This application claims priority under 35 U.S.C. § 119 to Japan Patent Application No. 2007-276943 filed Oct. 24, 2007, the entire text of which is specifically incorporated by reference herein.
The present invention relates to an education support system utilizing a computer. More particularly, the present invention relates to a teaching material selection method for selecting the best combination of teaching materials on the basis of learning assessment data of an examinee, and also relates to a computer program and teaching material selection.
In the field of education, it has heretofore been difficult for teachers to select the best teaching materials on the basis of learning assessment data of examinees. The prior art concerning selection of the teaching materials are mainly classified as follows:
1) Method for explicitly specifying a topic and a teaching material according to rules and the like that depend on examinees scores;
2) Method for obtaining a combination of topics and teaching materials by use of mathematical programming; and
3) Method using the above two methods in combination.
Most of the prior art utilize characteristics of learning curriculums. Examples of the characteristics of the learning curriculums include: that learning curriculums of a particular grade in schools or private preparatory schools are constituted of multiple academic skill areas (hereinafter referred to as topics); and that the teaching materials used in the curriculum cover a certain topic or multiple topics.
Japanese Patent Application Publication Nos. 2005-241914, 2000-66572 and 2003-345908 (These documents are hereinafter referred to as Patent Documents 1, 2 and 3, respectively) and Hiroshi Abe: The Research on Learning Management System with Navigation Functions, Japan Advanced Institute Science and Technology, Hokuriku, master's thesis, March, 2003 (This document is hereinafter referred to as Non-patent Document 1) disclose techniques related to the above 1) method for explicitly specifying a topic and a teaching material according to rules and the like set by score. Patent Document 1 discloses a technique of providing teaching materials connected by class. Moreover, Non-patent Document 1 discloses a technique of providing a list of teaching materials prioritized on the basis of teaching material information and learning histories in the past. Patent Document 2 discloses a technique of: evaluating a score on the basis of all of the ability to solve test questions, improvement in score, and solving time; comparing the evaluated value with a preset threshold; and dynamically changing a level of a teaching material to be selected. Moreover, Patent Document 3 discloses a technique of: calculating a level of understanding on the basis of a score and a passing reference score; and selecting a teaching material corresponding to the calculated value which is lower than a preset threshold of the teaching material.
Toshihiko Takeuchi, Akiyuki Sakuma: Research on an Invoking System in Task-given-type Examinations, Journal of Japan Industrial Management Association, Vol. 53, No. 3, pp. 189 to 200, Aug. 15, 2002 (This document is hereinafter referred to as Non-patent Document 2) discloses a technique related to the above 2) method for obtaining a combination of a topic and a teaching material by use of mathematical programming. Specifically, Non-patent Document 2 discloses a technique for determining a combination of knowledge of new test questions, when the new test questions are added to existing test questions, so that the newly-formed test questions cover both the basics and applications of knowledge. The combination of the knowledge of the new test questions is determined so as to maximize an objective function whose variables represent the basics, the applications of knowledge and the ease of test question preparation, and whose constraints are the number of the new test questions and the number of the knowledge. In the determination of the combination of knowledge, an integer programming problem is formulated and a solution is obtained by use of a genetic algorithm.
Meanwhile, prior art related to a topic interrelationship structure include a PAGERANK (registered trademark) algorithm (see L. Page, S. Brin, R. Motwani, T. Winograd: The PageRank Citation Ranking: Bringing Order to the Web, Stanford Digital Library Technologies Project, 1998.) and its development (see T. H. Haveliwala: Topic-sensitive PageRank, Proc. of the 11th WWW Conference, 2002.) or the like (hereinafter collectively referred to as a PageRank method). Specifically, the PAGERANK algorithm is one of the main techniques for the Internet search. The algorithm or method described above is a method for setting an order of topics by use of an eigenvector corresponding to the maximum eigenvalue of an adjacency matrix determined by a structure of the equivalent (for example, a website on the Internet) of the topics.
The conventional technique related to the above method 1) enables selection of a suitable teaching material on the basis of information about scores and the like of examinees or the like. However, objects of selection are only teaching materials for topics that have score information and therefore, teaching materials of related topics without scores are excluded. However, topics in learning curriculum are highly related to each other and therefore, inability to understand a certain topic may also be caused by inability to understand related topics rather than the topic per se. Thus, a selection system that also considers related topics of teaching materials is required.
