PESTICIDALLY ACTIVE AZOLE-AMIDE COMPOUNDS

Information

  • Patent Application
  • 20210298306
  • Publication Number
    20210298306
  • Date Filed
    September 12, 2019
    5 years ago
  • Date Published
    September 30, 2021
    3 years ago
Abstract
Compounds of formula (I) wherein the substituents are as defined in claim 1, and the agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds, can be used as insecticides.
Description

The present invention relates to pesticidally active, in particular insecticidally active azole-amide compounds, to processes for their preparation, to compositions comprising those compounds, and to their use for controlling animal pests, including arthropods and in particular insects or representatives of the order Acarina.


WO2017192385 describes certain heteroaryl-1,2,4-triazole and heteroaryl-tetrazole compounds for use for controlling ectoparasites in animals (such as a mammal and a non-mammal animal).


There have now been found novel pesticidally active-azole azine compounds.


The present invention accordingly relates, in a first aspect, to a compound of the formula I




embedded image


wherein:


X1 is C—CF3, or N;


R1 is selected hydrogen, methyl, iso-propyl, cyclopropyl-methyl, and propargyl;


R4 is selected from Y-1 to Y-9;




embedded image


and R6 is selected from C1-C3-haloalkylthio, OCF3, OCHF2, OCH2CF3, OCH2CHF2, OCF2CHF2, OCH2CF2CHF2, OCF2CF2CF3, OCF2CHFCF3, OCF(CF3)2, CHF2, CF2CF3, CF2Cl, CF2Br, CF2CF2CF3, and CF(CF3)2; or a stereoisomer, enantiomer, tautomer and N-oxide of the compound of formula I, or agrochemically acceptable salt thereof.


Compounds of formula I which have at least one basic centre can form, for example, acid addition salts, for example with strong inorganic acids such as mineral acids, for example perchloric acid, sulfuric acid, nitric acid, nitrous acid, a phosphorus acid or a hydrohalic acid, with strong organic carboxylic acids, such as C1-C4alkanecarboxylic acids which are unsubstituted or substituted, for example by halogen, for example acetic acid, such as saturated or unsaturated dicarboxylic acids, for example oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid or phthalic acid, such as hydroxycarboxylic acids, for example ascorbic acid, lactic acid, malic acid, tartaric acid or citric acid, or such as benzoic acid, or with organic sulfonic acids, such as C1-C4alkane- or arylsulfonic acids which are unsubstituted or substituted, for example by halogen, for example methane- or p-toluenesulfonic acid. Compounds of formula I which have at least one acidic group can form, for example, salts with bases, for example mineral salts such as alkali metal or alkaline earth metal salts, for example sodium, potassium or magnesium salts, or salts with ammonia or an organic amine, such as morpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower-alkylamine, for example ethyl-, diethyl-, triethyl- or dimethylpropylamine, or a mono-, di- or trihydroxy-lower-alkylamine, for example mono-, di- or triethanolamine.


In each case, the compounds of formula I according to the invention are in free form, in oxidized form as a N-oxide or in salt form, e.g. an agronomically usable salt form.


N-oxides are oxidized forms of tertiary amines or oxidized forms of nitrogen containing heteroaromatic compounds. They are described for instance in the book “Heterocyclic N-oxides” by A. Albini and S. Pietra, CRC Press, Boca Raton 1991.


The compounds of formula I according to the invention also include hydrates which may be formed during the salt formation.


The term “C1-C3haloalkylthio” as used herein refers to a C1-C3haloalkyl moiety linked through a sulfur atom.


The term “C1-C3alkyl” as used herein refers to a saturated straight-chain or branched hydrocarbon radical attached via any of the carbon atoms having 1 to 3 carbon atoms, for example, any one of the radicals methyl, ethyl, n-propyl, and iso-propyl.


The term “C1-C3haloalkyl” as used herein refers to a straight-chain or branched saturated alkyl radical attached via any of the carbon atoms having 1 to 3 carbon atoms (as mentioned above), where some or all of the hydrogen atoms in these radicals may be replaced by fluorine, chlorine, bromine and/or iodine, i.e., for example, any one of chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl, 2-fluoropropyl, 3-fluoropropyl, 2,2-difluoropropyl, 2,3-difluoropropyl, 2-chloropropyl, 3-chloropropyl, 2,3-dichloropropyl, 2-bromopropyl, 3-bromopropyl, 3,3,3-trifluoropropyl, 3,3,3-trichloropropyl, 2,2,3,3,3-pentafluoropropyl, heptafluoropropyl, 1-(fluoromethyl)-2-fluoroethyl, 1-(chloromethyl)-2-chloroethyl, 1-(bromomethyl)-2-bromoethyl. According a term “C1-C2fluoroalkyl” would refer to a C1-C2alkyl radical which carries 1, 2, 3, 4, or 5 fluorine atoms, for example, any one of difluoromethyl, trifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 1,1,2,2-tetrafluoroethyl or pentafluoroethyl.


As used herein, the term “controlling” refers to reducing the number of pests, eliminating pests and/or preventing further pest damage such that damage to a plant or to a plant derived product is reduced.


The staggered line as used herein, for example, in Q-1; and J2, represent the point of connection/attachment to the rest of the compound.


As used herein, the term “pest” refers to insects, and molluscs that are found in agriculture, horticulture, forestry, the storage of products of vegetable origin (such as fruit, grain and timber); and those pests associated with the damage of man-made structures. The term pest encompasses all stages in the life cycle of the pest.


As used herein, the term “effective amount” refers to the amount of the compound, or a salt thereof, which, upon single or multiple applications provides the desired effect.


An effective amount is readily determined by the skilled person in the art, by the use of known techniques and by observing results obtained under analogous circumstances. In determining the effective amount a number of factors are considered including, but not limited to: the type of plant or derived product to be applied; the pest to be controlled & its lifecycle; the particular compound applied; the type of application; and other relevant circumstances.


As one of ordinary skill in the art will appreciate, compounds of formula I contain a stereogenic centre which is indicated with an asterisk in the structure below:




embedded image


where R1, R4, X1, and R6, are as defined in the first aspect.


The present invention contemplates both racemates and individual enantiomers. Compounds having preferred stereochemistry are set out below.


Particularly preferred compounds of the present invention are compounds of formula I′a:




embedded image


where R1, R4, X1, and R6, are as defined in the first aspect, and stereoisomers, enantiomers, tautomers and N-oxides of the compounds of formula (I′a), and agrochemically acceptable salts thereof.


Embodiments according to the invention are provided as set out below.


In an embodiment of each aspect of the invention, R1 is

    • A. hydrogen, methyl, iso-propyl, or cyclopropyl-methyl; or
    • B. hydrogen, methyl, or cyclopropyl-methyl; or
    • C. hydrogen, or methyl; or
    • D. hydrogen; or
    • E. methyl; or
    • F. propargyl; or
    • G. iso-propyl; or
    • H. cyclopropyl-methyl.


In an embodiment of each aspect of the invention, X1 is a

    • A. C—CF3; or
    • B. N.


In an embodiment of each aspect of the invention, R4 is

    • A. Y-1, Y-4, Y-6, Y-7, Y-8 or Y-9; or
    • B. Y-1, Y-4, Y-6, Y-7, Y-8 or Y-9; or
    • C. Y-1, Y2, Y-3, Y-4, Y-5, Y-6, Y-8 or Y-9; or
    • D. Y-1, Y2, Y-3, Y-4, Y-5, or Y-6;
    • E. Y-2, Y-3, Y-5, Y-8 or Y-9; or
    • F. Y-2, Y-3 or Y-5; or
    • G. Y-8 or Y-9; or
    • H. Y-1; or
    • I. Y-2; or
    • J. Y-3; or
    • K. Y-4; or
    • L. Y-5; or
    • M. Y-6; or
    • N. Y-7; or
    • O. Y-8; or
    • P. Y-9.


In an embodiment of each aspect of the invention, R6 is selected from

    • A. SCF3, SCHF2, SCH2CF3, OCF3, OCHF2, OCH2CF3, OCH2CHF2, OCF2CHF2, OCH2CF2CHF2, OCF2CF2CF3, OCF2CHFCF3, OCF(CF3)2, CHF2, CF2CF3, CF2Cl, CF2Br, CF2CF2CF3, and CF(CF3)2; or
    • B. SCF3, SCHF2, SCH2CF3, OCF3, OCHF2, OCH2CF3, OCH2CHF2, OCF2CHF2, OCH2CF2CHF2, OCF2CF2CF3, OCF2CHFCF3, and OCF(CF3)2; or
    • C. CHF2, CF2CF3, CF2Cl, CF2Br, CF2CF2CF3, and CF(CF3)2; or
    • D. SCF3, SCHF2, and SCH2CF3; or
    • E. OCF3, OCHF2, OCH2CF3, OCH2CHF2, OCF2CHF2, OCH2CF2CHF2, OCF2CF2CF3, OCF2CHFCF3, and OCF(CF3)2; or
    • F. SCF3, SCH2CF3, OCHF2, and OCH2CF3; or
    • G. OCF3, OCHF2, OCH2CF3, OCH2CHF2, SCH2CF3, SCHF2, SCF3, OCF2CHF2 and OCF2CF3; or
    • H. SCF3, OCF3, OCHF2, OCH2CF3, OCH2CHF2, OCF2CHF2 and OCF2CF3.


The present invention, accordingly, makes available a compound of formula I having the substituents R1, R4, X1, and R6 as defined above in all combinations/each permutation. Accordingly, made available, for example, is a compound of formula I with R1 being embodiment A (i.e. R1 is hydrogen, methyl, iso-propyl, or cyclopropyl-methyl); X1 being embodiment of the first aspect (i.e. X1 is C—CF3 or N); R4 being an embodiment C (i.e. R4 is Y-1, Y2, Y-3, Y-4, Y-5, Y-6, Y-8 or Y-9); and R6 being an embodiment A (i.e. R6 is selected from SCF3, SCHF2, SCH2CF3, OCF3, OCHF2, OCH2CF3, OCH2CHF2, OCF2CHF2, OCH2CF2CHF2, OCF2CF2CF3, OCF2CHFCF3, OCF(CF3)2, CHF2, CF2CF3, CF2Cl, CF2Br, CF2CF2CF3, and CF(CF3)2.


In an embodiment of each aspect of the invention, the compound of formula I has as X1 N; as Ri hydrogen, methyl, cylopropyl-methyl, iso-propyl, or propargyl; as R4 one of Y-1 to Y-9; and as R6 SCF3, SCHF2, SCH2CF3, OCF3, OCHF2, OCH2CF3, OCH2CHF2, OCF2CHF2, OCH2CF2CHF2, OCF2CF2CF3, OCF2CHFCF3, OCF(CF3)2, CHF2, CF2CF3, CF2Cl, CF2Br, CF2CF2CF3, or CF(CF3)2.


In an embodiment of each aspect of the invention, the compound of formula I has as X1 C—CF3; as Ri hydrogen, methyl, cylopropyl-methyl, iso-propyl, or propargyl; as R4 one of Y-1 to Y-9; and as R6 SCF3, SCHF2, SCH2CF3, OCF3, OCHF2, OCH2CF3, OCH2CHF2, OCF2CHF2, OCH2CF2CHF2, OCF2CF2CF3, OCF2CHFCF3, OCF(CF3)2, CHF2, CF2CF3, CF2Cl, CF2Br, CF2CF2CF3, or CF(CF3)2.


In an embodiment of each aspect of the invention, the compound of formula I has as X1 N; as Ri hydrogen or cylopropyl-methyl; as R4 one of Y-2, Y-3, Y-5, Y-8 or Y-9; and as R6 SCF3, SCHF2, SCH2CF3, OCF3, OCHF2, OCH2CF3, OCH2CHF2, OCF2CHF2, OCH2CF2CHF2, OCF2CF2CF3, OCF2CHFCF3, OCF(CF3)2, CHF2, CF2CF3, CF2Cl, CF2Br, CF2CF2CF3, or CF(CF3)2.


In an embodiment of each aspect of the invention, the compound of formula I has as X1 C—CF3; as Ri hydrogen or cylopropyl-methyl; as R4 one of Y-2, Y-3, Y-5, Y-8 or Y-9; and as R6 SCF3, SCHF2, SCH2CF3, OCF3, OCHF2, OCH2CF3, OCH2CHF2, OCF2CHF2, OCH2CF2CHF2, OCF2CF2CF3, OCF2CHFCF3, OCF(CF3)2, CHF2. CF2CF3, CF2Cl, CF2Br, CF2CF2CF3, or CF(CF3)2.


In an embodiment of each aspect of the invention, the compound of formula I has as X1 N; as R1 hydrogen or cylopropyl-methyl; as R4 one of Y-2, Y-3, Y-5, Y-8 or Y-9; and as R6 SCF3, SCH2CF3, OCHF2, or OCH2CF3.


In an embodiment of each aspect of the invention, the compound of formula I has as X1 C—CF3; as Ri hydrogen or cylopropyl-methyl; as R4 one of Y-2, Y-3, Y-5, Y-8 or Y-9; and as R6 SCF3, SCH2CF3, OCHF2, or OCH2CF3.


In an embodiment of each aspect of the invention, the compound of formula I has as X1 C—CF3; as Ri hydrogen or cylopropyl-methyl; as R4 one of Y-2, Y-3, Y-5, Y-8 or Y-9; and as R6 OCF3, OCHF2, OCH2CF3, OCH2CHF2, SCH2CF3, SCHF2, SCF3, OCF2CHF2 and OCF2CF3.


In an embodiment of each aspect of the invention, the compound of formula I has as X1 C—CF3; as Ri hydrogen or cylopropyl-methyl; as R4 one of Y-5, Y-8 or Y-9; and as R6 OCF3, OCHF2, OCH2CF3, OCH2CHF2, SCH2CF3, SCHF2, SCF3, OCF2CHF2 and OCF2CF3.


In a second aspect, the present invention makes available a composition comprising a compound of formula I as defined in the first aspect, one or more auxiliaries and diluent, and optionally one more other active ingredient.


In a third aspect, the present invention makes available a method of combating and controlling insects, acarines, nematodes or molluscs which comprises applying to a pest, to a locus of a pest, or to a plant susceptible to attack by a pest an insecticidally, acaricidally, nematicidally or molluscicidally effective amount of a compound as defined in the first aspect or a composition as defined in the second aspect.


In a fourth aspect, the present invention makes available a method for the protection of plant propagation material from the attack by insects, acarines, nematodes or molluscs, which comprises treating the propagation material or the site, where the propagation material is planted, with an effective amount of a compound of formula I as defined in the first aspect or a composition as defined in the second aspect.


In a fifth aspect, the present invention makes available a plant propagation material, such as a seed, comprising, or treated with or adhered thereto, a compound of formula I as defined in the first aspect or a composition as defined in the second aspect.


The present invention in a further aspect provides a method of controlling parasites in or on an animal in need thereof comprising administering an effective amount of a compound of the first aspect. The present invention further provides a method of controlling ectoparasites on an animal in need thereof comprising administering an effective amount of a compound of formula I as defined om the first aspect. The present invention further provides a method for preventing and/or treating diseases transmitted by ectoparasites comprising administering an effective amount of a compound of formula I as defined in the first aspect, to an animal in need thereof.


Compounds of formula I can be prepared by those skilled in the art following methods known. More specifically compounds of formulae I, and I′a, and intermediates therefor can be prepared as described below in the schemes and examples. Certain stereogenic centers have been left unspecified for the clarity and are not intended to limit the teaching of the schemes in any way.


The processes for preparing compounds of formula I can be carried out by methods known to those skilled in the art. Compounds of formula I




embedded image


can be prepared by reaction of an amine of formula II




embedded image


wherein R1, and R4 are as defined for compound of formula I, with a carboxylic acid derivative of formula III




embedded image


wherein R2 is




embedded image


and X1 is as defined for compound of formula I. The chemistry is described in more detail in Scheme 1.




embedded image


wherein R2 is




embedded image




    • and R6 and X1 is as defined for compound of formula I.





In Scheme 1, compounds of formula III are activated to compounds of formula IIIa by methods known to those skilled in the art and described for example in Tetrahedron, 61 (46), 10827-10852, 2005. For example, compounds where X0 is halogen are formed by treatment of compounds of formula III with for example, oxallyl chloride or thionyl chloride in the presence of catalytic quantities of DMF in inert solvents such as methylene dichloride or THE at temperatures between 20° C. to 100° C., preferably 25° C. Treatment of IIIa with compounds of formula II wherein R1, and R4 are defined as above, optionally in the presence of a base, e.g. triethylamine or pyridine leads to compounds of formula I. Alternatively, compounds of formula I can be prepared by treatment of compounds of formula III with dicyclohexyl carbodiimide (DCC), 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) or 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate (HATU) to give the activated species IIIa, wherein X0 is X01, X02 and X03 respectively, in an inert solvent, e.g. pyridine, DMF, acetonitrile, CH2Cl2 or THE optionally in the presence of a base, e.g. triethylamine, at temperatures between 50-180° C. Finally, an acid of the formula III can also be activated by reaction with a coupling reagent such as propanephosphonic acid anhydride (T3P®) to provide compounds of formula IIIa wherein X0 is X04 as described for example in Synthesis 2013, 45, 1569. Further reaction with an amine of the formula II provides compounds of formula I.


Processes for making compounds of formula IIa, wherein R1, R3 and R4 are defined in formula I, are generally known or can be easily prepared by those skilled in the art. A typical example of such a synthesis is shown in scheme 2.




embedded image


For example, compounds of formula IIa may be prepared by reaction between compounds of formula VI, wherein R4 is as defined in formula I, and compounds of formula VIII, wherein R1 is defined in formula I, in suitable solvents that may include, for example, acetonitrile or dioxane, in the presence of a suitable base, such as sodium, potassium or cesium carbonate (or sodium or potassium hydrogene carbonate), usually upon heating at temperatures between room temperature and 200° C., preferably between 40 to the boiling point of the reaction mixture, optionally under microwave heating conditions.


Compounds of formula VI wherein R4 is as defined in formula I, may be prepared by reaction between compounds of formula V and compounds of formula VII, wherein R4 is defined in formula I, in suitable solvents that may include, for example, mixture of acetic acid and 1,4-dioxane, usually upon heating at temperatures between room temperature and 200° C., preferably between 40° C. to the boiling point of the reaction mixture, optionally under microwave heating conditions. Such processes have been described previously, for example, in Tetrahedron 2017, 73, 750.


Compounds of formula V may be prepared by reaction between compounds of formula IV and N,N-dimethylformamide dimethyl acetal (DMF-DMA), in suitable solvents that may include, for example, dichloromethane, usually upon heating at temperatures between room temperature and 200° C., preferably between 40° C. to the boiling point of the reaction mixture. Such processes have been described previously, for example, in Tetrahedron 2017, 73, 750.


Processes for making compounds of formula Ia, wherein R1 and R4, are as defined in formula I and R2 is as defined in scheme 1, are generally known or can be easily prepared by those skilled in the art. A typical example of such a synthesis is shown in scheme 3.




embedded image


For example, compounds of formula Ia, wherein R1 and R4, are as defined in formula I and R2 is as defined in scheme 1, may be prepared by reaction between compounds of formula XI, wherein R1 is defined in formula I and R2 is as defined in scheme 1, and compounds of formula VII, wherein R4 is defined in formula I, in suitable solvents that may include, for example, mixture of acetic acid and 1,4-dioxane, usually upon heating at temperatures between room temperature and 200° C., preferably between 40° C. to the boiling point of the reaction mixture, optionally under microwave heating conditions. Such processes have been described previously, for example, in Tetrahedron 2017, 73, 750.


Compounds of formula XI, wherein R1 is defined in formula I and R2 is as defined in scheme 1, may be prepared by reaction between compounds of formula X, wherein R1 is defined in formula I and R2 is as defined in scheme 1, and N,N-dimethylformamide dimethyl acetal (DMF-DMA), in suitable solvents that may include, for example, dichloromethane, usually upon heating at temperatures between room temperature and 200° C., preferably between 40° C. to the boiling point of the reaction mixture. Such processes have been described previously, for example, in Tetrahedron 2017, 73, 750, and US2016296501, preparation 7, page 29.


Compounds of formula X, wherein R1 is defined in formula I and R2 is as defined in scheme 1, may be prepared by reaction between compounds of formula IX, wherein R1 is defined in formula I, and compounds of formula IIIa, wherein R2 is defined as in Scheme 1, in suitable inert solvents that may include, for example, pyridine, DMF, acetonitrile, CH2Cl2 or THF, optionally in the presence of a base, e.g. triethylamine or pyridine, usually upon heating at temperatures between room temperature and 200° C.


Compounds of formula IX, wherein R1 is defined as for formula I, may be prepared by reaction between compounds of formula IV, and compounds of formula VIII, wherein R1 is defined in formula I, in suitable solvents that may include, for example, acetonitrile or dioxane, in the presence of a suitable base, such as sodium, potassium or cesium carbonate (or sodium or potassium hydrogene carbonate), usually upon heating at temperatures between room temperature and 200° C., preferably between 40° C. to the boiling point of the reaction mixture, optionally under microwave heating conditions.


Compounds of General Formula III



embedded image


wherein R2 is defined as in scheme 1 are either known or commercially available compounds or may be prepared according to methods known to those skilled in the art. Certain compounds of formula III are novel and can be prepared according to methods described in scheme 4.




embedded image


Compounds of formula IIIe and IIIf, wherein X1 is as defined in formula I, and RF is CF3, CHF2 or CH2CF3, can be obtained respectively from compounds of formula IIIc and IIId, wherein X1 is as defined in formula I, and RF is CF3, CHF2 or CH2CF3, and RL1 is C1-C4alkyl, by saponification under conditions known to a person skilled in the art.


Compounds of formula IIIc, wherein X1 is as defined in formula I, RF is CF3 or CH2CF3, and RL1 is C1-C4alkyl, can be obtained by transforming compounds of formula IIIb, wherein X1 is as defined in formula I, RL1 is C1-C4alkyl, and Xb1 is chloro or bromo, to the corresponding thiol, by treating them with sodium or potassium thioacetate in an appropriate solvent for example methanol or water, at temperatures between room temperature and boiling point of the solvent, followed by hydrolysis with sodium or potassium hydroxide, as described for example in WO04018428, or WO12088190.


Alternatively, compounds of formula IIIb, wherein X1 is as defined in formula I, RL1 is C1-C4alkyl, and Xb1 is chloro or bromo, may be treated with thiourea in an appropriate solvent for example ethanol, at temperatures between room temperature and boiling point of the solvent, as described for example in Tetrahedron Lett., 2002, 43, 3645.


Alternatively, compounds of formula IIIb wherein X1 is as defined in formula I, RL1 is C1-C4alkyl, and Xb1 is chloro or bromo, may be treated with triisopropylsilanethiol in an appropriate solvent for example toluene, at temperatures between room temperature and boiling point of the solvent, in the presence of a palladium catalyst and a ligand, followed by hydrolysis, as described for example in WO1314997.


Alternatively, compounds of formula XIII, wherein X1 is as defined in formula I, RL1 is C1-C4alkyl, and Xb1 is bromo, or iodo may be treated with p-methoxybenzyl thiol in an appropriate solvent for example dioxane, at temperatures between room temperature and boiling point of the solvent, in presence of a palladium catalyst and a ligand, and a base, followed by hydrolysis, as described for example in WO12024620.


The corresponding thiol may be transformed to compounds of formula IIIc, wherein X1 is as defined in formula I, RF is CF3 or CH2CF3, and RL1 is C1-C4alkyl, by treatment with an appropriate alkylating agent by methods known to a person skilled in the art (RF═CH2CF3), or as in WO04007444 (RF═CF3).


Compounds of formula IIId, wherein X1 is as defined in formula I, RF is CHF2 or CH2CF3, and RL1 is C1-C4alkyl, can be obtained by transforming compounds of formula IIIb, wherein X1 is as defined in formula I, RL1 is C1-C4alkyl, and Xb1 is chloro or bromo, to the corresponding hydroxy (when it is not commercially available), by boronation followed by oxidation as in Tetrahedron Lett., 2006, 47(28), 4897 or WO12068450.


Alternatively, compounds of formula IIIb, wherein X1 is as defined in formula I, RL1 is C1-C4alkyl, and Xb1 is chloro or bromo, can by transformed to the corresponding hydroxy by treatment with benzaldoxime followed by hydrolysis as in Angew. Chem. Int. Ed., 2017, 56, 4478 or Org. Lett., 2017, 19, 3033.


The corresponding hydroxy compounds may be transformed to compounds of formula IIIc, wherein X1 is as defined in formula I, RF is CHF2 or CH2CF3, and RL1 is C1-C4alkyl, by treatment with an appropriate alkylating agent by methods known to a person skilled in the art (RF═CH2CF3), or as in WO12019428, or WO05108358 (RF is CHF2).


Depending on the procedure or the reaction conditions, the reactants can be reacted in the presence of a base. Examples of suitable bases are alkali metal or alkaline earth metal hydroxides, alkali metal or alkaline earth metal hydrides, alkali metal or alkaline earth metal amides, alkali metal or alkaline earth metal alkoxides, alkali metal or alkaline earth metal acetates, alkali metal or alkaline earth metal carbonates, alkali metal or alkaline earth metal dialkylamides or alkali metal or alkaline earth metal alkylsilylamides, alkylamines, alkylenediamines, free or N-alkylated saturated or unsaturated cycloalkylamines, basic heterocycles, ammonium hydroxides and carbocyclic amines. Examples which may be mentioned are sodium hydroxide, sodium hydride, sodium amide, sodium methoxide, sodium acetate, sodium carbonate, potassium tert-butoxide, potassium hydroxide, potassium carbonate, potassium hydride, lithium diisopropylamide, potassium bis(trimethylsilyl)amide, calcium hydride, triethylamine, diisopropylethylamine, triethylenediamine, cyclohexylamine, N-cyclohexyl-N,N-dimethylamine, N,N-diethylaniline, pyridine, 4-(N,N-dimethylamino)pyridine, quinuclidine, N-methylmorpholine, benzyltrimethylammonium hydroxide and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU).


The reactants can be reacted with each other as such, i.e. without adding a solvent or diluent. In most cases, however, it is advantageous to add an inert solvent or diluent or a mixture of these. If the reaction is carried out in the presence of a base, bases which are employed in excess, such as triethylamine, pyridine, N-methylmorpholine or N,N-diethylaniline, may also act as solvents or diluents.


The reactions are advantageously carried out in a temperature range from approximately −80° C. to approximately +140° C., preferably from approximately −30° C. to approximately +100° C., in many cases in the range between ambient temperature and approximately +80° C.


Depending on the choice of the reaction conditions and starting materials which are suitable in each case, it is possible, for example, in one reaction step only to replace one substituent by another substituent according to the invention, or a plurality of substituents can be replaced by other substituents according to the invention in the same reaction step.


Salts of compounds of formula I can be prepared in a manner known per se. Thus, for example, acid addition salts of compounds of formula I are obtained by treatment with a suitable acid or a suitable ion exchanger reagent and salts with bases are obtained by treatment with a suitable base or with a suitable ion exchanger reagent.


Salts of compounds of formula I can be converted in the customary manner into the free compounds I, acid addition salts, for example, by treatment with a suitable basic compound or with a suitable ion exchanger reagent and salts with bases, for example, by treatment with a suitable acid or with a suitable ion exchanger reagent.


Salts of compounds of formula I can be converted in a manner known per se into other salts of compounds of formula I, acid addition salts, for example, into other acid addition salts, for example by treatment of a salt of inorganic acid such as hydrochloride with a suitable metal salt such as a sodium, barium or silver salt, of an acid, for example with silver acetate, in a suitable solvent in which an inorganic salt which forms, for example silver chloride, is insoluble and thus precipitates from the reaction mixture.


Depending on the procedure or the reaction conditions, the compounds of formula I, which have salt-forming properties can be obtained in free form or in the form of salts.


The compounds of formula I and, where appropriate, the tautomers thereof, in each case in free form or in salt form, can be present in the form of one of the isomers which are possible or as a mixture of these, for example in the form of pure isomers, such as antipodes and/or diastereomers, or as isomer mixtures, such as enantiomer mixtures, for example racemates, diastereomer mixtures or racemate mixtures, depending on the number, absolute and relative configuration of asymmetric carbon atoms which occur in the molecule and/or depending on the configuration of non-aromatic double bonds which occur in the molecule; the invention relates to the pure isomers and also to all isomer mixtures which are possible and is to be understood in each case in this sense hereinabove and hereinbelow, even when stereochemical details are not mentioned specifically in each case.


