Aspects of the present disclosure relate generally to resistance to intrusion by pests, such as squirrels or large birds, into a supply of bird food in a bird feeder.
Attracting wild birds, particularly song birds, using bird feeders is an increasingly popular hobby. The ability to attract desired birds may be limited, however, where the area in which the bird feeder is stationed is frequented by pests, such as squirrels and larger birds including magpies. Many conventional bird feeders are susceptible to such pests accessing and consuming bird food in the bird feeder, thereby discouraging wild birds from visiting the bird feeder and greatly increasing the costs associated with the hobby by having to replace the consumed bird food in shorter intervals. These challenges are exacerbated in attempting to distinguish between wild birds and pests, such as squirrels, to ensure that the bird food is not denied to the wild birds. It is with these observations in mind, among others, that various aspects of the present disclosure were conceived and developed.
Implementations described and claimed herein address the foregoing problems by providing systems and methods for resisting intrusion by a pest. In one implementation, a reservoir extends between a proximal end and a distal end, and the reservoir defines an interior. A basin is mounted to the reservoir. The basin has a basin body and a basin surface. A sleeve assembly has a sleeve body and a port defined in the sleeve body. A tensioner translationally mounts the sleeve body relative to the basin body. The sleeve body translates distally from an accessible position to an occluded position when a weight applied to the sleeve assembly exceeds a weight threshold set by the tensioner. The accessible position includes bird food on the basin surface being accessible through the port. The occluded position includes the port being disposed distal to the basin surface such that the bird food on the basin surface is inaccessible through the port.
In another implementation, a reservoir extends between a proximal end and a distal end, and the reservoir defines an interior. A dispenser is mounted to the distal end of the reservoir. The dispenser has a cavity. A basin has a basin body and a basin surface, and the basin mounted to the dispenser. At least one dispensing surface is disposed relative to the dispenser and the basin surface. Bird food is dispensable through a dispensing opening from the cavity onto the basin surface using the at least one dispensing surface. A sleeve assembly has a sleeve body and a port defined in the sleeve body. A tensioner translationally mounts the sleeve body relative to the basin body. The sleeve body translates distally from an accessible position to an occluded position when a weight applied to the sleeve assembly exceeds a weight threshold set by the tensioner. The accessible position includes the bird food on the basin surface being accessible through the port. The occluded position includes the port being disposed distal to the basin surface such that the bird food on the basin surface is inaccessible through the port. An adjuster controls the weight threshold set by the tensioner. The adjuster is disposed exterior to the sleeve assembly. An indicator is disposed in the interior of and visible through the reservoir, and the indicator provides a visual reference of the weight threshold.
In still another implementation, input is received at an adjuster. The input controls a weight threshold set by a tensioner. The adjuster is accessible from an exterior of a bird feeder. A visual reference of the weight threshold is displayed using an indicator, and the visual reference visible from the exterior of the bird feeder. An application of a weight of the pest exceeding the weight threshold is received on a sleeve assembly of the bird feeder. The sleeve assembly has a port defined in a sleeve body. The sleeve assembly is translated distally relative to a basin in response to the application of the weight of the pest. The basin has a basin body and a basin surface. The sleeve assembly is translated from an accessible position to an occluded position. The accessible position includes bird food on the basin surface being accessible through the port, and the occluded position includes the port being disposed distal to the basin surface such that the bird food on the basin surface is inaccessible through the port.
Other implementations are also described and recited herein. Further, while multiple implementations are disclosed, still other implementations of the presently disclosed technology will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative implementations of the presently disclosed technology. As will be realized, the presently disclosed technology is capable of modifications in various aspects, all without departing from the spirit and scope of the presently disclosed technology. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not limiting.
Aspects of the presently disclosed technology relate to systems and methods for resisting intrusion by a pest, such as a squirrel, scavenger bird, and/or the like. In one aspect, a bird feeder includes a basin fixed relative to a reservoir. The basin includes a basin body and a basin surface. Bird food, such as seed, nuts, and/or the like, is directed from an interior of the reservoir onto the basin surface. For example, the bird feeder may include a dispenser that directs the bird food through a dispensing opening using one or more dispensing surfaces. A sleeve assembly is translationally mounted relative to the basin with a tensioner.
