The present invention generally relates to automated banking machines and more particularly relates to an automated banking machine that is dynamically updated from a host system.
Automated banking machines are well known. A common type of automated banking machine used by consumers is an Automated Teller Machine (hereinafter “ATM”). ATMs enable customers to carry out a variety of banking transactions by interacting with the machine rather than a human teller. Examples of banking transactions that are commonly carried out using ATMs include withdrawals, deposits, transfer of funds between accounts, payment of bills, and account balance inquiries. The types of transactions that a customer may carry out at a particular ATM are determined by hardware and software configuration of that particular ATM as well as the hardware and software configuration of the institution to which the particular ATM is connected. Other types of automated banking machines may allow customers to charge against accounts, or print or dispense items of value such as statements, coupons, tickets, wagering slips, vouchers, checks, food stamps, money orders, scrip or travelers checks.
The architecture of prior art ATMs renders these machines extremely inflexible. Current ATM architecture is based on traditional hierarchical software and a closed system. Most significantly, the functionality offer through an ATM is fixed at the time the ATM is physically installed or physically visited for purposes of upgrading the machine. The software used for the operation of the ATM is typically contained in firmware installed in the machine, which is fixed and difficult to upgrade. Furthermore, when in operation, the ATM acts primarily as a “dumb” terminal to the remote host (i.e., the financial institution). Little if any logic related to a customer's session with the ATM is contained within the ATM, but is rather stored and executed at the host site. This traditional approach to ATM design and operation results in long development time, increased time to market, inflexible and expensive upgrades, inflexible user functionality, inflexible user interfaces and inordinate dependency on hardware and software developers.
Prior art ATMs are typically connected to proprietary communications networks in order to allow customers to use ATMs provided by those other than its own financial institution. These networks interconnect the ATMs operated by financial institutions and other entities. Some examples of these networks include the NYCE™ and STAR™ systems. The interconnection capability of these networks enables a user to access his accounts at his own financial institution while using a banking machine operated by different institution. This interconnection capability is available so long as the foreign institution's banking machine is connected to a network (e.g., NYCE™ to which the user's home financial institution is also connected. When using such a “foreign” ATM, the user is limited to the transaction options provided by the foreign institution and the options available at the specific ATM being used.
A customer may encounter difficulties when using a foreign institution's ATM. Such difficulties may occur because the user is not familiar with the type of machine operated by the institution. Customer confusion may result because the customer does not know which buttons or other physical mechanisms are required to be actuated to accomplish the desired transactions. Furthermore, the transaction flow (e.g., the series of menu options) presented to a customer at a foreign institution's machine may be significantly different from the machines with which the customer is familiar at the user's institution. This is a problem particularly when the user is from another country and is not familiar with the type of banking machine or the language of the interface provided by the (truly) “foreign” institution. Likewise, the documents, that are generated by the ATM printer, are generally limited to a limited group of defined formats in a single language (e.g., English). Further, the user may be presented with options that are inappropriate for the user's accounts.
A foreign institution's ATMs may also provide more, less, or a different type of transaction than the user is familiar with at their home institutions ATMs. For example, the ATMs at the user's home institution may enable the transfer of funds between the user's accounts. This particular transaction enables the user to maintain funds in higher interest bearing accounts until they are needed. If the foreign institution does not provide this capability, the user will be unable to perform this familiar (and sometimes necessary) function when operating the foreign ATM machine. The inability of a user at a foreign machine to conduct the transactions to which they are accustomed may present problems (e.g., transferring funds into a checking account prior to a scheduled automatic withdrawal.
A foreign institution's ATM also lacks the ability to market directly to the user. For example, the foreign institution's ATM may provide functions, services or products which are not available at the user's home institution.
The need to use an ATM card to access an ATM is a further disadvantage of a “dumb terminal” type ATM because it limits the ability to give users access on a temporary basis or to tailor the access to particular functions based on the user. Additionally, card-less access to some display only functions of the ATM is not currently available on personal devices such as cell phones, PDA's, etc.
Communication over wide area networks enables messages to be communicated between distant locations. The best known wide area network is the Internet, which can be used to provide communication between computers throughout the world. In the past, the Internet has not been widely used for financial transaction messages, as it is not inherently a secure system. Messages intended for receipt at a particular computer address may be intercepted at other addresses without detection. Because the messages may be intercepted at locations that are distant in the world from the intended recipient, there is potential for theft and fraud.
Approaches are being developed for more secure transmission of messages on the Internet. Encryption techniques are also being applied to Internet messages. However, the openness of the Internet has limited its usefulness for purposes of financial messages, particularly financial messages associated with the operation of automated banking machines.