Moreover, the conventional technique related to the above method 2) enables a selection of knowledge suitable for questions by use of a mathematical programming approach. When the mathematical programming approach of the above method 2), i.e., genetic algorithm, is used as to find a solution, an enormous amount of computational effort is required. In the conventional technique, the genetic algorithm is used for preparing one set of test questions. The reason why the genetic algorithm is used in the conventional technique is because search for the solution is performed only once for all students. Meanwhile, personalized teaching material selection must be performed for each of the students. Thus, the search for the solution is required to be repeated for the number of times proportional to the number of the students. Consequently, the use of the genetic algorithm is not appropriate for selecting teaching materials for each of the students within some realistic time.
In consideration of the foregoing problems, it is an object of the present invention to provide a method and a device for selecting teaching materials most suitable for an examinee.
As a first aspect of the present invention, the following solving means is provided. There is provided a teaching material selection method for selecting a teaching material on the basis of learning assessment data on an examinee, the method allowing a computer to execute the steps of: calculating achievement of the examinee in an academic skill area on the basis of the learning assessment data and a difficulty level of the academic skill area; calculating importance of the academic skill area on the basis of an academic skill area interrelationship structure indicating an interrelationship between the achievement and the academic skill area; calculating a value of a teaching material on the basis of the importance; and selecting teaching materials on the basis of the values of the teaching materials.
According to a second aspect of the present invention, in the step of calculating the achievement, the academic skill area corresponding to a least common ancestor (LCA) is extracted from the academic skill areas with unknown achievement.
According to a third aspect of the present invention, in the step of calculating the importance, a transition between topics is defined and the computer calculates importance on the basis of the definition and the achievement.
According to another aspect, in the step of calculating the importance, a transition probability is set for the transition between topics.
Moreover, according to yet another aspect of the present invention, a computer program executed by the computer or a teaching material selection device having the computer program installed therein can also be provided.
Here, the “learning assessment data” means data on learning by the examinee such as scores of the examinees, learning time, whether or not the examinee attends a particular class and so on. The “academic skill areas (topics)” mean learning items in learning curriculums that also vary by grades and subjects. The “learning curriculum” means a sequence of educational contents established as a course in which students or schoolchildren learn. The “academic skill area interrelationship structure” means a dependence relationship between the topics and is expressed by a directed acyclic graph (hereinafter referred to as a DAG). The “LCA” (Least Common Ancestor) means a common ancestor closest to a set of (parent) nodes in DAG. In this aspect, the LCA means the closest common topic to a set of topics with low achievement and it is also called a basic topic. The “predetermined value” means average achievement, a preset threshold and the like.
The present invention has the following advantages.
First, the importance is calculated based on the achievement on the topic obtained from the learning assessment data on the examinee and the topic interrelationship structure. Thereafter, the value of the teaching material is calculated based on the importance, and a combination of teaching materials is obtained by use of the value of the teaching material. Thus, results can be obtained faster than the conventional techniques.
Secondly, the use of the LCA in the topic interrelationship structure enables the extraction of important and basic topics whose achievement values are not available from examinees scores.
Third, in the step of calculating the importance, by defining and using the transition between topics, all the topics required for selection of the teaching materials can be taken into consideration. Fourth, the setting of transition probability for the transition between topics makes it possible to obtain more accurate evaluation of importance.
For a more complete understanding of the present invention and the advantage thereof, reference is now made to the following description taken in conjunction with the accompanying drawing.
With reference to the drawings, an embodiment of the present invention will be described below.
For simplicity, each of databases will be hereinafter described as a DB. A teaching material selection device 1 of this embodiment includes: a test score DB 3 which holds students info and their scores; a test question DB 4 which holds information about test questions; a topic DB 5 which holds difficulty levels of topics; a topic score DB 6 which holds association between the student and his/her achievement on each topic as well as the importance of each topic; a teaching material DB 7 which holds difficulty levels of teaching materials; and a teaching material value DB 8 which holds values of the teaching materials. The test score DB 3 is an example of learning assessment data storage means for storing each examinee's learning assessment data. Similarly, the test question DB 4 is an example of question information storage means for storing information about questions used in an examination. The topic DB 5 is an example of academic skill area interrelationship structure storage means for storing information about an academic skill area interrelationship structure. The topic score DB 6 is an example of importance storage means for storing association between the examinee and his/her achievement on the topic as well as importance of the topic. The teaching material DB 7 is an example of teaching material storage means for storing teaching material information in advance. The teaching material value DB 8 is an example of teaching material value storage means for storing association between the examinee and the value of the teaching material. Note that each of the storage means is not limited to the DB on a hard disk but may be an external storage unit such as a memory, a magnetic tape and a flexible disk (FD).
