The present invention provides methods to personalise dietary fiber for an individual based on their CAZyme profile and recommendations for dietary fiber products and compositions as well as systems to facilitate quick and easy use.
Dietary fiber is an essential part of any healthy diet. Within the diet, fiber is mostly found in vegetables, fruits, whole grains, and legumes. Fiber is generally classified in two types: soluble and insoluble, which both play important roles in health. Insoluble fiber does not dissolve in water and adds bulk to the stool, preventing constipation. Soluble fiber absorbs water, forming a gel-like substance in the digestive system. Soluble fiber may help lower cholesterol levels and help regulate blood sugar levels which is crucial in reducing the risk of chronic health conditions [Threapleton et al., 2013].
Despite the known association of dietary fiber and health outcomes, most people do not get enough fiber from their diets. According to some estimates, only 5% of the population meet the adequate dietary fiber intake recommendations in Western countries such as the United States. This means that most people could benefit from increasing their daily fiber intake.
The beneficial effects of fibers on health are principally mediated by gut microbes that have the capability to degrade these complex fiber structures to produce metabolites such as short chain fatty acids (SCFAs) [Makki et al., 2018]. The capability of microbes to degrade dietary fibers depends on the genes encoding for carbohydrate-active enzymes (CAZymes). Accordingly, the composition of the microbiome will affect the individual's ability to utilize fibers, and impact the fiber-associated health benefits of the host.
Carbohydrate-active enzymes (CAZymes) confer to gut microbes the capability to degrade non-digested dietary fibers. For each individual, the microbial genome encodes for a unique number and combination of CAZymes ranging from 0 to over 300 encoding genes [Flint et la., 2012], which means that an individual microbiome will differ in its capability to degrade dietary fibers.
Despite this high inter-individual variability, Bhattacharya et al., (2015) and Kaur et al., (2020) demonstrated that CAZyme profiles clusters could be identified and these correspond to different geographic regions and different food intake. They also found that the abundance of CAZymes in the human gut was negatively associated with age but positively with healthy BMI.
Habitual diet can condition the proficiency of the microbiome in exploiting certain types and quantities of dietary fiber. CAZyme profiles can be used to predict which fiber is likely to be degraded an individual's microbiome to generate products subsequently exerting positive effects on the host (Makki et al., 2018).
Clinical trials evaluating the effects of fiber supplementation on the gut microbiome and host health often report inconclusive results with part of the population responding to the fiber supplementation while others exhibit no measurable effects [Kovatcheva-Datchary., et al 2015]. This is due, in part, to microbiome diversity and the inter-individual differences in ability to utilise fibers. Simply by increasing the dietary fiber intake is no guarantee of beneficial health outcomes without considering the individual's ability to utilize the fiber based on their CAZyme profile.
To date, dietary interventions and product development have focused on increasing total fiber consumption mainly by adding soluble, prebiotic fibers, for example: inulin, FOS, GOS, without accounting for fiber diversity and considering the individual microbiome's capability to utilise those fibers. Digital methods of monitoring dietary fiber consumption, such as MyBioma or Carbiotix, also have not considered the individual microbiome's capability to utilise diverse fibers. Hence, fiber consumption may be increased without noticeable health benefits on the host individual since their microbiome may not have the set of enzymes (CAZymes) enabling the degradation of the fiber.
A further additional problem when increasing dietary fiber, particularly in amounts over 70 g per day, is that there is an undesirable side-effect in term of gut comfort which may lead to a number of different symptoms such as abdominal pain, bloating, flatulence, constipation and/or diarrhea which are detrimental to maintaining compliance of an individual to high fiber diet over the long term.
Therefore, there is a need to provide targeted dietary fiber recommendations that are personalized which can optimize the health benefits and minimize the undesirable side-effects related to gut comfort ensuring long term compliance by individuals. In addition, there is the need to have these dietary fiber recommendations delivered in a user-friendly system.
