is removable from attachment fitting 30 only by destroying one of the housing 20, the attachment fitting 30, the inserted locking element, or a combination thereof.
Arm 50 is spaced from protrusion 46 to provide the land area 48. Land area 48 may have a slightly curved surface, such as shown in
Locking device 40 is designed to be installed so that top side 43 is facing cartridge housing 20 (
Locking device 40 may have a handle thereon to facilitate placing and positioning of device 40 on to ribs 24. An example of a suitable handle is a centrally located grippable protrusion or handle 60 such as shown in
Locking device 40, 40′ permanently fixes cartridge 18 in relation to fitting 30. As shown in
To attach cartridge 18 using locking device 40, 40′ to mask 10, cartridge 18 is seated onto fitting 30 in the overall same manner as if no locking device were present, except that locking device 40, 40′ is disposed on ribs 24 of housing 20. Fitting 30 is aligned with aperture 25 in housing 20 so that fitting tabs 36 align with notches 26 in aperture 25. Cartridge 18 and mask body 11 are brought together so that fitting body 32 and fitting tabs 36 pass into and through aperture 25. After cartridge 18 is fitted over tabs 36 and is seated on attachment 30, cartridge 18 is rotated sufficiently to adequately join together the first and second portions of the bayonet connection. The locking devices of the present invention can be designed to engage and lock bayonet constructions that operate using clockwise or counterclockwise rotation.
During tab 36 rotation, tab 36 contacts sloped surface 58 of locking device 40, 40′ and pushes sloped surface 58 and arm 50 over tab 36 so that tab 36 can move to the laterally relative to stop 52—see
When housing 20 is permanently locked onto fitting 30, tab 36 cannot be moved from its placement between stop 52 of locking device 40, 40′ and rib 24 of housing 20 without breaking rib 24, stop 52, or some other part of locking device 40, 40′. The housing and locking mechanism as described also may be adapted so that a key or tool could be used to disengage the lock and remove the cartridge from the mask.
To disengage stops 52 from tabs 36, a tool with pins that would protrude through the bottom of housing 20 could be used to lift arms 50. By lifting arms 50, stops 52 would be disengaged from tabs 36, releasing the locking mechanism and permitting the cartridge to be rotated off. It is important to note that if a pin type tool is used to engage and lift arms 50, a structural provision must be made in the housing to allow the pin to pass through the wall of the housing while maintaining seal integrity during normal use of the cartridge. This structural provision might be a septum or a designed weakness (e.g., a penetrable rubber seal) in the housing through which the pin of the tool could be made to hermetically penetrate. Depending on the configuration of the locking mechanism, any number of tool or key designs could be adapted to release the lock mechanism while preserving the seal integrity of the cartridge.
A catch mechanism 90 is positioned on interior wall 75, near bottom side 74. Preferably, the catch mechanisms 90 are alternately spaced with catches 76. Catch mechanism 90 has a ramped portion 91 extending to a first flat portion 96. First flat portion 96 and second flat portion 98 have land 97 therebetween. Flat portions 96 and 98 may be parallel to land 97 in non-alignment with flat portions 96 and 98. Land 97 may be closer to bottom side 74 than flat portions 96 and 98. Or, flat portions 96 and 98 may be non-planar, with land 97 positioned below both flat portions 96, 98.
As best shown in
Opposite catches 76, near the bottom side 74, are catch feature 90a′ and catch base 90b′, shown enlarged in
Locking devices 70, 70′, 70″ are designed to be installed so that top side 73 of device 70, 70′, 70″ faces cartridge housing 20, similar to how top side 43 of locking device 40, 40′ faces cartridge housing 20. Upwardly extending catch 76 is sufficiently flexible to allow deflection radially inward so that catch 76 with ramp portion 81 can move axially towards the interior of housing 20 to engage edge 28 of notch 26 of aperture 25. With adequate axial penetration, lip 82 snaps on to edge 28 and locks device 70, 70′, 70″ on to housing 20.
To attach a filter cartridge 18 with locking device 70, 70′, or 70″ permanently attached thereon to a mask body 11, cartridge 18 and fitting 30 are aligned so that tabs 36 align with the gaps between catch mechanism 90 (or between catch feature 90a and catch base 90b of non-pairs). Cartridge 18 and mask body 11 are brought together and engaged so that fitting body 32 and tabs 36 pass into and through the gaps between catch mechanisms 90. Once locking device 70, 70′, 70″ is fitted over tabs 36 and is seated on fitting 30, cartridge 18 is rotated so that tab 36 contacts ramp 91 of locking device 70 and slides up ramp 91, over flat portion 96, and seats on land 97. For locking device 70′, 70″ with spring catch 90a′, 90a″, tab 36 rotates to slide up ramp 91 and force spring catch 90a′, 90a″ axially relative to fitting body 32 and locking device body so that tab 36 can move to the other side of and over catch feature 90A and seat on land 97, 97′. Once seated on land 97, 97′, tab 36 is unable to rotate because it is bounded by wall 99A on one side and wall 99B on the other side.
Housing 20 of cartridge 18 is now permanently locked onto mask 10 and attachment 30. Tab 36 of attachment 30 cannot be removed from its placement between walls 99A and 99B without breaking catch mechanism 90 or some other part of locking device 70, 70′, 70″.