The tensioner is used to set a weight threshold corresponding to pests for which to prevent access to the bird food. For example, the weight threshold is set above a typical weight of wild birds to attract and at or below a typical weight of pests, which often weigh more than the wild birds. The weight threshold is set or otherwise controlled using an adjuster that is accessible from outside the bird feeder, such that the bird feeder does not have to be disassembled to make adjustments to the weight threshold. To further facilitate such adjustments, and indicator is visible from an exterior of the bird feeder to provide a visual reference of the weight threshold and any adjustments made. For example, the indicator may move proximally and distally in coordination with an increase and decrease in tension of the tensioner. The change in tension adjusts the weight threshold accordingly.
The weight threshold generally acts as a trigger for initiating pest resisting mechanisms. More particularly, in an absence of an application of weight to the sleeve assembly and when the application of weight is below the weight threshold (e.g., when one or more wild birds are seated on a perch of the sleeve assembly), the sleeve assembly remains in an accessible position. Stated differently, the tensioner biases the sleeve assembly into the accessible position. In this position, the bird food on the basin surface is accessible through one or more ports defined in the sleeve assembly. When the weight of a pest is applied to the sleeve assembly that exceeds the weight threshold, the bias of the tensioner is overcome, and the sleeve assembly translates distally from the accessible position to an occluded position. In this position, the bird food on the basin surface is inaccessible through the one or more ports, and the pest is therefore unable to obtain the bird food. When the weight of the pest is removed from the sleeve assembly, the bias of the tensioner causes the sleeve assembly to translate proximally from the occluded position to the accessible position.
To begin a detailed description of an example bird feeder 100 that is resistant to intrusion by a pest, reference is made to
In one implementation, a reservoir 110 extends distally from the cap assembly 106 to a base assembly 112 disposed at the distal end 104 of the bird feeder 100. The reservoir 110 includes a wall defining an interior housing bird food. In one implementation, the reservoir 110 includes an opening at the proximal end 102 through which bird food is inserted into the interior of the reservoir 110. The opening into the interior of the reservoir 110 is removably covered with the cap assembly 106. As can be understood from
In one implementation, the base assembly 112 includes a sleeve assembly 114 translationally mounted relative to the reservoir 110. Stated differently, the sleeve assembly 114 is adapted to move proximally and distally along a longitudinal axis of the bird feeder 100 relative to the reservoir 110. The sleeve assembly 114 translates in response to an application or removal of weight to at least a portion of the sleeve assembly 114. For example, the sleeve assembly 114 is biased into an accessible position and will translate distally in a direction away from the reservoir 110 into an occluded position if a weight applied to at least a portion of the sleeve assembly 114 exceeds a weight threshold. When the application of weight exceeding the weight threshold is removed, the sleeve assembly 114 translates proximally in a direction towards the reservoir 110, returning the sleeve assembly 114 into the accessible position.
The sleeve assembly 114 moves in harmony as a single unit relative to a reservoir assembly. In one implementation, the sleeve assembly 114 includes one or more ports 118, each with a port hood 120 and a perch 122 disposed relative to the port 118. For example, each of the ports 118 may include a port hood 120 disposed proximal to the port 118 and a perch 122 disposed distal to the port 118. In the accessible position, wild birds may access the bird food through the ports 118, for example, while being seated on one of the perches 122. The translation of the sleeve assembly 114 restricts access to the bird food when a pest applies weight to at least a portion of the sleeve assembly 114.
To further restrict access to the bird food, the base assembly 112 includes a shield 116. The shield 116 may be fixed to the reservoir 110, such that the reservoir assembly includes the cap assembly 106, the reservoir 110, and the shield 116, among other internal components. The shield 116 acts as a barrier to the sleeve assembly 114, preventing a pest from applying weight to the reservoir assembly and reaching distally into one of the ports 118. Stated differently, if a pest were to apply its weight to the reservoir assembly only, the sleeve assembly remains in the accessible position, with the bird food accessible to the pest. As such, the shield 116 acts as a barrier preventing the pest from accessing the bird food in this arrangement. The port hoods 120 may serve as a further barrier to the ports 118. The shield 116 and port hoods 120 may further provide protection to the wild birds while feeding.