The present invention provides methods and systems to personalize dietary fiber for an individual based on their CAZyme profile and recommendations for dietary fiber foodstuffs, food, beverage and dietary products, food and beverage compositions, and dietary supplements.
In several embodiments of the invention, methods are provided for a personalized fiber recommendation for an individual wherein said method comprises determining the CAZyme profile of said individual.
In one embodiment, methods are provided for a personalized fiber recommendation for an individual wherein the CAZyme profile of said individual is determined by a dietary assessment tool, preferably in the form of a questionnaire, such as a food frequency questionnaire.
In another embodiment, methods are provided for a personalized fiber recommendation for an individual wherein the CAZyme profile is determined by a dietary assessment tool, preferably by a food frequency questionnaire comprises measuring the consumption of: fruits, vegetables, legumes, whole grains, nuts and seeds, potatoes, dairy products, beverages and snacks to estimate the diversity of fiber consumption within a specific period of time and to determine the CAZyme profile of said individual.
In one embodiment, said dietary assessment tool, preferably said food frequency questionnaire comprises measuring the consumption of: whole wheat flour, beans, potatoes, tomatoes, bell peppers, cauliflower, apple, banana, tea, sugar and milk to estimate the diversity of fiber consumption within a specific period of time and to determine the CAZyme profile of said individual.
In another embodiment, the CAZyme profile of said individual may be additionally or alternatively determined by a biological sample from said individual, preferably a fecal sample.
In several embodiments, the CAZyme profile of an individual is compared to reference CAZyme profiles, to determine a CAZyme Cluster reference for that individual which helps to select the personalized fiber recommendation.
In several embodiments of the invention, the personalized fiber recommendation is a daily fiber intake less than 70 g per day and determined by the gender of the individual.
In one embodiment for females, the daily fiber recommendation is preferably between 20 g to 28 g per day and not exceeding 70 g per day.
In one embodiment for males, the daily fiber recommendation is preferably between 30 g to 38 g per day and not exceeding 70 g per day.
In several embodiments, the personalized fiber recommendation is preferably fiber in the form of consumable dietary fiber.
In several embodiments, the personalized fiber recommendation is a food product, beverage product, or dietary supplement containing a high fiber foodstuff.
In several embodiments, the personalized fiber recommendation in the form of consumable dietary fiber is selected from high fiber foodstuffs comprising: fruits, vegetables, legumes, whole grains, nuts and seeds, potatoes with skin and dark chocolate in an amount not exceeding 70 g of fiber per day and personalized for females in the amount between 20 g to 28 g fiber per day and for males in the amount between 30 g to 38 g fiber per day.
In some embodiments, the high fiber foodstuffs comprising fruits containing fiber in the amount of at least about 2.0 g to 10.0 g per 100 g are selected from the group comprising: passionfruit 10.0 g/100 g; avocado 6.7 g/100 g; raspberries 6.5 g/100 g; blackberries 5.3 g/100 g; guava 5.0 g/100 g; persimmon 4.5 g/100 g; mango 3.5 g/100 g; pears 3.1 g/100 g; banana 2.6 g/100 g; apples 2.4 g/100 g; blueberries 2.4 g/100 g; or strawberries 2.0 g/100 g.
In some embodiments, the high fiber foodstuffs comprising vegetables containing fiber in the amount of at least about 1.0 g to 10.0 g per 100 g are selected from the group comprising: artichokes 8.6 g/100 g; kale 3.6 g/100 g; carrots 2.8 g/100 g; beets 2.8 g/100 g; broccoli 2.6 g/100 g; Brussel sprouts 2.6 g/100 g; spinach 2.2 g/100 g; cauliflower 2.0 g/100 g; bell peppers 1.2 g/100 g or tomatoes 1.2 g/100 g.
In some embodiments, the high fiber foodstuffs comprising legumes containing fiber in the amount of at least about 5.0 g to 9.0 g per 100 g are selected from the group comprising: black beans 8.7 g/100 g; split peas 8.3 g/100 g; lentils 7.9 g/100 g; chickpeas 7.6 g/100 g; kidney beans 6.4 g/100 g; baked beans 5.5 g/100 g; lima beans 5.3 g/100 g; or edamame beans 5.2 g/100 g.
