Personalized bank teller machine

Information

  • Patent Grant
  • 7822684
  • Patent Number
    7,822,684
  • Date Filed
    Thursday, July 21, 2005
    19 years ago
  • Date Issued
    Tuesday, October 26, 2010
    14 years ago
Abstract
A system and method is provided for an ATM having a display, a logic server coupled to the display, and a memory coupled to the logic server. The logic server dynamically controls the functions available to the users including messages and coupons. A host contains a profile of a user. The memory, which is accessible to the logic server, may contain a profile of at least one user. A user card may contain a profile of the user. In operation, the ATM detects the a user's card and requests the profile of the user whose card was detected from a host. The ATM then receives the user's profile and stores the user's profile in the ATM. The system and method also provides a cardless ATM in which a user logs on without a card. Additionally, system and method also provides ATM services via a personal device.
Description
FIELD OF THE INVENTION

The present invention generally relates to automated banking machines and more particularly relates to an automated banking machine that is dynamically updated from a host system.


BACKGROUND OF THE INVENTION

Automated banking machines are well known. A common type of automated banking machine used by consumers is an Automated Teller Machine (hereinafter “ATM”). ATMs enable customers to carry out a variety of banking transactions by interacting with the machine rather than a human teller. Examples of banking transactions that are commonly carried out using ATMs include withdrawals, deposits, transfer of funds between accounts, payment of bills, and account balance inquiries. The types of transactions that a customer may carry out at a particular ATM are determined by hardware and software configuration of that particular ATM as well as the hardware and software configuration of the institution to which the particular ATM is connected. Other types of automated banking machines may allow customers to charge against accounts, or print or dispense items of value such as statements, coupons, tickets, wagering slips, vouchers, checks, food stamps, money orders, scrip or travelers checks.


The architecture of prior art ATMs renders these machines extremely inflexible. Current ATM architecture is based on traditional hierarchical software and a closed system. Most significantly, the functionality offer through an ATM is fixed at the time the ATM is physically installed or physically visited for purposes of upgrading the machine. The software used for the operation of the ATM is typically contained in firmware installed in the machine, which is fixed and difficult to upgrade. Furthermore, when in operation, the ATM acts primarily as a “dumb” terminal to the remote host (i.e., the financial institution). Little if any logic related to a customer's session with the ATM is contained within the ATM, but is rather stored and executed at the host site. This traditional approach to ATM design and operation results in long development time, increased time to market, inflexible and expensive upgrades, inflexible user functionality, inflexible user interfaces and inordinate dependency on hardware and software developers.


Prior art ATMs are typically connected to proprietary communications networks in order to allow customers to use ATMs provided by those other than its own financial institution. These networks interconnect the ATMs operated by financial institutions and other entities. Some examples of these networks include the NYCE™ and STAR™ systems. The interconnection capability of these networks enables a user to access his accounts at his own financial institution while using a banking machine operated by different institution. This interconnection capability is available so long as the foreign institution's banking machine is connected to a network (e.g., NYCE™ to which the user's home financial institution is also connected. When using such a “foreign” ATM, the user is limited to the transaction options provided by the foreign institution and the options available at the specific ATM being used.


A customer may encounter difficulties when using a foreign institution's ATM. Such difficulties may occur because the user is not familiar with the type of machine operated by the institution. Customer confusion may result because the customer does not know which buttons or other physical mechanisms are required to be actuated to accomplish the desired transactions. Furthermore, the transaction flow (e.g., the series of menu options) presented to a customer at a foreign institution's machine may be significantly different from the machines with which the customer is familiar at the user's institution. This is a problem particularly when the user is from another country and is not familiar with the type of banking machine or the language of the interface provided by the (truly) “foreign” institution. Likewise, the documents, that are generated by the ATM printer, are generally limited to a limited group of defined formats in a single language (e.g., English). Further, the user may be presented with options that are inappropriate for the user's accounts.


A foreign institution's ATMs may also provide more, less, or a different type of transaction than the user is familiar with at their home institutions ATMs. For example, the ATMs at the user's home institution may enable the transfer of funds between the user's accounts. This particular transaction enables the user to maintain funds in higher interest bearing accounts until they are needed. If the foreign institution does not provide this capability, the user will be unable to perform this familiar (and sometimes necessary) function when operating the foreign ATM machine. The inability of a user at a foreign machine to conduct the transactions to which they are accustomed may present problems (e.g., transferring funds into a checking account prior to a scheduled automatic withdrawal.


A foreign institution's ATM also lacks the ability to market directly to the user. For example, the foreign institution's ATM may provide functions, services or products which are not available at the user's home institution.


The need to use an ATM card to access an ATM is a further disadvantage of a “dumb terminal” type ATM because it limits the ability to give users access on a temporary basis or to tailor the access to particular functions based on the user. Additionally, card-less access to some display only functions of the ATM is not currently available on personal devices such as cell phones, PDA's, etc.


Communication over wide area networks enables messages to be communicated between distant locations. The best known wide area network is the Internet, which can be used to provide communication between computers throughout the world. In the past, the Internet has not been widely used for financial transaction messages, as it is not inherently a secure system. Messages intended for receipt at a particular computer address may be intercepted at other addresses without detection. Because the messages may be intercepted at locations that are distant in the world from the intended recipient, there is potential for theft and fraud.


Approaches are being developed for more secure transmission of messages on the Internet. Encryption techniques are also being applied to Internet messages. However, the openness of the Internet has limited its usefulness for purposes of financial messages, particularly financial messages associated with the operation of automated banking machines.


Messages in wide area networks may be communicated using the Transmission Control Protocol/Internet protocol (“TCP/IP”). U.S. Pat. No. 5,706,422 illustrates an example of a system in which financial information stored in databases is accessed through a private wide area network using TCP/IP messages. The messages transmitted in such networks, which use TCP/IP, may include “documents” (also called “pages”). Such documents are produced in Hypertext Markup Language (“HTML”) which is a reference to a type of programming language used to produce documents with commands or “tags” therein. The tags are codes, which define features and/or operations of the document such as fonts, layout, imbedded graphics, and hypertext links. HTML documents are processed or read through use of a computer program referred to as a “browser.” The tags tell the browser how to process and control what is seen on a screen and/or is heard on speakers connected to the computer running the browser when the document is processed. HTML documents may be transmitted over a network through the Hypertext Transfer Protocol (“HTTP”). The term “Hypertext” is a reference to the ability to embed links into the text of a document that allow communication to other documents, which can be accessed in the network.