It should be noted that locking devices 40, 40′, 70, 70′, 70″ function in the same manner by engaging tab 36 between protrusions or walls that do not allow tab 36 to rotate. Locking device 40, 40′ functions by being placed within cartridge housing 20, whereas locking devices 70, 70′, 70″ are placed between housing 20 and fitting 30, providing an extension of the filter cartridge 18 away from the fitting 30.
The locking mechanism can also be adapted to incorporate various features of the above-described locking mechanisms but without a ringed body. For example, the locking mechanism may be a polygon that allows the first half of the bayonet system to be rotated relative to the second half. The body of the locking mechanism also may be a portion or segment of a ring, for example, a 150° ring segment. Such ring segments would be fashioned to function in the same manner as full ring bodies, by engaging tab 36 in fixed relation with portions of the locking mechanism and thus eliminating further rotation.
The features of a locking device, such as devices 40, 40′, 70, 70′, 70″ can alternately be incorporated into either portion of the bayonet attachment system, either on the filter cartridge 18 or on the mask body 11, thus eliminating the need for a third-piece locking device. To not give the user the option of permanently attaching the filter cartridge, the locking device may be incorporated into the mask body. To provide a permanent connection option, the locking device features may be incorporated into the filter cartridge 18 (or a separate optional part such as parts 40, 40′, or 70). The user could then select cartridges that have a permanent locking feature or cartridges that do not, depending on, for example, the environment in which the mask is intended to be worn. A non-permanent connection may be desired when the ambient environment is not critically hazardous and the user may want to be able to recycle or reuse the mask body when the cartridge has met the end of its service life.
Referring to locking device 70 in
Cartridge 18 could alternately be designed with features from third-piece locking device 70′ (
In yet another design, cartridge 18 could have features from third-piece locking device 70″ (
The discussion of the security features of the bayonet attachment system have been discussed above as having a permanent connection, which cannot be disengaged or unlocked without breaking or otherwise damaging one or both of the bayonet portions. In some embodiments, depending on the design of the security features, the connection system can be unlocked by a separate key or tool. Preferably, the key is specifically designed to engage the security feature and release the permanent connection. For example, the key would be specially designed to engage with and unlock the connection. In some designs, a common tool such as a screwdriver or pick could be used to unlock the connection, however, in embodiments where strict control of the usage of respirator cartridges or the like is desired, a specially designed key may be preferred, so that items readily available to the user are not used to unlock the connection. The key could be retained by a person who supervises respiratory wearing and maintenance. The key could operate by being inserted into a corresponding opening in the cartridge housing or mask body to engage the locking mechanism. The key could disengage the locked bayonet connection by turning, by prying, or by pushing. The key could have a particular cross-section that corresponds to the recess in which it fits. The key could be square, rectangular, or be further multi-sided such as 5-, 6-, 7-, or 8-sided to disengage the locked bayonet system. The key could also be purely circular in cross-section and thus operate by pushing or could have certain protuberances located thereon to operate by turning or prying. It is preferred that a user not merely using their fingers or teeth to unlock the connection. Use of an incorrect key or tool would preferably result in a damaged or destroyed connection.
In addition to the structure features of the locking device that permanently connect the portions of the bayonet attachment, system, one or both of the portions could include mechanical surface features present on one or both bayonet portions. Examples of suitable features include hook and loop (for example, such as disclosed in U.S. Pat. No. 6,558,602 (Melbye et al.), which is incorporated herein by reference), microreplicated surfaces (for example, such as disclosed in U.S. Patent Publication No. U.S. 2003/0088946 A1, (Ferguson et al.) and in U.S. Pat. No. 6,546,604 (Galkiewicz et al.), or other mechanical fasteners. A useable alternative to pure mechanical elements is an aggressive adhesive present between the bayonet portions. The adhesive could be activated when the two portions are engaged.
Various embodiments of the bayonet attachment system of this invention are not limited to use with cartridge housings 20 having hard plastic (or metal) structures. Any of the locking devices, and versions thereof integral with housing 20, can be used with a soft, non-woven filter (for example, one commercially available from 3M under the trade designation “2078” Filter P95 Particulate) that lacks such a rigid housing. These non-woven filters can be attached to face mask 10 using the same bayonet style attachment system.
The invention also is not limited to use with the half mask respirator illustrated in the drawings. The invention may also be suitably used in a fill face mask (see, for example, U.S. Pat. No. 5,924,420 and Des. 378,610 to Reischel et al.) in a PAPR (see, for example, U.S. Pat. No. 6,186,140B1 to Hogue, U.S. Pat. No. 6,575,165B1 to Cook et al., U.S. Pat. No. 6,615,828B1 to Petherbridge, and U.S. Pat. No. 6,619,286B2 to Patel), in a hood (see U.S. Patent D480,476S to Martinson et al.), in a helmet system (see, for example, U.S. Patent D469,580S to Schlaefer et al.), or in a SCBA.
This invention may take on various modifications and alterations without departing from the spirit and scope thereof. Accordingly, it is to be understood that this invention is not to be limited to the above-described, but it is to be controlled by the limitations set forth in the following claims and any equivalents thereof.
It is also to be understood that this invention may be suitably practiced in the absence of any element not specifically disclosed herein.
All patents and patent applications cited above, including those in the Background section, are incorporated by reference into this document in total.