Messages in wide area networks may be communicated using the Transmission Control Protocol/Internet protocol (“TCP/IP”). U.S. Pat. No. 5,706,422 illustrates an example of a system in which financial information stored in databases is accessed through a private wide area network using TCP/IP messages. The messages transmitted in such networks, which use TCP/IP, may include “documents” (also called “pages”). Such documents are produced in Hypertext Markup Language (“HTML”) which is a reference to a type of programming language used to produce documents with commands or “tags” therein. The tags are codes, which define features and/or operations of the document such as fonts, layout, imbedded graphics, and hypertext links. HTML documents are processed or read through use of a computer program referred to as a “browser.” The tags tell the browser how to process and control what is seen on a screen and/or is heard on speakers connected to the computer running the browser when the document is processed. HTML documents may be transmitted over a network through the Hypertext Transfer Protocol (“HTTP”). The term “Hypertext” is a reference to the ability to embed links into the text of a document that allow communication to other documents, which can be accessed in the network.
As shown in
To use the system shown in
In accordance with an exemplary embodiment of the present invention, a system and method is provided for an automated teller machine (ATM). In accordance with an exemplary embodiment of the present invention, a system and method is provided for an ATM having a display, a logic server coupled to the display, and a memory coupled to the logic server. Logic server dynamically modifies the functions presented to the user in response to the profile. The memory, which is accessible to the logic server, contains a profile of at least one user.
In use, the ATM detects a user's card. The card may be detected and read by any suitable means including optical recognition or electric or magnetic field or transmitted signal, etc. After detection, the ATM requests a profile of the user whose card was detected. The ATM then receives the user's profile and stores the user's profile in the ATM. The profile is stored in a memory accessible to the logic server. The functions presented to the user are modified in response to the profile.
The ATM is part of a larger banking system. The system includes a host, an ATM unit, and a network coupled to the host and ATM. The ATM has a display, a logic server coupled to the display and a memory. The logic server controls the content of screens to be displayed on the display, and the memory contains a profile of at least one user. communicate with each other over the network. The ATM and the host communicate with each other over the network. The ATM requests user profiles from the host. The host provides the profiles to the ATM over the network. The profiles are then stored at the ATM in a memory.
The host may be available to a personal device having a transmitter and a receiver. The host transmits financial information to the user based on a request received from the user via the personal device.
For the purposes of illustrating the present invention, there is shown in the drawings a form which is presently preferred, it being understood however, that the invention is not limited to the precise form shown by the drawing in which:
a is a flow chart showing ATM access to a user profile/preferences according to one embodiment of the invention.
b is a chart showing ATM access by a user in an typical environment according to one embodiment of the invention.
An optional personal device 11 may be an e-mail device, Personal Digital Assistant (“PDA”), cell phone, blackberry, or other device. Optional personal device 11 may communicate with host processor 6 across network 4 or across any suitable network including a proprietary network associated with optional personal device 11.
ATM 10 is a fully functional ATM in that it can accept deposits, dispense withdrawals, print receipts and statements, and provides a headphone jack for use by sight impaired users. In one embodiment of the present invention, ATM 10 is regulated by fraud and compliance systems operating in a client server environment. In a preferred embodiment, the ATM 10 utilizes an Ethernet TCP/IP telecommunications network 14 between the ATM 10 and Tandem host 12. ATM 10 can also utilize a wireless telecommunications network or any other communication system where messages can be transferred in a secure fashion.
The user interface 100 is the portion of the ATM 10 which enables a user to conduct various transactions at an ATM both by displaying information to the user as well as responding to the user instructions. Screen 102 displays the transaction options available to a user, displays the user's account information such as balances, displays instructions and in general, displays all of the information required by the user to interact with the ATM 10. As an alternative to the display screen 100, the system of the present invention may interact with the user through aural communication.
A customer may sends host 120 a text message or other digital message from optional personal device 11 requesting their balance or other information. Host 120 receives the message. The message may identify the customer by coming from either a registered address or carrying some information that identifies the customer who sent the message. Based on message identification of the customer, host 120 returns a message to the customer telling customer their balance or other information.
The logic server 104 determines the options made available to the user. Logic server 104 utilizes inputs from screen object section 106, multi-language engine 108, event handler 110, and ATM interface 150 to determine the options to display to the user.
Initially, when a user presents a bank card to the card reader of the ATM 10, the card may be swiped, inserted into a reader, or read by optical, electronic or other suitable means, then a message is sent to the host 120. The host 120 retrieves the customer's profile data (through elements 18, 16, 20, 22, and 24 in
In an alternative embodiment, a customer may authenticate or login to ATM 10 machine without an using ATM/Debit card. In this embodiment, money can be sent to a user whereby the user can access the money from ATM 10 without a card. This embodiment can be used with any suitable ATM machine. In another embodiment, an ATM may be accessed for small business deposits without a card. In this embodiment, logic server 104 may serve as an access manager. In this way a lower level employee may make a deposit without giving them a bank card. In another embodiment, access to ATM 10 may be administrable through a PC. In this embodiment, a user may adjust access and functions available for him/herself or for a person designated to have access. For example, the user may set withdrawal limits or enable access for deposits only.
In the transmission from host 120, logic server 104 receives other attributes including account types and rights associated with a given bank card. For example, a bank card for a business may be allowed access to deposits only, so that employees using the card cannot make withdrawals or view balances. The logic server 104 modifies the display and the options available to the user based on the business rules contained therein and the customer specific attributes transmitted from host 120.