As shown in FIG. 1, an ATM 2 communicates with a host processor 6 across a network 4. The host processor 6 is operated by the institution responsible for the operation of the ATM 2, typically a financial institution (i.e., a bank). Although not shown, multiple ATMs can be connected to the host 6 through the network 4. Furthermore, multiple hosts can be connected to the network 4 to service the multiple ATMs. ATM 2 is capable of performing self-testing and notifying the host 6 when a problem is detected, e.g., no cash, no receipt, or no deposits. In response to such a notification from the ATM 2, the host 6 modifies its control of the ATM's display so that a user will be aware of an existing problem or limited service available at the malfunctioning ATM 2.


To use the system shown in FIG. 1, a user first presents a bank card to the card reader that is part of the ATM machine 2. The card typically has a magnetic strip containing user data. The user is then prompted to enter a personal identification number (‘_PIN”). The ATM 2 then communicates across the network with the host 6. The user's account information is pulled and transmitted to the ATM 6. Using this prior art system, no customer specific information reaches the ATM until after the user has entered its PIN.


SUMMARY OF INVENTION

In accordance with an exemplary embodiment of the present invention, a system and method is provided for an automated teller machine (ATM). In accordance with an exemplary embodiment of the present invention, a system and method is provided for an ATM having a display, a logic server coupled to the display, and a memory coupled to the logic server. Logic server dynamically modifies the functions presented to the user in response to the profile. The memory, which is accessible to the logic server, contains a profile of at least one user.


In use, the ATM detects a user's card. The card may be detected and read by any suitable means including optical recognition or electric or magnetic field or transmitted signal, etc. After detection, the ATM requests a profile of the user whose card was detected. The ATM then receives the user's profile and stores the user's profile in the ATM. The profile is stored in a memory accessible to the logic server. The functions presented to the user are modified in response to the profile.


The ATM is part of a larger banking system. The system includes a host, an ATM unit, and a network coupled to the host and ATM. The ATM has a display, a logic server coupled to the display and a memory. The logic server controls the content of screens to be displayed on the display, and the memory contains a profile of at least one user. communicate with each other over the network. The ATM and the host communicate with each other over the network. The ATM requests user profiles from the host. The host provides the profiles to the ATM over the network. The profiles are then stored at the ATM in a memory.


The host may be available to a personal device having a transmitter and a receiver. The host transmits financial information to the user based on a request received from the user via the personal device.





BRIEF DESCRIPTION OF THE DRAWINGS

For the purposes of illustrating the present invention, there is shown in the drawings a form which is presently preferred, it being understood however, that the invention is not limited to the precise form shown by the drawing in which:



FIG. 1 is a depiction of a prior art system;



FIG. 2 is a depiction of a system according to one embodiment of the invention;



FIG. 3 is an architecture and software overview according to one embodiment of the invention;



FIG. 3
a is a flow chart showing ATM access to a user profile/preferences according to one embodiment of the invention.



FIG. 3
b is a chart showing ATM access by a user in an typical environment according to one embodiment of the invention.



FIG. 4 shows a typical ATM screen according to the invention according to one embodiment of the invention;



FIG. 5 is a depiction of a system according to one embodiment of the invention;



FIG. 6 is a depiction of the network infrastructure according to one embodiment of the invention;



FIG. 7 is a depiction of the network infrastructure according to one embodiment of the invention;



FIG. 8 is a depiction of the network infrastructure according to one embodiment of the invention;



FIG. 9 is a depiction of the network infrastructure according to one embodiment of the invention;



FIG. 10 is a depiction of the network infrastructure according to one embodiment of the invention;



FIG. 11 is a depiction of the network infrastructure according to one embodiment of the invention;



FIG. 12 is a depiction of the system architecture; and



FIG. 13 is a flowchart of a transaction in ADA mode.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 2 depicts the technical framework in which a ATM 10 operates in accordance with the present invention. The overall system comprises the ATM 10 that is connected to a host 12 across a network 14. Host 12 stores a user's profile, i.e., fast cash preference, language preference, frequently used functions, special queries, last couple of uses, activity of children or others who have an associated account, gas pump information and the like. Further, a host 12 can authorize withdrawals up to a specified limit when a user's account data is unavailable or inaccessible. Network 14 can be a proprietary virtual private network, a DSL system, an ISDN network, T-1 lines, the Internet, and the like. The host 12 is connected to a delivery processor 16 that hosts middleware applications. Delivery processor 16 performs routing and reformatting functions. Delivery processor 16 acts as a transaction switch, interfacing the host to the account system files. The delivery processor 16 is in turn connected to the processor 18. Processor 18 controls access to profile data. Information stored under the control of processor 18 is transferred to the host 12 to be accessed and utilized by the ATM 10. Processor 18 contains a transaction system 20 (“TS”) and card reference file 22 (“CRF”) applications. The TS 20 and CRF 22 applications interface with the customer card data stored in database 24. ATM 10 may also be a kiosk, point of sale device at a merchant, a self check-out device at a merchant, ticket issuing device at subway or airport, gas pump or other similar kiosk type devices that provides services via a card similar to an ATM.


An optional personal device 11 may be an e-mail device, Personal Digital Assistant (“PDA”), cell phone, blackberry, or other device. Optional personal device 11 may communicate with host processor 6 across network 4 or across any suitable network including a proprietary network associated with optional personal device 11.


ATM 10 is a fully functional ATM in that it can accept deposits, dispense withdrawals, print receipts and statements, and provides a headphone jack for use by sight impaired users. In one embodiment of the present invention, ATM 10 is regulated by fraud and compliance systems operating in a client server environment. In a preferred embodiment, the ATM 10 utilizes an Ethernet TCP/IP telecommunications network 14 between the ATM 10 and Tandem host 12. ATM 10 can also utilize a wireless telecommunications network or any other communication system where messages can be transferred in a secure fashion.



FIG. 3 is an architecture and software overview. The major components of the system include a user interface 100, ATM interface 150, a host interface 130, TCP/IP network 140, and host 120.


The user interface 100 is the portion of the ATM 10 which enables a user to conduct various transactions at an ATM both by displaying information to the user as well as responding to the user instructions. Screen 102 displays the transaction options available to a user, displays the user's account information such as balances, displays instructions and in general, displays all of the information required by the user to interact with the ATM 10. As an alternative to the display screen 100, the system of the present invention may interact with the user through aural communication.


A customer may sends host 120 a text message or other digital message from optional personal device 11 requesting their balance or other information. Host 120 receives the message. The message may identify the customer by coming from either a registered address or carrying some information that identifies the customer who sent the message. Based on message identification of the customer, host 120 returns a message to the customer telling customer their balance or other information.


The logic server 104 determines the options made available to the user. Logic server 104 utilizes inputs from screen object section 106, multi-language engine 108, event handler 110, and ATM interface 150 to determine the options to display to the user.