In some embodiments, the high fiber foodstuffs comprising whole grains containing fiber in the amount of at least about 2.8 g to 14.5 g per 100 g are selected from the group comprising: barley 17.0 g/100 g; whole grain flour 11 g/100 g; oats 10.6 g/100 g; quinoa 2.8 g/100 g; or popcorn 14.5 g/100 g.
In some embodiments, the high fiber foodstuffs comprising nuts and seeds containing fiber in the amount of at least about 7.0 g to 35.5 g per 100 g are selected from the group comprising: chia seeds 34.4 g/100 g; pumpkin seeds 18.4 g/100 g; almonds 12.5 g/100 g; pistachios 10.0 g/100 g; coconut 9.0 g/100 g; sunflower seeds 8.6 g/100 g; or walnuts 7.0 g/100 g.
In some embodiments, the high fiber foodstuffs comprising potatoes with skin containing fiber in the amount of at least about 2.5 g per 100 g.
In some embodiments, the high fiber foodstuffs comprising dark chocolate containing at least 70% cocoa containing fiber in the amount of at least about 10.9 g per 100 g.
In other embodiments, the personalized fiber recommendation is in the form of consumable dietary fiber and a dietary supplement.
In embodiments where a dietary fiber supplement is used, the fibre supplement is selected from a supplement containing guar fiber, psyllium, glucomannan or β-glucans.
In several embodiments, a non-therapeutic method is provided, comprising:
In several embodiments, a computer implemented method is provided, comprising:
In a further embodiment, the computer-implemented method further comprises:
The delivery of the personalized fiber composition may be in the form of a food product, beverage product, dietary supplement or a combination of any of these together.
In several embodiments of the invention, a system is provided for a personalized fiber recommendation to an individual comprising:
The delivery of the personalized dietary fiber composition may be in the form of: food products, beverage products, or dietary supplements or a combination thereof in a kit of parts.
PCA score plot by cluster indicating 3 main clusters. Cluster 1 white circles, Cluster 2 grey circles, Cluster 3 black circles.
This figure shows the three distinct CAZyme profiles: Cluster 1, Cluster 2 and Cluster 3 CAZyme profiles on the y-axis. The x-axis shows which CAZymes correspond to each of the three clusters respectively. The asterix (*) indicates the relevance of a particular CAZyme for each of the corresponding clusters. Positive values correspond to the enrichment of a specific CAZyme in a cluster while negative ones represent a depletion.
Boxplot of the area under the curve (AUC) that represent the accuracy of prediction (1 would mean that 100% of predictions of clusters are correct, 0.5 would be 50%—the minimum obtained by chance) of the sample in each cluster based on food frequency questionnaire before and after model optimization (conducted by selection of the most important food variables).
The Gini coefficient is a measure of the distribution importance of contribution of foodstuff to the prediction of each cluster across the population.
This figure shows the computer implemented system which is an example of a system used to determine the CAZyme profile of the individual and to personalize the recommendation of fiber foodstuffs.
This figure provides a typical questionnaire collected from the participants used to determine their CAZyme profile.
All percentages expressed herein are by weight of the total weight of the composition unless expressed otherwise. As used herein, “about,” “approximately” and “substantially” are understood to refer to numbers in a range of numerals, for example the range of −10% to +10% of the referenced number, preferably −5% to +5% of the referenced number, more preferably −1% to +1% of the referenced number, most preferably −0.1% to +0.1% of the referenced number.
All numerical ranges herein should be understood to include all integers, whole or fractions, within the range. Moreover, these numerical ranges should be construed as providing support for a claim directed to any number or subset of numbers in that range. For example, a disclosure of from 1 to 10 should be construed as supporting a range of from 1 to 8, from 3 to 7, from 1 to 9, from 3.6 to 4.6, from 3.5 to 9.9, and so forth.
As used in this invention and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a component” or “the component” includes two or more components.