Diastereomer mixtures or racemate mixtures of compounds of formula I, in free form or in salt form, which can be obtained depending on which starting materials and procedures have been chosen can be separated in a known manner into the pure diasteromers or racemates on the basis of the physicochemical differences of the components, for example by fractional crystallization, distillation and/or chromatography.


Enantiomer mixtures, such as racemates, which can be obtained in a similar manner can be resolved into the optical antipodes by known methods, for example by recrystallization from an optically active solvent, by chromatography on chiral adsorbents, for example high-performance liquid chromatography (HPLC) on acetyl cellulose, with the aid of suitable microorganisms, by cleavage with specific, immobilized enzymes, via the formation of inclusion compounds, for example using chiral crown ethers, where only one enantiomer is complexed, or by conversion into diastereomeric salts, for example by reacting a basic end-product racemate with an optically active acid, such as a carboxylic acid, for example camphor, tartaric or malic acid, or sulfonic acid, for example camphorsulfonic acid, and separating the diastereomer mixture which can be obtained in this manner, for example by fractional crystallization based on their differing solubilities, to give the diastereomers, from which the desired enantiomer can be set free by the action of suitable agents, for example basic agents.


Pure diastereomers or enantiomers can be obtained according to the invention not only by separating suitable isomer mixtures, but also by generally known methods of diastereoselective or enantioselective synthesis, for example by carrying out the process according to the invention with starting materials of a suitable stereochemistry.


N-oxides can be prepared by reacting a compound of the formula I with a suitable oxidizing agent, for example the H2O2/urea adduct in the presence of an acid anhydride, e.g. trifluoroacetic anhydride. Such oxidations are known from the literature, for example from J. Med. Chem., 32 (12), 2561-73, 1989 or WO 2000/15615.


It is advantageous to isolate or synthesize in each case the biologically more effective isomer, for example enantiomer or diastereomer, or isomer mixture, for example enantiomer mixture or diastereomer mixture, if the individual components have a different biological activity.


The compounds of formula I and, where appropriate, the tautomers thereof, in each case in free form or in salt form, can, if appropriate, also be obtained in the form of hydrates and/or include other solvents, for example those which may have been used for the crystallization of compounds which are present in solid form.


The compounds of formula I according to the following Tables A-4 to A-39 can be prepared according to the methods described above. The examples which follow are intended to illustrate the invention and show preferred compounds of formula I, in the form of a compound of formula IAB.




embedded image


Table A-4 provides 45 compounds A-4.001 to A-4.045 of formula IAB wherein X1 is C—CF3, R6 is OCF3 and R1 and R4 are as defined in table Y.


For example, compound A-4.010 is




embedded image









TABLE Y







Substituent definitions of R1 and R4









Index
R1
R4





1
H


embedded image







2


embedded image




embedded image







3


embedded image




embedded image







4


embedded image




embedded image







5


embedded image




embedded image







6
H


embedded image







7


embedded image




embedded image







8


embedded image




embedded image







9


embedded image




embedded image







10


embedded image




embedded image







11
H


embedded image







12


embedded image




embedded image







13


embedded image




embedded image







14


embedded image




embedded image







15


embedded image




embedded image







16
H


embedded image







17


embedded image




embedded image







18


embedded image




embedded image







19


embedded image




embedded image







20


embedded image




embedded image







21
H


embedded image







22


embedded image




embedded image







23


embedded image




embedded image







24


embedded image




embedded image







25


embedded image




embedded image







26
H


embedded image







27


embedded image




embedded image







28


embedded image




embedded image







29


embedded image




embedded image







30


embedded image




embedded image







31
H


embedded image







32


embedded image




embedded image







33


embedded image




embedded image







34


embedded image




embedded image







35


embedded image




embedded image







36
H


embedded image







37


embedded image




embedded image







38


embedded image




embedded image







39


embedded image




embedded image







40


embedded image




embedded image







41
H


embedded image







42


embedded image




embedded image







43


embedded image




embedded image







44


embedded image




embedded image







45


embedded image




embedded image











Table A-5 provides 45 compounds A-5.001 to A-5.045 of formula IAB wherein X1 is C—CF3, R6 is OCHF2 and R1, R4 are as defined in table Y.


Table A-6 provides 45 compounds A-6.001 to A-6.045 of formula IAB wherein X1 is C—CF3, R6 is OCH2CF3 and R1, R4 are as defined in table Y.


Table A-7 provides 45 compounds A-7.001 to A-7.045 of formula IAB wherein X1 is C—CF3, R6 is OCH2CHF2 and R1, R4 are as defined in table Y.


Table A-8 provides 45 compounds A-8.001 to A-8.045 of formula IAB wherein X1 is C—CF3, R6 is SCF3 and R1, R4 are as defined in table Y.


Table A-9 provides 45 compounds A-9.001 to A-9.045 of formula IAB wherein X1 is C—CF3, R6 is SCHF2 and R1, R4 are as defined in table Y.


Table A-10 provides 45 compounds A-10.001 to A-10.045 of formula IAB wherein X1 is C—CF3, R6 is SCH2CF3 and R1, R4 are as defined in table Y.


Table A-11 provides 45 compounds A-11.001 to A-11.045 of formula IAB wherein X1 is C—CF3, R6 is CHF2 and R1, R4 are as defined in table Y.


Table A-12 provides 45 compounds A-12.001 to A-12.045 of formula IAB wherein X1 is C—CF3, R6 is CF2CF3 and R1, R4 are as defined in table Y.


Table A-13 provides 45 compounds A-13.001 to A-13.045 of formula IAB wherein X1 is C—CF3, R6 is OCF2CHF2 and R1, R4 are as defined in table Y.


Table A-14 provides 45 compounds A-14.001 to A-14.045 of formula IAB wherein X1 is C—CF3, R6 is OCH2CF2CHF2 and R1, R4 are as defined in table Y.


Table A-15 provides 45 compounds A-15.001 to A-15.045 of formula IAB wherein X1 is C—CF3, R6 is OCF2CF2CF3 and R1, R4 are as defined in table Y.


Table A-16 provides 45 compounds A-16.001 to A-16.045 of formula IAB wherein X1 is C—CF3, R6 is OCF2CHFCF3 and R1, R4 are as defined in table Y.


Table A-17 provides 45 compounds A-17.001 to A-17.045 of formula IAB wherein X1 is C—CF3, R6 is CF2Cl and R1, R4 are as defined in table Y.


Table A-18 provides 45 compounds A-18.001 to A-18.045 of formula IAB wherein X1 is C—CF3, R6 is CF2Br and R1, R4 are as defined in table Y.


Table A-19 provides 45 compounds A-19.001 to A-19.045 of formula IAB wherein X1 is C—CF3, R6 is CF2CF2CF3 and R1, R4 are as defined in table Y.


Table A-20 provides 45 compounds A-20.001 to A-20.045 of formula IAB wherein X1 is C—CF3, R6 is OCF(CF3)2 and R1, R4 are as defined in table Y.


Table A-21 provides 45 compounds A-21.001 to A-21.045 of formula IAB wherein X1 is C—CF3, R6 is CF(CF3)2 and R1, R4 are as defined in table Y.


Table A-22 provides 45 compounds A-22.001 to A-22.045 of formula IAB wherein X1 is N, R6 is OCF3 and R1, R4 are as defined in table Y.


Table A-23 provides 45 compounds A-23.001 to A-23.045 of formula IAB wherein X1 is N, R6 is OCHF2 and R1, R4 are as defined in table Y.


Table A-24 provides 45 compounds A-24.001 to A-24.045 of formula IAB wherein X1 is N, R6 is OCH2CF3 and R1, R4 are as defined in table Y.


Table A-25 provides 45 compounds A-25.001 to A-25.045 of formula IAB wherein X1 is N, R6 is OCH2CHF2 and R1, R4 are as defined in table Y.


Table A-26 provides 45 compounds A-26.001 to A-26.045 of formula IAB wherein X1 is N, R6 is SCF3 and R1, R4 are as defined in table Y.


Table A-27 provides 45 compounds A-27.001 to A-27.045 of formula IAB wherein X1 is N, R6 is SCHF2 and R1, R4 are as defined in table Y.


Table A-28 provides 45 compounds A-28.001 to A-28.045 of formula IAB wherein X1 is N, R6 is SCH2CF3 and R1, R4 are as defined in table Y.


Table A-29 provides 45 compounds A-29.001 to A-29.045 of formula IAB wherein X1 is N, R6 is CHF2 and R1, R4 are as defined in table Y.


Table A-30 provides 45 compounds A-30.001 to A-30.045 of formula IAB wherein X1 is N, R6 is CF2CF3 and R1, R4 are as defined in table Y.


Table A-31 provides 45 compounds A-31.001 to A-31.045 of formula IAB wherein X1 is N, R6 is OCF2CHF2 and R1, R4 are as defined in table Y.


Table A-32 provides 45 compounds A-32.001 to A-32.045 of formula IAB wherein X1 is N, R6 is OCH2CF2CHF2 and R1, R4 are as defined in table Y.


Table A-33 provides 45 compounds A-33.001 to A-33.045 of formula IAB wherein X1 is N, R6 is OCF2CF2CF3 and R1, R4 are as defined in table Y.


Table A-34 provides 45 compounds A-34.001 to A-34.045 of formula IAB wherein X1 is N, R6 is OCF2CHFCF3 and R1, R4 are as defined in table Y.


Table A-35 provides 45 compounds A-35.001 to A-35.045 of formula IAB wherein X1 is N, R6 is CF2Cl and R1, R4 are as defined in table Y.


Table A-36 provides 45 compounds A-36.001 to A-36.045 of formula IAB wherein X1 is N, R6 is CF2Br and R1, R4 are as defined in table Y.


Table A-37 provides 45 compounds A-37.001 to A-37.045 of formula IAB wherein X1 is N, R6 is CF2CF2CF3 and R1, R4 are as defined in table Y.


Table A-38 provides 45 compounds A-38.001 to A-38.045 of formula IAB wherein X1 is N, R6 is OCF(CF3)2 and R1, R4 are as defined in table Y.


Table A-39 provides 45 compounds A-39.001 to A-39.045 of formula IAB wherein X1 is N, R6 is CF(CF3)2 and R1, R4 are as defined in table Y.


Certain compounds of formula II are novel and can be prepared by methods described above.




embedded image


wherein R1 and R4, are as defined in the first aspect. Accordingly, 45 compounds of formula II are made available where R1 and R4 are as defined in each row in Table Y.


Certain compounds of formula III are novel and can be prepared by methods described above.




embedded image


wherein R2 is




embedded image


and R6 and X1 is as defined for compound of formula I. Accordingly, 36 compounds of formula IIIa are made available where R6 and X, are as defined in each row of table a




embedded image









TABLE α







Substituent definitions of R6 and X1









Entry
R6
X1












1
OCF3
N


2
OCHF2
N


3
OCH2CF3
N


4
OCH2CHF2
N


5
SCF3
N


6
SCHF2
N


7
SCH2CF3
N


8
CHF2
N


9
CF2CF3
N


10
OCF2CHF2
N


11
OCH2CF2CHF2
N


12
OCF2CF2CF3
N


13
OCF2CHFCF3
N


14
CF2Cl
N


15
CF2Br
N


16
CF2CF2CF3
N


17
OCF(CF3)2
N


18
CF(CF3)2
C—CF3


19
OCF3
C—CF3


20
OCHF2
C—CF3


21
OCH2CF3
C—CF3


22
OCH2CHF2
C—CF3


23
SCF3
C—CF3


24
SCHF2
C—CF3


25
SCH2CF3
C—CF3


26
CHF2
C—CF3


27
CF2CF3
C—CF3


28
OCF2CHF2
C—CF3


29
OCH2CF2CHF2
C—CF3


30
OCF2CF2CF3
C—CF3


31
OCF2CHFCF3
C—CF3


32
CF2Cl
C—CF3


33
CF2Br
C—CF3


34
CF2CF2CF3
C—CF3


35
OCF(CF3)2
C—CF3


36
CF(CF3)2
C—CF3









Certain compounds of formula VI are novel and can be prepared by methods described above.




embedded image


wherein R4 is as defined in the first aspect. Accordingly, 9 compounds of formula VI are made available where R4 is selected from Y-1 to Y-7.


Certain compounds of formula VII are novel and can be prepared by methods described above.




embedded image


wherein R4 is as defined the first aspect. Accordingly, 9 compounds of formula VII are made available where R4 is selected from Y-1 to Y-9.


Certain compounds of formula X are novel and can be prepared by methods described above.




embedded image


X wherein R2 is




embedded image


and X1, R1 and Re are as defined in the first aspect. Accordingly, 180 compounds of formula X are made available where X1, R1 and R6 are as defined in each row in Table YY.









TABLE YY







Substituent definitions of X1, R1 and R6










Entry
R6
X1
R1













1
OCF3
N
H


2
OCHF2
N
H


3
OCH2CF3
N
H


4
OCH2CHF2
N
H


5
SCF3
N
H


6
SCHF2
N
H


7
SCH2CF3
N
H


8
CHF2
N
H


9
CF2CF3
N
H


10
OCF2CHF2
N
H


11
OCH2CF2CHF2
N
H


12
OCF2CF2CF3
N
H


13
OCF2CHFCF3
N
H


14
CF2Cl
N
H


15
CF2Br
N
H


16
CF2CF2CF3
N
H


17
OCF(CF3)2
N
H


18
CF(CF3)2
C—CF3
H


19
OCF3
C—CF3
H


20
OCHF2
C—CF3
H


21
OCH2CF3
C—CF3
H


22
OCH2CHF2
C—CF3
H


23
SCF3
C—CF3
H


24
SCHF2
C—CF3
H


25
SCH2CF3
C—CF3
H


26
CHF2
C—CF3
H


27
CF2CF3
C—CF3
H


28
OCF2CHF2
C—CF3
H


29
OCH2CF2CHF2
C—CF3
H


30
OCF2CF2CF3
C—CF3
H


31
OCF2CHFCF3
C—CF3
H


32
CF2Cl
C—CF3
H


33
CF2Br
C—CF3
H


34
CF2CF2CF3
C—CF3
H


35
OCF(CF3)2
C—CF3
H


36
CF(CF3)2
C—CF3
H





37
OCF3
N


embedded image







38
OCHF2
N


embedded image







39
OCH2CF3
N


embedded image







40
OCH2CHF2
N


embedded image







41
SCF3
N


embedded image







42
SCHF2
N


embedded image







43
SCH2CF3
N


embedded image







44
CHF2
N


embedded image







45
CF2CF3
N


embedded image







46
OCF2CHF2
N


embedded image







47
OCH2CF2CHF2
N


embedded image







48
OCF2CF2CF3
N


embedded image







49
OCF2CHFCF3
N


embedded image







50
CF2Cl
N


embedded image







51
CF2Br
N


embedded image







52
CF2CF2CF3
N


embedded image







53
OCF(CF3)2
N


embedded image







54
CF(CF3)2
C—CF3


embedded image







55
OCF3
C—CF3


embedded image







56
OCHF2
C—CF3


embedded image







57
OCH2CF3
C—CF3


embedded image







58
OCH2CHF2
C—CF3


embedded image







59
SCF3
C—CF3


embedded image







60
SCHF2
C—CF3


embedded image







61
SCH2CF3
C—CF3


embedded image







62
CHF2
C—CF3


embedded image







63
CF2CF3
C—CF3


embedded image







64
OCF2CHF2
C—CF3


embedded image







65
OCH2CF2CHF2
C—CF3


embedded image







66
OCF2CF2CF3
C—CF3


embedded image







67
OCF2CHFCF3
C—CF3


embedded image







68
CF2Cl
C—CF3


embedded image







69
CF2Br
C—CF3


embedded image







70
CF2CF2CF3
C—CF3


embedded image







71
OCF(CF3)2
C—CF3


embedded image







72
CF(CF3)2
C—CF3


embedded image







73
OCF3
N


embedded image







74
OCHF2
N


embedded image







75
OCH2CF3
N


embedded image







76
OCH2CHF2
N


embedded image







77
SCF3
N


embedded image







78
SCHF2
N


embedded image







79
SCH2CF3
N


embedded image







80
CHF2
N


embedded image







81
CF2CF3
N


embedded image







82
OCF2CHF2
N


embedded image







83
OCH2CF2CHF2
N


embedded image







84
OCF2CF2CF3
N


embedded image







85
OCF2CHFCF3
N


embedded image







86
CF2Cl
N


embedded image







87
CF2Br
N


embedded image







88
CF2CF2CF3
N


embedded image







89
OCF(CF3)2
N


embedded image







90
CF(CF3)2
C—CF3


embedded image







91
OCF3
C—CF3


embedded image







92
OCHF2
C—CF3


embedded image







93
OCH2CF3
C—CF3


embedded image







94
OCH2CHF2
C—CF3


embedded image







95
SCF3
C—CF3


embedded image







96
SCHF2
C—CF3


embedded image







97
SCH2CF3
C—CF3


embedded image







98
CHF2
C—CF3


embedded image







99
CF2CF3
C—CF3


embedded image







100
OCF2CHF2
C—CF3


embedded image







101
OCH2CF2CHF2
C—CF3


embedded image







102
OCF2CF2CF3
C—CF3


embedded image







103
OCF2CHFCF3
C—CF3


embedded image







104
CF2Cl
C—CF3


embedded image







105
CF2Br
C—CF3


embedded image







106
CF2CF2CF3
C—CF3


embedded image







107
OCF(CF3)2
C—CF3


embedded image







108
CF(CF3)2
C—CF3


embedded image







109
OCF3
N


embedded image







110
OCHF2
N


embedded image







111
OCH2CF3
N


embedded image







112
OCH2CHF2
N


embedded image







113
SCF3
N


embedded image







114
SCHF2
N


embedded image







115
SCH2CF3
N


embedded image







116
CHF2
N


embedded image







117
CF2CF3
N


embedded image







118
OCF2CHF2
N


embedded image







119
OCH2CF2CHF2
N


embedded image







120
OCF2CF2CF3
N


embedded image







121
OCF2CHFCF3
N


embedded image







122
CF2Cl
N


embedded image







123
CF2Br
N


embedded image







124
CF2CF2CF3
N


embedded image







125
OCF(CF3)2
N


embedded image







126
CF(CF3)2
C—CF3


embedded image







127
OCF3
C—CF3


embedded image







128
OCHF2
C—CF3


embedded image







129
OCH2CF3
C—CF3


embedded image







130
OCH2CHF2
C—CF3


embedded image







131
SCF3
C—CF3


embedded image







132
SCHF2
C—CF3


embedded image







133
SCH2CF3
C—CF3


embedded image







134
CHF2
C—CF3


embedded image







135
CF2CF3
C—CF3


embedded image







136
OCF2CHF2
C—CF3


embedded image







137
OCH2CF2CHF2
C—CF3


embedded image







138
OCF2CF2CF3
C—CF3


embedded image







139
OCF2CHFCF3
C—CF3


embedded image







140
CF2Cl
C—CF3


embedded image







141
CF2Br
C—CF3


embedded image







142
CF2CF2CF3
C—CF3


embedded image







143
OCF(CF3)2
C—CF3


embedded image







144
CF(CF3)2
C—CF3


embedded image







145
OCF3
N


embedded image







146
OCHF2
N


embedded image







147
OCH2CF3
N


embedded image







148
OCH2CHF2
N


embedded image







149
SCF3
N


embedded image







150
SCHF2
N


embedded image







151
SCH2CF3
N


embedded image







152
CHF2
N


embedded image







153
CF2CF3
N


embedded image







154
OCF2CHF2
N


embedded image







155
OCH2CF2CHF2
N


embedded image







156
OCF2CF2CF3
N


embedded image







157
OCF2CHFCF3
N


embedded image







158
CF2Cl
N


embedded image







159
CF2Br
N


embedded image







160
CF2CF2CF3
N


embedded image







161
OCF(CF3)2
N


embedded image







162
CF(CF3)2
C—CF3


embedded image







163
OCF3
C—CF3


embedded image







164
OCHF2
C—CF3


embedded image







165
OCH2CF3
C—CF3


embedded image







166
OCH2CHF2
C—CF3


embedded image







167
SCF3
C—CF3


embedded image







168
SCHF2
C—CF3


embedded image







169
SCH2CF3
C—CF3


embedded image







170
CHF2
C—CF3


embedded image







171
CF2CF3
C—CF3


embedded image







172
OCF2CHF2
C—CF3


embedded image







173
OCH2CF2CHF2
C—CF3


embedded image







174
OCF2CF2CF3
C—CF3


embedded image







175
OCF2CHFCF3
C—CF3


embedded image







176
CF2Cl
C—CF3


embedded image







177
CF2Br
C—CF3


embedded image







178
CF2CF2CF3
C—CF3


embedded image







179
OCF(CF3)2
C—CF3


embedded image







180
CF(CF3)2
C—CF3


embedded image











Certain compounds of formula XI are novel and can be prepared by methods described above.




embedded image


wherein R2 is




embedded image


and X1, R, and R6 are as defined in the first aspect. Accordingly, 180 compounds of formula X are made available where X1 and R1 are as defined in each row in Table XX.


The compounds of formula I according to the invention are preventively and/or curatively valuable active ingredients in the field of pest control, even at low rates of application, which have a very favorable biocidal spectrum and are well tolerated by warm-blooded species, fish and plants. The active ingredients according to the invention act against all or individual developmental stages of normally sensitive, but also resistant, animal pests, such as insects or representatives of the order Acarina. The insecticidal or acaricidal activity of the active ingredients according to the invention can manifest itself directly, i. e. in destruction of the pests, which takes place either immediately or only after some time has elapsed, for example during ecdysis, or indirectly, for example in a reduced oviposition and/or hatching rate.


Examples of the above mentioned animal pests are:


from the order Acarina, for example,



Acalitus spp, Aculus spp, Acaricalus spp, Aceria spp, Acarus siro, Amblyomma spp., Argas spp., Boophilus spp., Brevipalpus spp., Bryobia spp, Calipitrimerus spp., Chorioptes spp., Dermanyssus gallinae, Dermatophagoides spp, Eotetranychus spp, Eriophyes spp., Hemitarsonemus spp, Hyalomma spp., Ixodes spp., Olygonychus spp, Ornithodoros spp., Polyphagotarsone latus, Panonychus spp., Phyllocoptruta oleivora, Phytonemus spp, Polyphagotarsonemus spp, Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Steneotarsonemus spp, Tarsonemus spp. and Tetranychus spp.;


from the order Anoplura, for example,



Haematopinus spp., Linognathus spp., Pediculus spp., Pemphigus spp. and Phylloxera spp.; from the order Coleoptera, for example,



Agriotes spp., Amphimallon majale, Anomala orientalis, Anthonomus spp., Aphodius spp, Astylus atromaculatus, Ataenius spp, Atomaria linearis, Chaetocnema tibialis, Cerotoma spp, Conoderus spp, Cosmopolites spp., Cotinis nitida, Curculio spp., Cyclocephala spp, Dermestes spp., Diabrotica spp., Diloboderus abderus, Epilachna spp., Eremnus spp., Heteronychus arator, Hypothenemus hampei, Lagria vilosa, Leptinotarsa decemlineata, Lissorhoptrus spp., Liogenys spp, Maecolaspis spp, Maladera castanea, Megascelis spp, Melighetes aeneus, Melolontha spp., Myochrous armatus, Orycaephilus spp., Otiorhynchus spp., Phyllophaga spp, Phlyctinus spp., Popillia spp., Psylliodes spp., Rhyssomatus aubtilis, Rhizopertha spp., Scarabeidae, Sitophilus spp., Sitotroga spp., Somaticus spp, Sphenophorus spp, Sternechus subsignatus, Tenebrio spp., Tribolium spp. and Trogoderma spp.;


from the order Diptera, for example,



Aedes spp., Anopheles spp, Antherigona soccata, Bactrocea oleae, Bibio hortulanus, Bradysia spp, Calliphora erythrocephala, Ceratitis spp., Chrysomyia spp., Culex spp., Cuterebra spp., Dacus spp., Delia spp, Drosophila melanogaster, Fannia spp., Gastrophilus spp., Geomyza tripunctata, Glossina spp., Hypoderma spp., Hyppobosca spp., Liriomyza spp., Lucilia spp., Melanagromyza spp., Musca spp., Oestrus spp., Orseolia spp., Oscinella frit, Pegomyia hyoscyami, Phorbia spp., Rhagoletis spp, Rivelia quadrifasciata, Scatella spp, Sciara spp., Stomoxys spp., Tabanus spp., Tannia spp. and Tipula spp.;


from the order Hemiptera, for example,



Acanthocoris scabrator, Acrosternum spp, Adelphocoris lineolatus, Aleurodes spp., Amblypelta nitida, Bathycoelia thalassina, Blissus spp, Cimex spp., Clavigralla tomentosicollis, Creontiades spp, Distantiella theobroma, Dichelops furcatus, Dysdercus spp., Edessa spp, Euchistus spp., Eurydema pulchrum, Eurygaster spp., Halyomorpha halys, Horcias nobilellus, Leptocorisa spp., Lygus spp, Margarodes spp, Murgantia histrionic, Neomegalotomus spp, Nesidiocoris tenuis, Nezara spp., Nysius simulans, Oebalus insularis, Piesma spp., Piezodorus spp, Rhodnius spp., Sahlbergella singularis, Scaptocoris castanea, Scotinophara spp., Thyanta spp, Triatoma spp., Vatiga illudens; Acyrthosium pisum, Adalges spp, Agalliana ensigera, Agonoscena targionii, Aleurodicus spp, Aleurocanthus spp, Aleurolobus barodensis, Aleurothrixus floccosus, Aleyrodes brassicae, Amarasca biguttula, Amritodus atkinsoni, Aonidiella spp., Aphididae, Aphis spp., Aspidiotus spp., Aulacorthum solani, Bactericera cockerelli, Bemisia spp, Brachycaudus spp, Brevicoryne brassicae, Cacopsylla spp, Cavariella aegopodii Scop., Ceroplaster spp., Chrysomphalus aonidium, Chrysomphalus dictyospermi, Cicadella spp, Cofana spectra, Cryptomyzus spp, Cicadulina spp, Coccus hesperidum, Dalbulus maidis, Dialeurodes spp, Diaphorina citri, Diuraphis noxia, Dysaphis spp, Empoasca spp., Eriosoma larigerum, Erythroneura spp., Gascardia spp., Glycaspis brimblecombei, Hyadaphis pseudobrassicae, Hyalopterus spp, Hyperomyzus pallidus, Idioscopus clypealis, Jacobiasca lybica, Laodelphax spp., Lecanium corni, Lepidosaphes spp., Lopaphis erysimi, Lyogenys maidis, Macrosiphum spp., Mahanarva spp, Metcalfa pruinosa, Metopolophium dirhodum, Myndus crudus, Myzus spp., Neotoxoptera sp, Nephotettix spp., Nilaparvata spp., Nippolachnus piri Mats, Odonaspis ruthae, Oregma lanigera Zehnter, Parabemisia myricae, Paratrioza cockerelli, Parlatoria spp., Pemphigus spp., Peregrinus maidis, Perkinsiella spp, Phorodon humuli, Phylloxera spp, Planococcus spp., Pseudaulacaspis spp., Pseudococcus spp., Pseudatomoscelis seriatus, Psylla spp., Pulvinaria aethiopica, Quadraspidiotus spp., Quesada gigas, Recilia dorsalis, Rhopalosiphum spp., Saissetia spp., Scaphoideus spp., Schizaphis spp., Sitobion spp., Sogatella furcifera, Spissistilus festinus, Tarophagus Proserpina, Toxoptera spp, Trialeurodes spp, Tridiscus sporoboli, Trionymus spp, Trioza erytreae, Unaspis citri, Zygina flammigera, Zyginidia scutellaris;


from the order Hymenoptera, for example,



Acromyrmex, Arge spp, Atta spp., Cephus spp., Diprion spp., Diprionidae, Gilpinia polytoma, Hoplo-campa spp., Lasius spp., Monomorium pharaonis, Neodiprion spp., Pogonomyrmex spp, Slenopsis invicta, Solenopsis spp. and Vespa spp.;


from the order Isoptera, for example,



Coptotermes spp, Corniternes cumulans, Incisitermes spp, Macrotermes spp, Mastotermes spp, Microtermes spp, Reticulitermes spp.; Solenopsis geminate


from the order Lepidoptera, for example,



Acleris spp., Adoxophyes spp., Aegeria spp., Agrotis spp., Alabama argillaceae, Amylois spp., Anticarsia gemmatalis, Archips spp., Argyresthia spp, Argyrotaenia spp., Autographa spp., Bucculatrix thurberiella, Busseola fusca, Cadra cautella, Carposina nipponensis, Chilo spp., Choristoneura spp., Chrysoteuchia topiaria, Clysia ambiguella, Cnaphalocrocis spp., Cnephasia spp., Cochylis spp., Coleophora spp., Colias lesbia, Cosmophila flava, Crambus spp, Crocidolomia binotalis, Cryptophlebia leucotreta, Cydalima perspectalis, Cydia spp., Diaphania perspectalis, Diatraea spp., Diparopsis castanea, Earias spp., Elasmopalpus lignosellus, Eldana saccharina, Ephestia spp., Epinotia spp, Estigmene acrea, Etiella zinckinella, Eucosma spp., Eupoecilia ambiguella, Euproctis spp., Euxoa spp., Feltia jaculiferia, Grapholita spp., Hedya nubiferana, Heliothis spp., Hellula undalis, Herpetogramma spp, Hyphantria cunea, Keiferia lycopersicella, Lasmopalpus lignosellus, Leucoptera scitella, Lithocollethis spp., Lobesia botrana, Loxostege bifidalis, Lymantria spp., Lyonetia spp., Malacosoma spp., Mamestra brassicae, Manduca sexta, Mythimna spp, Noctua spp, Operophtera spp., Orniodes indica, Ostrinia nubilalis, Pammene spp., Pandemis spp., Panolis flammea, Papaipema nebris, Pectinophora gossypiela, Perileucoptera coffeella, Pseudaletia unipuncta, Phthorimaea operculella, Pieris rapae, Pieris spp., Plutella xylostella, Prays spp., Pseudoplusia spp, Rachiplusia nu, Richia albicosta, Scirpophaga spp., Sesamia spp., Sparganothis spp., Spodoptera spp., Sylepta derogate, Synanthedon spp., Thaumetopoea spp., Tortrix spp., Trichoplusia ni, Tuta absoluta, and Yponomeuta spp.;


from the order Mallophaga, for example,



Damalinea spp. and Trichodectes spp.;


from the order Orthoptera, for example,



Blatta spp., Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Neocurtilla hexadactyla, Periplaneta spp., Scapteriscus spp, and Schistocerca spp.;


from the order Psocoptera, for example,



Liposcelis spp.;


from the order Siphonaptera, for example,



Ceratophyllus spp., Ctenocephalides spp. and Xenopsylla cheopis;


from the order Thysanoptera, for example,



Calliothrips phaseoli, Frankliniella spp., Heliothrips spp, Hercinothrips spp., Parthenothrips spp, Scirtothrips aurantii, Sericothrips variabilis, Taeniothrips spp., Thrips spp;


from the order Thysanura, for example, Lepisma saccharina.