Referring to
In one implementation, the cap assembly 106 includes a cap 208 having an inner surface 210 defining a cap cavity 220. The cap 208 may be releasably connectable with the proximal end of the reservoir 110 to cover the opening into the interior. In one implementation, a cap lock 212 having reservoir locking ring is attached to the inner surface 210 and disposed within the cap cavity 220. For example, the cap 208 may have one or more cap connectors 222 connected to corresponding lock connectors 226. A hanger bar 216 extends between the reservoir locking ring of the cap lock 212 to translationally mount the hanger 108 to the cap assembly 106. More particularly, in one implementation, the hanger body 204 extends through a cap opening 224 in the cap 208, a lock opening 214 in the cap lock 212, and a bar opening 218 of the hanger bar 216. In this arrangement, the proximal end 200 and the distal end 206 of the hanger 108 each act as a stop to prevent the hanger body 204 from disconnecting from the cap assembly 106. The hanger body 204 is permitted to translate within each of the openings 224, 214, and 218. However, the proximal end 200 cannot translate through the cap opening 224, and the distal end 206 cannot translate through the bar opening 218.
Turning to
A shield opening 406 extends through the shield 116 from the shield locking ring 404 to the distal shield body 402. Referring to
As can be understood from
Referring to
In one implementation, the sleeve distal end 506 includes an adjustment surface 512 with one or more adjustment receivers 514 defined therein. For example, the adjustment receivers 514 may be cutouts disposed radially about a sleeve opening 516. The adjustment surface 512 is adapted to engage the adjuster 800, with the adjustment receivers 514 adapted to control an adjustment of the tensioner 600 using the adjuster 800, as described herein. The adjuster 800 may connect to the tensioner 600 via the sleeve opening 516.
Turning to
The dispenser 700 includes a dispenser body 702 extending from a proximal dispensing edge 706 to a distal dispending edge 716 and defining the cavity 124. In one implementation, one or more dispenser lockers 708 extend proximally and are adapted to mount to the distal end of the reservoir 110. The dispenser body 702 may include a dispenser shelf 710 upon which a distal edge of the distal end of the reservoir 110 sits when the reservoir 110 is connected to the dispenser 700. Similarly, one or more legs 712 may extend distally from the dispensing body 702 to mount the dispenser 700 relative to a basin surface 904 of a basin body 902 of the basin 900. In one implementation, the legs 712 are mounted to the basin body 902 with a basin mount 1200.
With reference to
As shown in
In one implementation, an inner mount body 1208 extends proximally from the mount body 1202 and includes a proximal mount opening 1212 from which the tensioner 600 extends. The inner mount body 1207 may be disposed radially inwardly from an outer circumference of the mount body 1202 forming a mount shelf 1210. The mount body 1202 may have various connection points, including one or more cover receivers 1214 and one or more mount connectors 1216. The mount connectors 1216 are configured to connect the legs 712 of the dispenser 700 to the basin 900. For example, as shown in
As described herein, the tensioner 600 translationally mounts the sleeve assembly 114 to the reservoir assembly. In one implementation, the basin mount 1200 includes a distal mount body 1218 disposed in a mount cavity 1224. The distal mount body 1218 extends distally from the mount body 1202 under the one or more dispensing surfaces 1204. The distal mount body 1218 may be integral with or separate from the mount body 1202. The distal mount body 1218 defines a distal mount opening 1220. The proximal mount opening 1212 may connect with the distal mount opening 1220 to form a continuous opening through the basin mount 1200. The tensioner 600 may extend through a basin opening 906 and the openings 1212 and 1220 and be connected to the sleeve assembly 114, such that a portion of the sleeve assembly 114 and/or the tensioner 600 translates within the openings 1212 and/or 1220 relative to the basin mount 1200. In one implementation, the basin mount 1200 includes one or more mount channels 1222 to guide the translation within and relative to the basin mount 1200.
As described herein, the basin 900 is fixed within the reservoir assembly and the sleeve assembly 114 translates in relation thereto between the accessible position and the occluded position. The accessible position includes the basin surface 904 being accessible via the one or more ports 118, and the occluded position includes the basin surface 904 being inaccessible via the one or more ports 118. In one implementation, the occluded position includes the ports 118 being disposed distal to the basin surface 904 such that the basin body 902 at least partially occludes the ports 118. For example, the basin body 902 may include a proximal portion 910 and a distal portion 912 forming a side surface that may at least partially occlude the ports 118 in the occluded position. In the accessible position, the side surface may be disposed distal to the ports 118 such that the basin surface 904 is accessible.