The ability of the ATM 10 of the present invention to receive a user's profile is an extremely valuable tool for offering additional services to a user. A user's profile can contain more than an account listing, rights, and balances. The profile can contain a credit rating, recent purchases, i.e., a home, outstanding loans, and the like.
a is a flow chart showing ATM access to a user profile/preferences. In an embodiment of the invention, a users preferences may be accessed immediately after the login screen. For example, when the card reader of the ATM 10 detects a users a bank card, a message is sent to the host 120 at step 400. The host 120 retrieves the customer's profile data (through elements 18, 16, 20, 22, and 24 in
A users profile may include user preferences. For example, a customer may set preferences to show account summaries for all accounts when the customer logs in. Another preference may cause an ATM to automatically dispense $100 or a convenient preset customer amount, or prompt the user to confirm whether he wants that amount to be dispensed, every time the customer logs in to a specific ATM. Other personal options may be stored and activated upon login in keeping with the present invention.
Logic server 104 can be programmed with a series of business rules to analyze the user's profile and offer additional services. For example, if the user has an overdraft balance and a mortgage, an offer for a second mortgage or refinancing may appear. Similarly, if the user has a large balance in a savings or checking account brokerage or other investment services may be offered.
Logic server 104 can be programmed with a series of business rules to analyze the user's profile and provides coupons, messages (“alerts”), or other information to non-customer users based on the identity of the non-customer's bank. When the user logs on to a bank or other financial institution's ATM system (e.g., to obtain dispensed currency), the ATM 10 may identify the user's home banking institution. A message may be sent to the host 120, which may be a central banking system associated with the bank providing the ATM 10, which causes the host 120 to store a message identifying products or services that are offered by the bank providing the ATM 10 but not offered by the user's home banking institution. The message may be in the form of a grid or table. The message may be displayed to the user at ATM 10 in a manner that clearly conveys the products and services offered by the bank providing the ATM 10. For example, advertisements and other information (e.g., product descriptions) of those identified products and services may be provided to the user via the display at ATM 10. Other messages or alerts based on the users profile may be sent in keeping with the present invention.
In one embodiment, if a Bank that offers overnight payments identifies an ATM, user at an ATM it provides, whose home bank does not offer overnight payments, then the ATM may display a message asking “Does your bank offer overnight payments?” at a logout screen. An incentive to buy a corresponding Bank product or enroll in a corresponding Bank service may also be provided, such as a coupon or discount.
For the embodiments described herein, messages may be provided to the user through any interface provided by the bank or financial institution. For example, the interface may be the Internet, phone, ATM, bank branch, or other communication means. In an embodiment, messages may be displayed at the terminal touch-screen display or coupons may be coupled with a transaction receipt. A receipt may be delivered at an ATM and/or emailed to a customer. Because many users keep receipts for record-keeping purposes, the receipt may comprise a perforation with a detachable coupon.
b is a In an embodiment of this invention, a bank may advertise branch products and services by providing coupons or advertisements for those products and services at an ATM 300 located near a particular bank branch 310. For example, a customer who uses the ATM 300 may receive a coupon 320 during an ATM transaction and then walks a short distance to the branch 310 to redeem the coupon 320. Because it is useful to motivate customers to act while they are in the vicinity of the branch 310, coupon 320 may have an expiration date that is relatively soon to ensure speedy redemption. ATM 300 may dispense coupon 320 based on the time of day so that branch-related ads are dispensed only during branch hours.
When a user uses a bank ATM 330 provided by a bank other than its home ATM 300 the transaction usually is accompanied by a corresponding fee. During a subsequent transaction at an ATM 300 or other bank interface provided by the users home bank, a message may be passed to the Bank customer indicating the location of an ATM, for example ATM 300 provided by the users home bank that could have been used instead of the other bank's ATM, for example ATM 330, to avoid the fee. For example, the ATM 300 may display the message: “You paid an unnecessary fee at another bank's ATM. Your Bank has an ATM one block from the ATM that charged you a fee. Next time, use our nearby ATM and avoid the fee.” The ATM 300 may also provide a map and directions indicating the corresponding nearby ATM and possibly the other bank's ATM to show the short distance between the two ATM's. In another embodiment, the Bank may identify every fee type and how it may be avoided. For instance, the bank providing the ATM 300 may indicate via a message that upgrading a customer's account would avoid a particular fee.
ATM 300 may be located near or inside a merchant 350 may provide products or services and/or otherwise facilitates sales and marketing associated with merchant 350. In an embodiment of the invention, a customer may browse and purchase nearby merchants products at ATM 300. For example a restaurant patron may order food at ATM 300 and then pick it up at a service counter at restaurant 340. In one embodiment, a customer may use funds associated with their banking card to purchase products associated with merchant 350. In another example, a traveler may print an airline boarding pass and security document at ATM 300, if ATM 300 is near their gate. Many retailers benefit from the existence of ATMs in or near their store because shoppers are more likely to make purchases when they have cash in hand.