In a further aspect, the invention may also relate to a method of controlling damage to plant and parts thereof by plant parasitic nematodes (Endoparasitic-, Semiendoparasitic- and Ectoparasitic nematodes), especially plant parasitic nematodes such as root knot nematodes, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, Meloidogyne arenaria and other Meloidogyne species; cyst-forming nematodes, Globodera rostochiensis and other Globodera species; Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera species; Seed gall nematodes, Anguina species; Stem and foliar nematodes, Aphelenchoides species; Sting nematodes, Belonolaimus longicaudatus and other Belonolaimus species; Pine nematodes, Bursaphelenchus xylophilus and other Bursaphelenchus species; Ring nematodes, Criconema species, Criconemella species, Criconemoides species, Mesocriconema species; Stem and bulb nematodes, Ditylenchus destructor, Ditylenchus dipsaci and other Ditylenchus species; Awl nematodes, Dolichodorus species; Spiral nematodes, Heliocotylenchus multicinctus and other Helicotylenchus species; Sheath and sheathoid nematodes, Hemicycliophora species and Hemicriconemoides species; Hirshmanniella species; Lance nematodes, Hoploaimus species; false rootknot nematodes, Nacobbus species; Needle nematodes, Longidorus elongatus and other Longidorus species; Pin nematodes, Pratylenchus species; Lesion nematodes, Pratylenchus neglectus, Pratylenchus penetrans, Pratylenchus curvitatus, Pratylenchus goodeyi and other Pratylenchus species; Burrowing nematodes, Radopholus similis and other Radopholus species; Reniform nematodes, Rotylenchus robustus, Rotylenchus reniformis and other Rotylenchus species; Scutellonema species; Stubby root nematodes, Trichodorus primitivus and other Trichodorus species, Paratrichodorus species; Stunt nematodes, Tylenchorhynchus claytoni, Tylenchorhynchus dubius and other Tylenchorhynchus species; Citrus nematodes, Tylenchulus species; Dagger nematodes, Xiphinema species; and other plant parasitic nematode species, such as Subanguina spp., Hypsoperine spp., Macroposthonia spp., Melinius spp., Punctodera spp., and Quinisulcius spp.


The compounds of the invention may also have activity against the molluscs. Examples of which include, for example, Ampullariidae; Arion (A. ater, A. circumscriptus, A. hortensis, A. rufus); Bradybaenidae (Bradybaena fruticum); Cepaea (C. hortensis, C. Nemoralis); ochlodina; Deroceras (D. agrestis, D. empiricorum, D. laeve, D. reticulatum); Discus (D. rotundatus); Euomphalia; Galba (G. trunculata); Helicelia (H. itala, H. obvia); Helicidae Helicigona arbustorum); Helicodiscus; Helix (H. aperta); Limax (L. cinereoniger, L. flavus, L. marginatus, L. maximus, L. tenellus); Lymnaea; Milax (M. gagates, M. marginatus, M. sowerbyi); Opeas; Pomacea (P. canaticulata); Vallonia and Zanitoides.


The active ingredients according to the invention can be used for controlling, i. e. containing or destroying, pests of the abovementioned type which occur in particular on plants, especially on useful plants and ornamentals in agriculture, in horticulture and in forests, or on organs, such as fruits, flowers, foliage, stalks, tubers or roots, of such plants, and in some cases even plant organs which are formed at a later point in time remain protected against these pests.


Suitable target crops are, in particular, cereals, such as wheat, barley, rye, oats, rice, maize or sorghum; beet, such as sugar or fodder beet; fruit, for example pomaceous fruit, stone fruit or soft fruit, such as apples, pears, plums, peaches, almonds, cherries or berries, for example strawberries, raspberries or blackberries; leguminous crops, such as beans, lentils, peas or soya; oil crops, such as oilseed rape, mustard, poppies, olives, sunflowers, coconut, castor, cocoa or ground nuts; cucurbits, such as pumpkins, cucumbers or melons; fibre plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruit or tangerines; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes or bell peppers; Lauraceae, such as avocado, Cinnamonium or camphor; and also tobacco, nuts, coffee, eggplants, sugarcane, tea, pepper, grapevines, hops, the plantain family and latex plants.


The compositions and/or methods of the present invention may be also used on any ornamental and/or vegetable crops, including flowers, shrubs, broad-leaved trees and evergreens.


For example the invention may be used on any of the following ornamental species: Ageratum spp., Alonsoa spp., Anemone spp., Anisodontea capsenisis, Anthemis spp., Antirrhinum spp., Aster spp., Begonia spp. (e.g. B. elatior, B. semperflorens, B. tubereux), Bougainvillea spp., Brachycome spp., Brassica spp. (ornamental), Calceolaria spp., Capsicum annuum, Catharanthus roseus, Canna spp., Centaurea spp., Chrysanthemum spp., Cineraria spp. (C. maritime), Coreopsis spp., Crassula coccinea, Cuphea ignea, Dahlia spp., Delphinium spp., Dicentra spectabilis, Dorotheantus spp., Eustoma grandiflorum, Forsythia spp., Fuchsia spp., Geranium gnaphalium, Gerbera spp., Gomphrena globosa, Heliotropium spp., Helianthus spp., Hibiscus spp., Hortensia spp., Hydrangea spp., Hypoestes phyllostachya, Impatiens spp. (I. walleriana), Iresines spp., Kalanchoe spp., Lantana camara, Lavatera trimestris, Leonotis leonurus, Lilium spp., Mesembryanthemum spp., Mimulus spp., Monarda spp., Nemesia spp., Tagetes spp., Dianthus spp. (carnation), Canna spp., Oxalis spp., Bellis spp., Pelargonium spp. (P. peltatum, P. Zonale), Viola spp. (pansy), Petunia spp., Phlox spp., Plecthranthus spp., Poinsettia spp., Parthenocissus spp. (P. quinquefolia, P. tricuspidata), Primula spp., Ranunculus spp., Rhododendron spp., Rosa spp. (rose), Rudbeckia spp., Saintpaulia spp., Salvia spp., Scaevola aemola, Schizanthus wisetonensis, Sedum spp., Solanum spp., Surfinia spp., Tagetes spp., Nicotinia spp., Verbena spp., Zinnia spp. and other bedding plants.


For example the invention may be used on any of the following vegetable species: Allium spp. (A. sativum, A. cepa, A. oschaninii, A. Porrum, A. ascalonicum, A. fistulosum), Anthriscus cerefolium, Apium graveolus, Asparagus officinalis, Beta vulgarus, Brassica spp. (B. oleracea, B. pekinensis, B. rapa), Capsicum annuum, Cicer arietinum, Cichorium endivia, Cichorum spp. (C. intybus, C. endivia), Citrillus lanatus, Cucumis spp. (C. sativus, C. melo), Cucurbita spp. (C. pepo, C. maxima), Cyanara spp. (C. scolymus, C. cardunculus), Daucus carota, Foeniculum vulgare, Hypericum spp., Lactuca sativa, Lycopersicon spp. (L. esculentum, L. lycopersicum), Mentha spp., Ocimum basilicum, Petroselinum crispum, Phaseolus spp. (P. vulgaris, P. coccineus), Pisum sativum, Raphanus sativus, Rheum rhaponticum, Rosemarinus spp., Salvia spp., Scorzonera hispanica, Solanum melongena, Spinacea oleracea, Valerianella spp. (V. locusta, V. eriocarpa) and Vicia faba.


Preferred ornamental species include African violet, Begonia, Dahlia, Gerbera, Hydrangea, Verbena, Rosa, Kalanchoe, Poinsettia, Aster, Centaurea, Coreopsis, Delphinium, Monarda, Phlox, Rudbeckia, Sedum, Petunia, Viola, Impatiens, Geranium, Chrysanthemum, Ranunculus, Fuchsia, Salvia, Hortensia, rosemary, sage, St. Johnswort, mint, sweet pepper, tomato and cucumber.


The active ingredients according to the invention are especially suitable for controlling Aphis craccivora, Diabrotica balteata, Heliothis virescens, Myzus persicae, Plutella xylostella and Spodoptera littoralis in cotton, vegetable, maize, rice and soya crops. The active ingredients according to the invention are further especially suitable for controlling Mamestra (preferably in vegetables), Cydia pomonella (preferably in apples), Empoasca (preferably in vegetables, vineyards), Leptinotarsa (preferably in potatos) and Chilo supressalis (preferably in rice).


The compounds of formula I are particularly suitable for control of

    • a pest of the order Hemiptera, for example, one or more of the species Bemisia tabaci, Aphis craccivora, Myzus persicae, Rhopalosiphum Padi, Nilaparvata lugens, and Euschistus heros (preferably in vegetables, soybeans, and sugarcane);
    • a pest of the order Lepidoptera, for example, one or more of the species Spodoptera littoralis, Spodoptera frugiperda, Plutella xylostella, Cnaphalocrocis medinalis, Cydia pomonella, Chrysodeixis includes, Chilo suppressalis, Elasmopalpus lignosellus, Pseudoplusia includens, and Tuta absoluta (preferably in vegetables and corn);
    • a pest of the order Thysanoptera, such as the family Thripidae, for example, one or more of Thrips tabaci and Frankliniella occidentalis (preferably in vegetables); and
    • soil pests (such as of the order Coleoptera), for example, the species Diabrotica balteata, Agriotes spp. and Leptinotarsa decemlineata (preferably in vegetables and corn).


The term “crops” is to be understood as including also crop plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.


Toxins that can be expressed by such transgenic plants include, for example, insecticidal proteins, for example insecticidal proteins from Bacillus cereus or Bacillus popilliae; or insecticidal proteins from Bacillus thuringiensis, such as b-endotoxins, e.g. Cry1Ab, Cry1Ac, Cry1F, Cry1Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), e.g. Vip1, Vip2, Vip3 or Vip3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp. or Xenorhabdus spp., such as Photorhabdus luminescens, Xenorhabdus nematophilus; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins; toxins produced by fungi, such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors, HMG-COA-reductase, ion channel blockers, such as blockers of sodium or calcium channels, juvenile hormone esterase, diuretic hormone receptors, stilbene synthase, bibenzyl synthase, chitinases and glucanases.


In the context of the present invention there are to be understood by b-endotoxins, for example Cry1Ab, Cry1Ac, Cry1F, Cry1Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), for example Vip1, Vip2, Vip3 or Vip3A, expressly also hybrid toxins, truncated toxins and modified toxins. Hybrid toxins are produced recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701). Truncated toxins, for example a truncated Cry1Ab, are known. In the case of modified toxins, one or more amino acids of the naturally occurring toxin are replaced. In such amino acid replacements, preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of Cry3A055, a cathepsin-G-recognition sequence is inserted into a Cry3A toxin (see WO 03/018810).


Examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529, EP-A-451 878 and WO 03/052073.


The processes for the preparation of such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Cry1-type deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A-0 367 474, EP-A-0 401 979 and WO 90/13651.


The toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects. Such insects can occur in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and moths (Lepidoptera).


Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a Cry1Ab toxin); YieldGard Rootworm® (maize variety that expresses a Cry3Bb1 toxin); YieldGard Plus® (maize variety that expresses a Cry1Ab and a Cry3Bb1 toxin); Starlink® (maize variety that expresses a Cry9C toxin); Herculex I® (maize variety that expresses a Cry1Fa2 toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a Cry1Ac toxin); Bollgard I® (cotton variety that expresses a Cry1Ac toxin); Bollgard II® (cotton variety that expresses a Cry1Ac and a Cry2Ab toxin); VipCot® (cotton variety that expresses a Vip3A and a Cry1Ab toxin); NewLeaf® (potato variety that expresses a Cry3A toxin); NatureGard®, Agrisure® GT Advantage (GA21 glyphosate-tolerant trait), Agrisure® CB Advantage (Bt11 corn borer (CB) trait) and Protecta®.


Further examples of such transgenic crops are:


1. Bt11 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea mays which has been rendered resistant to attack by the European corn borer (Ostrinia nubilalis and Sesamia nonagrioides) by transgenic expression of a truncated Cry1Ab toxin. Bt11 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.


2. Bt176 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea mays which has been rendered resistant to attack by the European corn borer (Ostrinia nubilalis and Sesamia nonagrioides) by transgenic expression of a Cry1Ab toxin. Bt176 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.


3. MIR604 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Maize which has been rendered insect-resistant by transgenic expression of a modified Cry3A toxin. This toxin is Cry3A055 modified by insertion of a cathepsin-G-protease recognition sequence. The preparation of such transgenic maize plants is described in WO 03/018810.


4. MON 863 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/DE/02/9. MON 863 expresses a Cry3Bb1 toxin and has resistance to certain Coleoptera insects.


5. IPC 531 Cotton from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/ES/96/02.


6. 1507 Maize from Pioneer Overseas Corporation, Avenue Tedesco, 7 B-1160 Brussels, Belgium, registration number C/NL/00/10. Genetically modified maize for the expression of the protein Cry1 F for achieving resistance to certain Lepidoptera insects and of the PAT protein for achieving tolerance to the herbicide glufosinate ammonium.


7. NK603×MON 810 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/GB/02/M3/03. Consists of conventionally bred hybrid maize varieties by crossing the genetically modified varieties NK603 and MON 810. NK603×MON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from Agrobacterium sp. strain CP4, which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a Cry1Ab toxin obtained from Bacillus thuringiensis subsp. kurstaki which brings about tolerance to certain Lepidoptera, include the European corn borer.


Transgenic crops of insect-resistant plants are also described in BATS (Zentrum fGr Biosicherheit und Nachhaltigkeit, Zentrum BATS, Clarastrasse 13, 4058 Basel, Switzerland) Report 2003, (http://bats.ch).


The term “crops” is to be understood as including also crop plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising antipathogenic substances having a selective action, such as, for example, the so-called “pathogenesis-related proteins” (PRPs, see e.g. EP-A-0 392 225). Examples of such antipathogenic substances and transgenic plants capable of synthesising such antipathogenic substances are known, for example, from EP-A-0 392 225, WO 95/33818 and EP-A-0 353 191. The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.


Crops may also be modified for enhanced resistance to fungal (for example Fusarium, Anthracnose, or Phytophthora), bacterial (for example Pseudomonas) or viral (for example potato leafroll virus, tomato spotted wilt virus, cucumber mosaic virus) pathogens.


Crops also include those that have enhanced resistance to nematodes, such as the soybean cyst nematode.


Crops that are tolerance to abiotic stress include those that have enhanced tolerance to drought, high salt, high temperature, chill, frost, or light radiation, for example through expression of NF-YB or other proteins known in the art.


Antipathogenic substances which can be expressed by such transgenic plants include, for example, ion channel blockers, such as blockers for sodium and calcium channels, for example the viral KP1, KP4 or KP6 toxins; stilbene synthases; bibenzyl synthases; chitinases; glucanases; the so-called “pathogenesis-related proteins” (PRPs; see e.g. EP-A-0 392 225); antipathogenic substances produced by microorganisms, for example peptide antibiotics or heterocyclic antibiotics (see e.g. WO 95/33818) or protein or polypeptide factors involved in plant pathogen defence (so-called “plant disease resistance genes”, as described in WO 03/000906).


Further areas of use of the compositions according to the invention are the protection of stored goods and store rooms and the protection of raw materials, such as wood, textiles, floor coverings or buildings, and also in the hygiene sector, especially the protection of humans, domestic animals and productive livestock against pests of the mentioned type.


The present invention provides a compound of the first aspect for use in therapy. The present invention provides a compound of the first aspect, for use in controlling parasites in or on an animal. The present invention further provides a compound of the first aspect, for use in controlling ectoparasites on an animal. The present invention further provides a compound of the first aspect, for use in preventing and/or treating diseases transmitted by ectoparasites.


The present invention provides the use of a compound of the first aspect, for the manufacture of a medicament for controlling parasites in or on an animal. The present invention further provides the use of a compound of the first aspect, for the manufacture of a medicament for controlling ectoparasites on an animal. The present invention further provides the use of a compound of the first aspect, for the manufacture of a medicament for preventing and/or treating diseases transmitted by ectoparasites.


The present invention provides the use of a compound of the first aspect, in controlling parasites in or on an animal. The present invention further provides the use of a compound of the first aspect, in controlling ectoparasites on an animal.


The term “controlling” when used in context of parasites in or on an animal refers to reducing the number of pests or parasites, eliminating pests or parasites and/or preventing further pest or parasite infestation.


The term “treating” when used used in context of parasites in or on an animal refers to restraining, slowing, stopping or reversing the progression or severity of an existing symptom or disease. The term “preventing” when used used in context of parasites in or on an animal refers to the avoidance of a symptom or disease developing in the animal.


The term “animal” when used used in context of parasites in or on an animal may refer to a mammal and a non-mammal, such as a bird or fish. In the case of a mammal, it may be a human or non-human mammal. Non-human mammals include, but are not limited to, livestock animals and companion animals. Livestock animals include, but are not limited to, cattle, camellids, pigs, sheep, goats and horses. Companion animals include, but are not limited to, dogs, cats and rabbits.


A “parasite” is a pest which lives in or on the host animal and benefits by deriving nutrients at the host animal's expense. An “endoparasite” is a parasite which lives in the host animal. An “ectoparasite” is a parasite which lives on the host animal. Ectoparasites include, but are not limited to, acari, insects and crustaceans (e.g. sea lice). The Acari (or Acarina) sub-class comprises ticks and mites. Ticks include, but are not limited to, members of the following genera: Rhipicaphalus, for example, Rhipicaphalus (Boophilus) microplus and Rhipicephalus sanguineus; Amblyomrna; Dermacentor, Haemaphysalis; Hyalomma; Ixodes; Rhipicentor; Margaropus; Argas; Otobius; and Ornithodoros. Mites include, but are not limited to, members of the following genera: Chorioptes, for example Chorioptes bovis; Psoroptes, for example Psoroptes ovis; Cheyletiella; Dermanyssus; for example Dermanyssus gallinae; Ortnithonyssus; Demodex, for example Demodex canis; Sarcoptes, for example Sarcoptes scabiei; and Psorergates. Insects include, but are not limited to, members of the orders: Siphonaptera, Diptera, Phthiraptera, Lepidoptera, Coleoptera and Homoptera. Members of the Siphonaptera order include, but are not limited to, Ctenocephalides felis and Ctenocephatides canis. Members of the Diptera order include, but are not limited to, Musca spp.; bot fly, for example Gasterophilus intestinalis and Oestrus ovis; biting flies; horse flies, for example Haematopota spp. and Tabunus spp.; haematobia, for example Haematobia irritans; Stomoxys; Lucilia; midges; and mosquitoes. Members of the Phthiraptera class include, but are not limited to, blood sucking lice and chewing lice, for example Bovicola Ovis and Bovicola Bovis.


The term “effective amount” when used in context of parasites in or on an animal refers to the amount or dose of the compound of the invention, or a salt thereof, which, upon single or multiple dose administration to the animal, provides the desired effect in or on the animal. The effective amount can be readily determined by the attending diagnostician, as one skilled in the art, by the use of known techniques and by observing results obtained under analogous circumstances. In determining the effective amount a number of factors are considered by the attending diagnostician, including, but not limited to: the species of mammal; its size, age, and general health; the parasite to be controlled and the degree of infestation; the specific disease or disorder involved; the degree of or involvement or the severity of the disease or disorder; the response of the individual; the particular compound administered; the mode of administration; the bioavailability characteristics of the preparation administered; the dose regimen selected; the use of concomitant medication; and other relevant circumstances.


The compounds of the invention may be administered to the animal by any route which has the desired effect including, but not limited to topically, orally, parenterally and subcutaneously. Topical administration is preferred. Formulations suitable for topical administration include, for example, solutions, emulsions and suspensions and may take the form of a pour-on, spot-on, spray-on, spray race or dip. In the alternative, the compounds of the invention may be administered by means of an ear tag or collar.


Salt forms of the compounds of the invention include both pharmaceutically acceptable salts and veterinary acceptable salts, which can be different to agrochemically acceptable salts. Pharmaceutically and veterinary acceptable salts and common methodology for preparing them are well known in the art. See, for example, Gould, P. L., “Salt selection for basic drugs”, International Journal of Pharmaceutics, 33: 201-217 (1986); Bastin, R. J., et al. “Salt Selection and Optimization Procedures for Pharmaceutical New Chemical Entities”, Organic Process Research and Development, 4: 427-435 (2000); and Berge, S. M., et al., “Pharmaceutical Salts”, Journal of Pharmaceutical Sciences, 66: 1-19, (1977). One skilled in the art of synthesis will appreciate that the compounds of the invention are readily converted to and may be isolated as a salt, such as a hydrochloride salt, using techniques and conditions well known to one of ordinary skill in the art. In addition, one skilled in the art of synthesis will appreciate that the compounds of the invention are readily converted to and may be isolated as the corresponding free base from the corresponding salt.


The present invention also provides a method for controlling pests (such as mosquitoes and other disease vectors; see also http://www.who.int/malaria/vector_control/irs/en/). In one embodiment, the method for controlling pests comprises applying the compositions of the invention to the target pests, to their locus or to a surface or substrate by brushing, rolling, spraying, spreading or dipping. By way of example, an IRS (indoor residual spraying) application of a surface such as a wall, ceiling or floor surface is contemplated by the method of the invention. In another embodiment, it is contemplated to apply such compositions to a substrate such as non-woven or a fabric material in the form of (or which can be used in the manufacture of) netting, clothing, bedding, curtains and tents.


In one embodiment, the method for controlling such pests comprises applying a pesticidally effective amount of the compositions of the invention to the target pests, to their locus, or to a surface or substrate so as to provide effective residual pesticidal activity on the surface or substrate. Such application may be made by brushing, rolling, spraying, spreading or dipping the pesticidal composition of the invention. By way of example, an IRS application of a surface such as a wall, ceiling or floor surface is contemplated by the method of the invention so as to provide effective residual pesticidal activity on the surface. In another embodiment, it is contemplated to apply such compositions for residual control of pests on a substrate such as a fabric material in the form of (or which can be used in the manufacture of) netting, clothing, bedding, curtains and tents.


Substrates including non-woven, fabrics or netting to be treated may be made of natural fibres such as cotton, raffia, jute, flax, sisal, hessian, or wool, or synthetic fibres such as polyamide, polyester, polypropylene, polyacrylonitrile or the like. The polyesters are particularly suitable. The methods of textile treatment are known, e.g. WO 2008/151984, WO 2003/034823, U.S. Pat. No. 5,631,072, WO 2005/64072, WO2006/128870, EP 1724392, WO 2005113886 or WO 2007/090739.


Further areas of use of the compositions according to the invention are the field of tree injection/trunk treatment for all ornamental trees as well all sort offruit and nut trees.


In the field of tree injection/trunk treatment, the compounds according to the present invention are especially suitable against wood-boring insects from the order Lepidoptera as mentioned above and from the order Coleoptera, especially against woodborers listed in the following tables A and B:









TABLE A







Examples of exotic woodborers of economic importance.









Family
Species
Host or Crop Infested





Buprestidae

Agrilus planipennis

Ash


Cerambycidae

Anoplura glabripennis

Hardwoods


Scolytidae

Xylosandrus crassiusculus

Hardwoods




X. mutilatus

Hardwoods




Tomicus piniperda

Conifers
















TABLE B







Examples of native woodborers of economic importance.









Family
Species
Host or Crop Infested





Buprestidae

Agrilus anxius

Birch




Agrilus politus

Willow, Maple




Agrilus sayi

Bayberry, Sweetfern




Agrilus vittaticolllis

Apple, Pear, Cranberry,




Serviceberry, Hawthorn




Chrysobothris

Apple, Apricot, Beech, Boxelder,




femorata

Cherry, Chestnut, Currant, Elm,




Hawthorn, Hackberry, Hickory,




Horsechestnut, Linden, Maple,




Mountain-ash, Oak, Pecan, Pear,




Peach, Persimmon, Plum, Poplar,




Quince, Redbud, Serviceberry,




Sycamore, Walnut, Willow




Texania campestris

Basswood, Beech, Maple, Oak,




Sycamore, Willow, Yellow-poplar


Cerambycidae

Goes pulverulentus

Beech, Elm, Nuttall, Willow, Black




oak, Cherrybark oak, Water oak,




Sycamore




Goes tigrinus

Oak




Neoclytus

Ash, Hickory, Oak, Walnut, Birch,




acuminatus

Beech, Maple, Eastern




hophornbeam, Dogwood,




Persimmon, Redbud, Holly,




Hackberry, Black locust,




Honeylocust, Yellow-poplar,




Chestnut, Osage-orange, Sassafras,




Lilac, Mountain-mahogany, Pear,




Cherry, Plum, Peach, Apple, Elm,




Basswood, Sweetgum




Neoptychodes

Fig, Alder, Mulberry, Willow,




trilineatus

Netleaf hackberry




Oberea ocellata

Sumac, Apple, Peach, Plum, Pear,




Currant, Blackberry




Oberea tripunctata

Dogwood, Viburnum, Elm,




Sourwood, Blueberry,




Rhododendron, Azalea, Laurel,




Poplar, Willow, Mulberry




Oncideres cingulata

Hickory, Pecan, Persimmon, Elm,




Sourwood, Basswood, Honeylocust,




Dogwood, Eucalyptus, Oak,




Hackberry, Maple, Fruit trees




Saperda calcarata

Poplar




Strophiona nitens

Chestnut, Oak, Hickory, Walnut,




Beech, Maple


Scolytidae

Corthylus

Maple, Oak, Yellow-poplar, Beech,




columbianus

Boxelder, Sycamore, Birch,




Basswood, Chestnut, Elm




Dendroctonus

Pine




frontalis






Dryocoetes betulae

Birch, Sweetgum, Wild cherry,




Beech, Pear




Monarthrum

Oak, Maple, Birch, Chestnut,




fasciatum

Sweetgum, Blackgum, Poplar,




Hickory, Mimosa, Apple, Peach,




Pine




Phloeotribus

Peach, Cherry, Plum, Black cherry,




liminaris

Elm, Mulberry, Mountain-ash




Pseudopityophthorus

Oak, American beech, Black cherry,




pruinosus

Chickasaw plum, Chestnut, Maple,




Hickory, Hornbeam, Hophornbeam


Sesiidae

Paranthrene

Oak, American chestnut




simulans






Sannina

Persimmon




uroceriformis






Synanthedon

Peach, Plum, Nectarine, Cherry,




exitiosa

Apricot, Almond, Black cherry




Synanthedon

Peach, Plum, Cherry, Beach, Black




pictipes

Cherry




Synanthedon

Tupelo




rubrofascia






Synanthedon scitula

Dogwood, Pecan, Hickory, Oak,




Chestnut, Beech, Birch, Black




cherry, Elm, Mountain-ash,




Viburnum, Willow, Apple,




Loquat, Ninebark,




Bayberry




Vitacea polistiformis

Grape









The present invention may be also used to control any insect pests that may be present in turfgrass, including for example beetles, caterpillars, fire ants, ground pearls, millipedes, sow bugs, mites, mole crickets, scales, mealybugs, ticks, spittlebugs, southern chinch bugs and white grubs. The present invention may be used to control insect pests at various stages of their life cycle, including eggs, larvae, nymphs and adults.