Turning to
In one implementation, the perch mount assembly 1000 includes one or more perch mounts 1006 extending radially outwardly from a perch mount base 1008. The perch mounts 1006 each engage one of the perches 122 within a perch channel 1010. The perch mounts 1006 may each include ratchets or similar features for adjusting a length of the perch 122 extending outwardly from the edge of the perch mount 1006.
The perch mount assembly 1000 may be one integral component or separable into a proximal perch mount assembly 1014 and a distal perch mount assembly 1015. In one implementation, the perch mount opening 1004 is formed at the distal end by a proximal perch mount opening 1022 and a distal perch mount opening 1030. Similarly, the perch mount base 1008 is formed by a proximal perch mount base 1018 connected to a distal perch mount base 1026. A proximal perch mount 1016 is engaged to a distal perch mount 1024 to form each of the perch mounts 1006, with a proximal perch channel 1020 defined in the proximal perch mount 1016 being disposed relative to a distal perch channel 1028 defined in the distal perch mount 1024 to form the perch channel 1010.
The tensioner 600 extends through the perch mount opening 1004 into the basin mount 1200, thereby translationally mounting the sleeve assembly 114 relative to the fixed reservoir assembly, including the basin 900. The tensioner 600 may extend through the cavity 124 into the interior of the reservoir 110. As can be understood from
In one implementation, the cover 1300 includes a cover body 1302 defining a cover opening 1308 into which a portion of the tensioner 600 extends. For example, the cover body 1302 may connect to the mount body 1202 with the tensioner 600 extending from the inner mount body 1208 into the cover opening 1308. A distal edge of the cover body 1302 may be connect to the mount shelf 1210 of the mount body 1202 with the inner mount body 1208 of the basin mount 1200 extending into the cover opening 1308. The cover 1300 may be secured to the basin mount 1200 with a first cover arm 1304 and a second cover arm 1306 engaged to the mount body 1202 with the cover receivers 1214.
Referring to
In one implementation, the post 602 includes an indicator section 610 disposed on a proximal post section 608. The spring 604 extends about the proximal post section 608 distally from the indicator 606, which is adapted to rotate about and translate along the indicator section 610 towards and away from a post tip 612. The movement of the indicator 606 changes the bias of the spring 604 in coordination with the rotation of the post 602 by the adjuster 800 and provides a visual reference of the change and weight threshold. The post 602 includes a post base 622 connectable to the adjustor 800 using the adjuster lock 1100. The post 602 may further include one or more distal post sections (e.g., first and second distal post sections 614-616) and one or more post bodies (e.g., first and second post bodies 618-620) extending through or otherwise connecting with the basin mount 1200, the perch mount assembly 1000, and/or the like.
As described herein, the adjuster 800 is accessible from an exterior of the bird feeder 100, while the indicator 606 provides a visual reference visible from an exterior of the bird feeder 100, to facilitate a controlled adjustment of the weight threshold without disassembly of the bird feeder 100. In one implementation, the adjuster 800 may be mounted outside the sleeve assembly 114 relative to the adjustment surface 512 of the sleeve 500. The proximal surface 818 may be disposed adjacent the adjustment surface 512, such that the adjuster body 802 rotates about the sleeve opening 516. In one implementation, the adjuster 800 includes an adjuster tab 810 defined by a slit 822 in the adjuster body 802, such that the adjuster tab 810 is movable relative to the adjuster body 802. The adjuster tab 810 includes a protrusion 820 extending proximally from the adjuster tab 810 and engageable to the adjustment receivers 514. The engagement of the protrusion 820 of the adjuster tab 810 to one of the adjustment receivers 514 holds the adjuster 800 in place and as such the tensioner 600 at a set weight threshold. Rotating the adjuster body 802 using the adjuster legs 806 and 808 moves the protrusion about the sleeve opening 516 until a desired weight threshold is reached and the protrusion 820 is engaged to a corresponding adjustment receiver 514.
Based upon design preferences, it is understood that the specific order or hierarchy of steps in the methods described herein can be rearranged while remaining within the disclosed subject matter. Any accompanying method claims present elements of the various steps in a sample order and are not necessarily meant to be limited to the specific order or hierarchy presented.
It is believed that the present disclosure and many of its attendant advantages will be understood by the foregoing description, and it will be apparent that various changes may be made in the form, construction and arrangement of the components without departing from the disclosed subject matter or without sacrificing all of its material advantages. The form described is merely explanatory, and it is the intention of the following claims to encompass and include such changes.