Initially, when a user presents a bank card to the card reader of the ATM 10, the card may be swiped, inserted into a reader, or read by optical, electronic or other suitable means, then a message is sent to the host 120. The host 120 retrieves the customer's profile data (through elements 18, 16, 20, 22, and 24 in FIG. 2) and returns the user's profile to the logic server 104. The user's profile is stored in a memory that can be accessed by the logic server. The user's profile is transmitted as an IFX message in an XML packet. Logic server 104 reviews the customer's unique profile and determines which screen objects 106 to display and what language to use. Various language screens are generated using language engine 108. Depending upon the profile attributes received by logic server 104, i.e., language preference, the PIN entry screen is displayed the language specified by the profile. In a preferred embodiment of the invention, English is the default language. In one embodiment of the invention, the user profiles received by the ATM are stored in a database maintained and updated at the ATM.


In an alternative embodiment, a customer may authenticate or login to ATM 10 machine without an using ATM/Debit card. In this embodiment, money can be sent to a user whereby the user can access the money from ATM 10 without a card. This embodiment can be used with any suitable ATM machine. In another embodiment, an ATM may be accessed for small business deposits without a card. In this embodiment, logic server 104 may serve as an access manager. In this way a lower level employee may make a deposit without giving them a bank card. In another embodiment, access to ATM 10 may be administrable through a PC. In this embodiment, a user may adjust access and functions available for him/herself or for a person designated to have access. For example, the user may set withdrawal limits or enable access for deposits only.


In the transmission from host 120, logic server 104 receives other attributes including account types and rights associated with a given bank card. For example, a bank card for a business may be allowed access to deposits only, so that employees using the card cannot make withdrawals or view balances. The logic server 104 modifies the display and the options available to the user based on the business rules contained therein and the customer specific attributes transmitted from host 120.


The ability of the ATM 10 of the present invention to receive a user's profile is an extremely valuable tool for offering additional services to a user. A user's profile can contain more than an account listing, rights, and balances. The profile can contain a credit rating, recent purchases, i.e., a home, outstanding loans, and the like.



FIG. 3
a is a flow chart showing ATM access to a user profile/preferences. In an embodiment of the invention, a users preferences may be accessed immediately after the login screen. For example, when the card reader of the ATM 10 detects a users a bank card, a message is sent to the host 120 at step 400. The host 120 retrieves the customer's profile data (through elements 18, 16, 20, 22, and 24 in FIG. 2) and returns the user's profile to the logic server 104 at step 410. The user's profile is stored in a memory that can be accessed by the logic server. The user's profile is transmitted as an IFX message in an XML packet. In an another embodiment, the profile may be stored on the user's card, for example a smart card. In an another embodiment, the profile may be pre-stored on the memory of ATM 10, for example ATM 10 may be the user's home branch ATM which may store profile's for all users whose accounts are associated with that branch.


A users profile may include user preferences. For example, a customer may set preferences to show account summaries for all accounts when the customer logs in. Another preference may cause an ATM to automatically dispense $100 or a convenient preset customer amount, or prompt the user to confirm whether he wants that amount to be dispensed, every time the customer logs in to a specific ATM. Other personal options may be stored and activated upon login in keeping with the present invention.


Logic server 104 can be programmed with a series of business rules to analyze the user's profile and offer additional services. For example, if the user has an overdraft balance and a mortgage, an offer for a second mortgage or refinancing may appear. Similarly, if the user has a large balance in a savings or checking account brokerage or other investment services may be offered.


Logic server 104 can be programmed with a series of business rules to analyze the user's profile and provides coupons, messages (“alerts”), or other information to non-customer users based on the identity of the non-customer's bank. When the user logs on to a bank or other financial institution's ATM system (e.g., to obtain dispensed currency), the ATM 10 may identify the user's home banking institution. A message may be sent to the host 120, which may be a central banking system associated with the bank providing the ATM 10, which causes the host 120 to store a message identifying products or services that are offered by the bank providing the ATM 10 but not offered by the user's home banking institution. The message may be in the form of a grid or table. The message may be displayed to the user at ATM 10 in a manner that clearly conveys the products and services offered by the bank providing the ATM 10. For example, advertisements and other information (e.g., product descriptions) of those identified products and services may be provided to the user via the display at ATM 10. Other messages or alerts based on the users profile may be sent in keeping with the present invention.


In one embodiment, if a Bank that offers overnight payments identifies an ATM, user at an ATM it provides, whose home bank does not offer overnight payments, then the ATM may display a message asking “Does your bank offer overnight payments?” at a logout screen. An incentive to buy a corresponding Bank product or enroll in a corresponding Bank service may also be provided, such as a coupon or discount.


For the embodiments described herein, messages may be provided to the user through any interface provided by the bank or financial institution. For example, the interface may be the Internet, phone, ATM, bank branch, or other communication means. In an embodiment, messages may be displayed at the terminal touch-screen display or coupons may be coupled with a transaction receipt. A receipt may be delivered at an ATM and/or emailed to a customer. Because many users keep receipts for record-keeping purposes, the receipt may comprise a perforation with a detachable coupon.



FIG. 3
b is a In an embodiment of this invention, a bank may advertise branch products and services by providing coupons or advertisements for those products and services at an ATM 300 located near a particular bank branch 310. For example, a customer who uses the ATM 300 may receive a coupon 320 during an ATM transaction and then walks a short distance to the branch 310 to redeem the coupon 320. Because it is useful to motivate customers to act while they are in the vicinity of the branch 310, coupon 320 may have an expiration date that is relatively soon to ensure speedy redemption. ATM 300 may dispense coupon 320 based on the time of day so that branch-related ads are dispensed only during branch hours.


When a user uses a bank ATM 330 provided by a bank other than its home ATM 300 the transaction usually is accompanied by a corresponding fee. During a subsequent transaction at an ATM 300 or other bank interface provided by the users home bank, a message may be passed to the Bank customer indicating the location of an ATM, for example ATM 300 provided by the users home bank that could have been used instead of the other bank's ATM, for example ATM 330, to avoid the fee. For example, the ATM 300 may display the message: “You paid an unnecessary fee at another bank's ATM. Your Bank has an ATM one block from the ATM that charged you a fee. Next time, use our nearby ATM and avoid the fee.” The ATM 300 may also provide a map and directions indicating the corresponding nearby ATM and possibly the other bank's ATM to show the short distance between the two ATM's. In another embodiment, the Bank may identify every fee type and how it may be avoided. For instance, the bank providing the ATM 300 may indicate via a message that upgrading a customer's account would avoid a particular fee.