Moreover, the teaching material selection device 1 also includes: an achievement processing part 10 which calculates achievement of the student on each topic; an importance processing part 11 which calculates importance of the topic on the basis of the achievement; a teaching material value processing part 12 which calculates the value of the teaching material on the basis of the importance; and a teaching material selection processing part 13 which selects teaching materials most suitable for the student. The teaching material selection device 1 further includes: an input part 2 which inputs data; and an output part 9 which outputs data. Note that, although the teaching material selection device 1 is configured as one device in this embodiment, the device can also be built from multiple devices by separating the DBs and the processing parts. Moreover, the teaching material selection device can also have a server/client configuration via a network.
Next, description will be given of processes performed by the teaching material selection device 1, together with detailed functions of the respective DBs and functional parts described above.
The functions of the respective DBs and required minimum data items will be described below.
[Test Score DB 3]
The test score DB 3 holds test scores and is configured for each student. The DB holds the following data items.
ID: test question ID
Score: student's score
[Test Question DB 4]
The test question DB 4 shows a relationship between test questions and topics and is used for calculating achievement of the student on each topic on the basis of a result of the student's rating in each of the test questions. The DB holds the following data items.
ID: test question ID
Level: difficulty level of test question
Topics: list of related topics
Avg. Score: average score of all students
[Topic DB 5]
The topic DB 5 holds a topic interrelationship structure (presuppositions, subsequent conditions and the like) and is used for calculating the importance of the topic. The DB holds the following data items.
ID: topic ID
Level: difficulty level of topic
Related Topics: parents (presupposed topics), children (subsequent topics) and list of other related topics (collection of topics for which a parent-child relationship cannot be easily determined)
Avg. Score: average achievement of all students
[Topic Score DB 6]
The topic score DB 6 holds achievement on each topic as well as importance of each topic and is configured for each student. The DB holds the following data items.
ID: topic ID
Score: achievement on topic
Relevancy: importance of topic
[Teaching Material DB 7]
The teaching material DB 7 holds association between teaching materials and topics. The DB holds the following data items.
ID: teaching material ID
Level: difficulty level of teaching material
Hours: time required to study the teaching materials
Topics: list of covered topics
[Teaching Material Value DB 8]
The teaching material value DB 8 holds information on the value of the teaching material and the like and is configured for each student. The DB holds the following data items.
ID: teaching material ID
Number of Use: number of times the teaching material is selected in the past
Value: value of teaching material
<Achievement Processing Part>
The individual processes for selecting a teaching material for a student by use of the DBs described above will be described.
The achievement process described above makes it possible to execute the following operations and the like. Specifically, when the student answers a difficult question correctly, achievement on topics related to the question is increased significantly. On the contrary, when the student gets an easy test question wrong, achievement on topics related to the question is reduced significantly. Moreover, the same process makes it possible to classify the topics used in the test into four groups in terms of achievement as compared with the average achievement of all the students: namely, high achievement (good), low achievement (bad), average achievement (average) and unknown achievement (unknown). The calculation of the average achievement of all the students also enables objective evaluation of the difficulty levels of the topics. Thus, the difficulty levels in the topic DB 5 can also be changed.
Here, the DAG means a directed graph without closed path. The directed graph means a graph including a group of several points and a group of arrows, each connecting two different points. The closed path means a path that repeatedly includes the same point.
The reason why the topic interrelationship structure is expressed by the DAG in the embodiment of the present invention will be described. The topic interrelationship structure is given based on knowledge of a teacher or a curriculum configuration and is basically expressed by the DAG. This is because topics of many curriculums (or courses) are announced in a predetermined order and the topics form a DAG in that order.
Thus, the assumption that the topic interrelationship structure of learning curriculums forms a DAG is a natural one. When the topic interrelationship structure of the learning curriculums does not constitute a DAG (such as when the direction of arrows is unknown), the topic interrelationship structure can be converted into the DAG by use of the achievement in the embodiment of the present invention.