The above specification, examples, and data provide a complete description of the structure and use of example implementations of the invention. Various modifications and additions can be made to the exemplary implementations discussed without departing from the spirit and scope of the presently disclosed technology. For example, while the implementations described above refer to particular features, the scope of this disclosure also includes implementations having different combinations of features and implementations that do not include all of the described features. Accordingly, the scope of the presently disclosed technology is intended to embrace all such alternatives, modifications, and variations together with all equivalents thereof.
The present application is a continuation-in-part of and claims priority to U.S. Design application Ser. No. 29/627,598, entitled “Bird Feeder” and filed Nov. 28, 2017, which is incorporated by reference in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
2634705 | Mayes | Apr 1953 | A |
2683440 | Klix | Jul 1954 | A |
2773474 | Nugent | Dec 1956 | A |
2856898 | Doubleday | Oct 1958 | A |
2891508 | Bower | Jun 1959 | A |
3051126 | Merritt et al. | Aug 1962 | A |
D193558 | Parry | Sep 1962 | S |
3083687 | Slaven | Apr 1963 | A |
3145690 | Bachman | Aug 1964 | A |
3164130 | Curtis et al. | Jan 1965 | A |
3186379 | Grella | Jun 1965 | A |
3292589 | Williams | Dec 1966 | A |
D217470 | Morrow | May 1970 | S |
3648661 | Moore | Mar 1972 | A |
4144842 | Schlising | Mar 1979 | A |
4201155 | Hyde, Jr. | May 1980 | A |
4318364 | Bescherer | Mar 1982 | A |
4328605 | Hutchison et al. | May 1982 | A |
4331104 | Clarke | May 1982 | A |
D266705 | Bescherer | Oct 1982 | S |
4523546 | Latham | Jun 1985 | A |
4541362 | Dehls | Sep 1985 | A |
D285840 | Poon | Sep 1986 | S |
4649865 | Riggi | Mar 1987 | A |
4712512 | Schreib et al. | Dec 1987 | A |
4747370 | Olson | May 1988 | A |
4821681 | Tucker | Apr 1989 | A |
RE32970 | Furlani | Jul 1989 | E |
4892060 | Lundquist | Jan 1990 | A |
D320097 | Vajtay | Sep 1991 | S |
5044319 | Blasbalg | Sep 1991 | A |
D326003 | Embree | May 1992 | S |
5156112 | Brown | Oct 1992 | A |
5163382 | Morrison | Nov 1992 | A |
5195459 | Ancketill | Mar 1993 | A |
D335006 | Blasbalg | Apr 1993 | S |
5205065 | Wilson et al. | Apr 1993 | A |
5191857 | Boaz | Sep 1993 | A |
5255631 | Anderson | Oct 1993 | A |
5285748 | Weldin | Feb 1994 | A |
5309867 | Cruz | May 1994 | A |
5323735 | Taphorn | Jun 1994 | A |
5375558 | Drakos | Dec 1994 | A |
5392732 | Fry | Feb 1995 | A |
D359592 | Fenton et al. | Jun 1995 | S |
D360495 | Sanderson | Jul 1995 | S |
5445109 | Gray | Aug 1995 | A |
5676089 | Morganson | Oct 1997 | A |
5678507 | Kassner | Oct 1997 | A |
5690056 | Korb | Nov 1997 | A |
5720238 | Drakos | Feb 1998 | A |
5826540 | Bridges | Oct 1998 | A |
5921201 | Green | Jul 1999 | A |
5947054 | Liethen | Sep 1999 | A |
5964183 | Czipri | Oct 1999 | A |
D428437 | Hmelar et al. | Jul 2000 | S |
6158385 | Boyd | Dec 2000 | A |
6253707 | Cote | Jul 2001 | B1 |
D451251 | Chrisco et al. | Nov 2001 | S |