ATM 300 may be located near or inside a merchant 350 may provide products or services and/or otherwise facilitates sales and marketing associated with merchant 350. In an embodiment of the invention, a customer may browse and purchase nearby merchants products at ATM 300. For example a restaurant patron may order food at ATM 300 and then pick it up at a service counter at restaurant 340. In one embodiment, a customer may use funds associated with their banking card to purchase products associated with merchant 350. In another example, a traveler may print an airline boarding pass and security document at ATM 300, if ATM 300 is near their gate. Many retailers benefit from the existence of ATMs in or near their store because shoppers are more likely to make purchases when they have cash in hand.


In some embodiments of the invention, a partner user interface is combined with an ATM terminal into one multi-purpose terminal (or the two interfaces are located very close to one another). In one embodiment, a gas dispenser at a gas station is combined with an ATM forming an ATM/gas pump 360 so that a gas customer can get cash and pay bills while pumping gas. The ATM/gas pump 360 may also enable the customer to access a gas card account, pay for gas with an ATM card, and access other gas station functions.


Logic server 104 interacts with event handler 110 to process hardware events from the physical portions of the ATM 10. The event handler 110 passes messages to the logic server 104 that relate to the functioning of the ATM. ATM interface 120, and specifically core services portion 122 passes these messages to event handler 110 to provide notification of hardware events to logic server 104. Core services portion 122 constantly monitors the operation of the physical portions ATM 10 (e.g., the cash dispenser, the deposit receiver, the printer). If a portion of the unit malfunctions or the ATM 10 is unable to perform a task, such as dispense cash, a hardware event occurs. This hardware event is provided to the logic server 104, which in conjunction with screen object 106, will remove the “withdrawal” button from the display (for this particular hardware event). In one embodiment of the invention, the display screen will also be modified by logic server 104 to notify users that the ATM 10 is unable to perform a function, such as dispense cash, prior to the user swiping the bank card.


All of the actions taken by logic server 104 are governed by various business rules. Business rules are implemented as programming logic contained within the logic server 104 in the ATM 10. These business rules, in one function, streamline the user's session by eliminating transactions not available to the user. This is a significant departure from prior art ATMs where the same transactions options are displayed at the ATM to every user, and are then denied by the host when it is determined that the requested transaction is not available to the user. With ATM 10 of the present invention, the “intelligence” is available within the ATM 10 itself, to logically control the menu options, such as the buttons and accounts, using business rules logic. As previously described, the pre-defined business rules interact with the user's unique profile (transmitted to ATM 10) to control the screen and options available to the user. For example, if the user's received profile indicates that card being employed by the user is only authorized to make deposits and not withdrawals, the options for making withdrawals is never presented to the user.


In a preferred embodiment of the present invention, business rules are implemented at a high level control in an Institution Definition File (IDF). In this embodiment of the invention, an IDF is defined for each proprietary card type and is contained in the user's profile associated with the card. In this IDF, there are two attributes or flags available, one to allow PIN Change and one to allow Profile Changes. These parameters are set to a “Yes” or “No” as to whether or not to allow these Pin and Profile change operations.


In general, all customers using the ATM 10 of the present invention have the ability to perform the same transactions that they can perform with the prior art ATMs. In a significant departure from the prior art, however, if a customer was unable to perform a transaction in a prior art ATM (e.g., transfers between accounts because the user only had one account) the ATM 10 of the present invention does not even present that option to the user. For example, if the customers cannot perform account transfers, the ATM 10 never displays the transaction button associated with that function to the user. As previously described, the modification of the selection menus is performed locally by the logic server 104 operating on the predefined business rules and the customer profile.



FIG. 4 illustrated an example of a preferred ATM screen 40 presented to the user in accordance with the present invention. At the Main screen 40 the following folder tabs are active/available: Access My Accounts 42; Access Bank Services 44; Access Information 46; and Customize My eATM 48. The information displayed is modified as various business rules are executed against the customer's profile. For example, in one embodiment of the present invention, the “Get Fast Cash” button is not displayed when: a proprietary customer does not have a checking account; a customer is using a proprietary credit card; a customer is using a business limited function card (deposit only); customer profile contains a checking account indicator of “deposit only allowed”; or the ATM 10 is unable to dispense cash. As seen above, some of these conditions which cause the displayed options to be modified are found in the customer profile and some relate the physical conditions at the specific ATM 10 being used by the customer.


In another embodiment of the present invention, there are also business rules that determine when the “Get Cash” button is or is not displayed. The “Get Cash” button is not displayed when: a customer is using a business limited function card (deposit only) or when the ATM is unable to dispense cash. Additionally, the accounts that can be displayed are determined by logic server 104 according to predefined rules and the customer's profile. For example, checking accounts are not displayed when a customer is using a proprietary credit card, a customer is using a business limited function card (deposit only), or customer profile returns an account indicator of “deposit only allowed.” Similar rules also exist regarding the display of saving accounts and credit accounts. To streamline ATM use, the “Transfer Funds” button is not displayed when the user does not have more than one account or if the user is utilizing a business limited card. Additionally, the display of accounts available for “transfer from” and “transfer to” change in response to the selections that are made by the customer as well as in response to the attributes (i.e., the customer's actual accounts) contained in the user's profile. For example, credit accounts are not displayed as a transfer destination when a user elects to transfer funds from a credit account and a selected account will not appear in both the “transfer from” and “transfer to” categories.


Business rules also exist for the “Make Deposit” and “Get Statement” buttons. The business rules are based on account types, card functionality, card rights, availability of banking institution records, ATM functionality, or status, and the like. As discussed above, if logic server 104 receives a hardware event that a printer is malfunctioning or out of paper, the display items associated with the malfunctioning equipment are not displayed (e.g., Print a Statement).


The ATM 10 of the present invention allows users to customize the ATM 10 features and functionality through their profiles. For example, users can change their PIN, customize the fast cash amount, change the language preference, establish defaults for fund transfers, and the like. Additionally, users can schedule one time and recurring payments through the ATM 10.


When a user customizes a feature of the ATM 10, this data is transferred from the host interface 130 (FIG. 3) across the TCP/IP network 140 to the host 120 where it the customization changes are permanently stored in the customer's profile contained in the database 24. The ATM 10 communicates with host 120 using Interactive Financial Exchange (“IFX”) and NDC format commands. However, all communication can be conducted using IFX commands or other command formats. In an another embodiment, optional personal device 11 may communicate with the host via suitable means, for example a wireless network.


