The present disclosure relates to a personalized cardiac health monitoring system. More particularly, the present disclosure relates to a cardiac health monitoring system that can be trained by using normal beats of a person.
Cardiac health monitoring systems detect tiny electrical changes on the skin that arise from the heart muscle's electrophysiologic pattern of depolarizing during each heartbeat. Prior systems have used patient-specific electrocardiograph (“ECG” or “EKG”) classification methods to classify ECG heartbeats. However, such systems can only classify ECG beats after first observing both normal and abnormal beats in the specific patient's ECG record.
For example,
Prior attempts have been made to develop a generic classification system that would synthesize potential abnormal ECG data for a new patient based on the observations of other patients. For example,
In one embodiment, a method of detecting abnormal heartbeats includes providing a library of abnormal beat synthesis (ABS) filters, wherein each ABS filter corresponds to a specific cause of a cardiac problem. The method further includes obtaining an ECG of a normal heartbeat of a person and applying an ABS filter from the library of ABS filters to the ECG of the normal heartbeat of the person to generate a potential abnormal heartbeat. The method further includes ECG monitoring of the person by classifying each heartbeat as either normal or abnormal.
In another embodiment, an abnormal heartbeat detector and alert system includes a sensor configured to contact skin of a user and sense electrical changes on the skin that arise from a heart's electrophysiologic pattern to generate an ECG signal. The system further includes a library of ABS filters, wherein each ABS filter corresponds to a specific cause of a cardiac problem. The system also includes at least one processor configured to monitor the ECG signal, apply at least one ABS filter from the library of ABS filters to the ECG signal of the user to generate a potential abnormal ECG, detect a real abnormal heartbeat, and generate an alert upon detecting the abnormal heartbeat. The system further includes a notification device configured to provide a notification upon receipt of the alert.
In yet another embodiment, a method of detecting abnormal heartbeats includes creating a library of ABS filters by modeling common causes of cardiac problems, including congenital heart defects, coronary artery disease, smoking, high blood pressure, clotting, diabetes, stress, excessive use of alcohol, excessive use of caffeine, and drug use in a signal domain as degradation of normal beats to abnormal beats, and modeling each normal-to-abnormal beat degradation by a linear and time-invariant filter kernel using a benchmark dataset of ECG records. The method further includes generating an ECG signal from a normal heartbeat of a person, applying an ABS filter from the library of ABS filters to the ECG signal of the normal heartbeat of the person to generate potential abnormal heartbeats into a personal ECG dataset of the person. Finally, 1D Convolutional Neural Network (CNN) is trained over the personalized dataset and will be used in the monitoring device to classify each (real) heartbeat of the person as either normal or abnormal. If an abnormal beat is detected, an alert as a sound or light will be triggered to warn the person.
In the accompanying drawings, structures are illustrated that, together with the detailed description provided below, describe exemplary embodiments of the claimed invention. Like elements are identified with the same reference numerals. It should be understood that elements shown as a single component may be replaced with multiple components, and elements shown as multiple components may be replaced with a single component. The drawings are not to scale and the proportion of certain elements may be exaggerated for the purpose of illustration.
A system and method for detecting abnormal heartbeats is described herein. The system and method rely on an abnormal beat syntheses approach, which can create potential abnormal beats for an individual by using the library of filters over her regular normal beat. To design such filters, common causes of cardiac problems such as congenital heart defects, coronary artery disease, smoking, high blood pressure, clotting, diabetes, stress, excessive use of alcohol, excessive use of caffeine, and drug use, are modeled in the signal domain as the degradation of normal beats to abnormal beats. Using a benchmark dataset of ECG records, each normal-to-abnormal beat degradation will be modeled by a linear and time-invariant (“LTI”) filter kernel.
In this way, the common causes of degradation of the heart of a particular patient are modeled in the dataset as a “degrading system” that turns regular normal beats to abnormal beats as shown in
The system 400 requires: (1) creation of the abnormal beat syntheses (ABS) filter library by performing least-squares (LS) system identification, (2) creation of the personalized training dataset 420 by the syntheses of potential abnormal beats using the ABS filter library over the person's average normal beat, and (3) training a dedicated 1D CNN 410 for that person over her training dataset 420. The training dataset 420 includes both single beat representation 430a and beat-trios 430b, as will be described in more detail below.