In particular, the present invention may be used to control insect pests that feed on the roots of turfgrass including white grubs (such as Cyclocephala spp. (e.g. masked chafer, C. lurida), Rhizotrogus spp. (e.g. European chafer, R. majalis), Cotinus spp. (e.g. Green June beetle, C. nitida), Popillia spp. (e.g. Japanese beetle, P. japonica), Phyllophaga spp. (e.g. May/June beetle), Ataenius spp. (e.g. Black turfgrass ataenius, A. spretulus), Maladera spp. (e.g. Asiatic garden beetle, M. castanea) and Tomarus spp.), ground pearls (Margarodes spp.), mole crickets (tawny, southern, and short-winged; Scapteriscus spp., Gryllotalpa africana) and leatherjackets (European crane fly, Tipula spp.).


The present invention may also be used to control insect pests of turfgrass that are thatch dwelling, including armyworms (such as fall armyworm Spodoptera frugiperda, and common armyworm Pseudaletia unipuncta), cutworms, billbugs (Sphenophorus spp., such as S. venatus verstitus and S. parvulus), and sod webworms (such as Crambus spp. and the tropical sod webworm, Herpetogramma phaeopteralis).


The present invention may also be used to control insect pests of turfgrass that live above the ground and feed on the turfgrass leaves, including chinch bugs (such as southern chinch bugs, Blissus insularis), Bermudagrass mite (Eriophyes cynodoniensis), rhodesgrass mealybug (Antonina graminis), two-lined spittlebug (Propsapia bicincta), leafhoppers, cutworms (Noctuidae family), and greenbugs.


The present invention may also be used to control other pests of turfgrass such as red imported fire ants (Solenopsis invicta) that create ant mounds in turf.


In the hygiene sector, the compositions according to the invention are active against ectoparasites such as hard ticks, soft ticks, mange mites, harvest mites, flies (biting and licking), parasitic fly larvae, lice, hair lice, bird lice and fleas.


Examples of such parasites are: Of the order Anoplurida: Haematopinus spp., Linognathus spp., Pediculus spp. and Phtirus spp., Solenopotes spp.


Of the order Mallophagida: Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp. and Felicola spp.


Of the order Diptera and the suborders Nematocerina and Brachycerina, for example Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp., Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp. and Melophagus spp.


Of the order Siphonapterida, for example Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp.


Of the order Heteropterida, for example Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp.


Of the order Blattarida, for example Blatta orientalis, Periplaneta americana, Blattelagermanica and Supella spp.


Of the subclass Acaria (Acarida) and the orders Meta- and Meso-stigmata, for example Argas spp., Ornithodorus spp., Otobius spp., Ixodes spp., Amblyomma spp., Boophilus spp., Dermacentor spp., Haemophysalis spp., Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietia spp., Pneumonyssus spp., Sternostoma spp. and Varroa spp.


Of the orders Actinedida (Prostigmata) and Acaridida (Astigmata), for example Acarapis spp., Cheyletiella spp., Ornithocheyletia spp., Myobia spp., Psorergatesspp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp. and Laminosioptes spp.


The compositions according to the invention are also suitable for protecting against insect infestation in the case of materials such as wood, textiles, plastics, adhesives, glues, paints, paper and card, leather, floor coverings and buildings.


The compositions according to the invention can be used, for example, against the following pests: beetles such as Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinuspecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthesrugicollis, Xyleborus spec., Tryptodendron spec., Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec. and Dinoderus minutus, and also hymenopterans such as Sirexjuvencus, Urocerus gigas, Urocerus gigas taignus and Urocerus augur, and termites such as Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis and Coptotermes formosanus, and bristletails such as Lepisma saccharina. The compounds of formulae I, and I′a, or salts thereof, are especially suitable for controlling one or more pests selected from the family: Noctuidae, Plutellidae, Chrysomelidae, Thripidae, Pentatomidae, Tortricidae, Delphacidae, Aphididae, Noctuidae, Crambidae, Meloidogynidae, and Heteroderidae. In a preferred embodiment of each aspect, a compound TX (where the abbreviation “TX” means “one compound selected from the compounds defined in Tables A-4 to A-39 and Table P”) controls one or more of pests selected from the family: Noctuidae, Plutellidae, Chrysomelidae, Thripidae, Pentatomidae, Tortricidae, Delphacidae, Aphididae, Noctuidae, Crambidae, Meloidogynidae, and Heteroderidae.


The compounds of formulae I, and I′a, or salts thereof, are especially suitable for controlling one or more of pests selected from the genus: Spodoptera spp, Plutella spp, Frankliniella spp, Thrips spp, Euschistus spp, Cydia spp, Nilaparvata spp, Myzus spp, Aphis spp, Diabrotica spp, Rhopalosiphum spp, Pseudoplusia spp and Chilo spp. In a preferred embodiment of each aspect, a compound TX (where the abbreviation “TX” means “one compound selected from the compounds defined in Tables A-4 to A-39 and Table P”) controls one or more of pests selected from the genus: Spodoptera spp, Plutella spp, Frankliniella spp, Thrips spp, Euschistus spp, Cydia spp, Nilaparvata spp, Myzus spp, Aphis spp, Diabrotica spp, Rhopalosiphum spp, Pseudoplusia spp and Chilo spp.


The compounds of formulae I, and I′a, or salts thereof, are especially suitable for controlling one or more of Spodoptera littoralis, Plutella xylostella, Frankliniella occidentalis, Thrips tabaci, Euschistus heros, Cydia pomonella, Nilaparvata lugens, Myzus persicae, Chrysodeixis includens, Aphis craccivora, Diabrotica balteata, Rhopalosiphum padi, and Chilo suppressalis.


In a preferred embodiment of each aspect, a compound TX (where the abbreviation “TX” means “one compound selected from the compounds defined in Tables A-4 to A-39 and Table P”) controls one or more of Spodoptera littoralis, Plutella xylostella, Frankliniella occidentalis, Thrips tabaci, Euschistus heros, Cydia pomonella, Nilaparvata lugens, Myzus persicae, Chrysodeixis includens, Aphis craccivora, Diabrotica balteata, Rhopalosiphum padia, and Chilo Suppressalis, such as Spodoptera littoralis+TX, Plutella xylostella+TX; Frankliniella occidentalis+TX, Thrips tabaci+TX, Euschistus heros+TX, Cydia pomonella+TX, Nilaparvata lugens+TX, Myzus persicae+TX, Chrysodeixis includens+TX, Aphis craccivora+TX, Diabrotica balteata+TX, Rhopalosiphum Padi+TX, and Chilo suppressalis+TX.


In an embodiment, of each aspect, one compound from Tables A-4 to A-39 and Table P is suitable for controlling Spodoptera littoralis, Plutella xylostella, Frankliniella occidentalis, Thrips tabaci, Euschistus heros, Cydia pomonella, Nilaparvata lugens, Myzus persicae, Chrysodeixis includens, Aphis craccivora, Diabrotica balteata, Rhopalosiphum Padia, and Chilo Suppressalis in cotton, vegetable, maize, cereal, rice and soya crops.


In an embodiment, one compound from from Tables A-4 to A-39 and Table P is suitable for controlling Mamestra (preferably in vegetables), Cydia pomonella (preferably in apples), Empoasca (preferably in vegetables, vineyards), Leptinotarsa (preferably in potatos) and Chilo supressalis (preferably in rice).


Compounds according to the invention may possess any number of benefits including, inter alia, advantageous levels of biological activity for protecting plants against insects or superior properties for use as agrochemical active ingredients (for example, greater biological activity, an advantageous spectrum of activity, an increased safety profile (against non-target organisms above and below ground (such as fish, birds and bees), improved physico-chemical properties, or increased biodegradability). In particular, it has been surprisingly found that certain compounds of formula I may show an advantageous safety profile with respect to non-target arthropods, in particular pollinators such as honey bees, solitary bees, and bumble bees. Most particularly, Apis mellifera.


The compounds according to the invention can be used as pesticidal agents in unmodified form, but they are generally formulated into compositions in various ways using formulation adjuvants, such as carriers, solvents and surface-active substances. The formulations can be in various physical forms, e.g. in the form of dusting powders, gels, wettable powders, water-dispersible granules, water-dispersible tablets, effervescent pellets, emulsifiable concentrates, microemulsifiable concentrates, oil-in-water emulsions, oil-flowables, aqueous dispersions, oily dispersions, suspo-emulsions, capsule suspensions, emulsifiable granules, soluble liquids, water-soluble concentrates (with water or a water-miscible organic solvent as carrier), impregnated polymer films or in other forms known e.g. from the Manual on Development and Use of FAO and WHO Specifications for Pesticides, United Nations, First Edition, Second Revision (2010). Such formulations can either be used directly or diluted prior to use. The dilutions can be made, for example, with water, liquid fertilisers, micronutrients, biological organisms, oil or solvents.


The formulations can be prepared e.g. by mixing the active ingredient with the formulation adjuvants in order to obtain compositions in the form of finely divided solids, granules, solutions, dispersions or emulsions. The active ingredients can also be formulated with other adjuvants, such as finely divided solids, mineral oils, oils of vegetable or animal origin, modified oils of vegetable or animal origin, organic solvents, water, surface-active substances or combinations thereof.


The active ingredients can also be contained in very fine microcapsules. Microcapsules contain the active ingredients in a porous carrier. This enables the active ingredients to be released into the environment in controlled amounts (e.g. slow-release). Microcapsules usually have a diameter of from 0.1 to 500 microns. They contain active ingredients in an amount of about from 25 to 95% by weight of the capsule weight. The active ingredients can be in the form of a monolithic solid, in the form of fine particles in solid or liquid dispersion or in the form of a suitable solution. The encapsulating membranes can comprise, for example, natural or synthetic rubbers, cellulose, styrene/butadiene copolymers, polyacrylonitrile, polyacrylate, polyesters, polyamides, polyureas, polyurethane or chemically modified polymers and starch xanthates or other polymers that are known to the person skilled in the art. Alternatively, very fine microcapsules can be formed in which the active ingredient is contained in the form of finely divided particles in a solid matrix of base substance, but the microcapsules are not themselves encapsulated.


The formulation adjuvants that are suitable for the preparation of the compositions according to the invention are known per se. As liquid carriers there may be used: water, toluene, xylene, petroleum ether, vegetable oils, acetone, methyl ethyl ketone, cyclohexanone, acid anhydrides, acetonitrile, acetophenone, amyl acetate, 2-butanone, butylene carbonate, chlorobenzene, cyclohexane, cyclohexanol, alkyl esters of acetic acid, diacetone alcohol, 1,2-dichloropropane, diethanolamine, p-diethylbenzene, diethylene glycol, diethylene glycol abietate, diethylene glycol butyl ether, diethylene glycol ethyl ether, diethylene glycol methyl ether, N,N-dimethylformamide, dimethyl sulfoxide, 1,4-dioxane, dipropylene glycol, dipropylene glycol methyl ether, dipropylene glycol dibenzoate, diproxitol, alkylpyrrolidone, ethyl acetate, 2-ethylhexanol, ethylene carbonate, 1,1,1-trichloroethane, 2-heptanone, alpha-pinene, d-limonene, ethyl lactate, ethylene glycol, ethylene glycol butyl ether, ethylene glycol methyl ether, gamma-butyrolactone, glycerol, glycerol acetate, glycerol diacetate, glycerol triacetate, hexadecane, hexylene glycol, isoamyl acetate, isobornyl acetate, isooctane, isophorone, isopropylbenzene, isopropyl myristate, lactic acid, laurylamine, mesityl oxide, methoxy-propanol, methyl isoamyl ketone, methyl isobutyl ketone, methyl laurate, methyl octanoate, methyl oleate, methylene chloride, m-xylene, n-hexane, n-octylamine, octadecanoic acid, octylamine acetate, oleic acid, oleylamine, o-xylene, phenol, polyethylene glycol, propionic acid, propyl lactate, propylene carbonate, propylene glycol, propylene glycol methyl ether, p-xylene, toluene, triethyl phosphate, triethylene glycol, xylenesulfonic acid, paraffin, mineral oil, trichloroethylene, perchloroethylene, ethyl acetate, amyl acetate, butyl acetate, propylene glycol methyl ether, diethylene glycol methyl ether, methanol, ethanol, isopropanol, and alcohols of higher molecular weight, such as amyl alcohol, tetrahydrofurfuryl alcohol, hexanol, octanol, ethylene glycol, propylene glycol, glycerol, N-methyl-2-pyrrolidone and the like.


Suitable solid carriers are, for example, talc, titanium dioxide, pyrophyllite clay, silica, attapulgite clay, kieselguhr, limestone, calcium carbonate, bentonite, calcium montmorillonite, cottonseed husks, wheat flour, soybean flour, pumice, wood flour, ground walnut shells, lignin and similar substances.


A large number of surface-active substances can advantageously be used in both solid and liquid formulations, especially in those formulations which can be diluted with a carrier prior to use. Surface-active substances may be anionic, cationic, non-ionic or polymeric and they can be used as emulsifiers, wetting agents or suspending agents or for other purposes. Typical surface-active substances include, for example, salts of alkyl sulfates, such as diethanolammonium lauryl sulfate; salts of alkylarylsulfonates, such as calcium dodecylbenzenesulfonate; alkylphenol/alkylene oxide addition products, such as nonylphenol ethoxylate; alcohol/alkylene oxide addition products, such as tridecylalcohol ethoxylate; soaps, such as sodium stearate; salts of alkylnaphthalenesulfonates, such as sodium dibutylnaphthalenesulfonate; dialkyl esters of sulfosuccinate salts, such as sodium di(2-ethylhexyl)sulfosuccinate; sorbitol esters, such as sorbitol oleate; quaternary amines, such as lauryltrimethylammonium chloride, polyethylene glycol esters of fatty acids, such as polyethylene glycol stearate; block copolymers of ethylene oxide and propylene oxide; and salts of mono- and di-alkylphosphate esters; and also further substances described e.g. in McCutcheon's Detergents and Emulsifiers Annual, MC Publishing Corp., Ridgewood N.J. (1981).


Further adjuvants that can be used in pesticidal formulations include crystallisation inhibitors, viscosity modifiers, suspending agents, dyes, anti-oxidants, foaming agents, light absorbers, mixing auxiliaries, antifoams, complexing agents, neutralising or pH-modifying substances and buffers, corrosion inhibitors, fragrances, wetting agents, take-up enhancers, micronutrients, plasticisers, glidants, lubricants, dispersants, thickeners, antifreezes, microbicides, and liquid and solid fertilisers.


The compositions according to the invention can include an additive comprising an oil of vegetable or animal origin, a mineral oil, alkyl esters of such oils or mixtures of such oils and oil derivatives. The amount of oil additive in the composition according to the invention is generally from 0.01 to 10%, based on the mixture to be applied. For example, the oil additive can be added to a spray tank in the desired concentration after a spray mixture has been prepared. Preferred oil additives comprise mineral oils or an oil of vegetable origin, for example rapeseed oil, olive oil or sunflower oil, emulsified vegetable oil, alkyl esters of oils of vegetable origin, for example the methyl derivatives, or an oil of animal origin, such as fish oil or beef tallow. Preferred oil additives comprise alkyl esters of C8-C22 fatty acids, especially the methyl derivatives of C12-C18 fatty acids, for example the methyl esters of lauric acid, palmitic acid and oleic acid (methyl laurate, methyl palmitate and methyl oleate, respectively). Many oil derivatives are known from the Compendium of Herbicide Adjuvants, 10th Edition, Southern Illinois University, 2010.


The inventive compositions generally comprise from 0.1 to 99% by weight, especially from 0.1 to 95% by weight, of compounds of the present invention and from 1 to 99.9% by weight of a formulation adjuvant which preferably includes from 0 to 25% by weight of a surface-active substance. Whereas commercial products may preferably be formulated as concentrates, the end user will normally employ dilute formulations.


The rates of application vary within wide limits and depend on the nature of the soil, the method of application, the crop plant, the pest to be controlled, the prevailing climatic conditions, and other factors governed by the method of application, the time of application and the target crop. As a general guideline compounds may be applied at a rate of from 1 to 2000 l/ha, especially from 10 to 1000 l/ha.


Preferred formulations can have the following compositions (weight %):


Emulsifiable Concentrates:

active ingredient: 1 to 95%, preferably 60 to 90%


surface-active agent: 1 to 30%, preferably 5 to 20%


liquid carrier: 1 to 80%, preferably 1 to 35%


Dusts:

active ingredient: 0.1 to 10%, preferably 0.1 to 5%


solid carrier: 99.9 to 90%, preferably 99.9 to 99%


Suspension Concentrates:

active ingredient: 5 to 75%, preferably 10 to 50%


water: 94 to 24%, preferably 88 to 30%


surface-active agent: 1 to 40%, preferably 2 to 30%


Wettable Powders:

active ingredient: 0.5 to 90 preferably 1 to 80%


surface-active agent: 0.5 to 20 preferably 1 to 15%


solid carrier: 5 to 95%, preferably 15 to 90%


Granules:

active ingredient: 0.1 to 30%, preferably 0.1 to 15%


solid carrier: 99.5 to 70%, preferably 97 to 85%


The following Examples further illustrate, but do not limit, the invention.















Wettable powders
a)
b)
c)







active ingredients
25%
50%
75%


sodium lignosulfonate
 5%
 5%



sodium lauryl sulfate
 3%

 5%


sodium diisobutylnaphthalenesulfonate

 6%
10%


phenol polyethylene glycol ether (7-8

 2%



mol of ethylene oxide)





highly dispersed silicic acid
 5%
10%
10%


Kaolin
62%
27%










The combination is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders that can be diluted with water to give suspensions of the desired concentration.















Powders for dry seed treatment
a)
b)
c)







active ingredients
25%
50%
75%


light mineral oil
 5%
 5%
 5%


highly dispersed silicic acid
 5%
 5%



Kaolin
65%
40%



Talcum


20%









The combination is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording powders that can be used directly for seed treatment.
















Emulsifiable concentrate




















active ingredients
10%



octylphenol polyethylene glycol ether (4-5
 3%



mol of ethylene oxide)




calcium dodecylbenzenesulfonate
 3%



castor oil polyglycol ether (35 mol of ethylene oxide)
 4%



Cyclohexanone
30%



xylene mixture
50%










Emulsions of any required dilution, which can be used in plant protection, can be obtained from this concentrate by dilution with water.


















Dusts
a)
b)
c)









Active ingredients
 5%
 6%
 4%



Talcum
95%





Kaolin

94%




mineral filler


96%










Ready-for-use dusts are obtained by mixing the combination with the carrier and grinding the mixture in a suitable mill. Such powders can also be used for dry dressings for seed.
















Extruder granules










Active ingredients
15%



sodium lignosulfonate
 2%



carboxymethylcellulose
 1%



Kaolin
82%










The combination is mixed and ground with the adjuvants, and the mixture is moistened with water. The mixture is extruded and then dried in a stream of air.
















Coated granules










Active ingredients
 8%



polyethylene glycol (mol. wt. 200)
 3%



Kaolin
89%










The finely ground combination is uniformly applied, in a mixer, to the kaolin moistened with polyethylene glycol. Non-dusty coated granules are obtained in this manner.


Suspension Concentrate


















active ingredients
40%



propylene glycol
10%



nonylphenol polyethylene glycol ether
 6%



(15 mol of ethylene oxide)




Sodium lignosulfonate
10%



carboxymethylcellulose
 1%



silicone oil (in the form of a 75% emulsion in
 1%



water)




Water
32%










The finely ground combination is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water. Using such dilutions, living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.


Flowable Concentrate for Seed Treatment


















active ingredients
40%



propylene glycol
 5%



copolymer butanol PO/EO
 2%



Tristyrenephenole with 10-20 moles EO
 2%



1,2-benzisothiazolin-3-one (in the form
0.5% 



of a 20% solution in water)




monoazo-pigment calcium salt
 5%



Silicone oil (in the form of a 75%
0.2% 



emulsion in water)




Water
45.3% 










The finely ground combination is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water. Using such dilutions, living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.


Slow Release Capsule Suspension

28 parts of the combination are mixed with 2 parts of an aromatic solvent and 7 parts of toluene diisocyanate/polymethylene-polyphenylisocyanate-mixture (8:1). This mixture is emulsified in a mixture of 1.2 parts of polyvinylalcohol, 0.05 parts of a defoamer and 51.6 parts of water until the desired particle size is achieved. To this emulsion a mixture of 2.8 parts 1,6-diaminohexane in 5.3 parts of water is added. The mixture is agitated until the polymerization reaction is completed. The obtained capsule suspension is stabilized by adding 0.25 parts of a thickener and 3 parts of a dispersing agent. The capsule suspension formulation contains 28% of the active ingredients. The medium capsule diameter is 8-15 microns. The resulting formulation is applied to seeds as an aqueous suspension in an apparatus suitable for that purpose.


Formulation types include an emulsion concentrate (EC), a suspension concentrate (SC), a suspo-emulsion (SE), a capsule suspension (CS), a water dispersible granule (WG), an emulsifiable granule (EG), an emulsion, water in oil (EO), an emulsion, oil in water (EW), a micro-emulsion (ME), an oil dispersion (OD), an oil miscible flowable (OF), an oil miscible liquid (OL), a soluble concentrate (SL), an ultra-low volume suspension (SU), an ultra-low volume liquid (UL), a technical concentrate (TK), a dispersible concentrate (DC), a wettable powder (WP), a soluble granule (SG) or any technically feasible formulation in combination with agriculturally acceptable adjuvants.







PREPARATORY EXAMPLES
Example H1: Preparation of N-(cyclopropylmethyl)-N-[1-(2-pyrimidin-2-yl-1,2,4-triazol-3-yl)ethyl]-3-(1,1,2,2-tetrafluoroethoxy)-5-(trifluoromethyl)benzamide



embedded image


Step A: Preparation of 2-(cyclopropylmethylamino)propanamide



embedded image


To a solution of 2-Bromopropanamide (30 g, 188 mmol) in acetonitrile is added potassium carbonate (78.5 g, 563 mmol) and cyclopropylamine (22.5 g, 300 mmol). The resulting suspension is stirred at room temperature for 72 hours, filtered and evaporated. The residue is dissolved in ethyl acetate (400 mL), is washed with water, brine, dried with sodium sulfate, filtered and evaporated to give 2-(cyclopropylmethylamino)propanamide as white crystals. 1H-NMR (400 MHz, CDCl3): δ=7.13 (br s, 1H), 5.44 (brs, 1H), 3.20 (q, J=7.0 Hz, 1H), 2.53 (dd, J=6.6, 12.1 Hz, 1H), 2.40 (dd, J=7.0, 12.1 Hz, 1H), 1.58 (brs, 1H), 1.34 (d, J=7.0 Hz, 3H), 0.98-0.87 (m, 1H), 0.57-0.43 (m, 2H), 0.19-0.06 (m, 2H).


Step B: Preparation of N-(2-amino-1-methyl-2-oxo-ethyl)-3-bromo-N-(cyclopropylmethyl)-5-(trifluoromethyl)benzamide



embedded image


To a solution of 2-(cyclopropylmethylamino)propanamide (10 g, 66.8 mmol) and trimethylamine (10.2 mL, 73.5 mmol) in dichloromethane (150 mL) is added dropwise a solution of 3-bromo-5-(trifluoromethyl)benzoyl chloride (21.2 g, 70.1 mmol) in dichloromethane (50 mL). The resulting orange cloudy solution is stirred at room temperature overnight and is quenched with a saturated aqueous solution of sodium hydrogen carbonate (200 mL). The aqueous phase is extracted with dichloromethane (2×150 mL) and the combined organic phases are washed with water, brine, dried with sodium sulfate, filtered and evaporated to give a crude yellow gum. Purification by chromatography on silica gel (dichloromethane/ethyl acetate gradient, 1:1→0:1) afford N-(2-amino-1-methyl-2-oxo-ethyl)-3-bromo-N-(cyclopropylmethyl)-5-(trifluoromethyl)benzamide as white crystals. 1H-NMR (400 MHz, CDCl3): δ=7.85 (s, 1H), 7.76 (s, 1H), 7.62 (s, 1H), 3.40-3.25 (m, 1H), 3.12 (d, J=7.0, 1H), 3.08 (d, J=7.0, 1H), 1.60 (d, J=7.1 Hz, 4H), 1.04-0.88 (m, 1H), 0.60-0.46 (m, 2H), 0.13-−0.15 (m, 2H); LCMS (method 1): Rt 0.93, m/z=393 (M+H+), 395 (M+H+).


Step C: Preparation of 3-bromo-N-(cyclopropylmethyl)-N-[2-[(Z)-dimethylaminomethyleneamino]-1-methyl-2-oxo-ethyl]-5-(trifluoromethyl)benzamide



embedded image


To a solution of N-(2-amino-1-methyl-2-oxo-ethyl)-3-bromo-N-(cyclopropylmethyl)-5-(trifluoromethyl)benzamide (18.2 g, 44 mmol) in dichloromethane (130 mL) is added N,N-dimethylformamid dimethyl acetal (9.32 mL, 66 mmol). The resulting mixture is stirred at 36° C. for two hours and is evaporated to give 3-bromo-N-(cyclopropylmethyl)-N-[2-[(Z)-dimethylaminomethyleneamino]-1-methyl-2-oxo-ethyl]-5-(trifluoromethyl)benzamide as a yellow gum.


LCMS (method 1): Rt 0.98, m/z=448 (M+H+), 450 (M+H+).


Step D: Preparation of 3-bromo-N-(cyclopropylmethyl)-N-[1-(2-pyrimidin-2-yl-1,2,4-triazol-3-yl)ethyl]-5-(trifluoromethyl)benzamide



embedded image


To a solution of 3-bromo-N-(cyclopropylmethyl)-N-[2-[(Z)-dimethylaminomethyleneamino]-1-methyl-2-oxo-ethyl]-5-(trifluoromethyl)benzamide (21.4 g, 43.9 mmol) in 1,4-dioxane (200 mL) is added pyrimidin-2-ylhydrazine (5.35 g, 46.1 mmol) and acetic acid (43 mL). The reaction mixture is stirred at 80° C. overnight, evaporated, diluted with ethyl acetate (200 mL) and is quenched with a saturated aqueous solution of sodium hydrogen carbonate (200 mL). The aqueous phase is extracted with ethyl acetate (3×30 mL) and the combined organic phases are washed with water, brine, dried with sodium sulfate, filtered and evaporated. Recrystallization of the crude residue in a mixture of ethyl acetate/cyclohexane afford 3-bromo-N-(cyclopropylmethyl)-N-[1-(2-pyrimidin-2-yl-1,2,4-triazol-3-yl)ethyl]-5-(trifluoromethyl)benzamide as white crystals


LCMS (method 1): Rt 1.00, m/z=495 (M+H+), 497 (M+H+).


Step E: Preparation of N-(cyclopropylmethyl)-3-hydroxy-N-[1-(2-pyrimidin-2-yl-1,2,4-triazol-3-yl)ethyl]-5-(trifluoromethyl)benzamide



embedded image


To a solution of 3-bromo-N-(cyclopropylmethyl)-N-[1-(2-pyrimidin-2-yl-1,2,4-triazol-3-yl)ethyl]-5-(trifluoromethyl)benzamide (2 g, 3.84 mmol) in 1,4-dioxane (20 mL) and water (20 mL) is added Tripotassium phosphate (2.08 g, 9.59 mmol) and [tBuXPhos Pd(allyl)]OTf (263 mg, 0.307 mmol). The reaction mixture is stirred at 50° C. for 72 hours and is diluted with ethyl acetate (10 mL) and water (10 mL). The aqueous phase is extracted with ethyl acetate (3×20 mL) and the combined organic phases are washed with water, brine, dried with sodium sulfate, filtered and evaporated. Purification by chromatography on silica gel (dichloromethane/ethyl acetate gradient, 80:20→0:100) afford N-(cyclopropylmethyl)-3-hydroxy-N-[1-(2-pyrimidin-2-yl-1,2,4-triazol-3-yl)ethyl]-5-(trifluoromethyl)benzamide as a white foam.