The words “comprise,” “comprises” and “comprising” are to be interpreted inclusively rather than exclusively. Likewise, the terms “include,” “including” and “or” should all be construed to be inclusive, unless such a construction is clearly prohibited from the context. Nevertheless, the compositions disclosed herein may lack any element that is not specifically disclosed herein. Thus, a disclosure of an embodiment using the term “comprising” includes a disclosure of embodiments “consisting essentially of” and “consisting of” the components identified. Any embodiment disclosed herein can be combined with any other embodiment disclosed herein.
Where used herein, the terms “example” and “such as,” particularly when followed by a listing of terms, are merely exemplary and illustrative and should not be deemed to be exclusive or comprehensive. As used herein, a condition “associated with” or “linked with” another condition means the conditions occur concurrently, preferably means that the conditions are caused by the same underlying condition, and most preferably means that one of the identified conditions is caused by the other identified condition.
The terms “food”, “foodstuff”, “food product” and “food composition” means a product or composition that is intended for ingestion by an individual such as a human and provides at least one ingredient which provides dietary fiber to the individual.
The term “beverage” or “beverage product” means a liquid product or liquid composition that is intended to be ingested orally by an individual such as a human and provides at least one ingredient that provides dietary fiber to the individual.
The term “dietary supplement” means a product which typically is intended to be ingested orally which provides at least one ingredient which contains dietary fiber. Dietary supplements are recommended when the individual cannot get the recommended amount of daily fiber from a normal diet. Dietary supplements typically contain guar fiber, psyllium, glucomannan or β-glucans.
The compositions of the present disclosure, including the many embodiments described herein, can comprise, consist of, or consist essentially of the elements disclosed herein, as well as any additional or optional ingredients, components, or elements described herein or otherwise useful in a diet.
As used herein, the term “isolated” means removed from one or more other compounds or components with which the compound may otherwise be found, for example as found in nature. For example, “isolated” preferably means that the identified dietary fiber is separated from at least a portion of the other cellular material with which it is typically found in nature. In several embodiments, the amount of dietary fiber is calculated in grams per 100 gram of the foodstuff. For example, an apple contains 2.4 g dietary fiber per 100 g of apple.
“Microbiome” as used herein refers to the genetic content of the communities of microbes that live in and on a subject (e.g., a human subject), both sustainably and transiently, including eukaryotes, archaea, bacteria, and viruses (including bacterial viruses (e.g., phage)), wherein “genetic content” includes genomic DNA, RNA such as ribosomal RNA and messenger RNA, the epigenome, plasmids, and all other types of genetic information. In some embodiments, microbiome specifically refers to genetic content of the communities of microorganisms in a niche.
“Microbiota” as used herein refers to the community of microorganisms that occur (sustainably or transiently) in and on a subject (e.g., a human subject), including eukaryotes, archaea, bacteria, and viruses (including bacterial viruses, e.g. phage). In some embodiments, microbiota specifically refers to the microbial community in a niche.
“Dietary fiber” as used herein refers to foodstuffs, for example, found in the form of fruits, vegetables and cereals, which comprise the human diet. These are sources of carbohydrates that are readily digested by human intestinal enzymes, as well as dietary fibers, which are resistant to digestion and absorption in the human small intestine. Dietary fibers undergo complete or partial microbial fermentation in the large intestine. Most dietary fibers are composed of plant cell wall polysaccharides and the fraction of starch that passes through the small intestine without being broken down (known as resistant starch). These polysaccharides comprise many structurally diverse sugar moieties joined together by glycosidic bonds to form chains and branches. Generally, the more complex the polysaccharide, the more enzymes are required for its breakdown. The human genome encodes, at most, only 17 enzymes for the digestion of food glycans, specifically starch, sucrose and lactose.