Since the proposed solution is intended for monitoring healthy individuals, no real abnormal beats will be used in the personal training dataset. In other words, the training dataset of each individual 1D CNN encapsulates only the real normal (N) beats of the person. Once trained with the real normal and synthesized abnormal beats, the final classifier will then be uploaded to the ECG monitor of the person for real-time health monitoring. The overall workflow of the proposed solution is illustrated on a possible client/server architecture in
Once the 1D CNN 410 is trained it can then be used to classify each beat in real-time and hence it can detect abnormal beats at the moment they occur. Simple 1D CNNs are easier to train with only few dozens of back-propagation (BP) iterations and can thus perform the classification task at high speed (requiring only few hundreds of 1D convolutions). This makes them a suitable for real-time ECG monitoring and early detection of hearth arrhythmia on lightweight devices, such as a smart watch 440 or a dedicated heartbeat monitor that can be worn with a wrist band or chest strap.
The device 440 includes at least one sensor (not shown) configured to contact the skin of a user and sense electrical changes that arise from a heart's electrophysiologic pattern to generate an ECG signal. As illustrated in
In one embodiment, the MIT/BIH Arrhythmia Database 510 contains 48 records, each containing two-channel ECG signals for 30-minute duration selected from 24-hour recordings of 47 individuals. Continuous ECG signals are band-pass filtered at 0.1-100 Hz and then digitized at 360 Hz. The database contains annotation for both timing information and beat class information verified by independent experts.
In one particular embodiment, 44 records from the MIT/BIH Arrhythmia Database were used, excluding 4 records which contain paced heartbeats. The first 20 records, which include representative samples of routine clinical recordings, were used to select certain number of representative beats to be included in the common training data. Therefore, these records were used as the training partition of the database. The remaining 24 records contain uncommon but clinically significant arrhythmias such as ventricular, junctional, and supraventricular arrhythmias. These records may be used as the testing partition of the database.
ECG beats may be classified into five heartbeat types: N (beats originating in the sinus mode), S (supraventricular ectopic beats), V (ventricular ectopic beats), F (fusion beats), and Q (unclassifiable beats). The raw data of each beat is represented by 128 samples by down-sampling. There are two distinct beat representations: in the single beat representation 430a, equal number of samples from each side from the R (center) point of the beat are used. To learn the temporal characteristics of each beat, a beat-trio 430b is formed from its neighbor beats. Therefore, the difference in timing information of the center beat together with its neighbors in the beat-trio formation 430b can indicate timing information related ECG anomalies such as the presence of an APC (S) beat.
An abnormal beat syntheses (ABS) filter models the degradation of a regular normal beat to an abnormal beat. This degradation represents a cause of the cardiac arrhythmia that physically degrades a healthy heart (with an output of a regular normal beat) to an unhealthy one that outputs abnormal beats. If ABS filters are assumed to be linear and time-invariant (LTI), the input-output expression can be written as:
b[n]=h[n]×a[n]=IDFT(H(f).A(f))
a[n]:a[0],a[1],a[N−1]
b[n]:b[0],b[1],b[N−1]
h[n]:h[0],h[1],h[N−1] (1)
where a and b are N-length input and output signals corresponding to (regular) normal and abnormal beats, respectively, and his the M-length filter coefficients of the LTI system. H(f) and B(f) are the DFT of h and b, respectively.
One can derive h from the IDFT of the ratio between the DFTs of b and a, as follows:
where B(f) is the DFT of the output signal b. However, the singularities and low values of A(f) due to noise will make it infeasible to compute the h accurately. Instead we shall derive it from the Least-Squares (LS) optimization directly. One can write the linear convolution as:
The convolution output will have the length, N+M−1 where only the first N samples are considered, because the output signal (abnormal beat) has the same length as the input. This can be written in matrix equation as follows:
or equivalently in a linear system equation:
Ax=b (5)
where A is the N×M matrix with the shifted input signal samples, x is the column vector of filter coefficients, (x(i)=h[i]) and b is the column vector of output signal, b. The LS solution of this equation, xLS, can be expressed as follows:
However, the matrix, A can be rank deficit, i.e., rank(A)=r<M. In this case, the matrix ATA will be singular and inverse cannot be taken. To address this, we can write the Singular Value Decomposition (SVD) of A as:
where U and V are N×N and M×M orthogonal matrices which holds the eigen-vectors of the square matrices, AAT and AT A, respectively, as the column vectors.