In some embodiments of the invention, a partner user interface is combined with an ATM terminal into one multi-purpose terminal (or the two interfaces are located very close to one another). In one embodiment, a gas dispenser at a gas station is combined with an ATM forming an ATM/gas pump 360 so that a gas customer can get cash and pay bills while pumping gas. The ATM/gas pump 360 may also enable the customer to access a gas card account, pay for gas with an ATM card, and access other gas station functions.
Logic server 104 interacts with event handler 110 to process hardware events from the physical portions of the ATM 10. The event handler 110 passes messages to the logic server 104 that relate to the functioning of the ATM. ATM interface 120, and specifically core services portion 122 passes these messages to event handler 110 to provide notification of hardware events to logic server 104. Core services portion 122 constantly monitors the operation of the physical portions ATM 10 (e.g., the cash dispenser, the deposit receiver, the printer). If a portion of the unit malfunctions or the ATM 10 is unable to perform a task, such as dispense cash, a hardware event occurs. This hardware event is provided to the logic server 104, which in conjunction with screen object 106, will remove the “withdrawal” button from the display (for this particular hardware event). In one embodiment of the invention, the display screen will also be modified by logic server 104 to notify users that the ATM 10 is unable to perform a function, such as dispense cash, prior to the user swiping the bank card.
All of the actions taken by logic server 104 are governed by various business rules. Business rules are implemented as programming logic contained within the logic server 104 in the ATM 10. These business rules, in one function, streamline the user's session by eliminating transactions not available to the user. This is a significant departure from prior art ATMs where the same transactions options are displayed at the ATM to every user, and are then denied by the host when it is determined that the requested transaction is not available to the user. With ATM 10 of the present invention, the “intelligence” is available within the ATM 10 itself, to logically control the menu options, such as the buttons and accounts, using business rules logic. As previously described, the pre-defined business rules interact with the user's unique profile (transmitted to ATM 10) to control the screen and options available to the user. For example, if the user's received profile indicates that card being employed by the user is only authorized to make deposits and not withdrawals, the options for making withdrawals is never presented to the user.
In a preferred embodiment of the present invention, business rules are implemented at a high level control in an Institution Definition File (IDF). In this embodiment of the invention, an IDF is defined for each proprietary card type and is contained in the user's profile associated with the card. In this IDF, there are two attributes or flags available, one to allow PIN Change and one to allow Profile Changes. These parameters are set to a “Yes” or “No” as to whether or not to allow these Pin and Profile change operations.
In general, all customers using the ATM 10 of the present invention have the ability to perform the same transactions that they can perform with the prior art ATMs. In a significant departure from the prior art, however, if a customer was unable to perform a transaction in a prior art ATM (e.g., transfers between accounts because the user only had one account) the ATM 10 of the present invention does not even present that option to the user. For example, if the customers cannot perform account transfers, the ATM 10 never displays the transaction button associated with that function to the user. As previously described, the modification of the selection menus is performed locally by the logic server 104 operating on the predefined business rules and the customer profile.
In another embodiment of the present invention, there are also business rules that determine when the “Get Cash” button is or is not displayed. The “Get Cash” button is not displayed when: a customer is using a business limited function card (deposit only) or when the ATM is unable to dispense cash. Additionally, the accounts that can be displayed are determined by logic server 104 according to predefined rules and the customer's profile. For example, checking accounts are not displayed when a customer is using a proprietary credit card, a customer is using a business limited function card (deposit only), or customer profile returns an account indicator of “deposit only allowed.” Similar rules also exist regarding the display of saving accounts and credit accounts. To streamline ATM use, the “Transfer Funds” button is not displayed when the user does not have more than one account or if the user is utilizing a business limited card. Additionally, the display of accounts available for “transfer from” and “transfer to” change in response to the selections that are made by the customer as well as in response to the attributes (i.e., the customer's actual accounts) contained in the user's profile. For example, credit accounts are not displayed as a transfer destination when a user elects to transfer funds from a credit account and a selected account will not appear in both the “transfer from” and “transfer to” categories.
Business rules also exist for the “Make Deposit” and “Get Statement” buttons. The business rules are based on account types, card functionality, card rights, availability of banking institution records, ATM functionality, or status, and the like. As discussed above, if logic server 104 receives a hardware event that a printer is malfunctioning or out of paper, the display items associated with the malfunctioning equipment are not displayed (e.g., Print a Statement).
The ATM 10 of the present invention allows users to customize the ATM 10 features and functionality through their profiles. For example, users can change their PIN, customize the fast cash amount, change the language preference, establish defaults for fund transfers, and the like. Additionally, users can schedule one time and recurring payments through the ATM 10.
When a user customizes a feature of the ATM 10, this data is transferred from the host interface 130 (
IFX is an XML-based communication protocol that enables the exchange of information between financial institutions and their customers, their service providers, and other financial institutions. IFX was initially developed for Internet banking, not for ATM applications. IFX commands are used for PIN change, profile request, and profile preference change. No corresponding commands exist for these functions in the NDC format. Additionally, IFX can be used for withdrawal, balance inquiry, statement, deposit, payment, and transfer commands.