“Soluble fiber” as used herein refers to fiber which dissolves in water and forms a gel-like substance in the stomach. Bacteria later break the gel down in the large intestine. Soluble fiber provides some calories to the individual. Soluble fiber provides the following benefits: lowering LDL cholesterol in the blood by affecting how the body absorbs dietary fat and cholesterol slowing absorption of other carbohydrates through digestion, which can help regulate blood sugar levels. Sources of soluble fiber include, for example, beans, fruits, oats, nuts, vegetables.
“Insoluble fiber” as used herein is fiber which does not dissolve in water and passes through the gastrointestinal tract, mostly intact. It does not provide calories. Insoluble fiber helps build bulk in the stool, helping a person pass stool more quickly. It can also help prevent constipation. Sources of insoluble fiber include, for example, fruits, nuts, vegetables, whole grain foods.
The “recommended daily intake of dietary fiber” as used herein is based on a daily diet of 2000 calories. The recommended intake for dietary fiber in a 2,000 calorie diet is approximately 25 g per day for adult females and 38 g per day for adult males. Individuals need less fiber after 50 years of age at around 21 g for women and 30 g for men. During pregnancy or breastfeeding, women should aim for at least 28 g per day.
Individuals who are allergic to high fiber foods may find it difficult to get enough fiber from a regular diet and may require fiber dietary supplements in order to reach the recommended daily intake of dietary fiber.
“Adverse side-effects of dietary fiber” as used herein can be the result of increasing dietary fiber too rapidly and/or not personalizing the type of dietary fiber to the individual's CAZyme profile. The adverse side effects can include abdominal pain, bloating, flatulence, constipation and/or diarrhea. In particular, these side effects may occur if a person consumes more than 70 g of fiber a day.
“Carbohydrate-active enzymes” or “CAZymes” as used herein are enzymes that assemble or breakdown oligosaccharides and polysaccharides. The classification of CAZymes is updated continuously in the CAZy database http://www.cazy.org/.
For example, for degradative enzymes, the current classification describes a total of 215 families for 680,000 sequences, a number that increases exponentially due to systematic genome sequencing (Garron et al., 2019). The CAZy families group together enzymes that can have different specificity but share a common fold, a common catalytic machinery and the same mechanism, providing useful predictive power on the orientation of the glycosidic bond cleaved and potential transglycosylation side-reactions.
CAZy classification presently comprises the following families:
Subfamilies are in subgroups, usually indicated by a number, found within a family that share a more recent ancestor and, that are usually more uniform in molecular function.
“CAZyme profile” and “CAZyme cluster” as used herein refer to the determination of different CAZyme families.
CAZyme families are typically categorized according to substrate usage of the enzymes and comparing the abundance of these categories between individuals having different food intakes. However, this is not always straightforward as many CAZyme families have multiple functions, e.g. some of them can digest fibers of both plant and animal origin.
For example, bacteria of the Bacteroidetes phylum are considered primary degraders of polysaccharides and they are found in all ecosystems investigated. In Bacteroidetes genomes, carbohydrate-degrading enzymes (CAZymes) are arranged in gene clusters termed polysaccharide utilization loci (PULs).
The “CAZyme profile of an individual” as used herein may be determined by a number of different methods.
In one embodiment of the invention, the CAZyme profile may be determined from a dietary intake assessment from the individual subject. In a preferred embodiment, the dietary intake assessment may be in the form of questionnaire, such as Food Frequency Questionnaires (FFQ). It may also comprise diet history questionnaire, short dietary assessment instrument, technology-based tools used in dietary intake assessment or any other tool available in the art.
The said food frequency questionnaire (FFQ) refers to a finite list of foods and beverages with response categories to indicate usual frequency of consumption over the time period queried. In particular, it may comprise measuring the consumption of: fruits, vegetables, legumes, whole grains, nuts and seeds, potatoes, dairy products, beverages and snacks to estimate the diversity of fiber consumption within a specific period of time and to determine the CAZyme profile of said individual.
Moreover, it may also comprise measuring the consumption of: whole wheat flour, beans, potatoes, tomatoes, bell peppers, cauliflower, apple, banana, tea, sugar and milk to estimate the diversity of fiber consumption within a specific period of time and to determine the CAZyme profile of said individual.