IFX is an XML-based communication protocol that enables the exchange of information between financial institutions and their customers, their service providers, and other financial institutions. IFX was initially developed for Internet banking, not for ATM applications. IFX commands are used for PIN change, profile request, and profile preference change. No corresponding commands exist for these functions in the NDC format. Additionally, IFX can be used for withdrawal, balance inquiry, statement, deposit, payment, and transfer commands.


As shown in FIG. 3, to accommodate the IFX command format, the host interface 130 has an IFX proxy module 132 and the host 120 has a corresponding device handler 122. In one embodiment of the invention, device handler 122 translates IFX format commands into Base24, an industry standard program language. The use of IFX allows more complex communication between the host 120 and the ATM 10. The NDC command format does not support interactive commands, as does IFX. Further, IFX has been expanded herein to include such features as profile requests, previously unavailable in an ATM.



FIG. 5 is a depiction of a system according to one embodiment of the invention. The ATM 10 communicates with a host 12 to authenticate users. Once a user is authorized, information stored in the host's files is accessible to the ATM 10. The host stores a user's profile, which is updated, as required, by processors 16 and 18. When a user attempts to make a withdrawal, the host 12 will verify funds in the user's account with processor 18. If processor 18 is unavailable host 12 is able to authorize a withdrawal. The amount of the withdrawal is stored and the users account is updated when processor 18 is available. In one embodiment, a user can withdraw a maximum amount without receiving fund availability from processor 18. In one embodiment of the invention, the relevant files regarding a user are transmitted to the ATM including current balances. In this manner, the ATM 10 does not have to constantly seek information from the host 12. After a transaction is completed, the ATM will send a message to the host 12 updating the current account balances. In one embodiment of the invention, only one ATM can access an account at a time to prevent multiple withdrawal of the same funds.



FIGS. 6-11 show the ATM 10 using various network infrastructures. FIG. 6 depicts the ATM 10 coupled to a host 12a or 12b via an Ethernet infrastructure. Each of the ATMs 10 is coupled to a primary host, 12a or 12b. Each ATM 10 is alternately connected to the other host as a back up if the primary host experiences a failure. Further, the ATMs 10 at a single branch or location are not all connected to the same primary host. This insures that if a primary host goes down, the ATMs 10 connected to the other host still function. If a host does go down, the ATMs 10 connected to that host will automatically be routed to their backup hosts. FIG. 7 is a depiction of a network utilizing a remote DSL network infrastructure. The operation of the ATMs 10 in this type of network is essentially the same as those described previously. FIG. 8 is a depiction of a network utilizing a branch Ethernet network infrastructure. FIG. 9 is an alternate embodiment of a remote DSL network infrastructure including a security device. As shown in FIG. 10, the ATMs 10 as well as the branch PCs can utilize the same ISDN network. Finally, FIG. 11 shows another embodiment of a DSL infrastructure.



FIG. 12 is a depiction of the system architecture. As shown ATMs 10 are coupled to hosts. These hosts 120 are coupled for redundancy and back up purposes. Each host 120 is capable of communicating with other banks via ATM networks such as Pulse, NYCE, Cirrus, and the like. The ATM 10 is able to communicate with the provider's servers, using IFX or another command format, to request user profiles. The Logic server 104 in the ATM 10; is then able to customize the display and service offerings to present the user with a familiar display.


The ATM 10 of the present invention is also capable of operating in a mode for disabled persons, particularly those that are sight impaired (“ADA mode”). A Braille keypad is used for navigation. The ATM 10 enters the ADA mode when a headset is plugged into a headset port of the ATM. The ATM interface 120 (FIG. 3) detects the headset and a hardware event occurs. The hardware event causes the logic server 104 to blank the screen or display a logo or other non-transaction display. Transactions are not displayed for security purposes. The ATM 10 then uses voice commands to relay the information that would normally appear on the screen to the ADA user. The voice commands are either .wav files or synthesized speech. Synthesized speech is used in the preferred embodiment.


When the ATM is in ADA mode, logic server 104 manages the Voice commands in a manner similar to the manner in which screen objects are managed. The logic server 104 selects screen objects using the same business rules as the non-ADA mode. These screen objects are then speech synthesized and presented to the user. In this manner, the messages the user hears are dynamically changed, similar to the way the screen objects are modified in the non-ADA mode.



FIG. 13 is a flowchart of a transaction in ADA mode. At the outset, the ATM 10 is awaiting a customer, displaying a welcome screen (Step 50). The ATM 10 is constantly monitoring whether a headset is plugged into the ATM 10 (Step 51). Once the headset is detected, the screen is blanked and the ADA welcome begins (Step 52). To enter the ADA mode the user must press enter after the welcome script (Step 53). Once the user presses enter, the system informs the user of the selections available on the main screen and instruct the user on how to make a given selection (Step 54). Using the logic server 104 and a voice synthesizer, the selections an ADA user hears are identical to those presented to a sighted user in the non-ADA mode. The user then makes a selection and presents the bank card for detection (Steps 55-59). Once the card is detected, the user's profile is transmitted and the user is prompted to enter a PIN (Steps 59-61). The user is now able to complete the transaction i.e., make a withdrawal (Step 62). Alternatively, the user can present to card for detection and enter a PIN before plugging in the headset or immediately after plugging in the headset.


Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein, but only by the appended claims.