LCMS (method 1): Rt 0.85, m/z=433 (M+H+).


Step F: Preparation of N-(cyclopropylmethyl)-N-[1-(2-pyrimidin-2-yl-1,2,4-triazol-3-yl)ethyl]-3-(1,1,2,2-tetrafluoroethoxy)-5-(trifluoromethyl)benzamide



embedded image


A 5 mL vial is charged with N-(cyclopropylmethyl)-3-hydroxy-N-[1-(2-pyrimidin-2-yl-1,2,4-triazol-3-yl)ethyl]-5-(trifluoromethyl)benzamide (150 mg, 0.33 mmol), potassium carbonate (161 mg, 1.15 mmol), N,N-dimethylformamid (2.25 mL) and iodo-1,1,2,2-tetrafluoroethane (101 mg, 0.428 mmol). The vial is sealed, the reaction is stirred at 70° C. overnight and is diluted with methyl tert-butyl ether (5 mL) and water (10 mL). The aqueous phase is extracted with methyl tert-butyl ether (3×10 mL) and the combined organic phases are washed with water, brine, dried with sodium sulfate, filtered and evaporated. Purification by chromatography on silica gel (cyclohexane/ethyl acetate gradient) afford N-(cyclopropylmethyl)-N-[1-(2-pyrimidin-2-yl-1,2,4-triazol-3-yl)ethyl]-3-(1,1,2,2-tetrafluoroethoxy)-5-(trifluoromethyl)benzamide (as a colorless gum.


LCMS (method 1): Rt 1.05, m/z=533 (M+H+).


“Mp” means melting point in ° C. Free radicals represent methyl groups. 1H NMR measurements were recorded on a Brucker 400 MHz spectrometer, chemical shifts are given in ppm relevant to a TMS standard. Spectra measured in deuterated solvents as indicated. Either one of the LCMS methods below was used to characterize the compounds. The characteristic LCMS values obtained for each compound were the retention time (“RT”, recorded in minutes) and the measured molecular ion (M+H)+.


LCMS and GCMS Methods:
Method 1:

Spectra were recorded on a Mass Spectrometer from Waters (SQD, SQDII Single quadrupole mass spectrometer) equipped with an electrospray source (Polarity: positive and negative ions, Capillary: 3.00 kV, Cone range: 30 V, Extractor: 2.00 V, Source Temperature: 150° C., Desolvation Temperature: 350° C., Cone Gas Flow: 50 I/h, Desolvation Gas Flow: 650 I/h, Mass range: 100 to 900 Da) and an Acquity UPLC from Waters: Binary pump, heated column compartment, diode-array detector and ELSD detector. Column: Waters UPLC HSS T3, 1.8 μm, 30×2.1 mm, Temp: 60° C., DAD Wavelength range (nm): 210 to 500, Solvent Gradient: A=water+5% MeOH+0.05% HCOOH, B=Acetonitrile+0.05% HCOOH, gradient: 10-100% B in 1.2 min; Flow (ml/min) 0.85


Method 2:












COLUMN-Acquity BEN C18 1.7 micron 2.1*30 mm


















Time
Flow mL/min
% A
% B





Initial
0.5
5
95


0.5
0.5
5
95


2
0.5
95
5


3
0.5
95
5


3.2
0.5
5
95


3.5
0.5
5
95











Mass parameters
ESI





Polarity
ES+, ES−


Capillary (kV)
3.2


Cone (V)
30


Source Temperature (° C.)
130


Desolvation Temperature (° C.)
350


Cone Gas Flow (L/Hr)
20


Desolvation Gas Flow (L/Hr)
650





A: ACN


B: 10 mM Ammonium Formate






Compounds described in table P were prepared by methods similar to those described for the examples above.









TABLE P







Analytical data for compounds of formula I:
















[M + H]














Entry
IUPAC name
STRUCTURE
RT (min)
(measured)
Method
MP ° C.





P1
N- (cyclopropylmethyl)-3- (difluoromethyl)-N-[1- (2-pyrimidin-2-yl- 1,2,4-triazol-3- yl)ethyl]-5- (trifluoromethyl) benzamide


embedded image


0.97
467
1






P2
N- (cyclopropylmethyl)-3- (difluoromethoxy)-N- [1-(2-pyrimidin-2-yl- 1,2,4-triazol-3- yl)ethyl]-5- (trifluoromethyl) benzamide


embedded image


0.98
483
1






P3
N- (cyclopropylmethyl)- N-[1-(2-pyrimidin-2-yl- 1,2,4-triazol-3- yl)ethyl]-3-(1,1,2,2- tetrafluoroethoxy)-5- (trifluoromethyl) benzamide


embedded image


1.05
533
1














P4
N- (cyclopropylmethyl)- N-[1-(2-pyrimidin-2-yl- 1,2,4-triazol-3- yl)ethyl]-3- (trifluoromethoxy)-5- (trifluoromethyl) benzamide


embedded image


1H NMR (400 MHz, TFA) δ ppm 0.33 (br dd, J = 8.99, 4.22 Hz, 1 H) 0.43-0.54 (m, 1 H) 0.78-0.89 (m, 1 H) 1.01 (br d, J = 4.03 Hz, 1 H) 1.24 (br s, 1 H) 2.56 (br d, J = 5.87 Hz, 3 H) 3.61-3.73 (m, 1 H) 3.88-3.98 (m, 1 H) 6.69-6.86 (m, 1 H) 7.70 (s, 1 H) 7.80 (s, 1 H) 7.94 (s, 1 H) 8.07-8.18 (m, 1 H) 9.16 (br s, 1 H) 9.41 (br d, J = 2.20 Hz, 2 H)
















P5
N- (cyclopropylmethyl)- N-[1-(2-pyrimidin-2-yl- 1,2,4-triazol-3- yl)ethyl]-3- (trifluoromethyl)-5- (trifluoromethylsulfanyl) benzamide


embedded image


1.1
517
1






P6
N-[1-(2-pyrimidin-2-yl- 1,2,4-triazol-3- yl)ethyl]-3-(2,2,2- trifluoroethylsulfanyl)- 5-(trifluoromethyl) benzamide


embedded image


7.19
477
2
 96-101





P7
N-[1-(2-pyrimidin-2-yl- 1,2,4-triazol-3- yl)ethyl]-3-(2,2,2- trifluoroethoxy)-5- (trifluoromethyl) benzamide


embedded image


7.15
461
2
145-150





P8
3-(difluoromethoxy)- N-[1-(2-pyrimidin-2-yl- 1,2,4-triazol-3- yl)ethyl]-5- (trifluoromethyl) benzamide


embedded image


6.95
429
2
75-80





P9
N-[1-[2-(2-pyridyl)- 1,2,4-triazol-3- yl]ethyl]-3-(2,2,2- trifluoroethylsulfanyl)- 5-(trifluoromethyl) benzamide


embedded image


7.63
476
2
155-160





P10
N-[1-[2-(2-pyridyl)- 1,2,4-triazol-3- yl]ethyl]-3-(2,2,2- trifluoroethoxy)-5- (trifluoromethyl) benzamide


embedded image


7.68
460
2
185-190





P11
3-(difluoromethoxy)- N-[1-[2-(2-pyridyl)- 1,2,4-triazol-3- yl]ethyl]-5- (trifluoromethyl) benzamide


embedded image


7.35
428
2
120-125





P12
3-(difluoromethoxy)- N-[1-[2-(3-fluoro-2- pyridyl)-1,2,4-triazol- 3-yl]ethyl]-5- (trifluoromethyl) benzamide


embedded image


7.11
446
2
130-135





P13
N-[1-[2-(3-fluoro-2- pyridyl)-1,2,4-triazol- 3-yl]ethyl]-3-(2,2,2- trifluoroethylsulfanyl)- 5-(trifluoromethyl) benzamide


embedded image


7.57
495
2






P14
N-[1-[2-(3-fluoro-2- pyridyl)-1,2,4-triazol- 3-yl]ethyl]-3-(2,2,2- trifluoroethoxy)-5- (trifluoromethyl) benzamide


embedded image


7.39
478
2
115-120





P15
3-(difluoromethoxy)- N-[1-[2-(5-fluoro-2- pyridyl)-1,2,4-triazol- 3-yl]ethyl]-5- (trifluoromethyl) benzamide


embedded image


7.4
446
2
 95-100





P16
N-[1-[2-(5-fluoro-2- pyridyl)-1,2,4-triazol- 3-yl]ethyl]-3-(2,2,2- trifluoroethylsulfanyl)- (trifluoromethyl) benzamide


embedded image



494
2
152-158





P17
N-[1-[2-(5-fluoro-2- pyridyl)-1,2,4-triazol- 3-yl]ethyl]-3-(2,2,2- trifluoroethoxy)-5- (trifluoromethyl) benzamide


embedded image


7.81
478
2
172-177





P18
N- (cyclopropylmethyl)-3- (difluoromethylsulfanyl)- N-[1-(2-pyrimidin-2- yl-1,2,4-triazol-3- yl)ethyl]-5- (trifluoromethyl) benzamide


embedded image


1.01
499
1














P19
N-[1-(2-pyrimidin-2-yl- 1,2,4-triazol-3- yl)ethyl]-3- (trifluoromethoxy)-5- (trifluoromethyl) benzamide


embedded image


1H NMR (400 MHz, chloroform) δ ppm 1.74 (d, J = 6.60 Hz, 3 H) 6.42-6.51 (m, 1 H) 7.44 (t, J = 4.95 Hz, 1 H) 7.55 (br d, J = 8.07 Hz, 1 H) 7.64 (s, 1 H) 7.91 (s, 1 H) 8.03 (s, 1 H) 8.09 (s, 1 H) 8.95 (d, J = 4.77 Hz, 2 H)
















P20
3-(2,2-difluoroethoxy)- N-[1-(2-pyrimidin-2-yl- 1,2,4-triazol-3- yl)ethyl]-5- (trifluoromethyl) benzamide


embedded image


0.91
443
1






P21
5-(difluoromethoxy)- N-[1-[2-(5-fluoro-2- pyridyl)-1,2,4-triazol- 3-yl]ethyl]pyridine-3- carboxamide


embedded image


6.71
379
2
70-75





P22
5-(difluoromethoxy)- N-[1-[2-(3-fluoro-2- pyridyl)-1,2,4-triazol- 3-yl]ethyl]pyridine-3- carboxamide


embedded image


6.49
379
2
 95-100





P23
5-(difluoromethoxy)- N-[1-[2-(2-pyridyl)- 1,2,4-triazol-3- yl]ethyl]pyridine-3- carboxamide


embedded image


6.61
361
2
105-110





P24
5-(difluoromethoxy)- N-[1-(2-pyrimid in-2-yl- 1,2,4-triazol-3- yl)ethyl]pyridine-3- carboxamide


embedded image


6.33
362
2
 85-90









The activity of the compositions according to the invention can be broadened considerably, and adapted to prevailing circumstances, by adding other insecticidally, acaricidally and/or fungicidally active ingredients. The mixtures of the compounds of formula I with other insecticidally, acaricidally and/or fungicidally active ingredients may also have further surprising advantages which can also be described, in a wider sense, as synergistic activity. For example, better tolerance by plants, reduced phytotoxicity, insects can be controlled in their different development stages or better behaviour during their production, for example during grinding or mixing, during their storage or during their use.


Suitable additions to active ingredients here are, for example, representatives of the following classes of active ingredients: organophosphorus compounds, nitrophenol derivatives, thioureas, juvenile hormones, formamidines, benzophenone derivatives, ureas, pyrrole derivatives, carbamates, pyrethroids, chlorinated hydrocarbons, acylureas, pyridylmethyleneamino derivatives, macrolides, neonicotinoids and Bacillus thuringiensis preparations.


The following mixtures of a compound of formula I with an active substances are preferred (the abbreviation “TX” means “one compound selected from the compounds defined in Tables A-4 to A-39 and Table P”):


an adjuvant selected from the group of substances consisting of petroleum oils (alternative name) (628)+TX,


an insect control active substance selected from Abamectin+TX, Acequinocyl+TX, Acetamiprid+TX, Acetoprole+TX, Acrinathrin+TX, Acynonapyr+TX, Afidopyropen+TX, Afoxalaner+TX, Alanycarb+TX, Allethrin+TX, Alpha-Cypermethrin+TX, Alphamethrin+TX, Amidoflumet+TX, Aminocarb+TX, Azocyclotin+TX, Bensultap+TX, Benzoximate+TX, Benzpyrimoxan+TX, Betacyfluthrin+TX, Beta-cypermethrin+TX, Bifenazate+TX, Bifenthrin+TX, Binapacryl+TX, Bioallethrin+TX, Bioallethrin S)-cyclopentylisomer+TX, Bioresmethrin+TX, Bistrifluron+TX, Broflanilide+TX, Brofluthrinate+TX, Bromophos-ethyl+TX, Buprofezine+TX, Butocarboxim+TX, Cadusafos+TX, Carbaryl+TX, Carbosulfan+TX, Cartap+TX, CAS number: 1472050-04-6+TX, CAS number: 1632218-00-8+TX, CAS number: 1808115-49-2+TX, CAS number: 2032403-97-5+TX, CAS number: 2044701-44-0+TX, CAS number: 2128706-05-6+TX, CAS number: 2249718-27-0+TX, Chlorantraniliprole+TX, Chlordane+TX, Chlorfenapyr+TX, Chloroprallethrin+TX, Chromafenozide+TX, Clenpirin+TX, Cloethocarb+TX, Clothianidin+TX, 2-chlorophenyl N-methylcarbamate (CPMC)+TX, Cyanofenphos+TX, Cyantraniliprole+TX, Cyclaniliprole+TX, Cycloprothrin+TX, Cycloxaprid+TX, Cycloxaprid+TX, Cyenopyrafen+TX, Cyetpyrafen (or Etpyrafen)+TX, Cyflumetofen+TX, Cyfluthrin+TX, Cyhalodiamide+TX, Cyhalothrin+TX, Cypermethrin+TX, Cyphenothrin+TX, Cyromazine+TX, Deltamethrin+TX, Diafenthiuron+TX, Dialifos+TX, Dibrom+TX, Dicloromezotiaz+TX, Diflovidazine+TX, Diflubenzuron+TX, dimpropyridaz+TX, Dinactin+TX, Dinocap+TX, Dinotefuran+TX, Dioxabenzofos+TX, Emamectin+TX, Empenthrin+TX, Epsilon−momfluorothrin+TX, Epsilon-metofluthrin+TX, Esfenvalerate+TX, Ethion+TX, Ethiprole+TX, Etofenprox+TX, Etoxazole+TX, Famphur+TX, Fenazaquin+TX, Fenfluthrin+TX, Fenitrothion+TX, Fenobucarb+TX, Fenothiocarb+TX, Fenoxycarb+TX, Fenpropathrin+TX, Fenpyroxymate+TX, Fensulfothion+TX, Fenthion+TX, Fentinacetate+TX, Fenvalerate+TX, Fipronil+TX, Flometoquin+TX, Flonicamid+TX, Fluacrypyrim+TX, Fluazaindolizine+TX, Fluazuron+TX, Flubendiamide+TX, Flubenzimine+TX, Flucitrinate+TX, Flucycloxuron+TX, Flucythrinate+TX, Fluensulfone+TX, Flufenerim+TX, Flufenprox+TX, Flufiprole+TX, Fluhexafon+TX, Flumethrin+TX, Fluopyram+TX, Flupyradifurone+TX, Flupyrimin+TX, Fluralaner+TX, Fluvalinate+TX, Fluxametamide+TX, Fosthiazate+TX, Gamma-Cyhalothrin+TX, Gossyplure™+TX, Guadipyr+TX, Halofenozide+TX, Halofenozide+TX, Halofenprox+TX, Heptafluthrin+TX, Hexythiazox+TX, Hydramethylnon+TX, Imicyafos+TX, Imidacloprid+TX, Imiprothrin+TX, Indoxacarb+TX, Iodomethane+TX, Iprodione+TX, Isocycloseram+TX, Isothioate+TX, Ivermectin+TX, Kappa-bifenthrin+TX, Kappa-tefluthrin+TX, Lambda-Cyhalothrin+TX, Lepimectin+TX, Lufenuron+TX, Metaflumizone+TX, Metaldehyde+TX, Metam+TX, Methomyl+TX, Methoxyfenozide+TX, Metofluthrin+TX, Metolcarb+TX, Mexacarbate+TX, Milbemectin+TX, Momfluorothrin+TX, Niclosamide+TX, Nitenpyram+TX, Nithiazine+TX, Omethoate+TX, Oxamyl+TX, Oxazosufyl+TX, Parathion-ethyl+TX, Permethrin+TX, Phenothrin+TX, Phosphocarb+TX, Piperonylbutoxide+TX, Pirimicarb+TX, Pirimiphos-ethyl+TX, Polyhedrosis virus+TX, Prallethrin+TX, Profenofos+TX, Profenofos+TX, Profluthrin+TX, Propargite+TX, Propetamphos+TX, Propoxur+TX, Prothiophos+TX, Protrifenbute+TX, Pyflubumide+TX, Pymetrozine+TX, Pyraclofos+TX, Pyrafluprole+TX, Pyridaben+TX, Pyridalyl+TX, Pyrifluquinazon+TX, Pyrimidifen+TX, Pyrimostrobin+TX, Pyriprole+TX, Pyriproxyfen+TX, Resmethrin+TX, Sarolaner+TX, Selamectin+TX, Silafluofen+TX, Spinetoram+TX, Spinosad+TX, Spirodiclofen+TX, Spiromesifen+TX, Spiropidion+TX, Spirotetramat+TX, Sulfoxaflor+TX, Tebufenozide+TX, Tebufenpyrad+TX, Tebupirimiphos+TX, Tefluthrin+TX, Temephos+TX, Tetrachloraniliprole+TX, Tetradiphon+TX, Tetramethrin+TX, Tetramethylfluthrin+TX, Tetranactin+TX, Tetraniliprole+TX, Theta-cypermethrin+TX, Thiacloprid+TX, Thiamethoxam+TX, Thiocyclam+TX, Thiodicarb+TX, Thiofanox+TX, Thiometon+TX, Thiosultap+TX, Tioxazafen+TX, Tolfenpyrad+TX, Toxaphene+TX, Tralomethrin+TX, Transfluthrin+TX, Triazamate+TX, Triazophos+TX, Trichlorfon+TX, Trichloronate+TX, Trichlorphon+TX, Triflumezopyrim+TX, Tyclopyrazoflor+TX, Zeta-Cypermethrin+TX, Extract of seaweed and fermentation product derived from melasse+TX, Extract of seaweed and fermentation product derived from melasse comprising urea+TX, amino acids+TX, potassium and molybdenum and EDTA-chelated manganese+TX, Extract of seaweed and fermented plant products+TX, Extract of seaweed and fermented plant products comprising phytohormones+TX, vitamins+TX, EDTA-chelated copper+TX, zinc+TX, and iron+TX, Azadirachtin+TX, Bacillus aizawai+TX, Bacillus chitinosporus AQ746 (NRRL Accession No B-21 618)+TX, Bacillus firmus+TX, Bacillus kurstaki+TX, Bacillus mycoides AQ726 (NRRL Accession No. B-21664)+TX, Bacillus pumilus (NRRL Accession No B-30087)+TX, Bacillus pumilus AQ717 (NRRL Accession No. B-21662)+TX, Bacillus sp. AQ178 (ATCC Accession No. 53522)+TX, Bacillus sp. AQ175 (ATCC Accession No. 55608)+TX, Bacillus sp. AQ177 (ATCC Accession No. 55609)+TX, Bacillus subtilis unspecified+TX, Bacillus subtilis AQ153 (ATCC Accession No. 55614)+TX, Bacillus subtilis AQ30002 (NRRL Accession No. B-50421)+TX, Bacillus subtilis AQ30004 (NRRL Accession No. B-50455)+TX, Bacillus subtilis AQ713 (NRRL Accession No. B-21661)+TX, Bacillus subtilis AQ743 (NRRL Accession No. B-21665)+TX, Bacillus thuringiensis AQ52 (NRRL Accession No. B-21619)+TX, Bacillus thuringiensis BD#32 (NRRL Accession No B-21530)+TX, Bacillus thuringiensis subspec. kurstaki BMP 123+TX, Beauveria bassiana+TX, D-limonene+TX, Granulovirus+TX, Harpin+TX, Helicoverpa armigera Nucleopolyhedrovirus+TX, Helicoverpa zea Nucleopolyhedrovirus+TX, Heliothis virescens Nucleopolyhedrovirus+TX, Heliothis punctigera Nucleopolyhedrovirus+TX, Metarhizium spp.+TX, Muscodor albus 620 (NRRL Accession No. 30547)+TX, Muscodor roseus A3-5 (NRRL Accession No. 30548)+TX, Neem tree based products+TX, Paecilomyces fumosoroseus+TX, Paecilomyces lilacinus+TX, Pasteuria nishizawae+TX, Pasteuria penetrans+TX, Pasteuria ramosa+TX, Pasteuria thornei+TX, Pasteuria usgae+TX, P-cymene+TX, Plutella xylostella Granulosis virus+TX, Plutella xylostella Nucleopolyhedrovirus+TX, Polyhedrosis virus+TX, pyrethrum+TX, QRD 420 (a terpenoid blend)+TX, QRD 452 (a terpenoid blend)+TX, QRD 460 (a terpenoid blend)+TX, Quillaja saponaria+TX, Rhodococcus globerulus AQ719 (NRRL Accession No B-21663)+TX, Spodoptera frugiperda Nucleopolyhedrovirus+TX, Streptomyces galbus (NRRL Accession No. 30232)+TX, Streptomyces sp. (NRRL Accession No. B-30145)+TX, Terpenoid blend+TX, and Verticillium spp.,


an algicide selected from the group of substances consisting of bethoxazin [CCN]+TX, copper dioctanoate (IUPAC name) (170)+TX, copper sulfate (172)+TX, cybutryne [CCN]+TX, dichlone (1052)+TX, dichlorophen (232)+TX, endothal (295)+TX, fentin (347)+TX, hydrated lime [CCN]+TX, nabam (566)+TX, quinoclamine (714)+TX, quinonamid (1379)+TX, simazine (730)+TX, triphenyltin acetate (IUPAC name) (347) and triphenyltin hydroxide (IUPAC name) (347)+TX,


an anthelmintic selected from the group of substances consisting of abamectin (1)+TX, crufomate (1011)+TX, doramectin (alternative name) [CCN]+TX, emamectin (291)+TX, emamectin benzoate (291)+TX, eprinomectin (alternative name) [CCN]+TX, ivermectin (alternative name) [CCN]+TX, milbemycin oxime (alternative name) [CCN]+TX, moxidectin (alternative name) [CCN]+TX, piperazine [CCN]+TX, selamectin (alternative name) [CCN]+TX, spinosad (737) and thiophanate (1435)+TX,


an avicide selected from the group of substances consisting of chloralose (127)+TX, endrin (1122)+TX, fenthion (346)+TX, pyridin-4-amine (IUPAC name) (23) and strychnine (745)+TX, a bactericide selected from the group of substances consisting of 1-hydroxy-1H-pyridine-2-thione (IUPAC name) (1222)+TX, 4-(quinoxalin-2-ylamino)benzenesulfonamide (IUPAC name) (748)+TX, 8-hydroxyquinoline sulfate (446)+TX, bronopol (97)+TX, copper dioctanoate (IUPAC name) (170)+TX, copper hydroxide (IUPAC name) (169)+TX, cresol [CCN]+TX, dichlorophen (232)+TX, dipyrithione (1105)+TX, dodicin (1112)+TX, fenaminosulf (1144)+TX, formaldehyde (404)+TX, hydrargaphen (alternative name) [CCN]+TX, kasugamycin (483)+TX, kasugamycin hydrochloride hydrate (483)+TX, nickel bis(dimethyldithiocarbamate) (IUPAC name) (1308)+TX, nitrapyrin (580)+TX, octhilinone (590)+TX, oxolinic acid (606)+TX, oxytetracycline (611)+TX, potassium hydroxyquinoline sulfate (446)+TX, probenazole (658)+TX, streptomycin (744)+TX, streptomycin sesquisulfate (744)+TX, tecloftalam (766)+TX, and thiomersal (alternative name) [CCN]+TX,


a biological agent selected from the group of substances consisting of Adoxophyes orana GV (alternative name) (12)+TX, Agrobacterium radiobacter (alternative name) (13)+TX, Amblyseius spp. (alternative name) (19)+TX, Anagrapha falcifera NPV (alternative name) (28)+TX, Anagrus atomus (alternative name) (29)+TX, Aphelinus abdominalis (alternative name) (33)+TX, Aphidius colemani (alternative name) (34)+TX, Aphidoletes aphidimyza (alternative name) (35)+TX, Autographa californica NPV (alternative name) (38)+TX, Bacillus firmus (alternative name) (48)+TX, Bacillus sphaericus Neide (scientific name) (49)+TX, Bacillus thuringiensis Berliner (scientific name) (51)+TX, Bacillus thuringiensis subsp. aizawai (scientific name) (51)+TX, Bacillus thuringiensis subsp. israelensis (scientific name) (51)+TX, Bacillus thuringiensis subsp. japonensis (scientific name) (51)+TX, Bacillus thuringiensis subsp. kurstaki (scientific name) (51)+TX, Bacillus thuringiensis subsp. tenebrionis (scientific name) (51)+TX, Beauveria bassiana (alternative name) (53)+TX, Beauveria brongniartii (alternative name) (54)+TX, Chrysoperla carnea (alternative name) (151)+TX, Cryptolaemus montrouzieri (alternative name) (178)+TX, Cydia pomonella GV (alternative name) (191)+TX, Dacnusa sibirica (alternative name) (212)+TX, Diglyphus isaea (alternative name) (254)+TX, Encarsia formosa (scientific name) (293)+TX, Eretmocerus eremicus (alternative name) (300)+TX, Helicoverpa zea NPV (alternative name) (431)+TX, Heterorhabditis bacteriophora and H. megidis (alternative name) (433)+TX, Hippodamia convergens (alternative name) (442)+TX, Leptomastix dactylopii (alternative name) (488)+TX, Macrolophus caliginosus (alternative name) (491)+TX, Mamestra brassicae NPV (alternative name) (494)+TX, Metaphycus helvolus (alternative name) (522)+TX, Metarhizium anisopliae var. acridum (scientific name) (523)+TX, Metarhizium anisopliae var. anisopliae (scientific name) (523)+TX, Neodiprion sertifer NPV and N. lecontei NPV (alternative name) (575)+TX, Orius spp. (alternative name) (596)+TX, Paecilomyces fumosoroseus (alternative name) (613)+TX, Phytoseiulus persimilis (alternative name) (644)+TX, Spodoptera exigua multicapsid nuclear polyhedrosis virus (scientific name) (741)+TX, Steinernema bibionis (alternative name) (742)+TX, Steinernema carpocapsae (alternative name) (742)+TX, Steinernema feltiae (alternative name) (742)+TX, Steinernema glaseri (alternative name) (742)+TX, Steinernema riobrave (alternative name) (742)+TX, Steinernema riobravis (alternative name) (742)+TX, Steinernema scapterisci (alternative name) (742)+TX, Steinernema spp. (alternative name) (742)+TX, Trichogramma spp. (alternative name) (826)+TX, Typhlodromus occidentalis (alternative name) (844) and Verticillium lecanii (alternative name) (848)+TX,


a soil sterilant selected from the group of substances consisting of iodomethane (IUPAC name) (542) and methyl bromide (537)+TX,


a chemosterilant selected from the group of substances consisting of apholate [CCN]+TX, bisazir (alternative name) [CCN]+TX, busulfan (alternative name) [CCN]+TX, diflubenzuron (250)+TX, dimatif (alternative name) [CCN]+TX, hemel [CCN]+TX, hempa [CCN]+TX, metepa [CCN]+TX, methiotepa [CCN]+TX, methyl apholate [CCN]+TX, morzid [CCN]+TX, penfluron (alternative name) [CCN]+TX, tepa [CCN]+TX, thiohempa (alternative name) [CCN]+TX, thiotepa (alternative name) [CCN]+TX, tretamine (alternative name) [CCN] and uredepa (alternative name) [CCN]+TX,