In an embodiment, the dietary intake assessment tool, in particular the food frequency questionnaire may be adapted to population and geographical specificities.
In a preferred embodiment, the determination of the “CAZyme profile of an individual” may be done by using food data to predict CAZyme cluster or profiles through a supervised machine learning algorithm such as random forest, neural network, linear regression or decision tree. This method of determining the CAZyme profile has the advantage that it does not require a biological sample from the individual subject.
In another embodiment of the invention, the CAZyme profile may be determined from a fecal stool sample. The CAZyme profile may be determined using methods known in the art such as whole shotgun metagenomic sequencing (MGS), target sequencing such as PCR, for example.
MGS is an untargeted method to study the genetic component of a biological sample, in this case, a fecal stool sample. Using high throughput sequencing method all genetic material of a sample is sequenced including those encoding for CAZymes. Sequences are then processed to be annotated using bioinformatic pipelines. This provides information regarding which taxa of the organisms present in the sample and at which abundance and their functionality, for example, as CAZymes. Using MGS, it is possible to quantify genes encoding specific CAZyme functions.
The “CAZyme profile of an individual” may be additionally or alternatively determined from a biological sample from the individual subject. In one preferred embodiment, the CAZyme profile may be determined from a fecal stool sample.
CAZyme profile cluster are samples grouped together according to the similarity of their CAZyme profiles. They can be predicted from CAZyme profile by any clustering methods known in the art. Non-limiting examples of methods of clustering may use unsupervised machine learning algorithm (k-mean, Dirichlet). Profiles can be determined through different annotation pipelines used to annotate the geens that encode for CAZymes such as dbCAN or EggNOG.
“Fiber composition administration” as used herein is typically delivered on a daily basis.
The fiber composition is administered to the individual, at least two days per week, more preferably at least three days per week, most preferably all seven days of the week; for at least one week, at least one month, at least two months, at least three months, at least six months, or even longer. In some embodiments, the composition is administered to the individual consecutively for a number of days. In an embodiment, the composition can be administered to the individual daily for at least 30, 60 or 90 consecutive days. In a preferred embodiment, the dietary fiber composition administration should not exceed 70 g fiber per day.
In one embodiment, the fiber composition is preferred to be in the range of 20 g to 28 g per day for women. For women over the age of 50, the fiber composition is preferred to be 21 g per day. For lactating women, the fiber composition is preferred to be 28 g per day.
In one embodiment, the fiber composition is preferred to be in the range of 30 g to 38 g per day for men. For men over the age of 50, the fiber composition is preferred to be 30 g per day.
The above examples of administration do not require continuous daily administration with no interruptions. Instead, there may be some short breaks in the administration, such as a break of two to four days during the period of administration. The ideal duration of the administration of the composition can be determined by those of skill in the art.
In a preferred embodiment, the dietary fiber composition is administered to the individual orally. For example, the composition can be administered to the individual as a food product, a beverage product, and/or dietary supplement.
A “system” as used herein may be illustrated, for example, by
In one embodiment, the device 100 illustrated in
In a preferred embodiment said calculating underlying data can be performed based on CAZyme profiles of the cluster or of the sample as known in the art.
In the example architecture illustrated in
In one embodiment, device 100 further includes memory 108. Memory 108 preferably includes volatile memory and non-volatile memory. Preferably, the memory 108 stores one or more software programs that interact with the hardware of the host device 100 and with the other devices in the system as described below. Additionally or alternatively, the programs stored in memory 108 may interact with one or more client devices such as client device 102 (discussed in detail below) to provide those devices with access to media content stored on the device 100. The programs stored in memory 108 may be executed by the processor 106 in any suitable manner.