As shown in
The ATM 10 of the present invention is also capable of operating in a mode for disabled persons, particularly those that are sight impaired (“ADA mode”). A Braille keypad is used for navigation. The ATM 10 enters the ADA mode when a headset is plugged into a headset port of the ATM. The ATM interface 120 (
When the ATM is in ADA mode, logic server 104 manages the Voice commands in a manner similar to the manner in which screen objects are managed. The logic server 104 selects screen objects using the same business rules as the non-ADA mode. These screen objects are then speech synthesized and presented to the user. In this manner, the messages the user hears are dynamically changed, similar to the way the screen objects are modified in the non-ADA mode.
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein, but only by the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/266,838, filed on Oct. 7, 2002 and entitled “Web Enabled Bank Teller Machine,” which claims priority to U.S. Provisional Application No. 60/327,517, filed on Oct. 5, 2001, and the entirety of both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3653480 | Yamamoto et al. | Apr 1972 | A |
4205780 | Burns | Jun 1980 | A |
4321672 | Braun et al. | Mar 1982 | A |
4396985 | Ohara | Aug 1983 | A |
4495018 | Vohrer | Jan 1985 | A |
4617457 | Myers | Oct 1986 | A |
4672377 | Murphy | Jun 1987 | A |
4700055 | Kashkashian, Jr. | Oct 1987 | A |
4752877 | Roberts et al. | Jun 1988 | A |
4797913 | Kaplan | Jan 1989 | A |
4799156 | Shavit | Jan 1989 | A |
4812628 | Boston | Mar 1989 | A |
4823264 | Deming | Apr 1989 | A |
4931793 | Fuhrmann et al. | Jun 1990 | A |
4948174 | Thomson et al. | Aug 1990 | A |
4974878 | Josephson | Dec 1990 | A |
4988849 | Sasaki | Jan 1991 | A |
4992646 | Collin | Feb 1991 | A |
5023904 | Kaplan | Jun 1991 | A |
5053607 | Carlson | Oct 1991 | A |
5054096 | Beizer | Oct 1991 | A |
5080748 | Bonomi | Jan 1992 | A |
5111395 | Smith | May 1992 | A |
5121945 | Thomson et al. | Jun 1992 | A |
5122950 | Mee | Jun 1992 | A |
5136502 | Van Remortel et al. | Aug 1992 | A |
5175682 | Higashiyama | Dec 1992 | A |
5198975 | Baker et al. | Mar 1993 | A |
5220501 | Lawlor | Jun 1993 | A |
5225978 | Peterson | Jul 1993 | A |
5237159 | Stephens | Aug 1993 | A |
5283829 | Anderson | Feb 1994 | A |
5287269 | Dorrough et al. | Feb 1994 | A |
5311594 | Penzias | May 1994 | A |
5315508 | Bain et al. | May 1994 | A |
5321238 | Watanabe | Jun 1994 | A |
5326959 | Perazza | Jul 1994 | A |
5336870 | Hughes | Aug 1994 | A |
5343529 | Goldfine et al. | Aug 1994 | A |
5350906 | Brody et al. | Sep 1994 | A |
5367581 | VanHorn | Nov 1994 | A |
5373550 | Campbell | Dec 1994 | A |
5396417 | Burks | Mar 1995 | A |
5402474 | Miller | Mar 1995 | A |
5412190 | Kopesec | May 1995 | A |
5424938 | Wagner | Jun 1995 | A |
5430644 | Deaton et al. | Jul 1995 | A |
5432506 | Chapman | Jul 1995 | A |
5444794 | Uhland | Aug 1995 | A |
5444841 | Glaser et al. | Aug 1995 | A |
5446740 | Yien | Aug 1995 | A |
5448471 | Deaton et al. | Sep 1995 | A |
5465206 | Hilt et al. | Nov 1995 | A |
5477040 | Lalonde | Dec 1995 | A |
5479494 | Clitherow | Dec 1995 | A |
5483445 | Pickering | Jan 1996 | A |
5484988 | Hills | Jan 1996 | A |
5502576 | Ramsay et al. | Mar 1996 | A |
5504677 | Pollin | Apr 1996 | A |
5506691 | Bednar et al. | Apr 1996 | A |
5513250 | McAllister | Apr 1996 | A |
5532464 | Josephson et al. | Jul 1996 | A |
5544046 | Niwa | Aug 1996 | A |
5550734 | Tater | Aug 1996 | A |
5551021 | Harada | Aug 1996 | A |