Claims
  • 1. A method of operating an Automated Teller Machine (ATM) comprising: detecting a user's card at the ATM, wherein the ATM is communicatively coupled to a host through a computer network, wherein the ATM comprises a user interface and a logic server;identifying a home bank of the user wherein the home bank of the user is at least one bank or financial institution through which the user maintains at least one account or which provides financial services to the user;requesting a profile of the user wherein the user's profile comprises information about the home bank of the user and a set of at least one user selected preference; andmodifying or personalizing functions presented to the user via the ATM in response to the user's profile wherein the functions presented are modified or personalized based on the home bank of the user and the set of at least one user selected preference.
  • 2. The method of claim 1, wherein the user's profile is received from a host.
  • 3. The method of claim 1, wherein the user's profile is received from the user's card.
  • 4. The method of claim 1, wherein the user's profile is received from a memory operably connected to the ATM.
  • 5. The method as recited in claim 1, further comprising the step of: displaying, at the ATM, a message that is based on the home bank of the user.
  • 6. The method as recited in claim 1, further comprising the step of: sending a message to the user, wherein the message comprises one or more of the following: Internet message, phone message, email, regular mail.
  • 7. The message as recited in claim 6, wherein the message shows services available from a bank providing the ATM wherein the services in the message are not available from the user's home bank.
  • 8. The ATM as recited in claim 6, wherein the message informs the user of a method of avoiding a fee associated with the ATM.
  • 9. The method as recited in claim 1, further comprising the step of: printing a coupon that is based on the home bank of the user.
  • 10. The method as recited in claim 1, further comprising the step of: printing a coupon that is based on an associated merchant, wherein an associated merchant is a merchant providing products or services through the ATM, wherein the user can browse, at the ATM, the products or services provided by the associated merchant.
  • 11. The method as recited in claim 1, further comprising the step of: displaying an offer for a service that is offered by an associated merchant, wherein an associated merchant is a merchant providing services through the ATM.
  • 12. The method as recited in claim 1, further comprising the step of: displaying an offer for a product that is offered by an associated merchant, wherein an associated merchant is a merchant providing products through the ATM.
  • 13. The method as recited in claim 1, further comprising the step of: displaying a message identifying products available from a bank providing the ATM but not available from the home bank when the home bank of the user is different than the bank providing the ATM.
  • 14. The method as recited in claim 1, further comprising the step of: displaying a message identifying services available from a bank providing the ATM but not available from the home bank when the home bank of the user is different than the bank providing the ATM.
  • 15. The method of claim 1 wherein the user's profile is stored at the ATM.
  • 16. A method of operating an Automated Teller Machine (ATM) comprising: logging into the ATM without using a card;identifying a home bank of the user wherein the home bank of the user is at least one bank or financial institution through which the user maintains at least one account or which provides financial services to the user;requesting a user's profile wherein the user's profile comprises information about the home bank of the user and a set of at least one user selected preference;receiving the user's profile at the ATM;storing the user's profile; andmodifying or personalizing functions presented to the user via the ATM in response to the user's profile wherein the functions presented are customized based on information about the home bank of the user and the set of at least one user selected preference.
  • 17. A method of operating an Automated Teller Machine (ATM) comprising: detecting a user's card at the ATM, wherein the ATM is communicatively coupled to a host through a computer network, wherein the ATM comprises a user interface and a logic server;identifying a home bank of the user wherein the home bank of the user is at least one bank or financial institution through which the user maintains at least one account or which provides financial services to the user;requesting a user's profile from the host, wherein the user's profile comprises information about the user, including at least one user selected preference and the home bank of the user;modifying or personalizing functions presented to the user at the ATM by the logic server, wherein the functions presented are modified or personalized based on the user's profile;identifying products and services available from a financial institution associated with the ATM, wherein the products and services are not available from the home bank of the user; anddisplaying a message that contains the identified products and services.
  • 18. A method of operating an Automated Teller Machine (ATM) comprising: detecting a user's card at the ATM, wherein the ATM is communicatively coupled to a host through a computer network, wherein the ATM comprises a user interface and a logic server;identifying a home bank of the user wherein the home bank of the user is at least one bank or financial institution through which the user maintains at least one account or which provides financial services to the user;requesting a user's profile from the host, wherein the user's profile comprises information about the user, including at least one user selected preference and the home bank of the user;modifying or personalizing functions presented to the user at the ATM by the logic server, wherein the functions presented are modified or personalized based on the user's profile;displaying one or more products or services associated with a merchant, wherein the user can browse the product or services; andreceiving a transaction request for purchase of one or more products or services from the user.
  • 19. A method of operating an Automated Teller Machine (ATM) comprising: detecting a user's card at the ATM, wherein the ATM is communicatively coupled to a host through a computer network, wherein the ATM comprises a user interface and a logic server and the ATM is associated with a bank or financial institution that differs from a home bank of the user, wherein the home bank of the user is at least one bank or financial institution through which the user maintains at least one account or which provides financial services to the user;identifying the home bank of the user;requesting a user's profile from the host, wherein the user's profile comprises information about the user, including at least one user selected preference and the home bank of the user; andmodifying or personalizing functions presented to the user at the ATM by the logic server, wherein the functions presented are modified or personalized based on the user's profile.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 10/266,838, filed on Oct. 7, 2002 and entitled “Web Enabled Bank Teller Machine,” which claims priority to U.S. Provisional Application No. 60/327,517, filed on Oct. 5, 2001, and the entirety of both of which are incorporated herein by reference.