The interface circuit(s) 112 may be implemented using any suitable interface standard, such as an Ethernet interface and/or a Universal Serial Bus (USB) interface. One or more input devices 114 may be connected to the interface circuit 112 for entering data and commands into the main unit 104. For example, the input device 114 may be a keyboard, mouse, touch screen, track pad, track ball, isopoint, and/or a voice recognition system. In one embodiment, wherein the device 100 is designed to be operated or interacted with only via remote devices, the device 100 may not include input devices 114. In other embodiments, input devices 114 include one or more storage devices, such as one or more flash drives, hard disk drives, solid state drives, cloud storage, or other storage devices or solutions, which provide data input to the host device 100.
One or more storage devices 118 may also be connected to the main unit 104 via the interface circuit 112. For example, a hard drive, CD drive, DVD drive, flash drive, and/or other storage devices may be connected to the main unit 104. The storage devices 118 may store any type of data used by the device 100, including data regarding preferred fiber ranges per gender, data regarding fiber content of various foodstuffs, data regarding users of the system, data regarding previously-generated dietary and/or food frequency questionnaires, data regarding CAZyme profiles per user, and any other appropriate data needed to implement the disclosed system, as indicated by block 150.
In several embodiments, the Recommendation System indicated by block 150 may store different database modules which include: for example, a food module grouped in different food groups such as fruits, vegetables, legumes, whole grains, nuts and seeds, potatoes and dark chocolate; or beverage database module; a menu database module (for example with: breakfast, lunch, dinner and snacks); a recipe database module; a dietary constraints module noting allergies or food sensitivities which may exist.
Alternatively or in addition, storage devices 118 may be implemented as cloud-based storage, such that access to the storage 118 occurs via an internet or other network connectivity circuit such as an Ethernet circuit 112.
One or more displays 120, and/or printers, speakers, or other output devices 119 may also be connected to the main unit 104 via the interface circuit 112. The display 120 may be a liquid crystal display (LCD), a suitable projector, or any other suitable type of display. The display 120 generates visual representations of various data and functions of the host device 100 during operation of the host device 100. For example, the display 120 may be used to display information about the database of preferred dietary fiber ranges, a database of fiber content of various food items, a database of users of the system, a database of previously-generated menus, recipes or meals, and/or databases to enable an administrator at the device 100 to interact with the other databases described above.
In the illustrated embodiment, the users of the computerized recommendation system interact with the device 100 using a suitable client device, such as client device 102. The client device 102 in various embodiments is any device that can access content provided or served by the host device 100. For example, the client device 102 may be any device that can run a suitable web browser to access a web-based interface to the host device 100. Alternatively or in addition, one or more applications or portions of applications that provide some of the functionality described herein may operate on the client device 102, in which case the client device 102 is required to interface with the host device 100 merely to access data stored in the host device 100, such as data regarding recommended daily dietary fiber ranges or fiber content of various food items.
In one embodiment, this connection of devices (i.e., the device 100 and the client device 102) is facilitated by a network connection over the Internet and/or other networks, illustrated in
In one embodiment, host device 100 is a device that provides cloud-based services, such as cloud-based authentication and access control, storage, streaming, and feedback provision. In this embodiment, the specific hardware details of host device 100 are not important to the implementer of the disclosed system-instead, in such an embodiment, the implementer of the disclosed system utilizes one or more Application Programmer Interfaces (APIs) to interact with host device 100 in a convenient way, such as to enter information about the user's demographics to help determine dietary fiber ranges, for example, based on gender, to enter information about consumed foods, and other interactions described in more detail below.
Access to device 100 and/or client device 102 may be controlled by appropriate security software or security measures. An individual user's access can be defined by the device 100 and limited to certain data and/or actions, such as selecting or viewing total dietary fiber consumption over a day or other time period, according to the individual's identity. Other users of either host device 100 or client device 102 may be allowed to alter other data, depending on those users' identities. Accordingly, users of the system may be required to register with the device 100 before accessing the content provided by the disclosed system.
In a preferred embodiment, each client device 102 has a similar structural or architectural makeup to that described above with respect to the device 100. That is, each client device 102 in one embodiment includes a display device, at least one input device, at least one memory device, at least one storage device, at least one processor, and at least one network interface device. It should be appreciated that by including such components, which are common to well-known desktop, laptop, or mobile computer systems (including smart phones, tablet computers, and the like), client device 102 facilitates interaction among and between each other by users of the respective systems.