an insect pheromone selected from the group of substances consisting of (E)-dec-5-en-1-yl acetate with (E)-dec-5-en-1-ol (IUPAC name) (222)+TX, (E)-tridec-4-en-1-yl acetate (IUPAC name) (829)+TX, (E)-6-methylhept-2-en-4-ol (IUPAC name) (541)+TX, (E,Z)-tetradeca-4,10-dien-1-yl acetate (IUPAC name) (779)+TX, (Z)-dodec-7-en-1-yl acetate (IUPAC name) (285)+TX, (Z)-hexadec-11-enal (IUPAC name) (436)+TX, (Z)-hexadec-11-en-1-yl acetate (IUPAC name) (437)+TX, (Z)-hexadec-13-en-11-yn-1-yl acetate (IUPAC name) (438)+TX, (Z)-icos-13-en-10-one (IUPAC name) (448)+TX, (Z)-tetradec-7-en-1-al (IUPAC name) (782)+TX, (Z)-tetradec-9-en-1-ol (IUPAC name) (783)+TX, (Z)-tetradec-9-en-1-yl acetate (IUPAC name) (784)+TX, (7E,9Z)-dodeca-7,9-dien-1-yl acetate (IUPAC name) (283)+TX, (9Z,11E)-tetradeca-9,11-dien-1-yl acetate (IUPAC name) (780)+TX, (9Z,12E)-tetradeca-9,12-dien-1-yl acetate (IUPAC name) (781)+TX, 14-methyloctadec-1-ene (IUPAC name) (545)+TX, 4-methylnonan-5-ol with 4-methylnonan-5-one (IUPAC name) (544)+TX, alpha-multistriatin (alternative name) [CCN]+TX, brevicomin (alternative name) [CCN]+TX, codlelure (alternative name) [CCN]+TX, codlemone (alternative name) (167)+TX, cuelure (alternative name) (179)+TX, disparlure (277)+TX, dodec-8-en-1-yl acetate (IUPAC name) (286)+TX, dodec-9-en-1-yl acetate (IUPAC name) (287)+TX, dodeca-8+TX, 10-dien-1-yl acetate (IUPAC name) (284)+TX, dominicalure (alternative name) [CCN]+TX, ethyl 4-methyloctanoate (IUPAC name) (317)+TX, eugenol (alternative name) [CCN]+TX, frontalin (alternative name) [CCN]+TX, gossyplure (alternative name) (420)+TX, grandlure (421)+TX, grandlure I (alternative name) (421)+TX, grandlure II (alternative name) (421)+TX, grandlure III (alternative name) (421)+TX, grandlure IV (alternative name) (421)+TX, hexalure [CCN]+TX, ipsdienol (alternative name) [CCN]+TX, ipsenol (alternative name) [CCN]+TX, japonilure (alternative name) (481)+TX, lineatin (alternative name) [CCN]+TX, litlure (alternative name) [CCN]+TX, looplure (alternative name) [CCN]+TX, medlure [CCN]+TX, megatomoic acid (alternative name) [CCN]+TX, methyl eugenol (alternative name) (540)+TX, muscalure (563)+TX, octadeca-2,13-dien-1-yl acetate (IUPAC name) (588)+TX, octadeca-3,13-dien-1-yl acetate (IUPAC name) (589)+TX, orfralure (alternative name) [CCN]+TX, oryctalure (alternative name) (317)+TX, ostramone (alternative name) [CCN]+TX, siglure [CCN]+TX, sordidin (alternative name) (736)+TX, sulcatol (alternative name) [CCN]+TX, tetradec-11-en-1-yl acetate (IUPAC name) (785)+TX, trimedlure (839)+TX, trimedlure A (alternative name) (839)+TX, trimedlure B1 (alternative name) (839)+TX, trimedlure B2 (alternative name) (839)+TX, trimedlure C (alternative name) (839) and trunc-call (alternative name) [CCN]+TX,


an insect repellent selected from the group of substances consisting of 2-(octylthio)ethanol (IUPAC name) (591)+TX, butopyronoxyl (933)+TX, butoxy(polypropylene glycol) (936)+TX, dibutyl adipate (IUPAC name) (1046)+TX, dibutyl phthalate (1047)+TX, dibutyl succinate (IUPAC name) (1048)+TX, diethyltoluamide [CCN]+TX, dimethyl carbate [CCN]+TX, dimethyl phthalate [CCN]+TX, ethyl hexanediol (1137)+TX, hexamide [CCN]+TX, methoquin-butyl (1276)+TX, methylneodecanamide [CCN]+TX, oxamate [CCN] and picaridin [CCN]+TX, a molluscicide selected from the group of substances consisting of bis(tributyltin) oxide (IUPAC name) (913)+TX, bromoacetamide [CCN]+TX, calcium arsenate [CCN]+TX, cloethocarb (999)+TX, copper acetoarsenite [CCN]+TX, copper sulfate (172)+TX, fentin (347)+TX, ferric phosphate (IUPAC name) (352)+TX, metaldehyde (518)+TX, methiocarb (530)+TX, niclosamide (576)+TX, niclosamide-olamine (576)+TX, pentachlorophenol (623)+TX, sodium pentachlorophenoxide (623)+TX, tazimcarb (1412)+TX, thiodicarb (799)+TX, tributyltin oxide (913)+TX, trifenmorph (1454)+TX, trimethacarb (840)+TX, triphenyltin acetate (IUPAC name) (347) and triphenyltin hydroxide (IUPAC name) (347)+TX, pyriprole [394730-71-3]+TX,


a nematicide selected from the group of substances consisting of AKD-3088 (compound code)+TX, 1,2-dibromo-3-chloropropane (IUPAC/Chemical Abstracts name) (1045)+TX, 1,2-dichloropropane (IUPAC/Chemical Abstracts name) (1062)+TX, 1,2-dichloropropane with 1,3-dichloropropene (IUPAC name) (1063)+TX, 1,3-dichloropropene (233)+TX, 3,4-dichlorotetrahydrothiophene 1,1-dioxide (IUPAC/Chemical Abstracts name) (1065)+TX, 3-(4-chlorophenyl)-5-methylrhodanine (IUPAC name) (980)+TX, 5-methyl-6-thioxo-1,3,5-thiadiazinan-3-ylacetic acid (IUPAC name) (1286)+TX, 6-isopentenylaminopurine (alternative name) (210)+TX, abamectin (1)+TX, acetoprole [CCN]+TX, alanycarb (15)+TX, aldicarb (16)+TX, aldoxycarb (863)+TX, AZ 60541 (compound code)+TX, benclothiaz [CCN]+TX, benomyl (62)+TX, butylpyridaben (alternative name)+TX, cadusafos (109)+TX, carbofuran (118)+TX, carbon disulfide (945)+TX, carbosulfan (119)+TX, chloropicrin (141)+TX, chlorpyrifos (145)+TX, cloethocarb (999)+TX, cytokinins (alternative name) (210)+TX, dazomet (216)+TX, DBCP (1045)+TX, DCIP (218)+TX, diamidafos (1044)+TX, dichlofenthion (1051)+TX, dicliphos (alternative name)+TX, dimethoate (262)+TX, doramectin (alternative name) [CCN]+TX, emamectin (291)+TX, emamectin benzoate (291)+TX, eprinomectin (alternative name) [CCN]+TX, ethoprophos (312)+TX, ethylene dibromide (316)+TX, fenamiphos (326)+TX, fenpyrad (alternative name)+TX, fensulfothion (1158)+TX, fosthiazate (408)+TX, fosthietan (1196)+TX, furfural (alternative name) [CCN]+TX, GY-81 (development code) (423)+TX, heterophos [CCN]+TX, iodomethane (IUPAC name) (542)+TX, isamidofos (1230)+TX, isazofos (1231)+TX, ivermectin (alternative name) [CCN]+TX, kinetin (alternative name) (210)+TX, mecarphon (1258)+TX, metam (519)+TX, metam-potassium (alternative name) (519)+TX, metam-sodium (519)+TX, methyl bromide (537)+TX, methyl isothiocyanate (543)+TX, milbemycin oxime (alternative name) [CCN]+TX, moxidectin (alternative name) [CCN]+TX, Myrothecium verrucaria composition (alternative name) (565)+TX, NC-184 (compound code)+TX, oxamyl (602)+TX, phorate (636)+TX, phosphamidon (639)+TX, phosphocarb [CCN]+TX, sebufos (alternative name)+TX, selamectin (alternative name) [CCN]+TX, spinosad (737)+TX, terbam (alternative name)+TX, terbufos (773)+TX, tetrachlorothiophene (IUPAC/Chemical Abstracts name) (1422)+TX, thiafenox (alternative name)+TX, thionazin (1434)+TX, triazophos (820)+TX, triazuron (alternative name)+TX, xylenols [CCN]+TX, YI-5302 (compound code) and zeatin (alternative name) (210)+TX, fluensulfone [318290-98-1]+TX, fluopyram+TX,


a nitrification inhibitor selected from the group of substances consisting of potassium ethylxanthate [CCN] and nitrapyrin (580)+TX,


a plant activator selected from the group of substances consisting of acibenzolar (6)+TX, acibenzolar-S-methyl (6)+TX, probenazole (658) and Reynoutria sachalinensis extract (alternative name) (720)+TX,


a rodenticide selected from the group of substances consisting of 2-isovalerylindan-1,3-dione (IUPAC name) (1246)+TX, 4-(quinoxalin-2-ylamino)benzenesulfonamide (IUPAC name) (748)+TX, alpha-chlorohydrin [CCN]+TX, aluminium phosphide (640)+TX, antu (880)+TX, arsenous oxide (882)+TX, barium carbonate (891)+TX, bisthiosemi (912)+TX, brodifacoum (89)+TX, bromadiolone (91)+TX, bromethalin (92)+TX, calcium cyanide (444)+TX, chloralose (127)+TX, chlorophacinone (140)+TX, cholecalciferol (alternative name) (850)+TX, coumachlor (1004)+TX, coumafuryl (1005)+TX, coumatetralyl (175)+TX, crimidine (1009)+TX, difenacoum (246)+TX, difethialone (249)+TX, diphacinone (273)+TX, ergocalciferol (301)+TX, flocoumafen (357)+TX, fluoroacetamide (379)+TX, flupropadine (1183)+TX, flupropadine hydrochloride (1183)+TX, gamma-HCH (430)+TX, HCH (430)+TX, hydrogen cyanide (444)+TX, iodomethane (IUPAC name) (542)+TX, lindane (430)+TX, magnesium phosphide (IUPAC name) (640)+TX, methyl bromide (537)+TX, norbormide (1318)+TX, phosacetim (1336)+TX, phosphine (IUPAC name) (640)+TX, phosphorus [CCN]+TX, pindone (1341)+TX, potassium arsenite [CCN]+TX, pyrinuron (1371)+TX, scilliroside (1390)+TX, sodium arsenite [CCN]+TX, sodium cyanide (444)+TX, sodium fluoroacetate (735)+TX, strychnine (745)+TX, thallium sulfate [CCN]+TX, warfarin (851) and zinc phosphide (640)+TX,


a synergist selected from the group of substances consisting of 2-(2-butoxyethoxy)ethyl piperonylate (IUPAC name) (934)+TX, 5-(1,3-benzodioxol-5-yl)-3-hexylcyclohex-2-enone (IUPAC name) (903)+TX, farnesol with nerolidol (alternative name) (324)+TX, MB-599 (development code) (498)+TX, MGK 264 (development code) (296)+TX, piperonyl butoxide (649)+TX, piprotal (1343)+TX, propyl isomer (1358)+TX, S421 (development code) (724)+TX, sesamex (1393)+TX, sesasmolin (1394) and sulfoxide (1406)+TX,


an animal repellent selected from the group of substances consisting of anthraquinone (32)+TX, chloralose (127)+TX, copper naphthenate [CCN]+TX, copper oxychloride (171)+TX, diazinon (227)+TX, dicyclopentadiene (chemical name) (1069)+TX, guazatine (422)+TX, guazatine acetates (422)+TX, methiocarb (530)+TX, pyridin-4-amine (IUPAC name) (23)+TX, thiram (804)+TX, trimethacarb (840)+TX, zinc naphthenate [CCN] and ziram (856)+TX, a virucide selected from the group of substances consisting of imanin (alternative name) [CCN] and ribavirin (alternative name) [CCN]+TX,


a wound protectant selected from the group of substances consisting of mercuric oxide (512)+TX, octhilinone (590) and thiophanate-methyl (802)+TX,