The reason why the topics with low achievement are extracted from the structure diagram related to all the topics in S38 is because teaching materials to be selected are related to the topics with low achievement. Since the topic interrelationship structure diagram is a connected DAGs, the extracted topics are generally a group of directed acyclic graphs (hereinafter referred to as an F-DAGs: Forest of DAGs). In S41, a basic topic of the F-DAGs of the topics with low achievement is extracted. Since the topics have an associated structure, low achievement on a certain topic may be caused by low achievement of related topics. Particularly, in the learning curriculums, the low achievement is often caused by that of the basic topic. Therefore, considering the basic topic in the selection system is important. Thus, the basic topic of the F-DAGs of the topics with low achievement is extracted together with all the topics with low achievement. The extracted topics are used for calculation of importance described below. However, since the basic topic might be a topic having no or a few test questions, the following problems arise. First, achievement of a topic having no test questions is not calculated. Secondly, as to the topic having a few test questions, a variation in the number of questions connected to the topic leads to a variation in reliability of the topic. These two problems are to be handled by including the basic topics to the calculation of importance as roots of the F-DAGs of the topics with low achievement to estimate their importance.
The basic topic of a group of topics with low achievement can be found by performing a fast calculation using a conventional LCA finding algorithm. However, when the LCA is too far from known topics (or close to the root of DAG), a large number of topics may be selected. In this case, the maximum value as to how many topics can be tracked back on the DAG is set to limit the number of basic topics selected.
<Importance Processing Part>
After the process by the achievement processing part 10 is finished, calculation of importance of the topics is performed by the importance processing part 11 in consideration of the topic interrelationship structure. The importance calculation has two steps: a step of obtaining importance from achievement; and a step of obtaining importance in consideration of the DAG from the obtained importance. The importance obtained from the achievement will be hereinafter referred to as the initial importance. For obtaining the importance in consideration of the DAG from the initial importance, the following principles are used.
(Principle 1)
A parent of a topic with high importance is important. This is a principle based on the fact that, as to a topic with low achievement, not only a review of the topic itself but also a review of its parents (bases) of the topic is important to the student. Summingly, low achievement on a certain topic is assumed to be caused by a lack of understanding about the topic itself or the parent topics thereof.
(Principle 2)
A topic having many child topics with high importance is important. This means when the achievement on application topics is low, the importance to review the basic topic common to those application topics is increased. In addition to the above principles, a “transition between topics” is defined in the F-DAGs of the topics with low achievement that are extracted by the achievement processing part.
The “transition between topics” is defined by reversing the directions of the arrows in the F-DAGs of the topics with low achievement, which is extracted by the achievement processing part 10, and by adding a self transition, i.e., the transition to the same topic. The “transition between topics” will be concretely described with reference to
PAGERANK is the output of an algorithm for measuring importance of a web page on the World Wide Web and can be considered as measuring the importance of the web page. The PageRank method is a method for determining PAGERANK in the following manner. Links from page A to page B are regarded as supporting votes from page A to page B, and the importance of page B depends on the number and quality of the votes it receives. Specifically, the importance of the page is determined by (1) the importance and (2) the number of pages linking to it.
Accordingly, the topic importance determination method and the PageRank method can be said to be similar since the two methods have the common the principles in calculating the importance. However, the topic importance determination method in this embodiment is different from the PageRank method in the following two points: (3) the longer the chain of the topics, the higher the importance of the root of the chain; and (4) the importance of the self topic is also used. The reason why (4) the importance of the self topic is used for determination of the importance of the topic is because factors that cause a lack of understanding in the learning curriculums include not only related topics but also the topic itself.
Next, with reference to
In
For cases other than (1),
By the principles, the “transition between topics” and the determination of the transition probability under the conditions described above, the importance of the topics can be obtained with high accuracy compared with the case of using the PageRank method. This point will be described later in Example 1.
[Equation 1]
r(G)=(r(t1), r(t2), r(t3), . . . , r(tN)) (1)
For the importance vector r (G) and the transition matrix M (G) described above, calculations of the following equations (2) and (3) are repeated until r (G) is converged (S76).