The N×M matrix, Σ, can be expressed as:
where σ1>σ2>σr are the singular values or equivalently the eigen-values of the matrices, ATA and AAT.
This can yield the LS solution, xLS, regardless from the singularity of A as:
However, the LS solution, xLS, can still yield to very large values, the so-called “explosion” of the LS solution, due to the noisy values in matrix A (the input) or in vector b (the output), or both since they, the ECG data in general, are indeed susceptible to noise. A crucial disadvantage therein is that the smaller non-zero singular values will result in even larger the explosion of xLS. To prevent this, the LS solution may be regularized by optimizing the LS error together with the magnitude of the LS solution as:
where λ is the regularization parameter. This joint optimization may be expressed as:
where Aλ is now Mx(M+N) a full-rank matrix (r=M) and therefore, the LS solution over Aλ can be obtained by using Eq. (6) as:
The ith eigen-vector of (AλTAλ) can be obtained by:
AλTAλvi=(ATA+λ2I)vi=(σi2+λ2)vi (13)
The matrix AλT Aλ has the same eigen-vector, vi, as the matrix AT A but a larger eigen-value (σi2+λ2). Therefore, using the orthogonality of the eigen-vectors, the eigen-vector decomposition of AλT Aλ, and its inverse is:
Using Equations (7) and (9) yields the regularized LS solution, xRLS, expressed as:
Comparing regularized LS solution in Eq. (15) with the LS solution in Eq. (9), the effects of those noise-like singular values over the solution can be suppressed with a practical choice of λ. For example, λ may be selected to be between 0.1 and 0.5. As a result, Equation (15) may be used to design an ABS filter for each pair of normal-abnormal ECG beats and as illustrated in
In one embodiment, ABS filters are designed using the first 5 minutes of data plus the common training data selected among the records in training partition (subjects with IDs 1XX) 510a of the MIT/BIH arrhythmia database 510. First the average normal beat (ANB) is selected among the N beats in the first 5 minutes. ANB will be the sole input, a, of the ABS filters created from that subject. Then for each abnormal beat of the subject an M-length ABS filter is designed.
Two filter selection models can be applied in order to eliminate similar and all-pass (impulsive) filters. The former occurs if the abnormal beats of the subject are similar with each other. In that case one or few representative filters will suffice to model abnormal beat syntheses from that patient. The latter occurs when the abnormal beat is similar to the ANB. Especially for single beat representation some S-beats can have the same pattern as an N-beat. Those “all-pass” filters can be left out. Both selections are performed by evaluating the mean-normalized variance of the filter coefficients. Those filters, which yield the highest variances will be selected into the ABS filter library.
Either filter selection is optional for the patient-specific part (first 5 minutes) since one can also use the entire data from this part. Additionally, the common data part may be limited to a certain number of beats (e.g., 245) within the rest of the record (excluding the first 5 minutes).
Once formed, for each beat representation, the ABS filter library will then be used to synthesize the abnormal beats of each patient in the test partition (subjects with IDs 2XX) 510b. In this embodiment, no real abnormal beat will be used in the training dataset of the CNN. In other words, the training dataset of a 1D CNN encapsulates only the real normal (N) beats of the subject in the test partition which are taken only within the first 5 minutes of the record. Once trained with the real normal and synthesized abnormal beats, the abnormal beat detection performance of the CNN will then be evaluated over the real abnormal beats of the subject.
In the CNN-layers, the 1D forward propagation (FP) can be expressed as:
where xkl is the input, bkl is the bias of the kth neuron at layer l, and sil-1 is the output of the ith neuron at layer l−1. wikl-1 is the kernel from the ith neuron at layer l−1 to the kth neuron at layer l.
With such an adaptive design, the number of hidden CNN layers can be set to any practical number because the sub-sampling factor of the output CNN layer (the hidden CNN layer just before the first MLP layer) is set to the dimensions of its input map. For example, if the layer l+1 would be the output CNN layer, then the sub-sampling factors for that layer is automatically set to ss=8 because the input map dimension is 8 in this sample illustration. The dimension of the input maps will gradually decrease due to the convolution without zero padding. For example, as shown in
In one study, each ECG beat was represented by 128 samples in two different configurations: single-beat and beat-trio. For single-beat representations, the samples were centered around the R-peak. For a beat-trio they were obtained by down-sampling the sequence between the previous and the following R-peaks. A simple 1D CNN was used in all experiments, with 4 CNN layers and 2 MLP layers. The 1D CNN used in all experiments had 32, 16 and 16 neurons on the 1st, 2nd and 3rd hidden CNN layers and 32 neurons on the hidden MLP layer. The output (MLP) layer size was 5 and the input (CNN) layer size was 2. The kernel size of the CNN was 7 and the sub-sampling factor was 3. The sub-sampling factor for the last CNN-layer was automatically set to 5.