a biologically active substance selected from 1,1-bis(4-chlorophenyl)-2-ethoxyethanol+TX, 2,4-dichlorophenyl benzenesulfonate+TX, 2-fluoro-N-methyl-N-1-naphthylacetamide+TX, 4-chlorophenyl phenyl sulfone+TX, acetoprole+TX, aldoxycarb+TX, amidithion+TX, amidothioate+TX, amiton+TX, amiton hydrogen oxalate+TX, amitraz+TX, aramite+TX, arsenous oxide+TX, azobenzene+TX, azothoate+TX, benomyl+TX, benoxafos+TX, benzyl benzoate+TX, bixafen+TX, brofenvalerate+TX, bromocyclen+TX, bromophos+TX, bromopropylate+TX, buprofezin+TX, butocarboxim+TX, butoxycarboxim+TX, butylpyridaben+TX, calcium polysulfide+TX, camphechlor+TX, carbanolate+TX, carbophenothion+TX, cymiazole+TX, chinomethionat+TX, chlorbenside+TX, chlordimeform+TX, chlordimeform hydrochloride+TX, chlorfenethol+TX, chlorfenson+TX, chlorfensulfide+TX, chlorobenzilate+TX, chloromebuform+TX, chloromethiuron+TX, chloropropylate+TX, chlorthiophos+TX, cinerin I+TX, cinerin II+TX, cinerins+TX, closantel+TX, coumaphos+TX, crotamiton+TX, crotoxyphos+TX, cufraneb+TX, cyanthoate+TX, DCPM+TX, DDT+TX, demephion+TX, demephion-O+TX, demephion-S+TX, demeton-methyl+TX, demeton-O+TX, demeton-O-methyl+TX, demeton-S+TX, demeton-S-methyl+TX, demeton-S-methylsulfon+TX, dichlofluanid+TX, dichlorvos+TX, dicliphos+TX, dienochlor+TX, dimefox+TX, dinex+TX, dinex-diclexine+TX, dinocap-4+TX, dinocap-6+TX, dinocton+TX, dinopenton+TX, dinosulfon+TX, dinoterbon+TX, dioxathion+TX, diphenyl sulfone+TX, disulfiram+TX, DNOC+TX, dofenapyn+TX, doramectin+TX, endothion+TX, eprinomectin+TX, ethoate-methyl+TX, etrimfos+TX, fenazaflor+TX, fenbutatin oxide+TX, fenothiocarb+TX, fenpyrad+TX, fen-pyroximate+TX, fenpyrazamine+TX, fenson+TX, fentrifanil+TX, flubenzimine+TX, flucycloxuron+TX, fluenetil+TX, fluorbenside+TX, FMC 1137+TX, formetanate+TX, formetanate hydrochloride+TX, formparanate+TX, gamma-HCH+TX, glyodin+TX, halfenprox+TX, hexadecyl cyclopropanecarboxylate+TX, isocarbophos+TX, jasmolin I+TX, jasmolin II+TX, jodfenphos+TX, lindane+TX, malonoben+TX, mecarbam+TX, mephosfolan+TX, mesulfen+TX, methacrifos+TX, methyl bromide+TX, metolcarb+TX, mexacarbate+TX, milbemycin oxime+TX, mipafox+TX, monocrotophos+TX, morphothion+TX, moxidectin+TX, naled+TX, 4-chloro-2-(2-chloro-2-methyl-propyl)-5-[(6-iodo-3-pyridyl)methoxy]pyridazin-3-one+TX, nifluridide+TX, nikkomycins+TX, nitrilacarb+TX, nitrilacarb 1:1 zinc chloride complex+TX, omethoate+TX, oxydeprofos+TX, oxydisulfoton+TX, pp′-DDT+TX, parathion+TX, permethrin+TX, phenkapton+TX, phosalone+TX, phosfolan+TX, phosphamidon+TX, polychloroterpenes+TX, polynactins+TX, proclonol+TX, promacyl+TX, propoxur+TX, prothidathion+TX, prothoate+TX, pyrethrin I+TX, pyrethrin II+TX, pyrethrins+TX, pyridaphenthion+TX, pyrimitate+TX, quinalphos+TX, quintiofos+TX, R-1492+TX, phosglycin+TX, rotenone+TX, schradan+TX, sebufos+TX, selamectin+TX, sophamide+TX, SSI-121+TX, sulfiram+TX, sulfluramid+TX, sulfotep+TX, sulfur+TX, diflovidazin+TX, tau-fluvalinate+TX, TEPP+TX, terbam+TX, tetradifon+TX, tetrasul+TX, thiafenox+TX, thiocarboxime+TX, thiofanox+TX, thiometon+TX, thioquinox+TX, thuringiensin+TX, triamiphos+TX, triarathene+TX, triazophos+TX, triazuron+TX, trifenofos+TX, trinactin+TX, vamidothion+TX, vaniliprole+TX, bethoxazin+TX, copper dioctanoate+TX, copper sulfate+TX, cybutryne+TX, dichlone+TX, dichlorophen+TX, endothal+TX, fentin+TX, hydrated lime+TX, nabam+TX, quinoclamine+TX, quinonamid+TX, simazine+TX, triphenyltin acetate+TX, triphenyltin hydroxide+TX, crufomate+TX, piperazine+TX, thiophanate+TX, chloralose+TX, fenthion+TX, pyridin-4-amine+TX, strychnine+TX, 1-hydroxy-1H-pyridine-2-thione+TX, 4-(quinoxalin-2-ylamino)benzenesulfonamide+TX, 8-hydroxyquinoline sulfate+TX, bronopol+TX, copper hydroxide+TX, cresol+TX, dipyrithione+TX, dodicin+TX, fenaminosulf+TX, formaldehyde+TX, hydrargaphen+TX, kasugamycin+TX, kasugamycin hydrochloride hydrate+TX, nickel bis(dimethyldithiocarbamate)+TX, nitrapyrin+TX, octhilinone+TX, oxolinic acid+TX, oxytetracycline+TX, potassium hydroxyquinoline sulfate+TX, probenazole+TX, streptomycin+TX, streptomycin sesquisulfate+TX, tecloftalam+TX, thiomersal+TX, Adoxophyes orana GV+TX, Agrobacterium radiobacter+TX, Amblyseius spp.+TX, Anagrapha falcifera NPV+TX, Anagrus atomus+TX, Aphelinus abdominalis+TX, Aphidius colemani+TX, Aphidoletes aphidimyza+TX, Autographa californica NPV+TX, Bacillus sphaericus Neide+TX, Beauveria brongniartii+TX, Chrysoperla carnea+TX, Cryptolaemus montrouzieri+TX, Cydia pomonella GV+TX, Dacnusa sibirica+TX, Diglyphus isaea+TX, Encarsia formosa+TX, Eretmocerus eremicus+TX, Heterorhabditis bacteriophora and H. megidis+TX, Hippodamia convergens+TX, Leptomastix dactylopii+TX, Macrolophus caliginosus+TX, Mamestra brassicae NPV+TX, Metaphycus helvolus+TX, Metarhizium anisopliae var. acridum+TX, Metarhizium anisopliae var. anisopliae+TX, Neodiprion sertifer NPV and N. lecontei NPV+TX, Orius spp.+TX, Paecilomyces fumosoroseus+TX, Phytoseiulus persimilis+TX, Steinernema bibionis+TX, Steinernema carpocapsae+TX, Steinernema feltiae+TX, Steinernema glaseri+TX, Steinernema riobrave+TX, Steinernema riobravis+TX, Steinernema scapterisci+TX, Steinernema spp.+TX, Trichogramma spp.+TX, Typhlodromus occidentalis+TX, Verticillium lecanii+TX, apholate+TX, bisazir+TX, busulfan+TX, dimatif+TX, hemel+TX, hempa+TX, metepa+TX, methiotepa+TX, methyl apholate+TX, morzid+TX, penfluron+TX, tepa+TX, thiohempa+TX, thiotepa+TX, tretamine+TX, uredepa+TX, (E)-dec-5-en-1-yl acetate with (E)-dec-5-en-1-ol+TX, (E)-tridec-4-en-1-yl acetate+TX, (E)-6-methylhept-2-en-4-ol+TX, (E,Z)-tetradeca-4,10-dien-1-yl acetate+TX, (Z)-dodec-7-en-1-yl acetate+TX, (Z)-hexadec-11-enal+TX, (Z)-hexadec-11-en-1-yl acetate+TX, (Z)-hexadec-13-en-11-yn-1-yl acetate+TX, (Z)-icos-13-en-10-one+TX, (Z)-tetradec-7-en-1-al+TX, (Z)-tetradec-9-en-1-ol+TX, (Z)-tetradec-9-en-1-yl acetate+TX, (7E,9Z)-dodeca-7,9-dien-1-yl acetate+TX, (9Z,11E)-tetradeca-9,11-dien-1-yl acetate+TX, (9Z,12E)-tetradeca-9,12-dien-1-yl acetate+TX, 14-methyloctadec-1-ene+TX, 4-methylnonan-5-ol with 4-methylnonan-5-one+TX, alpha-multistriatin+TX, brevicomin+TX, codlelure+TX, codlemone+TX, cuelure+TX, disparlure+TX, dodec-8-en-1-yl acetate+TX, dodec-9-en-1-yl acetate+TX, dodeca-8+TX, 10-dien-1-yl acetate+TX, dominicalure+TX, ethyl 4-methyloctanoate+TX, eugenol+TX, frontalin+TX, grandlure+TX, grandlure I+TX, grandlure II+TX, grandlure III+TX, grandlure IV+TX, hexalure+TX, ipsdienol+TX, ipsenol+TX, japonilure+TX, lineatin+TX, litlure+TX, looplure+TX, medlure+TX, megatomoic acid+TX, methyl eugenol+TX, muscalure+TX, octadeca-2,13-dien-1-yl acetate+TX, octadeca-3,13-dien-1-yl acetate+TX, orfralure+TX, oryctalure+TX, ostramone+TX, siglure+TX, sordidin+TX, sulcatol+TX, tetradec-11-en-1-yl acetate+TX, trimedlure+TX, trimedlure A+TX, trimedlure B1+TX, trimedlure B2+TX, trimedlure C+TX, trunc-call+TX, 2-(octylthio)ethanol+TX, butopyronoxyl+TX, butoxy(polypropylene glycol)+TX, dibutyl adipate+TX, dibutyl phthalate+TX, dibutyl succinate+TX, diethyltoluamide+TX, dimethyl carbate+TX, dimethyl phthalate+TX, ethyl hexanediol+TX, hexamide+TX, methoquin-butyl+TX, methylneodecanamide+TX, oxamate+TX, picaridin+TX, 1-dichloro-1-nitroethane+TX, 1,1-dichloro-2,2-bis(4-ethylphenyl)ethane+TX, 1,2-dichloropropane with 1,3-dichloropropene+TX, 1-bromo-2-chloroethane+TX, 2,2,2-trichloro-1-(3,4-dichlorophenyl)ethyl acetate+TX, 2,2-dichlorovinyl 2-ethylsulfinylethyl methyl phosphate+TX, 2-(1,3-dithiolan-2-yl)phenyl dimethylcarbamate+TX, 2-(2-butoxyethoxy)ethyl thiocyanate+TX, 2-(4,5-dimethyl-1,3-dioxolan-2-yl)phenyl methylcarbamate+TX, 2-(4-chloro-3,5-xylyloxy)ethanol+TX, 2-chlorovinyl diethyl phosphate+TX, 2-imidazolidone+TX, 2-isovalerylindan-1,3-dione+TX, 2-methyl(prop-2-ynyl)aminophenyl methylcarbamate+TX, 2-thiocyanatoethyl laurate+TX, 3-bromo-1-chloroprop-1-ene+TX, 3-methyl-1-phenylpyrazol-5-yl dimethylcarbamate+TX, 4-methyl(prop-2-ynyl)amino-3,5-xylyl methylcarbamate+TX, 5,5-dimethyl-3-oxocyclohex-1-enyl dimethylcarbamate+TX, acethion+TX, acrylonitrile+TX, aldrin+TX, allosamidin+TX, allyxycarb+TX, alpha-ecdysone+TX, aluminium phosphide+TX, aminocarb+TX, anabasine+TX, athidathion+TX, azamethiphos+TX, Bacillus thuringiensis delta endotoxins+TX, barium hexafluorosilicate+TX, barium polysulfide+TX, barthrin+TX, Bayer 22/190+TX, Bayer 22408+TX, beta-cyfluthrin+TX, beta-cypermethrin+TX, bioethanomethrin+TX, biopermethrin+TX, bis(2-chloroethyl) ether+TX, borax+TX, bromfenvinfos+TX, bromo-DDT+TX, bufencarb+TX, butacarb+TX, butathiofos+TX, butonate+TX, calcium arsenate+TX, calcium cyanide+TX, carbon disulfide+TX, carbon tetrachloride+TX, cartap hydrochloride+TX, cevadine+TX, chlorbicyclen+TX, chlordane+TX, chlordecone+TX, chloroform+TX, chloropicrin+TX, chlorphoxim+TX, chlorprazophos+TX, cis-resmethrin+TX, cismethrin+TX, clocythrin+TX, copper acetoarsenite+TX, copper arsenate+TX, copper oleate+TX, coumithoate+TX, cryolite+TX, CS 708+TX, cyanofenphos+TX, cyanophos+TX, cyclethrin+TX, cythioate+TX, d-tetramethrin+TX, DAEP+TX, dazomet+TX, decarbofuran+TX, diamidafos+TX, dicapthon+TX, dichlofenthion+TX, dicresyl+TX, dicyclanil+TX, dieldrin+TX, diethyl 5-methylpyrazol-3-yl phosphate+TX, dilor+TX, dimefluthrin+TX, dimetan+TX, dimethrin+TX, dimethylvinphos+TX, dimetilan+TX, dinoprop+TX, dinosam+TX, dinoseb+TX, diofenolan+TX, dioxabenzofos+TX, dithicrofos+TX, DSP+TX, ecdysterone+TX, EI 1642+TX, EMPC+TX, EPBP+TX, etaphos+TX, ethiofencarb+TX, ethyl formate+TX, ethylene dibromide+TX, ethylene dichloride+TX, ethylene oxide+TX, EXD+TX, fenchlorphos+TX, fenethacarb+TX, fenitrothion+TX, fenoxacrim+TX, fenpirithrin+TX, fensulfothion+TX, fenthion-ethyl+TX, flucofuron+TX, fosmethilan+TX, fospirate+TX, fosthietan+TX, furathiocarb+TX, furethrin+TX, guazatine+TX, guazatine acetates+TX, sodium tetrathiocarbonate+TX, halfenprox+TX, HCH+TX, HEOD+TX, heptachlor+TX, heterophos+TX, HHDN+TX, hydrogen cyanide+TX, hyquincarb+TX, IPSP+TX, isazofos+TX, isobenzan+TX, isodrin+TX, isofenphos+TX, isolane+TX, isoprothiolane+TX, isoxathion+TX, juvenile hormone I+TX, juvenile hormone II+TX, juvenile hormone III+TX, kelevan+TX, kinoprene+TX, lead arsenate+TX, leptophos+TX, lirimfos+TX, lythidathion+TX, m-cumenyl methylcarbamate+TX, magnesium phosphide+TX, mazidox+TX, mecarphon+TX, menazon+TX, mercurous chloride+TX, mesulfenfos+TX, metam+TX, metam-potassium+TX, metam-sodium+TX, methanesulfonyl fluoride+TX, methocrotophos+TX, methoprene+TX, methothrin+TX, methoxychlor+TX, methyl isothiocyanate+TX, methylchloroform+TX, methylene chloride+TX, metoxadiazone+TX, mirex+TX, naftalofos+TX, naphthalene+TX, NC-170+TX, nicotine+TX, nicotine sulfate+TX, nithiazine+TX, nornicotine+TX, O-5-dichloro-4-iodophenyl O-ethyl ethylphosphonothioate+TX, O,O-diethyl O-4-methyl-2-oxo-2H-chromen-7-yl phosphorothioate+TX, O,O-diethyl O-6-methyl-2-propylpyrimidin-4-yl phosphorothioate+TX, O,O,O′,O′-tetrapropyl dithiopyrophosphate+TX, oleic acid+TX, para-dichlorobenzene+TX, parathion-methyl+TX, pentachlorophenol+TX, pentachlorophenyl laurate+TX, PH 60-38+TX, phenkapton+TX, phosnichlor+TX, phosphine+TX, phoxim-methyl+TX, pirimetaphos+TX, polychlorodicyclopentadiene isomers+TX, potassium arsenite+TX, potassium thiocyanate+TX, precocene I+TX, precocene II+TX, precocene III+TX, primidophos+TX, profluthrin+TX, promecarb+TX, prothiofos+TX, pyrazophos+TX, pyresmethrin+TX, quassia+TX, quinalphos-methyl+TX, quinothion+TX, rafoxanide+TX, resmethrin+TX, rotenone+TX, kadethrin+TX, ryania+TX, ryanodine+TX, sabadilla)+TX, schradan+TX, sebufos+TX, SI-0009+TX, thiapronil+TX, sodium arsenite+TX, sodium cyanide+TX, sodium fluoride+TX, sodium hexafluorosilicate+TX, sodium pentachlorophenoxide+TX, sodium selenate+TX, sodium thiocyanate+TX, sulcofuron+TX, sulcofuron-sodium+TX, sulfuryl fluoride+TX, sulprofos+TX, tar oils+TX, tazimcarb+TX, TDE+TX, tebupirimfos+TX, temephos+TX, terallethrin+TX, tetrachloroethane+TX, thicrofos+TX, thiocyclam+TX, thiocyclam hydrogen oxalate+TX, thionazin+TX, thiosultap+TX, thiosultap-sodium+TX, tralomethrin+TX, transpermethrin+TX, triazamate+TX, trichlormetaphos-3+TX, trichloronat+TX, trimethacarb+TX, tolprocarb+TX, triclopyricarb+TX, triprene+TX, veratridine+TX, veratrine+TX, XMC+TX, zetamethrin+TX, zinc phosphide+TX, zolaprofos+TX, and meperfluthrin+TX, tetramethylfluthrin+TX, bis(tributyltin) oxide+TX, bromoacetamide+TX, ferric phosphate+TX, niclosamide-olamine+TX, tributyltin oxide+TX, pyrimorph+TX, trifenmorph+TX, 1,2-dibromo-3-chloropropane+TX, 1,3-dichloropropene+TX, 3,4-dichlorotetrahydrothiophene 1,1-dioxide+TX, 3-(4-chlorophenyl)-5-methylrhodanine+TX, 5-methyl-6-thioxo-1,3,5-thiadiazinan-3-ylacetic acid+TX, 6-isopentenylaminopurine+TX, benclothiaz+TX, cytokinins+TX, DCIP+TX, furfural+TX, isamidofos+TX, kinetin+TX, Myrothecium verrucaria composition+TX, tetrachlorothiophene+TX, xylenols+TX, zeatin+TX, potassium ethylxanthate+TX, acibenzolar+TX, acibenzolar-S-methyl+TX, Reynoutria sachalinensis extract+TX, alpha-chlorohydrin+TX, antu+TX, barium carbonate+TX, bisthiosemi+TX, brodifacoum+TX, bromadiolone+TX, bromethalin+TX, chlorophacinone+TX, cholecalciferol+TX, coumachlor+TX, coumafuryl+TX, coumatetralyl+TX, crimidine+TX, difenacoum+TX, difethialone+TX, diphacinone+TX, ergocalciferol+TX, flocoumafen+TX, fluoroacetamide+TX, flupropadine+TX, flupropadine hydrochloride+TX, norbormide+TX, phosacetim+TX, phosphorus+TX, pindone+TX, pyrinuron+TX, scilliroside+TX, sodium fluoroacetate+TX, thallium sulfate+TX, warfarin+TX, 2-(2-butoxyethoxy)ethyl piperonylate+TX, 5-(1,3-benzodioxol-5-yl)-3-hexylcyclohex-2-enone+TX, farnesol with nerolidol+TX, verbutin+TX, MGK 264+TX, piperonyl butoxide+TX, piprotal+TX, propyl isomer+TX, S421+TX, sesamex+TX, sesasmolin+TX, sulfoxide+TX, anthraquinone+TX, copper naphthenate+TX, copper oxychloride+TX, dicyclopentadiene+TX, thiram+TX, zinc naphthenate+TX, ziram+TX, imanin+TX, ribavirin+TX, mercuric oxide+TX, thiophanate-methyl+TX, azaconazole+TX, bitertanol+TX, bromuconazole+TX, cyproconazole+TX, difenoconazole+TX, diniconazole+TX, epoxiconazole+TX, fenbuconazole+TX, fluquinconazole+TX, flusilazole+TX, flutriafol+TX, furametpyr+TX, hexaconazole+TX, imazalil+TX, imibenconazole+TX, ipconazole+TX, metconazole+TX, myclobutanil+TX, paclobutrazole+TX, pefurazoate+TX, penconazole+TX, prothioconazole+TX, pyrifenox+TX, prochloraz+TX, propiconazole+TX, pyrisoxazole+TX, simeconazole+TX, tebuconazole+TX, tetraconazole+TX, triadimefon+TX, triadimenol+TX, triflumizole+TX, triticonazole+TX, ancymidol+TX, fenarimol+TX, nuarimol+TX, bupirimate+TX, dimethirimol+TX, ethirimol+TX, dodemorph+TX, fenpropidine+TX, fenpropimorph+TX, spiroxamine+TX, tridemorph+TX, cyprodinil+TX, mepanipyrim+TX, pyrimethanil+TX, fenpiclonil+TX, fludioxonil+TX, benalaxyl+TX, furalaxyl+TX, metalaxyl+TX, R-metalaxyl+TX, ofurace+TX, oxadixyl+TX, carbendazim+TX, debacarb+TX, fuberidazole+TX, thiabendazole+TX, chlozolinate+TX, dichlozoline+TX, myclozoline+TX, procymidone+TX, vinclozoline+TX, boscalid+TX, carboxin+TX, fenfuram+TX, flutolanil+TX, mepronil+TX, oxycarboxin+TX, penthiopyrad+TX, thifluzamide+TX, dodine+TX, iminoctadine+TX, azoxystrobin+TX, dimoxystrobin+TX, enestroburin+TX, fenaminstrobin+TX, flufenoxystrobin+TX, fluoxastrobin+TX, kresoxim-methyl+TX, metominostrobin+TX, trifloxystrobin+TX, orysastrobin+TX, picoxystrobin+TX, pyraclostrobin+TX, pyrametostrobin+TX, pyraoxystrobin+TX, ferbam+TX, mancozeb+TX, maneb+TX, metiram+TX, propineb+TX, zineb+TX, captafol+TX, captan+TX, fluoroimide+TX, folpet+TX, tolylfluanid+TX, bordeaux mixture+TX, copper oxide+TX, mancopper+TX, oxine-copper+TX, nitrothal-isopropyl+TX, edifenphos+TX, iprobenphos+TX, phosdiphen+TX, tolclofos-methyl+TX, anilazine+TX, benthiavalicarb+TX, blasticidin-S+TX, chloroneb+TX, chlorothalonil+TX, cyflufenamid+TX, cymoxanil+TX, diclocymet+TX, diclomezine+TX, dicloran+TX, diethofencarb+TX, dimethomorph+TX, flumorph+TX, dithianon+TX, ethaboxam+TX, etridiazole+TX, famoxadone+TX, fenamidone+TX, fenoxanil+TX, ferimzone+TX, fluazinam+TX, fluopicolide+TX, flusulfamide+TX, fluxapyroxad+TX, fenhexamid+TX, fos-etyl-aluminium+TX, hymexazol+TX, iprovalicarb+TX, cyazofamid+TX, methasulfocarb+TX, metrafenone+TX, pencycuron+TX, phthalide+TX, polyoxins+TX, propamocarb+TX, pyribencarb+TX, proquinazid+TX, pyroquilon+TX, pyriofenone+TX, quinoxyfen+TX, quintozene+TX, tiadinil+TX, triazoxide+TX, tricyclazole+TX, triforine+TX, validamycin+TX, valifenalate+TX, zoxamide+TX, mandipropamid+TX, isopyrazam+TX, sedaxane+TX, benzovindiflupyr+TX, pydiflumetofen+TX, 3-difluoromethyl-1-methyl-1H-pyrazole-4-carboxylic acid (3′,4′,5′-trifluoro-biphenyl-2-yl)-amide+TX, isoflucypram+TX, isotianil+TX, dipymetitrone+TX, 6-ethyl-5,7-dioxo-pyrrolo[4,5][1,4]dithiino[1,2-c]isothiazole-3-carbonitrile+TX, 2-(difluoromethyl)-N-[3-ethyl-1,1-dimethyl-indan-4-yl]pyridine-3-carboxamide+TX, 4-(2,6-difluorophenyl)-6-methyl-5-phenyl-pyridazine-3-carbonitrile+TX, (R)-3-(difluoromethyl)-1-methyl-N-[1,1,3-trimethylindan-4-yl]pyrazole-4-carboxamide+TX, 4-(2-bromo-4-fluoro-phenyl)-N-(2-chloro-6-fluoro-phenyl)-2,5-dimethyl-pyrazol-3-amine+TX, 4-(2-bromo-4-fluorophenyl)-N-(2-chloro-6-fluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine+TX, fluindapyr+TX, coumethoxystrobin (jiaxiangjunzhi)+TX, Ivbenmixianan+TX, dichlobentiazox+TX, mandestrobin+TX, 3-(4,4-difluoro-3,4-dihydro-3,3-dimethylisoquinolin-1-yl)quinolone+TX, 2-[2-fluoro-6-[(8-fluoro-2-methyl-3-quinolyl)oxy]phenyl]propan-2-ol+TX, oxathiapiprolin+TX, tert-butyl N-[6-[[[(1-methyltetrazol-5-yl)-phenyl-methylene]amino]oxymethyl]-2-pyridyl]carbamate+TX, pyraziflumid+TX, inpyrfluxam+TX, trolprocarb+TX, mefentrifluconazole+TX, ipfentrifluconazole+TX, 2-(difluoromethyl)-N-[(3R)-3-ethyl-1,1-dimethyl-indan-4-yl]pyridine-3-carboxamide+TX, N′-(2,5-dimethyl-4-phenoxy-phenyl)-N-ethyl-N-methyl-formamidine+TX, N′-[4-(4,5-dichlorothiazol-2-yl)oxy-2,5-dimethyl-phenyl]-N-ethyl-N-methyl-formamidine+TX, [2-[3-[2-[1-[2-[3,5-bis(difluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]thiazol-4-yl]-4,5-dihydroisoxazol-5-yl]-3-chloro-phenyl] methanesulfonate+TX, but-3-ynyl N-[6-[[(Z)-[(1-methyltetrazol-5-yl)-phenyl-methylene]amino]oxymethyl]-2-pyridyl]carbamate+TX, methyl N-[[5-[4-(2,4-dimethylphenyl)triazol-2-yl]-2-methyl-phenyl]methyl]carbamate+TX, 3-chloro-6-methyl-5-phenyl-4-(2,4,6-trifluorophenyl)pyridazine+TX, pyridachlometyl+TX, 3-(difluoromethyl)-1-methyl-N-[1,1,3-trimethylindan-4-yl]pyrazole-4-carboxamide+TX, 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one+TX, 1-methyl-4-[3-methyl-2-[[2-methyl-4-(3,4,5-trimethylpyrazol-1-yl)phenoxy]methyl]phenyl]tetrazol-5-one+TX, aminopyrifen+TX, ametoctradin+TX, amisulbrom+TX, penflufen+TX, (Z,2E)-5-[1-(4-chlorophenyl)pyrazol-3-yl]oxy-2-methoxyimino-N,3-dimethyl-pent-3-enamide+TX, florylpicoxamid+TX, fenpicoxamid+TX, tebufloquin+TX, ipflufenoquin+TX, quinofumelin+TX, isofetamid+TX, N-[2-[2,4-dichloro-phenoxy]phenyl]-3-(difluoromethyl)-1-methyl-pyrazole-4-carboxamide+TX, N-[2-[2-chloro-4-(trifluoromethyl)phenoxy]phenyl]-3-(difluoromethyl)-1-methyl-pyrazole-4-carboxamid e+TX, benzothiostrobin+TX, phenamacril+TX, 5-amino-1,3,4-thiadiazole-2-thiol zinc salt (2:1)+TX, fluopyram+TX, flutianil+TX, fluopimomide+TX, pyrapropoyne+TX, picarbutrazox+TX, 2-(difluoromethyl)-N-(3-ethyl-1,1-dimethyl-indan-4-yl)pyridine-3-carboxamide+TX, 2-(difluoromethyl)-N-((3R)-1,1,3-trimethylindan-4-yl)pyridine-3-carboxamide+TX, 4-[[6-[2-(2,4-difluorophenyl)-1,1-difluoro-2-hydroxy-3-(1,2,4-triazol-1-yl)propyl]-3-pyridyl]oxy]benzonitrile+TX, metyltetraprole+TX, 2-(difluoromethyl)-N-((3R)-1,1,3-trimethylindan-4-yl)pyridine-3-carboxamide+TX, a-(1,1-dimethylethyl)-α-[4′-(trifluoromethoxy)[1,1′-biphenyl]-4-yl]-5-pyrimidinemethanol+TX, fluoxapiprolin+TX, enoxastrobin+TX, 4-[[6-[2-(2,4-difluorophenyl)-1,1-difluoro-2-hydroxy-3-(1,2,4-triazol-1-yl)propyl]-3-pyridyl]oxy]benzonitrile+TX, 4-[[6-[2-(2,4-difluorophenyl)-1,1-difluoro-2-hydroxy-3-(5-sulfanyl-1,2,4-triazol-1-yl)propyl]-3-pyridyl]oxy]benzonitrile+TX, 4-[[6-[2-(2,4-difluorophenyl)-1,1-difluoro-2-hydroxy-3-(5-thioxo-4H-1,2,4-triazol-1-yl)propyl]-3-pyridyl]oxy]benzonitrile+TX, trinexapac+TX, coumoxystrobin+TX, zhongshengmycin+TX, thiodiazole copper+TX, zinc thiazole+TX, amectotractin+TX, iprodione+TX, mixtures of (N-methoxy-N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]cyclopropanecarboxamide+TX, N,2-dimethoxy-N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]propanamide+TX, N-ethyl-2-methyl-N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]propanamide+TX, 1-methoxy-3-methyl-1-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]urea+TX, 1,3-dimethoxy-1-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]urea+TX, 3-ethyl-1-methoxy-1-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]urea+TX, N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]propanamide+TX, 4,4-dimethyl-2-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]isoxazolidin-3-one+TX, 5,5-dimethyl-2-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]isoxazolidin-3-one+TX, ethyl 1-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]pyrazole-4-carboxylate+TX, and N,N-dimethyl-1-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]-1,2,4-triazol-3-amine+TX), wherein the compound in the mixture, other than TX, may be prepared from the methods described in WO 2017/055473, WO 2017/055469, WO 2017/093348 and WO 2017/118689, 2-[6-(4-chlorophenoxy)-2-(trifluoromethyl)-3-pyridyl]-1-(1,2,4-triazol-1-yl)propan-2-ol+TX (this compound may be prepared from the methods described in WO 2017/029179), 2-[6-(4-bromophenoxy)-2-(trifluoromethyl)-3-pyridyl]-1-(1,2,4-triazol-1-yl)propan-2-ol+TX (this compound may be prepared from the methods described in WO 2017/029179), 3-[2-(1-chlorocyclopropyl)-3-(2-fluorophenyl)-2-hydroxy-propyl]imidazole-4-carbonitrile+TX (this compound may be prepared from the methods described in WO 2016/156290), 3-[2-(1-chlorocyclopropyl)-3-(3-chloro-2-fluoro-phenyl)-2-hydroxy-propyl]imidazole-4-carbonitrile+TX (this compound may be prepared from the methods described in WO 2016/156290), (4-phenoxyphenyl)methyl 2-amino-6-methyl-pyridine-3-carboxylate+TX (this compound may be prepared from the methods described in WO 2014/006945), 2,6-Dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c′]dipyrrole-1,3,5,7(2H,6H)-tetrone+TX (this compound may be prepared from the methods described in WO 2011/138281), N-methyl-4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]benzenecarbothioamide+TX, N-methyl-4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]benzamide+TX, (Z,2E)-5-[1-(2,4-dichlorophenyl)pyrazol-3-yl]oxy-2-methoxyimino-N,3-dimethyl-pent-3-enamide+TX (this compound may be prepared from the methods described in WO 2018/153707), N′-(2-chloro-5-methyl-4-phenoxy-phenyl)-N-ethyl-N-methyl-formamidine+TX, N′-[2-chloro-4-(2-fluorophenoxy)-5-methyl-phenyl]-N-ethyl-N-methyl-formamidine+TX (this compound may be prepared from the methods described in WO 2016/202742), and 2-(difluoromethyl)-N-[(3S)-3-ethyl-1,1-dimethyl-indan-4-yl]pyridine-3-carboxamide+TX (this compound may be prepared from the methods described in WO 2014/095675),


microbials including: Acinetobacter lwoffii+TX, Acremonium alternatum+TX+TX, Acremonium cephalosporium+TX+TX, Acremonium diospyri+TX, Acremonium obclavatum+TX, Adoxophyes orana granulovirus (AdoxGV) (Capex®)+TX, Agrobacterium radiobacter strain K84 (Galltrol-A®)+TX, Alternaria alternate+TX, Alternaria cassia+TX, Alternaria destruens (Smolder®)+TX, Ampelomyces quisqualis (AQ10®)+TX, Aspergillus flavus AF36 (AF36®)+TX, Aspergillus flavus NRRL 21882 (Aflaguard®)+TX, Aspergillus spp.+TX, Aureobasidium pullulans+TX, Azospirillum+TX, (MicroAZ®+TX, TAZO B®)+TX, Azotobacter+TX, Azotobacter chroocuccum (Azotomeal®)+TX, Azotobacter cysts (Bionatural Blooming Blossoms®)+TX, Bacillus amyloliquefaciens+TX, Bacillus cereus+TX, Bacillus chitinosporus strain CM-1+TX, Bacillus chitinosporus strain AQ746+TX, Bacillus licheniformis strain HB-2 (Biostart™ Rhizoboost®)+TX, Bacillus licheniformis strain 3086 (EcoGuard®+TX, Green Releaf®)+TX, Bacillus circulans+TX, Bacillus firmus (BioSafe®+TX, BioNem-WP®+TX, VOTiVO®)+TX, Bacillus firmus strain 1-1582+TX, Bacillus macerans+TX, Bacillus marismortui+TX, Bacillus megaterium+TX, Bacillus mycoides strain AQ726+TX, Bacillus papillae (Milky Spore Powder®)+TX, Bacillus pumilus spp.+TX, Bacillus pumilus strain GB34 (Yield Shield®)+TX, Bacillus pumilus strain AQ717+TX, Bacillus pumilus strain QST 2808 (Sonata®+TX, Ballad Plus®)+TX, Bacillus spahericus (VectoLex®)+TX, Bacillus spp.+TX, Bacillus spp. strain AQ175+TX, Bacillus spp. strain AQ177+TX, Bacillus spp. strain AQ178+TX, Bacillus subtilis strain QST 713 (CEASE®+TX, Serenade®+TX, Rhapsody®)+TX, Bacillus subtilis strain QST 714 (JAZZ®)+TX, Bacillus subtilis strain AQ153+TX, Bacillus subtilis strain AQ743+TX, Bacillus subtilis strain QST3002+TX, Bacillus subtilis strain QST3004+TX, Bacillus subtilis var. amyloliquefaciens strain FZB24 (Taegro®+TX, Rhizopro®)+TX, Bacillus thuringiensis Cry 2Ae+TX, Bacillus thuringiensis Cry1Ab+TX, Bacillus thuringiensis aizawai GC 91 (Agree®)+TX, Bacillus thuringiensis israelensis (BMP123®+TX, Aquabac®+TX, VectoBac®)+TX, Bacillus thuringiensis kurstaki (Javelin®+TX, Deliver®+TX, CryMax®+TX, Bonide®+TX, Scutella WP®+TX, Turilav WP®+TX, Astuto®+TX, Dipel WP®+TX, Biobit®+TX, Foray®)+TX, Bacillus thuringiensis kurstaki BMP 123 (Baritone®)+TX, Bacillus thuringiensis kurstaki HD-1 (Bioprotec-CAF/3P®)+TX, Bacillus thuringiensis strain BD#32+TX, Bacillus thuringiensis strain AQ52+TX, Bacillus thuringiensis var. aizawai (XenTari®+TX, DiPel®)+TX, bacteria spp. (GROWMEND®+TX, GROWSWEET®+TX, Shootup®)+TX, bacteriophage of Clavipacter michiganensis (AgriPhage®)+TX, Bakflor®+TX, Beauveria bassiana (Beaugenic®+TX, Brocaril WP®)+TX, Beauveria bassiana GHA (Mycotrol ES®+TX, Mycotrol O®+TX, BotaniGuard®)+TX, Beauveria brongniartii (Engerlingspilz®+TX, Schweizer Beauveria®+TX, Melocont®)+TX, Beauveria spp.+TX, Botrytis cineria+TX, Bradyrhizobium japonicum (TerraMax®)+TX, Brevibacillus brevis+TX, Bacillus thuringiensis tenebrionis (Novodor®)+TX, BtBooster+TX, Burkholderia cepacia (Deny®+TX, Intercept®+TX, Blue Circle®)+TX, Burkholderia gladii+TX, Burkholderia gladioli+TX, Burkholderia spp.+TX, Canadian thistle fungus (CBH Canadian Bioherbicide®)+TX, Candida butyri+TX, Candida famata+TX, Candida fructus+TX, Candida glabrata+TX, Candida guilliermondii+TX, Candida melibiosica+TX, Candida oleophila strain O+TX, Candida parapsilosis+TX, Candida pelliculosa+TX, Candida pulcherrima+TX, Candida reukaufii+TX, Candida saitoana (Bio-Coat®+TX, Biocure®)+TX, Candida sake+TX, Candida spp.+TX, Candida tenius+TX, Cedecea dravisae+TX, Cellulomonas flavigena+TX, Chaetomium cochliodes (Nova-Cide®)+TX, Chaetomium globosum (Nova-Cide®)+TX, Chromobacterium subtsugae strain PRAA4-1T (Grandevo®)+TX, Cladosporium cladosporioides+TX, Cladosporium oxysporum+TX, Cladosporium chlorocephalum+TX, Cladosporium spp.+TX, Cladosporium tenuissimum+TX, Clonostachys rosea (EndoFine®)+TX, Colletotrichum acutatum+TX, Coniothyrium minitans (Cotans WG®)+TX, Coniothyrium spp.+TX, Cryptococcus albidus (YIELDPLUS®)+TX, Cryptococcus humicola+TX, Cryptococcus infirmo-miniatus+TX, Cryptococcus laurentii+TX, Cryptophlebia leucotreta granulovirus (Cryptex®)+TX, Cupriavidus campinensis+TX, Cydia pomonella granulovirus (CYD-X®)+TX, Cydia pomonella granulovirus (Madex®+TX, Madex Plus®+TX, Madex Max/Carpovirusine®)+TX, Cylindrobasidium laeve (Stumpout®)+TX, Cylindrocladium+TX, Debaryomyces hansenii+TX, Drechslera hawaiinensis+TX, Enterobacter cloacae+TX, Enterobacteriaceae+TX, Entomophtora virulenta (Vektor®)+TX, Epicoccum nigrum+TX, Epicoccum purpurascens+TX, Epicoccum spp.+TX, Filobasidium floriforme+TX, Fusarium acuminatum+TX, Fusarium chlamydosporum+TX, Fusarium oxysporum (Fusaclean®/Biofox C®)+TX, Fusarium proliferatum+TX, Fusarium spp.+TX, Galactomyces geotrichum+TX, Gliocladium catenulatum (Primastop®+TX, Prestop®)+TX, Gliocladium roseum+TX, Gliocladium spp. (SoilGard®)+TX, Gliocladium virens (Soilgard®)+TX, Granulovirus (Granupom®)+TX, Halobacillus halophilus+TX, Halobacillus litoralis+TX, Halobacillus trueperi+TX, Halomonas spp.+TX, Halomonas subglaciescola+TX, Halovibrio variabilis+TX, Hanseniaspora uvarum+TX, Helicoverpa armigera nucleopolyhedrovirus (Helicovex®)+TX, Helicoverpa zea nuclear polyhedrosis virus (Gemstar®)+TX, Isoflavone—formononetin (Myconate®)+TX, Kloeckera apiculata+TX, Kloeckera spp.+TX, Lagenidium giganteum (Laginex®)+TX, Lecanicillium longisporum (Vertiblast®)+TX, Lecanicillium muscarium (Vertikil®)+TX, Lymantria Dispar nucleopolyhedrosis virus (Disparvirus®)+TX, Marinococcus halophilus+TX, Meira geulakonigii+TX, Metarhizium anisopliae (Met52®)+TX, Metarhizium anisopliae (Destruxin WP®)+TX, Metschnikowia fruticola (Shemer®)+TX, Metschnikowia pulcherrima+TX, Microdochium dimerum (Antibot®)+TX, Micromonospora coerulea+TX, Microsphaeropsis ochracea+TX, Muscodor albus 620 (Muscudor®)+TX, Muscodor roseus strain A3-5+TX, Mycorrhizae spp. (AMykor®+TX, Root Maximizer®)+TX, Myrothecium verrucaria strain AARC-0255 (DiTera®)+TX, BROS PLUS®+TX, Ophiostoma piliferum strain D97 (Sylvanex®)+TX, Paecilomyces farinosus+TX, Paecilomyces fumosoroseus (PFR-97®+TX, PreFeRal®)+TX, Paecilomyces linacinus (Biostat WP®)+TX, Paecilomyces lilacinus strain 251 (MeloCon WG®)+TX, Paenibacillus polymyxa+TX, Pantoea agglomerans (BlightBan C9-1®)+TX, Pantoea spp.+TX, Pasteuria spp. (Econem®)+TX, Pasteuria nishizawae+TX, Penicillium aurantiogriseum+TX, Penicillium billai (Jumpstart®+TX, TagTeam®)+TX, Penicillium brevicompactum+TX, Penicillium frequentans+TX, Penicillium griseofulvum+TX, Penicillium purpurogenum+TX, Penicillium spp.+TX, Penicillium viridicatum+TX, Phlebiopsis gigantean (Rotstop®)+TX, phosphate solubilizing bacteria (Phosphomeal®)+TX, Phytophthora cryptogea+TX, Phytophthora palmivora (Devine®)+TX, Pichia anomala+TX, Pichia guilermondii+TX, Pichia membranaefaciens+TX, Pichia onychis+TX, Pichia stipites+TX, Pseudomonas aeruginosa+TX, Pseudomonas aureofasciens (Spot-Less Biofungicide®)+TX, Pseudomonas cepacia+TX, Pseudomonas chlororaphis (AtEze®)+TX, Pseudomonas corrugate+TX, Pseudomonas fluorescens strain A506 (BlightBan A506®)+TX, Pseudomonas putida+TX, Pseudomonas reactans+TX, Pseudomonas spp.+TX, Pseudomonas syringae (Bio-Save®)+TX, Pseudomonas viridiflava+TX, Pseudomons fluorescens (Zequanox®)+TX, Pseudozyma flocculosa strain PF-A22 UL (Sporodex L®)+TX, Puccinia canaliculata+TX, Puccinia thlaspeos (Wood Warrior®)+TX, Pythium paroecandrum+TX, Pythium oligandrum (Polygandron®+TX, Polyversum®)+TX, Pythium periplocum+TX, Rhanella aquatilis+TX, Rhanella spp.+TX, Rhizobia (Dormal®+TX, Vault®)+TX, Rhizoctonia+TX, Rhodococcus globerulus strain AQ719+TX, Rhodosporidium diobovatum+TX, Rhodosporidium toruloides+TX, Rhodotorula spp.+TX, Rhodotorula glutinis+TX, Rhodotorula graminis+TX, Rhodotorula mucilagnosa+TX, Rhodotorula rubra+TX, Saccharomyces cerevisiae+TX, Salinococcus roseus+TX, Sclerotinia minor+TX, Sclerotinia minor (SARRITOR®)+TX, Scytalidium spp.+TX, Scytalidium uredinicola+TX, Spodoptera exigua nuclear polyhedrosis virus (Spod-X®+TX, Spexit®)+TX, Serratia marcescens+TX, Serratia plymuthica+TX, Serratia spp.+TX, Sordaria fimicola+TX, Spodoptera littoralis nucleopolyhedrovirus (Littovir®)+TX, Sporobolomyces roseus+TX, Stenotrophomonas maltophilia+TX, Streptomyces ahygroscopicus+TX, Streptomyces albaduncus+TX, Streptomyces exfoliates+TX, Streptomyces galbus+TX, Streptomyces griseoplanus+TX, Streptomyces griseoviridis (Mycostop®)+TX, Streptomyces lydicus (Actinovate®)+TX, Streptomyces lydicus WYEC-108 (ActinoGrow®)+TX, Streptomyces violaceus+TX, Tilletiopsis minor+TX, Tilletiopsis spp.+TX, Trichoderma asperellum (T34 Biocontrol®)+TX, Trichoderma gamsii (Tenet®)+TX, Trichoderma atroviride (Plantmate®)+TX, Trichoderma hamatum TH 382+TX, Trichoderma harzianum rifai (Mycostar®)+TX, Trichoderma harzianum T-22 (Trianum-P®+TX, PlantShield HC®+TX, RootShield®+TX, Trianum-G®)+TX, Trichoderma harzianum T-39 (Trichodex®)+TX, Trichoderma inhamatum+TX, Trichoderma koningii+TX, Trichoderma spp. LC 52 (Sentinel®)+TX, Trichoderma lignorum+TX, Trichoderma longibrachiatum+TX, Trichoderma polysporum (Binab T®)+TX, Trichoderma taxi+TX, Trichoderma virens+TX, Trichoderma virens (formerly Gliocladium virens GL-21) (SoilGuard®)+TX, Trichoderma viride+TX, Trichoderma viride strain ICC 080 (Remedier®)+TX, Trichosporon pullulans+TX, Trichosporon spp.+TX, Trichothecium spp.+TX, Trichothecium roseum+TX, Typhula phacorrhiza strain 94670+TX, Typhula phacorrhiza strain 94671+TX, Ulocladium atrum+TX, Ulocladium oudemansii (Botry-Zen®)+TX, Ustilago maydis+TX, various bacteria and supplementary micronutrients (Natural II®)+TX, various fungi (Millennium Microbes®)+TX, Verticillium chlamydosporium+TX, Verticillium lecanii (Mycotal®+TX, Vertalec®)+TX, Vip3Aa20 (VIPtera®)+TX, Virgibaclillus marismortui+TX, Xanthomonas campestris pv. Poae (Camperico®)+TX, Xenorhabdus bovienii+TX, Xenorhabdus nematophilus;