5557515 | Abbruzzese et al. | Sep 1996 | A |
5563400 | Le Roux | Oct 1996 | A |
5566330 | Sheffield | Oct 1996 | A |
5568489 | Yien | Oct 1996 | A |
5570465 | Tsakanikas | Oct 1996 | A |
5572004 | Raimann | Nov 1996 | A |
5583759 | Geer | Dec 1996 | A |
5583760 | Klesse | Dec 1996 | A |
5590196 | Moreau | Dec 1996 | A |
5590197 | Chen | Dec 1996 | A |
5592377 | Lipkin | Jan 1997 | A |
5592378 | Cameron | Jan 1997 | A |
5599528 | Igaki | Feb 1997 | A |
5603025 | Tabb | Feb 1997 | A |
5615109 | Eder | Mar 1997 | A |
5619558 | Jheeta | Apr 1997 | A |
5621201 | Langhans | Apr 1997 | A |
5640577 | Scharmer | Jun 1997 | A |
5642419 | Rosen | Jun 1997 | A |
5649117 | Landry | Jul 1997 | A |
5650604 | Marcous et al. | Jul 1997 | A |
5652786 | Rogers | Jul 1997 | A |
5659165 | Jennings | Aug 1997 | A |
5659469 | Deaton et al. | Aug 1997 | A |
5659741 | Eberhardt | Aug 1997 | A |
5666493 | Wojcik et al. | Sep 1997 | A |
5677955 | Doggett et al. | Oct 1997 | A |
5679938 | Templeton | Oct 1997 | A |
5679940 | Templeton | Oct 1997 | A |
5692132 | Hogan | Nov 1997 | A |
5699528 | Hogan | Dec 1997 | A |
5703344 | Bezy et al. | Dec 1997 | A |
5704044 | Tarter et al. | Dec 1997 | A |
5708422 | Blonder et al. | Jan 1998 | A |
5715298 | Rogers | Feb 1998 | A |
5715314 | Payne | Feb 1998 | A |
5715399 | Bezos | Feb 1998 | A |
5717989 | Tozzoli et al. | Feb 1998 | A |
5724424 | Gifford | Mar 1998 | A |
5727249 | Powell | Mar 1998 | A |
5748780 | Stolfo | May 1998 | A |
5751842 | Eccles | May 1998 | A |
5757917 | Rose et al. | May 1998 | A |
5770843 | Rose et al. | Jun 1998 | A |
5774553 | Rosen | Jun 1998 | A |
5784696 | Melnikof | Jul 1998 | A |
5793861 | Haigh | Aug 1998 | A |
5794221 | Egendorf | Aug 1998 | A |
5802498 | Comesanas | Sep 1998 | A |
5802499 | Sampson et al. | Sep 1998 | A |
5819236 | Josephson | Oct 1998 | A |
5819238 | Fernholz | Oct 1998 | A |
5826241 | Stein | Oct 1998 | A |
5826245 | Sandberg-Diment | Oct 1998 | A |
5832447 | Rieker | Nov 1998 | A |
5832460 | Bednar | Nov 1998 | A |
5832463 | Houvener et al. | Nov 1998 | A |
5832464 | Houvener et al. | Nov 1998 | A |
5832488 | Eberhardt | Nov 1998 | A |
5835580 | Fraser | Nov 1998 | A |
5835603 | Coutts | Nov 1998 | A |
5835899 | Rose et al. | Nov 1998 | A |
5852812 | Reeder | Dec 1998 | A |
5859419 | Wynn | Jan 1999 | A |
5864609 | Cross et al. | Jan 1999 | A |
5870456 | Rogers | Feb 1999 | A |
5870721 | Norris | Feb 1999 | A |
5870723 | Pare | Feb 1999 | A |
5870725 | Bellnger et al. | Feb 1999 | A |
5873072 | Kight | Feb 1999 | A |
5883810 | Franklin et al. | Mar 1999 | A |
5884288 | Chang | Mar 1999 | A |
5897625 | Gustin | Apr 1999 | A |
5898157 | Mangili et al. | Apr 1999 | A |
5903881 | Schrader | May 1999 | A |
5910896 | Hahn-Carlson | Jun 1999 | A |
5910988 | Ballard | Jun 1999 | A |
5915246 | Patterson et al. | Jun 1999 | A |
5917965 | Cahill et al. | Jun 1999 | A |
5920847 | Kolling et al. | Jul 1999 | A |
5930778 | Geer | Jul 1999 | A |
5937396 | Konya | Aug 1999 | A |
5940811 | Norris | Aug 1999 | A |
5940844 | Cahill et al. | Aug 1999 | A |
5943656 | Crooks | Aug 1999 | A |
5945653 | Walker et al. | Aug 1999 | A |
5956700 | Landry | Sep 1999 | A |
5963647 | Downing et al. | Oct 1999 | A |
5963659 | Cahill et al. | Oct 1999 | A |
5963925 | Kolling et al. | Oct 1999 | A |
5966698 | Pollin | Oct 1999 | A |
5978780 | Watson | Nov 1999 | A |
5987435 | Weiss et al. | Nov 1999 | A |
5987436 | Halbrook | Nov 1999 | A |
5987439 | Gustin et al. | Nov 1999 | A |
5991750 | Watson | Nov 1999 | A |