[Equation 2]
r(G)′=M(G)r(G) (2)
[Equation 3]
r(G)=r(G)′ (3)
As a result, the converged topic importance r (G) is obtained (S77), and the importance r (t)′ of each topic is outputted to the topic score DB 6 (S78).
The topic importance r (G) obtained by the above calculations reflects the topic interrelationship structure. In the experiment, by setting the transition probabilities such that Ws:Wh:Wl:Wr=2:1:1:2, the topic importance r (G) can be obtained by performing about 10 repetitions of Equations (2) and (3).
<Teaching Material Value Processing Part>
The following equations (4) and (5) are calculation examples of v (k). The equation (4) is the case where only the importance determines the value of the teaching material. The equation (5) is the case where the value is determined from the importance combined with other factors calculated from other method, for example, the difficulty level of the topic. Note that, if the teaching material covers multiple topics, its value can also be obtained by adding importances of those covered topics.
[Equation 4]
v(k)=r(t)′ (4)
[Equation 5]
v(k)=a×r(t)′+b×s(t) (5)
<Teaching Material Selection Processing Part>
The Knapsack integer programming problem is as follows. Specifically, given one knapsack having a capacity C and n pieces of items (each having a value pi and a capacity ci), some of the items are packed in the knapsack within a range not exceeding the capacity C of the knapsack and the sum of the values of the items packed in the knapsack is maximized. The set covering problem is as follows. Specifically, given a set U and its subset groups S, . . . , and Sm, the minimum number of subsets are selected from the subset groups so as to cover all elements of U. Here, the sum of sets S, . . . , and Sm is assumed to be equal to U. The Knapsack integer programming problem and the set covering problem are NP-hard problems. Although it is difficult to obtain a correct solution, there is a fast approximation algorithm. Thus, the solving method by either the Knapsack or set-covering integer programming formulation makes it possible to obtain the solution faster than the conventional case. Formula (6) is a Knapsack formulation example for maximizing the value of the teaching material. Formula (7) is a formulation example for maximizing the value of the teaching material by taking into consideration the number of covered topics. Here, T is a set of topics (with high importance), K is a set of teaching materials related to the topic set T, c(k) is a cost of the teaching material k (such as learning time), x(k) is a selection variable of the teaching material k, t(i) is a cover variable of a topic i (a variable indicating whether or not the topic is covered by the selected teaching material), K(i) is a set of teaching materials covering the topic i, and c is an upper limit of the cost.
(1) An example of Knapsack formulation for maximizing the value of the teaching material
(2) An example of formulation for maximizing the value of the teaching material by taking into consideration the number of topics to be covered
α is a positive constant set by taking into consideration the weight of the number of covered topics. α=0 corresponds to Knapsack maximization of the teaching material, and the case where α is large corresponds to maximization on the number of topics to be covered.
Next, description will be given on results of an experiment on ranking performance of the topics in descending order of importance (hereinafter referred to as “topic rank”) in the case where the principles of the “transition between topics” based on the topic interrelationship structure and the transition probabilities according to the embodiment of the present invention are used.
The results shown in
The results shown in
As to the topic rank in the graph L (and the graph M), the PageRank method and this embodiment show the same results. However, the ranking differs when the graphs L and M are directly compared with each other. This embodiment is different from the PageRank method in the point that the setting of transition probabilities makes it possible to make a direct adjustment as to whether emphasis is placed on the basic topic having a long chain or on the basic topic having many child topics.
The topics in the learning curriculums have the following characteristics.
(1) the topic having a long chain of successor topics has higher importance.
(2) the topic having many child topics has higher importance.
(3) importance is required since the topic with unknown achievement might be relevant.
The previous results show the following. Specifically, the results obtained by taking into consideration the above three characteristics cannot be achieved by adopting the PageRank method as it is, but can be achieved by applying the principles of the “transition between topics” based on the topic interrelationship structure and the transition probabilities according to this embodiment.
It is also possible to combine this embodiment with teaching material selection by matching. In this case, an academic skill area for the teaching material selection by matching is set, difficulty levels of teaching materials are set for each academic skill area, and a list of teaching materials that meet the conditions is prepared. As an example of combining this embodiment with the teaching material selection by matching, the following method can be considered: a matching mode is set if the score is within top X% or bottom Y%, or this embodiment if otherwise.