In various embodiments, devices 100 and/or 102 as illustrated in
In one embodiment, the disclosed system does not include a client device 102. In this embodiment, the functionality described herein is provided on host device 100, and the user of the system interacts directly with host device 100 using input devices 114, display device 120, and output devices 119. In this embodiment, the host device 100 provides some or all of the functionality described herein as being user-facing functionality.
In various embodiments, the system disclosed herein is arranged as a plurality of modules, wherein each module performs a particular function or set of functions. The modules in these embodiments could be software modules executed by a general purpose processor, software modules executed by a special purpose processor, firmware modules executing on an appropriate, special-purpose hardware device, or hardware modules (such as application specific integrated circuits (“ASICs”)) that perform the functions recited herein entirely with circuitry. In embodiments where specialized hardware is used to perform some or all of the functionality described herein, the disclosed system may use one or more registers or other data input pins to control settings or adjust the functionality of such specialized hardware.
For example, the system includes: an input module for determining the CAZyme profile of an individual; a calculation module for calculating the relationship of the CAZyme profile of said individual to dietary fiber intake; and a recommendation module for recommending dietary fiber compositions for an individual. Additionally, the system can provide an output module for delivering the personalized dietary fiber composition.
A user goal to personalize the dietary fiber recommendation based on the CAZyme profile of the individual user. The system can be used to provide food products, beverage products, dietary supplements, as well as menus or recipes in order to get closer to the recommended amounts of daily fiber. In some embodiments, the system and methods disclosed herein can be used by nutritionists, health-care professionals, and individual users (e.g., users of wearable devices such as smart watches or fitness trackers).
We used data collected from 60 volunteers that reported their dietary habits through food frequency questionnaires (FFQ) and provided faecal samples for CAZyme profiling via whole shotgun metagenomics sequencing MGS.
The CAZyme profile was determined from a food frequency questionnaire from the individual subject as the composition of the gut microbiota and its metabolic capacity was predominately shaped by diet (
The food frequency questionnaires were used in tandem with a machine learning algorithm to determine the likelihood of an individual to present a specific CAZyme profile. This method of determining the CAZyme profile had the advantage that it does not require a biological sample each time from the individual subject once the model has been built.
The food frequency questionnaires were then used to assign individuals to different CAZyme clusters (
CAZyme profiling was used to infer the gut microbiome capacity to degrade dietary fibers from analysis of faecal samples. CAZyme profile from fecal sample was assessed using whole shotgun metagenomic sequencing (MGS). Using a high throughput sequencing method all genetic material of a fecal sample from individuals was sequenced, especially those encoding for CAZymes. Sequences were then processed to be annotated using bioinformatic pipelines which provided information regarding which taxa (organisms) were present in the sample and at which abundance but also identify and group CAZymes that code for a specific function.
Raw CAZyme copy numbers were normalised by the total number of CAZymes and scaled. Clusters of CAZyme profiles were then defined using a k mean algorithm.
We used a Random Forest algorithm to predict CAZyme clusters with the FFQs data (non-transformed to nutrient intake). To build the models, we randomly selected 50 times 40 samples to generate the training set and 20 for the test set. The performance of the models was evaluated by calculating the area under the curve (AUC) of the ROC curves.
Results:
A total of three clusters based on CAZyme profiles were identified in the population (
Further investigation of the role of the CAZymes defining each cluster revealed that this information could be used to determine which carbohydrate could be degraded by the microbiome of the sub-population (
We demonstrated that clusters of CAZyme profiles can be predicted based on dietary intake. Additionally, analysis of CAZymes enriched in each cluster can help to design a fiber composition that should be optimally utilised by the individual subject.
Number | Date | Country | Kind |
---|---|---|---|
20193534.3 | Aug 2020 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2021/073698 | 8/27/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63129159 | Dec 2020 | US |