6000832 | Franklin et al. | Dec 1999 | A |
6002767 | Kramer | Dec 1999 | A |
6003762 | Hayashida | Dec 1999 | A |
6006208 | Forst et al. | Dec 1999 | A |
6009442 | Chen et al. | Dec 1999 | A |
6014636 | Reeder | Jan 2000 | A |
6016482 | Molinari et al. | Jan 2000 | A |
6029139 | Cunningham et al. | Feb 2000 | A |
6032133 | Hilt et al. | Feb 2000 | A |
6032137 | Hallard | Feb 2000 | A |
6035281 | Crosskey et al. | Mar 2000 | A |
6035285 | Schlect et al. | Mar 2000 | A |
6035287 | Stallaert et al. | Mar 2000 | A |
6038553 | Hyde, Jr. | Mar 2000 | A |
6041312 | Bickerton et al. | Mar 2000 | A |
6041315 | Pollin | Mar 2000 | A |
6044362 | Neely | Mar 2000 | A |
6045039 | Stinson et al. | Apr 2000 | A |
6047261 | Siefert | Apr 2000 | A |
6052674 | Zervides et al. | Apr 2000 | A |
6058380 | Anderson et al. | May 2000 | A |
6058381 | Nelson | May 2000 | A |
6061665 | Bahreman | May 2000 | A |
6065675 | Teicher | May 2000 | A |
6067524 | Byerly et al. | May 2000 | A |
6070150 | Remington et al. | May 2000 | A |
6070798 | Nethery | Jun 2000 | A |
6073104 | Field | Jun 2000 | A |
6073113 | Guinan | Jun 2000 | A |
6076072 | Libman | Jun 2000 | A |
6078907 | Lamm | Jun 2000 | A |
6081790 | Rosen | Jun 2000 | A |
6085168 | Mori et al. | Jul 2000 | A |
6088683 | Jalili | Jul 2000 | A |
6088685 | Kiron et al. | Jul 2000 | A |
6088686 | Walker et al. | Jul 2000 | A |
6092056 | Tull, Jr. et al. | Jul 2000 | A |
6098053 | Slater | Aug 2000 | A |
6098070 | Maxwell | Aug 2000 | A |
6105011 | Morrison, Jr. | Aug 2000 | A |
6108639 | Walker et al. | Aug 2000 | A |
6110044 | Stern | Aug 2000 | A |
6111858 | Greaves et al. | Aug 2000 | A |
6115690 | Wong | Sep 2000 | A |
6119106 | Mersky et al. | Sep 2000 | A |
6119107 | Polk | Sep 2000 | A |
6125354 | MacFarlane et al. | Sep 2000 | A |
6128602 | Northington et al. | Oct 2000 | A |
6128603 | Dent et al. | Oct 2000 | A |
6129273 | Shah | Oct 2000 | A |
6138118 | Koppstein et al. | Oct 2000 | A |
6144946 | Iwamura | Nov 2000 | A |
6148293 | King | Nov 2000 | A |
6149056 | Stinson et al. | Nov 2000 | A |
6173272 | Thomas et al. | Jan 2001 | B1 |
6181837 | Cahill et al. | Jan 2001 | B1 |
6185544 | Sakamoto et al. | Feb 2001 | B1 |
6202054 | Lawlor et al. | Mar 2001 | B1 |
6205433 | Boesch et al. | Mar 2001 | B1 |
6213391 | Lewis | Apr 2001 | B1 |
6227447 | Campisano | May 2001 | B1 |
6233566 | Levine et al. | May 2001 | B1 |
6236972 | Shkedy | May 2001 | B1 |
6240444 | Fin et al. | May 2001 | B1 |
6278981 | Dembo et al. | Aug 2001 | B1 |
6289322 | Kitchen et al. | Sep 2001 | B1 |
6301379 | Thompson et al. | Oct 2001 | B1 |
6304858 | Mosler et al. | Oct 2001 | B1 |
6321212 | Lange | Nov 2001 | B1 |
6336148 | Doong et al. | Jan 2002 | B1 |
6338047 | Wallman | Jan 2002 | B1 |
6338049 | Walker et al. | Jan 2002 | B1 |
6366967 | Wagner | Apr 2002 | B1 |
6374235 | Chen et al. | Apr 2002 | B1 |
6393409 | Young et al. | May 2002 | B2 |
6405173 | Honarvar et al. | Jun 2002 | B1 |
6415259 | Wolfinger et al. | Jul 2002 | B1 |
6418419 | Nieboer et al. | Jul 2002 | B1 |
6418420 | DiGiorgio et al. | Jul 2002 | B1 |
6418430 | DeFazio et al. | Jul 2002 | B1 |
6488203 | Stoutenburg et al. | Dec 2002 | B1 |
6490568 | Omara et al. | Dec 2002 | B1 |
6493685 | Ensel et al. | Dec 2002 | B1 |
6502747 | Stoutenburg et al. | Jan 2003 | B1 |
6536663 | Lozier et al. | Mar 2003 | B1 |
6554184 | Amos | Apr 2003 | B1 |
6574377 | Cahill et al. | Jun 2003 | B1 |
6578015 | Haseltine et al. | Jun 2003 | B1 |
6609113 | O'Leary et al. | Aug 2003 | B1 |
6609125 | Layne et al. | Aug 2003 | B1 |