In these experiments, the maximum number of BP iterations was set to 50. Additionally, the minimum train classification error level that was set to 8% to prevent over-fitting. Therefore, the training would terminate if either of the criteria was met. The learning factor, ε, was initially set as 0.001. A global adaptation was applied during each BP iteration: if the training mean squared error (MSE) decreased in the iteration, c was increased by 5%. Otherwise, ε was reduced by 30% for the next iteration. Ten individual BP runs were performed for each subject in the database. Two detection performance metrics—average abnormal beat detection accuracy and false alarm rate—were reported.
To evaluate the Abnormal Beat Syntheses (ABS) approach, first average of the normal beats was computed using only the first 5 minutes of the record for both single beat and beat-trio representations. The N-beat that was closest to the average was selected as the average normal beat (ANB).
Over the training partition of the database, 464 filters were created in the ABS filter library and were used to synthesize abnormal beats for the subjects in the test partition. The value of λ was set at 0.1 and the minimum variances for filter selection were set at 0.1 and 0.15 for the S and V type abnormalities, respectively. There was no selection for Q and F type anomalies—all ABS filters for Q and F type abnormal beats were kept in the library.
After the ABS filter library was formed, the personalized training dataset was generated for each subject in the test partition, as explained earlier and illustrated in
Abnormal beat detection is a binary classification problem that assigns beats to either normal (N) or abnormal (S, V, Q, or F). Because this was originally a 5 class problem to compute the two binary detection performance metrics, abnormal beat detection accuracy (Acc) and false alarm rate (FAR), the 5×5 confusion matrix (CM) of each run was cumulated and then a binary (2×2) CM was deduced from the cumulated 5×5 CM.
For example,
With these definitions, Acc=A0/(A0+AX) and FAR=NX/(N0+NX). Because N0+NX and A0+AX are the total number of normal and abnormal beats, respectively, Acc and FAR can also be interpreted as the probability of detecting an abnormal beat accurately, and erroneously. 1−Acc is also the probability of missing the detection of an abnormal beat. Therefore, the probability of missing consecutive n abnormal beats will be Pn=(1−Acc)n.
The above-described approach achieves the objectives of maintaining a real-time, robust and personalized heart monitoring system for the early detection of cardiac arrhythmias. It is also a fully automatic and unsupervised system as it does not require any manual feedback or verification from a cardiologist to function.
To the extent that the term “includes” or “including” is used in the specification or the claims, it is intended to be inclusive in a manner similar to the term “comprising” as that term is interpreted when employed as a transitional word in a claim. Furthermore, to the extent that the term “or” is employed (e.g., A or B) it is intended to mean “A or B or both.” When the applicants intend to indicate “only A or B but not both” then the term “only A or B but not both” will be employed. Thus, use of the term “or” herein is the inclusive, and not the exclusive use. See, Bryan A. Garner, A Dictionary of Modern Legal Usage 624 (2d. Ed. 1995). Also, to the extent that the terms “in” or “into” are used in the specification or the claims, it is intended to additionally mean “on” or “onto.” Furthermore, to the extent the term “connect” is used in the specification or claims, it is intended to mean not only “directly connected to,” but also “indirectly connected to” such as connected through another component or components.
While the present application has been illustrated by the description of embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the application, in its broader aspects, is not limited to the specific details, the representative apparatus and method, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant's general inventive concept.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2017/051406 | 3/10/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/162957 | 9/13/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
9295429 | Ong et al. | Mar 2016 | B2 |
20040068196 | Massicotte | Apr 2004 | A1 |
20150112182 | Sharma et al. | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
2008007236 | Jan 2008 | WO |
Entry |
---|
International Search Report and Written Opinion; Corresponding PCT Application No. PCT/IB2017/051406 dated Mar. 10, 2017; Authorized Officer Blaine R. Copenheaver; Jun. 6, 2017. |
Number | Date | Country | |
---|---|---|---|
20190069795 A1 | Mar 2019 | US |