The teaching material selection device 1 includes a CPU (Central Processing Unit) 1010, a bus line 1005, a communication I/F 1040, a main memory 1050, a BIOS (Basic Input Output System) 1060, a parallel port 1080, a USB port 1090, a graphic controller 1020, a VRAM 1024, a voice processor 1030, an I/O controller 1070 and input means such as a keyboard and a mouse adapter 1100 and a digital pen 1101. Moreover, storage means such as a flexible disk (FD) drive 1072, a hard disk 1074, an optical disk drive 1076 and a semiconductor memory 1078 can be connected to the I/O controller 1070. A display device 1022 is connected to the graphic controller 1020. Furthermore, as options, an amplifier circuit 1032 and a speaker 1034 are connected to the voice processor 1030.
The BIOS 1060 stores a boot program to be executed by the CPU 1010 when the teaching material selection device 1 is activated, a program dependent on the hardware of the teaching material selection device 1, and the like. The FD drive 1072 reads a program or data from a flexible disk 1071 and provides the program or data to the main memory 1050 or the hard disk 1074 through the I/O controller 1070.
As the optical disk drive 1076, for example, a DVD-ROM drive, a CD-ROM drive, a DVD-RAM drive and a CD-RAM drive can be used. In this case, it is required to use an optical disk 1077 corresponding to each of the drives. The optical disk drive 1076 can also read a program or data from the optical disk 1077 and provide the program or data to the main memory 1050 or the hard disk 1074 through the I/O controller 1070.
A computer program provided to the teaching material selection device 1 is stored in a recording medium such as the flexible disk 1071, the optical disk 1077 and a memory card and is provided by a user. This computer program is read from the recording medium through the I/O controller 1070 or downloaded through the communication I/F 1040. Thus, the computer program is installed on the teaching material selection device 1 and executed. Since operations that the computer program allows the teaching material selection device 1 to perform are the same as those performed by the device already described, description thereof will be omitted.
The computer program described above may be stored in an external storage medium. As the storage medium, a magneto-optical recording medium such as an MD and a tape medium can be used, besides the flexible disk 1071, the optical disk 1077 and the memory card. Moreover, a hard disk installed in a server system connected to a dedicated communication line or the Internet, or a storage unit such as an optical disk library may be used as the recording medium to provide the computer program to the teaching material selection device 1 through the communication line.
In the above example, the teaching material selection device 1 has been mainly described. Meanwhile, it is possible to achieve the functions of the teaching material selection device 1 described above by installing a program having the above functions on a computer. Therefore, the teaching material selection device 1 described as one embodiment of the present invention can also be achieved by a method and a computer program thereof.
As described above, the teaching material selection device 1 of the present invention can be achieved as hardware, software or a combination of hardware and software. As implementation of the present invention by the combination of hardware and software, implementation in a computer system having a predetermined program is cited as a typical example. In this case, the predetermined program is loaded into the computer system and executed to allow the computer system to execute the processes according to the present invention. This program includes a command group that can be expressed by an arbitrary language, code or description. Such a command group enables the system to directly execute a specific function or to execute the specific function after any one of or both of (1) conversion into another language, code or description and (2) duplication on another medium are performed. As a matter of course, the scope of the present invention includes not only such a program itself but also a program product including a medium having the program recorded thereon. The program for executing the functions of the present invention can be stored in an arbitrary computer-readable medium such as a flexible disk, an MO, a CD-ROM, a DVD, a hard disk device, a ROM, an MRAM and a RAM. The program can be downloaded from another computer system connected through a communication line or can be duplicated from another medium so as to be stored in the computer-readable medium. Moreover, the program can also be stored in a single or multiple recording media by compression or division into multiple parts.
Although the present invention has been described above according to the embodiment, the present invention is not limited to the embodiment described above. Moreover, the effects described in the embodiment of the present invention are merely listed as preferred effects achieved by the present invention. The effects of the present invention are not limited to those described in the embodiment or example of the present invention.
The present invention, advantageously provides a teaching material selection method which enables suitable teaching materials to be selected based on learning assessment data of an examinee in a short time and with high accuracy compared with the conventional methods, and also to provide a computer program and a teaching material selection device.
Although the preferred embodiment of the present invention has been described in detail, it should be understood that various changes, substitutions and scope of the inventions as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2007-276943 | Oct 2007 | JP | national |