6629081 | Cornelius et al. | Sep 2003 | B1 |
6704714 | O'Leary et al. | Mar 2004 | B1 |
6721715 | Nemzow | Apr 2004 | B2 |
6736314 | Cooper et al. | May 2004 | B2 |
6761309 | Stoutenburg et al. | Jul 2004 | B2 |
6769605 | Magness | Aug 2004 | B1 |
7070094 | Stoutenburg et al. | Jul 2006 | B2 |
7376622 | Padalino et al. | May 2008 | B1 |
7424970 | Royce-Winston et al. | Sep 2008 | B2 |
7606734 | Baig et al. | Oct 2009 | B2 |
7610222 | Neofytides et al. | Oct 2009 | B2 |
7617157 | Seifert et al. | Nov 2009 | B2 |
20010018739 | Anderson et al. | Aug 2001 | A1 |
20010037300 | Miyazaki et al. | Nov 2001 | A1 |
20010037309 | Vrain | Nov 2001 | A1 |
20010044747 | Ramachandran et al. | Nov 2001 | A1 |
20010047334 | Nappe et al. | Nov 2001 | A1 |
20010047489 | Ito et al. | Nov 2001 | A1 |
20010051533 | Wietzke et al. | Dec 2001 | A1 |
20020012445 | Perry | Jan 2002 | A1 |
20020013728 | Wilkman | Jan 2002 | A1 |
20020026394 | Savage et al. | Feb 2002 | A1 |
20020038363 | MacLean | Mar 2002 | A1 |
20020052842 | Schuba et al. | May 2002 | A1 |
20020069134 | Solomon | Jun 2002 | A1 |
20020077978 | O'Leary et al. | Jun 2002 | A1 |
20020087462 | Seifert et al. | Jul 2002 | A1 |
20020087468 | Ganesan et al. | Jul 2002 | A1 |
20020091635 | Dilip et al. | Jul 2002 | A1 |
20020107770 | Meyer et al. | Aug 2002 | A1 |
20020107788 | Cunningham | Aug 2002 | A1 |
20020111837 | Aupperle | Aug 2002 | A1 |
20020138398 | Kalin et al. | Sep 2002 | A1 |
20020138432 | Makino et al. | Sep 2002 | A1 |
20020170966 | Hannigan et al. | Nov 2002 | A1 |
20020178071 | Walker et al. | Nov 2002 | A1 |
20020194096 | Falcone et al. | Dec 2002 | A1 |
20020195486 | Erb et al. | Dec 2002 | A1 |
20020198817 | Dhir | Dec 2002 | A1 |
20020199182 | Whitehead | Dec 2002 | A1 |
20030018557 | Gilbert et al. | Jan 2003 | A1 |
20030040959 | Fei et al. | Feb 2003 | A1 |
20030046218 | Albanese et al. | Mar 2003 | A1 |
20030097335 | Moskowitz et al. | May 2003 | A1 |
20030105641 | Lewis | Jun 2003 | A1 |
20030163415 | Shanny et al. | Aug 2003 | A1 |
20030208421 | Vicknair et al. | Nov 2003 | A1 |
20030208441 | Poplawski et al. | Nov 2003 | A1 |
20030217005 | Drummond et al. | Nov 2003 | A1 |
20030225663 | Horan et al. | Dec 2003 | A1 |
20030233305 | Solomon | Dec 2003 | A1 |
20040078328 | Talbert et al. | Apr 2004 | A1 |
20050033690 | Antognini et al. | Feb 2005 | A1 |
20050119969 | Michelsen et al. | Jun 2005 | A1 |
20060191999 | Stoutenburg et al. | Aug 2006 | A1 |
20060277144 | Ranzini et al. | Dec 2006 | A1 |
20070187484 | Cooper et al. | Aug 2007 | A1 |
20080195541 | Battaglini et al. | Aug 2008 | A1 |
20080203150 | Royce-Winston et al. | Aug 2008 | A1 |
20080210752 | March | Sep 2008 | A1 |
20080215487 | Stoutenburg et al. | Sep 2008 | A1 |
20090265272 | Dill et al. | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
0099999 | Jul 1983 | EP |
421808 | Apr 1991 | EP |
1014318 | Jun 2000 | EP |
WO 9116691 | Oct 1991 | WO |
WO 9308545 | Apr 1993 | WO |
WO 9428497 | Dec 1994 | WO |
WO 9608783 | Mar 1996 | WO |
WO 9612242 | Apr 1996 | WO |
WO 9745796 | Dec 1997 | WO |
WO 9745814 | Dec 1997 | WO |
WO 9809260 | Mar 1998 | WO |
WO 9910823 | Mar 1999 | WO |
WO 0039979 | Jul 2000 | WO |
WO 0175730 | Oct 2001 | WO |
WO 02063432 | Aug 2002 | WO |
WO 2004079603 | Sep 2004 | WO |
WO 2006013218 | Feb 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20060038004 A1 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
60327517 | Oct 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10266838 | Oct 2002 | US |
Child | 11185847 | US |