US Referenced Citations (313)
Number Name Date Kind
3653480 Yamamoto et al. Apr 1972 A
4205780 Burns Jun 1980 A
4321672 Braun et al. Mar 1982 A
4396985 Ohara Aug 1983 A
4495018 Vohrer Jan 1985 A
4617457 Myers Oct 1986 A
4672377 Murphy Jun 1987 A
4700055 Kashkashian, Jr. Oct 1987 A
4752877 Roberts et al. Jun 1988 A
4797913 Kaplan Jan 1989 A
4799156 Shavit Jan 1989 A
4812628 Boston Mar 1989 A
4823264 Deming Apr 1989 A
4931793 Fuhrmann et al. Jun 1990 A
4948174 Thomson et al. Aug 1990 A
4974878 Josephson Dec 1990 A
4988849 Sasaki Jan 1991 A
4992646 Collin Feb 1991 A
5023904 Kaplan Jun 1991 A
5053607 Carlson Oct 1991 A
5054096 Beizer Oct 1991 A
5080748 Bonomi Jan 1992 A
5111395 Smith May 1992 A
5121945 Thomson et al. Jun 1992 A
5122950 Mee Jun 1992 A
5136502 Van Remortel et al. Aug 1992 A
5175682 Higashiyama Dec 1992 A
5198975 Baker et al. Mar 1993 A
5220501 Lawlor Jun 1993 A
5225978 Peterson Jul 1993 A
5237159 Stephens Aug 1993 A
5283829 Anderson Feb 1994 A
5287269 Dorrough et al. Feb 1994 A
5311594 Penzias May 1994 A
5315508 Bain et al. May 1994 A
5321238 Watanabe Jun 1994 A
5326959 Perazza Jul 1994 A
5336870 Hughes Aug 1994 A
5343529 Goldfine et al. Aug 1994 A
5350906 Brody et al. Sep 1994 A
5367581 VanHorn Nov 1994 A
5373550 Campbell Dec 1994 A
5396417 Burks Mar 1995 A
5402474 Miller Mar 1995 A
5412190 Kopesec May 1995 A
5424938 Wagner Jun 1995 A
5430644 Deaton et al. Jul 1995 A
5432506 Chapman Jul 1995 A
5444794 Uhland Aug 1995 A
5444841 Glaser et al. Aug 1995 A
5446740 Yien Aug 1995 A
5448471 Deaton et al. Sep 1995 A
5465206 Hilt et al. Nov 1995 A
5477040 Lalonde Dec 1995 A
5479494 Clitherow Dec 1995 A
5483445 Pickering Jan 1996 A
5484988 Hills Jan 1996 A
5502576 Ramsay et al. Mar 1996 A
5504677 Pollin Apr 1996 A
5506691 Bednar et al. Apr 1996 A
5513250 McAllister Apr 1996 A
5532464 Josephson et al. Jul 1996 A
5544046 Niwa Aug 1996 A
5550734 Tater Aug 1996 A
5551021 Harada Aug 1996 A
5557515 Abbruzzese et al. Sep 1996 A
5563400 Le Roux Oct 1996 A
5566330 Sheffield Oct 1996 A
5568489 Yien Oct 1996 A
5570465 Tsakanikas Oct 1996 A
5572004 Raimann Nov 1996 A
5583759 Geer Dec 1996 A
5583760 Klesse Dec 1996 A
5590196 Moreau Dec 1996 A
5590197 Chen Dec 1996 A
5592377 Lipkin Jan 1997 A
5592378 Cameron Jan 1997 A
5599528 Igaki Feb 1997 A
5603025 Tabb Feb 1997 A
5615109 Eder Mar 1997 A
5619558 Jheeta Apr 1997 A
5621201 Langhans Apr 1997 A
5640577 Scharmer Jun 1997 A
5642419 Rosen Jun 1997 A
5649117 Landry Jul 1997 A
5650604 Marcous et al. Jul 1997 A
5652786 Rogers Jul 1997 A
5659165 Jennings Aug 1997 A
5659469 Deaton et al. Aug 1997 A
5659741 Eberhardt Aug 1997 A
5666493 Wojcik et al. Sep 1997 A
5677955 Doggett et al. Oct 1997 A
5679938 Templeton Oct 1997 A
5679940 Templeton Oct 1997 A
5692132 Hogan Nov 1997 A
5699528 Hogan Dec 1997 A
5703344 Bezy et al. Dec 1997 A
5704044 Tarter et al. Dec 1997 A
5708422 Blonder et al. Jan 1998 A
5715298 Rogers Feb 1998 A
5715314 Payne Feb 1998 A
5715399 Bezos Feb 1998 A
5717989 Tozzoli et al. Feb 1998 A
5724424 Gifford Mar 1998 A
5727249 Powell Mar 1998 A
5748780 Stolfo May 1998 A
5751842 Eccles May 1998 A
5757917 Rose et al. May 1998 A
5770843 Rose et al. Jun 1998 A
5774553 Rosen Jun 1998 A
5784696 Melnikof Jul 1998 A
5793861 Haigh Aug 1998 A
5794221 Egendorf Aug 1998 A
5802498 Comesanas Sep 1998 A
5802499 Sampson et al. Sep 1998 A
5819236 Josephson Oct 1998 A
5819238 Fernholz Oct 1998 A
5826241 Stein Oct 1998 A
5826245 Sandberg-Diment Oct 1998 A
5832447 Rieker Nov 1998 A
5832460 Bednar Nov 1998 A
5832463 Houvener et al. Nov 1998 A
5832464 Houvener et al. Nov 1998 A
5832488 Eberhardt Nov 1998 A
5835580 Fraser Nov 1998 A
5835603 Coutts Nov 1998 A
5835899 Rose et al. Nov 1998 A
5852812 Reeder Dec 1998 A
5859419 Wynn Jan 1999 A
5864609 Cross et al. Jan 1999 A
5870456 Rogers Feb 1999 A
5870721 Norris Feb 1999 A
5870723 Pare Feb 1999 A
5870725 Bellnger et al. Feb 1999 A
5873072 Kight Feb 1999 A
5883810 Franklin et al. Mar 1999 A
5884288 Chang Mar 1999 A
5897625 Gustin Apr 1999 A
5898157 Mangili et al. Apr 1999 A
5903881 Schrader May 1999 A
5910896 Hahn-Carlson Jun 1999 A
5910988 Ballard Jun 1999 A
5915246 Patterson et al. Jun 1999 A
5917965 Cahill et al. Jun 1999 A
5920847 Kolling et al. Jul 1999 A
5930778 Geer Jul 1999 A
5937396 Konya Aug 1999 A
5940811 Norris Aug 1999 A
5940844 Cahill et al. Aug 1999 A
5943656 Crooks Aug 1999 A
5945653 Walker et al. Aug 1999 A
5956700 Landry Sep 1999 A
5963647 Downing et al. Oct 1999 A
5963659 Cahill et al. Oct 1999 A
5963925 Kolling et al. Oct 1999 A
5966698 Pollin Oct 1999 A
5978780 Watson Nov 1999 A
5987435 Weiss et al. Nov 1999 A
5987436 Halbrook Nov 1999 A
5987439 Gustin et al. Nov 1999 A
5991750 Watson Nov 1999 A
6000832 Franklin et al. Dec 1999 A
6002767 Kramer Dec 1999 A
6003762 Hayashida Dec 1999 A
6006208 Forst et al. Dec 1999 A
6009442 Chen et al. Dec 1999 A
6014636 Reeder Jan 2000 A
6016482 Molinari et al. Jan 2000 A
6029139 Cunningham et al. Feb 2000 A
6032133 Hilt et al. Feb 2000 A
6032137 Hallard Feb 2000 A
6035281 Crosskey et al. Mar 2000 A
6035285 Schlect et al. Mar 2000 A
6035287 Stallaert et al. Mar 2000 A
6038553 Hyde, Jr. Mar 2000 A
6041312 Bickerton et al. Mar 2000 A
6041315 Pollin Mar 2000 A
6044362 Neely Mar 2000 A
6045039 Stinson et al. Apr 2000 A