6318290 | Fisher | Nov 2001 | B1 |
6341576 | Cathell et al. | Jan 2002 | B1 |
6408788 | Lieb et al. | Jun 2002 | B1 |
6418878 | Cathell | Jul 2002 | B1 |
6532894 | Johnson | Mar 2003 | B2 |
6543383 | Cote | Apr 2003 | B1 |
6543384 | Cote | Apr 2003 | B2 |
6561128 | Carter | May 2003 | B1 |
6591781 | Hardison | Jul 2003 | B2 |
6619229 | Lush | Sep 2003 | B1 |
6622654 | Fasino | Sep 2003 | B2 |
6640746 | Lund | Nov 2003 | B1 |
D488590 | Fort, II | Apr 2004 | S |
D490576 | Rich et al. | May 2004 | S |
6843204 | Peltier | Jan 2005 | B2 |
6863024 | Obenshain | Mar 2005 | B1 |
6889629 | Swift et al. | May 2005 | B2 |
6918353 | Coroneos | Jul 2005 | B1 |
6945192 | Cote | Sep 2005 | B2 |
6951188 | Lush | Oct 2005 | B1 |
6986322 | Lumpkin | Jan 2006 | B2 |
D515748 | Jung et al. | Feb 2006 | S |
7032539 | Obenshain | Apr 2006 | B1 |
D524490 | Obenshain | Jul 2006 | S |
7131395 | Lush | Nov 2006 | B1 |
D535445 | Obenshain | Jan 2007 | S |
7162972 | Stachowiak | Jan 2007 | B2 |
7191731 | Cote | Mar 2007 | B2 |
D539991 | Petrie et al. | Apr 2007 | S |
7219621 | Coroneos | May 2007 | B2 |
7258075 | Jones et al. | Aug 2007 | B1 |
7263950 | Swift et al. | Sep 2007 | B2 |
7305936 | Tippetts | Dec 2007 | B2 |
7347162 | Zieff et al. | Mar 2008 | B2 |
7370607 | O'Dell | May 2008 | B2 |
D572866 | Bloedorn | Jul 2008 | S |
7448346 | Stone et al. | Nov 2008 | B1 |
7516715 | Conlon | Apr 2009 | B2 |
7540260 | Rich et al. | Jun 2009 | B2 |
D612108 | Torres et al. | Mar 2010 | S |
7721676 | Bloedorn | May 2010 | B2 |
7739982 | Cote | Jun 2010 | B2 |
8056507 | Lush | Nov 2011 | B2 |
8230809 | Cote | Jul 2012 | B2 |
D671692 | Carter | Nov 2012 | S |
D677016 | Carter | Feb 2013 | S |
D678627 | Carter | Mar 2013 | S |
D679059 | Carter | Mar 2013 | S |
8413605 | Baynard | Apr 2013 | B2 |
8434425 | Cote | May 2013 | B2 |
D692191 | Stephens et al. | Oct 2013 | S |
8662016 | Lush | Mar 2014 | B2 |
D709249 | Van Dyk et al. | Jul 2014 | S |
8807081 | Gage et al. | Aug 2014 | B1 |
D723226 | Krueger | Feb 2015 | S |
D725316 | Carter | Mar 2015 | S |
8978586 | Carter et al. | Mar 2015 | B1 |
9179649 | Carter et al. | Nov 2015 | B2 |
9192147 | Hoysak | Nov 2015 | B2 |
D745227 | Thorn | Dec 2015 | S |
9277735 | Murray | Mar 2016 | B2 |
9282727 | Cote | Mar 2016 | B2 |
9320263 | Cote | Apr 2016 | B2 |
D811013 | Thorn | Feb 2018 | S |
D817556 | Thorn | May 2018 | S |
10130079 | Cote | Nov 2018 | B2 |
D851842 | Nifong et al. | Jun 2019 | S |
10314294 | Thorn | Jun 2019 | B2 |
10531644 | Cote | Jan 2020 | B2 |
20020139311 | Cote | Oct 2002 | A1 |
20020152965 | Turner | Oct 2002 | A1 |
20020157615 | Laske, Jr. | Oct 2002 | A1 |
20030127056 | Chrisco et al. | Jul 2003 | A1 |
20030136347 | Fasino | Jul 2003 | A1 |
20030226514 | Cote | Dec 2003 | A1 |
20040216684 | Obenshain | Nov 2004 | A1 |
20040250777 | Stachowiak | Dec 2004 | A1 |
20050263083 | Coroneos | Dec 2005 | A1 |
20060266295 | McDarren | Nov 2006 | A1 |
20060272585 | O'Dell | Dec 2006 | A1 |
20060288944 | Hoff | Dec 2006 | A1 |
20070227453 | Puckett et al. | Oct 2007 | A1 |
20070266950 | Walsh | Nov 2007 | A1 |