6047261 Siefert Apr 2000 A
6052674 Zervides et al. Apr 2000 A
6058380 Anderson et al. May 2000 A
6058381 Nelson May 2000 A
6061665 Bahreman May 2000 A
6065675 Teicher May 2000 A
6067524 Byerly et al. May 2000 A
6070150 Remington et al. May 2000 A
6070798 Nethery Jun 2000 A
6073104 Field Jun 2000 A
6073113 Guinan Jun 2000 A
6076072 Libman Jun 2000 A
6078907 Lamm Jun 2000 A
6081790 Rosen Jun 2000 A
6085168 Mori et al. Jul 2000 A
6088683 Jalili Jul 2000 A
6088685 Kiron et al. Jul 2000 A
6088686 Walker et al. Jul 2000 A
6092056 Tull, Jr. et al. Jul 2000 A
6098053 Slater Aug 2000 A
6098070 Maxwell Aug 2000 A
6105011 Morrison, Jr. Aug 2000 A
6108639 Walker et al. Aug 2000 A
6110044 Stern Aug 2000 A
6111858 Greaves et al. Aug 2000 A
6115690 Wong Sep 2000 A
6119106 Mersky et al. Sep 2000 A
6119107 Polk Sep 2000 A
6125354 MacFarlane et al. Sep 2000 A
6128602 Northington et al. Oct 2000 A
6128603 Dent et al. Oct 2000 A
6129273 Shah Oct 2000 A
6138118 Koppstein et al. Oct 2000 A
6144946 Iwamura Nov 2000 A
6148293 King Nov 2000 A
6149056 Stinson et al. Nov 2000 A
6173272 Thomas et al. Jan 2001 B1
6181837 Cahill et al. Jan 2001 B1
6185544 Sakamoto et al. Feb 2001 B1
6202054 Lawlor et al. Mar 2001 B1
6205433 Boesch et al. Mar 2001 B1
6213391 Lewis Apr 2001 B1
6227447 Campisano May 2001 B1
6233566 Levine et al. May 2001 B1
6236972 Shkedy May 2001 B1
6240444 Fin et al. May 2001 B1
6278981 Dembo et al. Aug 2001 B1
6289322 Kitchen et al. Sep 2001 B1
6301379 Thompson et al. Oct 2001 B1
6304858 Mosler et al. Oct 2001 B1
6321212 Lange Nov 2001 B1
6336148 Doong et al. Jan 2002 B1
6338047 Wallman Jan 2002 B1
6338049 Walker et al. Jan 2002 B1
6366967 Wagner Apr 2002 B1
6374235 Chen et al. Apr 2002 B1
6393409 Young et al. May 2002 B2
6405173 Honarvar et al. Jun 2002 B1
6415259 Wolfinger et al. Jul 2002 B1
6418419 Nieboer et al. Jul 2002 B1
6418420 DiGiorgio et al. Jul 2002 B1
6418430 DeFazio et al. Jul 2002 B1
6488203 Stoutenburg et al. Dec 2002 B1
6490568 Omara et al. Dec 2002 B1
6493685 Ensel et al. Dec 2002 B1
6502747 Stoutenburg et al. Jan 2003 B1
6536663 Lozier et al. Mar 2003 B1
6554184 Amos Apr 2003 B1
6574377 Cahill et al. Jun 2003 B1
6578015 Haseltine et al. Jun 2003 B1
6609113 O'Leary et al. Aug 2003 B1
6609125 Layne et al. Aug 2003 B1
6629081 Cornelius et al. Sep 2003 B1
6704714 O'Leary et al. Mar 2004 B1
6721715 Nemzow Apr 2004 B2
6736314 Cooper et al. May 2004 B2
6761309 Stoutenburg et al. Jul 2004 B2
6769605 Magness Aug 2004 B1
7070094 Stoutenburg et al. Jul 2006 B2
7376622 Padalino et al. May 2008 B1
7424970 Royce-Winston et al. Sep 2008 B2
7606734 Baig et al. Oct 2009 B2
7610222 Neofytides et al. Oct 2009 B2
7617157 Seifert et al. Nov 2009 B2
20010018739 Anderson et al. Aug 2001 A1
20010037300 Miyazaki et al. Nov 2001 A1
20010037309 Vrain Nov 2001 A1
20010044747 Ramachandran et al. Nov 2001 A1
20010047334 Nappe et al. Nov 2001 A1
20010047489 Ito et al. Nov 2001 A1
20010051533 Wietzke et al. Dec 2001 A1
20020012445 Perry Jan 2002 A1
20020013728 Wilkman Jan 2002 A1
20020026394 Savage et al. Feb 2002 A1
20020038363 MacLean Mar 2002 A1
20020052842 Schuba et al. May 2002 A1
20020069134 Solomon Jun 2002 A1
20020077978 O'Leary et al. Jun 2002 A1
20020087462 Seifert et al. Jul 2002 A1
20020087468 Ganesan et al. Jul 2002 A1
20020091635 Dilip et al. Jul 2002 A1
20020107770 Meyer et al. Aug 2002 A1
20020107788 Cunningham Aug 2002 A1
20020111837 Aupperle Aug 2002 A1
20020138398 Kalin et al. Sep 2002 A1
20020138432 Makino et al. Sep 2002 A1
20020170966 Hannigan et al. Nov 2002 A1
20020178071 Walker et al. Nov 2002 A1
20020194096 Falcone et al. Dec 2002 A1
20020195486 Erb et al. Dec 2002 A1
20020198817 Dhir Dec 2002 A1
20020199182 Whitehead Dec 2002 A1
20030018557 Gilbert et al. Jan 2003 A1
20030040959 Fei et al. Feb 2003 A1
20030046218 Albanese et al. Mar 2003 A1
20030097335 Moskowitz et al. May 2003 A1
20030105641 Lewis Jun 2003 A1
20030163415 Shanny et al. Aug 2003 A1
20030208421 Vicknair et al. Nov 2003 A1
20030208441 Poplawski et al. Nov 2003 A1
20030217005 Drummond et al. Nov 2003 A1
20030225663 Horan et al. Dec 2003 A1
20030233305 Solomon Dec 2003 A1
20040078328 Talbert et al. Apr 2004 A1
20050033690 Antognini et al. Feb 2005 A1
20050119969 Michelsen et al. Jun 2005 A1
20060191999 Stoutenburg et al. Aug 2006 A1
20060277144 Ranzini et al. Dec 2006 A1
20070187484 Cooper et al. Aug 2007 A1
20080195541 Battaglini et al. Aug 2008 A1
20080203150 Royce-Winston et al. Aug 2008 A1
20080210752 March Sep 2008 A1
20080215487 Stoutenburg et al. Sep 2008 A1
20090265272 Dill et al. Oct 2009 A1
Foreign Referenced Citations (17)
Number Date Country
0099999 Jul 1983 EP
421808 Apr 1991 EP
1014318 Jun 2000 EP
WO 9116691 Oct 1991 WO
WO 9308545 Apr 1993 WO
WO 9428497 Dec 1994 WO
WO 9608783 Mar 1996 WO
WO 9612242 Apr 1996 WO
WO 9745796 Dec 1997 WO
WO 9745814 Dec 1997 WO
WO 9809260 Mar 1998 WO
WO 9910823 Mar 1999 WO
WO 0039979 Jul 2000 WO
WO 0175730 Oct 2001 WO
WO 02063432 Aug 2002 WO
WO 2004079603 Sep 2004 WO
WO 2006013218 Feb 2006 WO
Related Publications (1)
Number Date Country
20060038004 A1 Feb 2006 US
Provisional Applications (1)
Number Date Country
60327517 Oct 2001 US
Continuation in Parts (1)
Number Date Country
Parent 10266838 Oct 2002 US
Child 11185847 US