20070266951 | Berns | Nov 2007 | A1 |
20080022936 | Stone et al. | Jan 2008 | A1 |
20080078329 | Hunter et al. | Apr 2008 | A1 |
20080083375 | Stephanian | Apr 2008 | A1 |
20080105206 | Rich et al. | May 2008 | A1 |
20080210172 | Waikas | Sep 2008 | A1 |
20090071408 | Wechsler | Mar 2009 | A1 |
20090260576 | Vosbikian | Oct 2009 | A1 |
20090304900 | Augustin | Dec 2009 | A1 |
20100061091 | Galipeau et al. | Mar 2010 | A1 |
20100258055 | Cote | Oct 2010 | A1 |
20100269756 | Trout | Oct 2010 | A1 |
20100288200 | Lush | Nov 2010 | A1 |
20100288201 | Lush | Nov 2010 | A1 |
20110083609 | Cote | Apr 2011 | A1 |
20110083610 | Cote | Apr 2011 | A1 |
20110088626 | Hepp et al. | Apr 2011 | A1 |
20110126771 | Cote | Jun 2011 | A1 |
20110174233 | Lush | Jul 2011 | A1 |
20120234249 | Gaze | Sep 2012 | A1 |
20130174789 | Koski | Jul 2013 | A1 |
20140060438 | Cote | Mar 2014 | A1 |
20140090600 | Hoysak | Apr 2014 | A1 |
20140360435 | Cote | Dec 2014 | A1 |
20150136032 | Cote | May 2015 | A1 |
20150305311 | Murray | Oct 2015 | A1 |
20160113247 | McCord | Apr 2016 | A1 |
20160165856 | Hoysak | Jun 2016 | A1 |
20160262357 | Cole | Sep 2016 | A1 |
20160366319 | Perkins | Dec 2016 | A1 |
20170164585 | Cote | Jun 2017 | A1 |
20170172112 | Thorn | Jun 2017 | A1 |
20170231202 | Cote | Aug 2017 | A1 |
20170245474 | Biggin | Aug 2017 | A1 |
20170339926 | Cote | Nov 2017 | A1 |
20170339927 | Cote | Nov 2017 | A1 |
20190166804 | Bartholow | Jun 2019 | A1 |
20190313608 | Cote | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
3036025 | Sep 2019 | CA |
Entry |
---|
“Belle Fleur Wild Bird Products Catalog,” Hiatt Manufacturing, Incorporated, Catalog No. 1, 2010, 16 pages. |
“Belle Fleur Wild Bird Products Catalog,” Hiatt Manufacturing Incorporated, Catalog No. 1, 2013, 16 pages. |
“Belle Fleur Wild Bird Products Catalog,” Hiatt Manufacturing, Incorporated, Catalog No. 2, 2011, 16 pages. |
Droll Yankees, “Product Catalog: The World's Best Bird Feeders and More Since 1969,” 2008, 36 pages. |
More Birds, “Bird Feeders & Nectar New Product Catalog Supplement,” Classic Brands, 2014, 4 pages. |
More Birds, “Bird Feeders & Nectar Product Catalog,” Classic Brands, 2013, 12 pages. |
More Birds, “Bird Feeders & Nectar Product Catalog,” Classic Brands, 2015, 16 pages. |
More Birds, “Product Catalog: Bird Feeders and Nectar,” Classic Brands LLC, 2010-2012, 6 pages. |
“Squirrel Buster Peanut and Brochure,” Brome Bird Care, 2007, 2 pages. |
Stokes, “Select Bird Feeders & Accessories Products Catalog,” Hiatt Manufacturing, 2010, 17 pages. |
Stokes, “Select Bird Feeders & Accessories Products Catalog,” Hiatt Manufacturing, Inc., 2011, 36 pages. |
Stokes, “New Products Supplemental Products Catalog,” Hiatt Manufacturing, 2014, 4 pages. |
Stokes, “New Products Supplemental Products Catalog,” Hiatt manufacturing, 2015, 8 pages. |
Stokes, “Stokes Select Bird Feeders & Accessories Products Catalog,” Hiatt Manufacturing, Inc., 2013, 46 pages. |
Number | Date | Country | |
---|---|---|---|
20190159432 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 29627598 | Nov 2017 | US |
Child | 15919044 | US |