Plant extracts including: pine oil (Retenol®)+TX, azadirachtin (Plasma Neem Oil®+TX, AzaGuard®+TX, MeemAzal®+TX, Molt-X®+TX, Botanical IGR (Neemazad®+TX, Neemix®)+TX, canola oil (Lilly Miller Vegol®)+TX, Chenopodium ambrosioides near ambrosioides (Requiem®)+TX, Chrysanthemum extract (Crisant®)+TX, extract of neem oil (Trilogy®)+TX, essentials oils of Labiatae (Botania®)+TX, extracts of clove rosemary peppermint and thyme oil (Garden insect Killer®)+TX, Glycinebetaine (Greenstim®)+TX, garlic+TX, lemongrass oil (GreenMatch®)+TX, neem oil+TX, Nepeta cataria (Catnip oil)+TX, Nepeta catarina+TX, nicotine+TX, oregano oil (MossBuster®)+TX, Pedaliaceae oil (Nematon®)+TX, pyrethrum+TX, Quillaja saponaria (NemaQ®)+TX, Reynoutria sachalinensis (Regalia®+TX, Sakalia®)+TX, rotenone (Eco Roten®)+TX, Rutaceae plant extract (Soleo®)+TX, soybean oil (Ortho Ecosense®)+TX, tea tree oil (Timorex Gold®)+TX, thymus oil+TX, AGNIQUE® MMF+TX, BugOil®+TX, mixture of rosemary sesame pepermint thyme and cinnamon extracts (EF 300®)+TX, mixture of clove rosemary and peppermint extract (EF 400®)+TX, mixture of clove pepermint garlic oil and mint (Soil Shot®)+TX, kaolin (Screen®)+TX, storage glucam of brown algae (Laminarin®);


pheromones including: blackheaded fireworm pheromone (3M Sprayable Blackheaded Fireworm Pheromone®)+TX, Codling Moth Pheromone (Paramount dispenser-(CM)/Isomate C-Plus®)+TX, Grape Berry Moth Pheromone (3M MEC-GBM Sprayable Pheromone®)+TX, Leafroller pheromone (3M MEC—LR Sprayable Pheromone®)+TX, Muscamone (Snip7 Fly Bait®+TX, Starbar Premium Fly Bait®)+TX, Oriental Fruit Moth Pheromone (3M oriental fruit moth sprayable Pheromone®)+TX, Peachtree Borer Pheromone (Isomate-P®)+TX, Tomato Pinworm Pheromone (3M Sprayable Pheromone®)+TX, Entostat powder (extract from palm tree) (Exosex CM®)+TX, (E+TX,Z+TX,Z)-3+TX,8+TX,11 Tetradecatrienyl acetate+TX, (Z+TX,Z+TX,E)-7+TX, 11+TX,13-Hexadecatrienal+TX, (E+TX,Z)-7+TX,9-Dodecadien-1-yl acetate+TX, 2-Methyl-1-butanol+TX, Calcium acetate+TX, Scenturion®+TX, Biolure®+TX, Check-Mate®+TX, Lavandulyl senecioate, Macrobials including: Aphelinus abdominalis+TX, Aphidius ervi (Aphelinus-System®)+TX, Acerophagus papaya+TX, Adalia bipunctata (Adalia-System®)+TX, Adalia bipunctata (Adaline®)+TX, Adalia bipunctata (Aphidalia®)+TX, Ageniaspis citricola+TX, Ageniaspis fuscicollis+TX, Amblyseius andersoni (Anderline®+TX, Andersoni-System®)+TX, Amblyseius californicus (Amblyline®+TX, Spical®)+TX, Amblyseius cucumeris (Thripex®+TX, Bugline cucumeris®)+TX, Amblyseius fallacis (Fallacis®)+TX, Amblyseius swirskii (Bugline Swirskii®+TX, Swirskii-Mite®)+TX, Amblyseius womersleyi (WomerMite®)+TX, Amitus hesperidum+TX, Anagrus atomus+TX, Anagyrus fusciventris+TX, Anagyrus kamali+TX, Anagyrus loecki+TX, Anagyrus pseudococci (Citripar®)+TX, Anicetus benefices+TX, Anisopteromalus calandrae+TX, Anthocoris nemoralis (Anthocoris-System®)+TX, Aphelinus abdominalis (Apheline®+TX, Aphiline®)+TX, Aphelinus asychis+TX, Aphidius colemani (Aphipar®)+TX, Aphidius ervi (Ervipar®)+TX, Aphidius gifuensis+TX, Aphidius matricariae (Aphipar-M®)+TX, Aphidoletes aphidimyza (Aphidend®)+TX, Aphidoletes aphidimyza (Aphidoline®)+TX, Aphytis lingnanensis+TX, Aphytis melinus+TX, Aprostocetus hagenowii+TX, Atheta coriaria (Staphyline®)+TX, Bombus spp.+TX, Bombus terrestris (Natupol Beehive®)+TX, Bombus terrestris (Beeline®+TX, Tripol®)+TX, Cephalonomia stephanoderis+TX, Chilocorus nigritus+TX, Chrysoperla carnea (Chrysoline®)+TX, Chrysoperla carnea (Chrysopa®)+TX, Chrysoperla rufilabris+TX, Cirrospilus ingenuus+TX, Cirrospilus quadristriatus+TX, Citrostichus phyllocnistoides+TX, Closterocerus chamaeleon+TX, Closterocerus spp.+TX, Coccidoxenoides perminutus (Planopar®)+TX, Coccophagus cowperi+TX, Coccophagus lycimnia+TX, Cotesia flavipes+TX, Cotesia plutellae+TX, Cryptolaemus montrouzieri (Cryptobug®+TX, Cryptoline®)+TX, Cybocephalus nipponicus+TX, Dacnusa sibirica+TX, Dacnusa sibirica (Minusa®)+TX, Diglyphus isaea (Diminex®)+TX, Delphastus catalinae (Delphastus®)+TX, Delphastus pusillus+TX, Diachasmimorpha krausii+TX, Diachasmimorpha longicaudata+TX, Diaparsis jucunda+TX, Diaphorencyrtus aligarhensis+TX, Diglyphus isaea+TX, Diglyphus isaea (Miglyphus®+TX, Digline®)+TX, Dacnusa sibirica (DacDigline®+TX, Minex®)+TX, Diversinervus spp.+TX, Encarsia citrina+TX, Encarsia formosa (Encarsia Max®+TX, Encarline®+TX, En-Strip®)+TX, Eretmocerus eremicus (Enermix®)+TX, Encarsia guadeloupae+TX, Encarsia haitiensis+TX, Episyrphus balteatus (Syrphidend®)+TX, Eretmoceris siphonini+TX, Eretmocerus californicus+TX, Eretmocerus eremicus (Ercal®+TX, Eretline e®)+TX, Eretmocerus eremicus (Bemimix®)+TX, Eretmocerus hayati+TX, Eretmocerus mundus (Bemipar®+TX, Eretline m®)+TX, Eretmocerus siphonini+TX, Exochomus quadripustulatus+TX, Feltiella acarisuga (Spidend®)+TX, Feltiella acarisuga (Feltiline®)+TX, Fopius arisanus+TX, Fopius ceratitivorus+TX, Formononetin (Wirless Beehome®)+TX, Franklinothrips vespiformis (Vespop®)+TX, Galendromus occidentalis+TX, Goniozus legneri+TX, Habrobracon hebetor+TX, Harmonia axyridis (HarmoBeetle®)+TX, Heterorhabditis spp. (Lawn Patrol®)+TX, Heterorhabditis bacteriophora (NemaShield HB®+TX, Nemaseek®+TX, Terranem-Nam®+TX, Terranem®+TX, Larvanem®+TX, B-Green®+TX, NemAttack®+TX, Nematop®)+TX, Heterorhabditis megidis (Nemasys H®+TX, BioNem H®+TX, Exhibitline hm®+TX, Larvanem-M®)+TX, Hippodamia convergens+TX, Hypoaspis aculeifer (Aculeifer-System®+TX, Entomite-A®)+TX, Hypoaspis miles (Hypoline m®+TX, Entomite-M®)+TX, Lbalia leucospoides+TX, Lecanoideus floccissimus+TX, Lemophagus errabundus+TX, Leptomastidea abnormis+TX, Leptomastix dactylopii (Leptopar®)+TX, Leptomastix epona+TX, Lindorus lophanthae+TX, Lipolexis oregmae+TX, Lucilia caesar (Natufly®)+TX, Lysiphlebus testaceipes+TX, Macrolophus caliginosus (Mirical-N®+TX, Macroline c®+TX, Mirical®)+TX, Mesoseiulus longipes+TX, Metaphycus flavus+TX, Metaphycus lounsburyi+TX, Micromus angulatus (Milacewing®)+TX, Microterys flavus+TX, Muscidifurax raptorellus and Spalangia cameroni (Biopar®)+TX, Neodryinus typhlocybae+TX, Neoseiulus californicus+TX, Neoseiulus cucumeris (THRYPEX®)+TX, Neoseiulus fallacis+TX, Nesideocoris tenuis (NesidioBug®+TX, Nesibug®)+TX, Ophyra aenescens (Biofly®)+TX, Orius insidiosus (Thripor-I®+TX, Oriline i®)+TX, Orius laevigatus (Thripor-L®+TX, Oriline I®)+TX, Orius majusculus (Oriline m®)+TX, Orius strigicollis (Thripor-S®)+TX, Pauesia juniperorum+TX, Pediobius foveolatus+TX, Phasmarhabditis hermaphrodita (Nemaslug®)+TX, Phymastichus coffea+TX, Phytoseiulus macropilus+TX, Phytoseiulus persimilis (Spidex®+TX, Phytoline p®)+TX, Podisus maculiventris (Podisus®)+TX, Pseudacteon curvatus+TX, Pseudacteon obtusus+TX, Pseudacteon tricuspis+TX, Pseudaphycus maculipennis+TX, Pseudleptomastix mexicana+TX, Psyllaephagus pilosus+TX, Psyttalia concolor (complex)+TX, Quadrastichus spp.+TX, Rhyzobius lophanthae+TX, Rodolia cardinalis+TX, Rumina decollate+TX, Semielacher petiolatus+TX, Sitobion avenae (Ervibank®)+TX, Steinernema carpocapsae (Nematac C®+TX, Millenium®+TX, BioNem C®+TX, NemAttack®+TX, Nemastar®+TX, Capsanem®)+TX, Steinernema feltiae (NemaShield®+TX, Nemasys F®+TX, BioNem F®+TX, Steinernema-System®+TX, NemAttack®+TX, Nemaplus®+TX, Exhibitline sf®+TX, Scia-rid®+TX, Entonem®)+TX, Steinernema kraussei (Nemasys L®+TX, BioNem L®+TX, Exhibitline srb®)+TX, Steinernema riobrave (BioVector®+TX, BioVektor®)+TX, Steinernema scapterisci (Nematac S®)+TX, Steinernema spp.+TX, Steinernematid spp. (Guardian Nematodes®)+TX, Stethorus punctillum (Stethorus®)+TX, Tamarixia radiate+TX, Tetrastichus setifer+TX, Thripobius semiluteus+TX, Torymus sinensis+TX, Trichogramma brassicae (Tricholine b®)+TX, Trichogramma brassicae (Tricho-Strip®)+TX, Trichogramma evanescens+TX, Trichogramma minutum+TX, Trichogramma ostriniae+TX, Trichogramma platneri+TX, Trichogramma pretiosum+TX, Xanthopimpla stemmator; and


other biologicals including: abscisic acid+TX, bioSea®+TX, Chondrostereum purpureum (Chontrol Paste®)+TX, Colletotrichum gloeosporioides (Collego®)+TX, Copper Octanoate (Cueva®)+TX, Delta traps (Trapline d®)+TX, Erwinia amylovora (Harpin) (ProAct®+TX, Ni-HIBIT Gold CST®)+TX, Ferri-phosphate (Ferramol®)+TX, Funnel traps (Trapline y®)+TX, Gallex®+TX, Grower's Secret®+TX, Homo-brassonolide+TX, Iron Phosphate (Lilly Miller Worry Free Ferramol Slug & Snail Bait®)+TX, MCP hail trap (Trapline f®)+TX, Microctonus hyperodae+TX, Mycoleptodiscus terrestris (Des-X®)+TX, BioGain®+TX, Aminomite®+TX, Zenox®+TX, Pheromone trap (Thripline Ams®)+TX, potassium bicarbonate (MilStop®)+TX, potassium salts of fatty acids (Sanova®)+TX, potassium silicate solution (Sil-Matrix®)+TX, potassium iodide+potassiumthiocyanate (Enzicur®)+TX, SuffOil-X®+TX, Spider venom+TX, Nosema locustae (Semaspore Organic Grasshopper Control®)+TX, Sticky traps (Trapline YF®+TX, Rebell Amarillo®)+TX and Traps (Takitrapline y+b®)+TX;


The references in brackets behind the active ingredients, e.g. [3878-19-1] refer to the Chemical Abstracts Registry number. The above described mixing partners are known. Where the active ingredients are included in “The Pesticide Manual” [The Pesticide Manual—A World Compendium; Thirteenth Edition; Editor: C. D. S. TomLin; The British Crop Protection Council], they are described therein under the entry number given in round brackets hereinabove for the particular compound; for example, the compound “abamectin” is described under entry number (1). Where “[CCN]” is added hereinabove to the particular compound, the compound in question is included in the “Compendium of Pesticide Common Names”, which is accessible on the internet [A. Wood; Compendium of Pesticide Common Names, Copyright © 1995-2004]; for example, the compound “acetoprole” is described under the internet address http://www.alanwood.net/pesticides/acetoprole.html.


Most of the active ingredients described above are referred to hereinabove by a so-called “common name”, the relevant “ISO common name” or another “common name” being used in individual cases. If the designation is not a “common name”, the nature of the designation used instead is given in round brackets for the particular compound; in that case, the IUPAC name, the IUPAC/Chemical Abstracts name, a “chemical name”, a “traditional name”, a “compound name” or a “development code” is used or, if neither one of those designations nor a “common name” is used, an “alternative name” is employed. “CAS Reg. No” means the Chemical Abstracts Registry Number.


The active ingredient mixture of the compounds of formula I selected from Tables A-4 to A-39 and Table P with active ingredients described above comprises a compound selected from Tables A-4 to A-39 and Table P and an active ingredient as described above preferably in a mixing ratio of from 100:1 to 1:6000, especially from 50:1 to 1:50, more especially in a ratio of from 20:1 to 1:20, even more especially from 10:1 to 1:10, very especially from 5:1 and 1:5, special preference being given to a ratio of from 2:1 to 1:2, and a ratio of from 4:1 to 2:1 being likewise preferred, above all in a ratio of 1:1, or 5:1, or 5:2, or 5:3, or 5:4, or 4:1, or 4:2, or 4:3, or 3:1, or 3:2, or 2:1, or 1:5, or 2:5, or 3:5, or 4:5, or 1:4, or 2:4, or 3:4, or 1:3, or 2:3, or 1:2, or 1:600, or 1:300, or 1:150, or 1:35, or 2:35, or 4:35, or 1:75, or 2:75, or 4:75, or 1:6000, or 1:3000, or 1:1500, or 1:350, or 2:350, or 4:350, or 1:750, or 2:750, or 4:750. Those mixing ratios are by weight.


The mixtures as described above can be used in a method for controlling pests, which comprises applying a composition comprising a mixture as described above to the pests or their environment, with the exception of a method for treatment of the human or animal body by surgery or therapy and diagnostic methods practised on the human or animal body.


The mixtures comprising a compound of formula I selected from Tables A-4 to A-39 and Table P and one or more active ingredients as described above can be applied, for example, in a single “ready-mix” form, in a combined spray mixture composed from separate formulations of the single active ingredient components, such as a “tank-mix”, and in a combined use of the single active ingredients when applied in a sequential manner, i.e. one after the other with a reasonably short period, such as a few hours or days. The order of applying the compounds of formula I selected from Tables A-1 to A-39 and the active ingredients as described above is not essential for working the present invention.


The compositions according to the invention can also comprise further solid or liquid auxiliaries, such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides, plant activators, molluscicides or herbicides.


The compositions according to the invention are prepared in a manner known per se, in the absence of auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries). These processes for the preparation of the compositions and the use of the compounds I for the preparation of these compositions are also a subject of the invention.


The application methods for the compositions, that is the methods of controlling pests of the abovementioned type, such as spraying, atomizing, dusting, brushing on, dressing, scattering or pouring—which are to be selected to suit the intended aims of the prevailing circumstances—and the use of the compositions for controlling pests of the abovementioned type are other subjects of the invention. Typical rates of concentration are between 0.1 and 1000 ppm, preferably between 0.1 and 500 ppm, of active ingredient. The rate of application per hectare is generally 1 to 2000 g of active ingredient per hectare, in particular 10 to 1000 g/ha, preferably 10 to 600 g/ha.


A preferred method of application in the field of crop protection is application to the foliage of the plants (foliar application), it being possible to select frequency and rate of application to match the danger of infestation with the pest in question. Alternatively, the active ingredient can reach the plants via the root system (systemic action), by drenching the locus of the plants with a liquid composition or by incorporating the active ingredient in solid form into the locus of the plants, for example into the soil, for example in the form of granules (soil application). In the case of paddy rice crops, such granules can be metered into the flooded paddy-field.


The compounds of formula I of the invention and compositions thereof are also be suitable for the protection of plant propagation material, for example seeds, such as fruit, tubers or kernels, or nursery plants, against pests of the abovementioned type. The propagation material can be treated with the compound prior to planting, for example seed can be treated prior to sowing. Alternatively, the compound can be applied to seed kernels (coating), either by soaking the kernels in a liquid composition or by applying a layer of a solid composition. It is also possible to apply the compositions when the propagation material is planted to the site of application, for example into the seed furrow during drilling. These treatment methods for plant propagation material and the plant propagation material thus treated are further subjects of the invention. Typical treatment rates would depend on the plant and pest/fungi to be controlled and are generally between 1 to 200 grams per 100 kg of seeds, preferably between 5 to 150 grams per 100 kg of seeds, such as between 10 to 100 grams per 100 kg of seeds.


The term seed embraces seeds and plant propagules of all kinds including but not limited to true seeds, seed pieces, suckers, corns, bulbs, fruit, tubers, grains, rhizomes, cuttings, cut shoots and the like and means in a preferred embodiment true seeds.


The present invention also comprises seeds coated or treated with or containing a compound of formula I. The term “coated or treated with and/or containing” generally signifies that the active ingredient is for the most part on the surface of the seed at the time of application, although a greater or lesser part of the ingredient may penetrate into the seed material, depending on the method of application. When the said seed product is (re)planted, it may absorb the active ingredient. In an embodiment, the present invention makes available a plant propagation material adhered thereto with a compound of formula I. Further, it is hereby made available, a composition comprising a plant propagation material treated with a compound of formula I.


Seed treatment comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking and seed pelleting. The seed treatment application of the compound formula I can be carried out by any known methods, such as spraying or by dusting the seeds before sowing or during the sowing/planting of the seeds.


The compounds of the invention can be distinguished from other similar compounds by virtue of greater efficacy at low application rates and/or different pest control, which can be verified by the person skilled in the art using the experimental procedures, using lower concentrations if necessary, for example 10 ppm, 5 ppm, 2 ppm, 1 ppm or 0.2 ppm; or lower application rates, such as 300, 200 or 100, mg of Al per m2. The greater efficacy can be observed by an increased safety profile (against non-target organisms above and below ground (such as fish, birds and bees), improved physico-chemical properties, or increased biodegradability).


In each aspect and embodiment of the invention, “consisting essentially” and inflections thereof are a preferred embodiment of “comprising” and its inflections, and “consisting of” and inflections thereof are a preferred embodiment of “consisting essentially of” and its inflections.


The disclosure in the present application makes available each and every combination of embodiments disclosed herein.


BIOLOGICAL EXAMPLES

The Examples which follow serve to illustrate the invention. Certain compounds of the invention can be distinguished from known compounds by virtue of greater efficacy at low application rates, which can be verified by the person skilled in the art using the experimental procedures outlined in the Examples, using lower application rates if necessary, for example 50 ppm, 12.5 ppm, 6 ppm, 3 ppm, 1.5 ppm, 0.8 ppm or 0.2 ppm.


Example B1: Diabrotica Balteata (Corn Root Worm)

Maize sprouts placed onto an agar layer in 24-well microtiter plates were treated with aqueous test solutions prepared from 10,000 ppm DMSO stock solutions by spraying. After drying, the plates were infested with L2 larvae (6 to 10 per well). The samples were assessed for mortality and growth inhibition in comparison to untreated samples 4 days after infestation.


The following compounds gave an effect of at least 80% in at least one of the two categories (mortality or growth inhibition) at an application rate of 200 ppm:


P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P24.


Example B2: Euschistus heros (Neotropical Brown Stink Bug)

Soybean leaves on agar in 24-well microtiter plates were sprayed with aqueous test solutions prepared from 10,000 ppm DMSO stock solutions. After drying the leaves were infested with N2 nymphs. The samples were assessed for mortality and growth inhibition in comparison to untreated samples 5 days after infestation.


The following compounds gave an effect of at least 80% in at least one of the two categories (mortality or growth inhibition) at an application rate of 200 ppm:


P1, P2, P3, P4, P5, P7, P8, P10, P12, P14, P15, P17, P18, P19, P20, P21, P24.


Example B3: Chilo suppressalis (Striped Rice Stemborer)

24-well microtiter plates with artificial diet were treated with aqueous test solutions prepared from 10,000 ppm DMSO stock solutions by pipetting. After drying, the plates were infested with L2 larvae (6-8 per well). The samples were assessed for mortality, anti-feeding effect, and growth inhibition in comparison to untreated samples 6 days after infestation. Control of Chilo suppressalis by a test sample is given when at least one of the categories mortality, anti-feedant effect, and growth inhibition is higher than the untreated sample.


The following compounds resulted in at least 80% control in at least at least one of the categories (mortality, anti-feedant effect, or growth inhibition) at an application rate of 200 ppm:


P2, P4, P5, P19, P20.


Example B4: Plutella xylostella (Diamond Back Moth)

24-well microtiter plates with artificial diet were treated with aqueous test solutions prepared from 10,000 ppm DMSO stock solutions by pipetting. After drying, Plutella eggs were pipetted through a plastic stencil onto a gel blotting paper and the plate was closed with it. The samples were assessed for mortality and growth inhibition in comparison to untreated samples 8 days after infestation.


The following compounds gave an effect of at least 80% in at least one of the two categories (mortality or growth inhibition) at an application rate of 200 ppm:


P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P14, P15, P16, P17, P18, P19, P20, P21, P22.


Example B5: Myzus persicae (Green Peach Aphid):Feeding/Contact Activity

Sunflower leaf discs were placed onto agar in a 24-well microtiter plate and sprayed with aqueous test solutions prepared from 10,000 ppm DMSO stock solutions. After drying, the leaf discs were infested with an aphid population of mixed ages. The samples were assessed for mortality 6 days after infestation.


The following compounds resulted in at least 80% mortality at an application rate of 200 ppm:


P2, P4, P7, P8, P18, P19, P20, P24.


Example B6: Myzus persicae (Green Peach Aphid). Intrinsic Activity

Test compounds prepared from 10,000 ppm DMSO stock solutions were applied by pipette into 24-well microtiter plates and mixed with sucrose solution. The plates were closed with a stretched Parafilm. A plastic stencil with 24 holes was placed onto the plate and infested pea seedlings were placed directly on the Parafilm. The infested plate was closed with a gel blotting paper and another plastic stencil and then turned upside down. The samples were assessed for mortality 5 days after infestation.


The following compounds resulted in at least 80% mortality at a test rate of 12 ppm:


P1, P2, P3, P4, P5, P7, P8, P15, P18, P19, P20.


Example B7: Spodoptera littoralis (Egyptian Cotton Leaf Worm)

Cotton leaf discs were placed onto agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10,000 ppm DMSO stock solutions. After drying the leaf discs were infested with five L1 larvae. The samples were assessed for mortality, anti-feeding effect, and growth inhibition in comparison to untreated samples 3 days after infestation. Control of Spodoptera littoralis by a test sample is given when at least one of the categories mortality, anti-feedant effect, and growth inhibition is higher than the untreated sample.


The following compounds resulted in at least 80% control in at least at least one of the categories (mortality, anti-feedant effect, or growth inhibition) at an application rate of 200 ppm:


P1, P2, P3, P4, P5, P6, P7, P8, P10, P11, P12, P14, P15, P16, P17, P19, P20.


Example B8: Spodoptera littoralis (Egyptian Cotton Leaf Worm)

Test compounds were applied by pipette from 10,000 ppm DMSO stock solutions into 24-well plates and mixed with agar. Lettuce seeds were placed onto the agar and the multi well plate was closed by another plate which contained also agar. After 7 days the compound was absorbed by the roots and the lettuce grew into the lid plate. The lettuce leaves were then cut off into the lid plate. Spodoptera eggs were pipetted through a plastic stencil onto a humid gel blotting paper and the lid plate was closed with it. The samples were assessed for mortality, anti-feedant effect and growth inhibition in comparison to untreated samples 6 days after infestation.


The following compounds gave an effect of at least 80% in at least one of the three categories (mortality, anti-feeding, or growth inhibition) at a test rate of 12.5 ppm:


P2, P3, P5, P8, P11, P15.


Example B9: Thrips tabaci (Onion Thrips) Feeding/Contact Activity

Sunflower leaf discs were placed on agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10,000 ppm DMSO stock solutions. After drying the leaf discs were infested with a thrips population of mixed ages. The samples were assessed for mortality 6 days after infestation.


The following compounds resulted in at least 80% mortality at an application rate of 200 ppm:


P1, P2, P3, P5, P8, P18


Example B10: Myzus persicae (Green Peach Aphid)

Test compounds prepared from 10,000 ppm DMSO stock solutions were applied by a liquid handling robot into 96-well microtiter plates and mixed with a sucrose solution. Parafilm was stretched over the 96-well microtiter plate and a plastic stencil with 96 holes was placed onto the plate. Aphids were sieved into the wells directly onto the Parafilm. The infested plates were closed with a gel blotting card and a second plastic stencil and then turned upside down. The samples were assessed for mortality 5 days after infestation.


The following compounds resulted in at least 80% mortality at an application rate of 50 ppm:


P14, P18, P19, and P20.


Example B11: Plutella xylostella (Diamondback Moth)

96-well microtiter plates containing artificial diet were treated with aqueous test solutions, prepared from 10,000 ppm DMSO stock solutions, by a liquid handling robot. After drying, eggs (˜30 per well) were infested onto a netted lid which was suspended above the diet. The eggs hatch and L1 larvae move down to the diet. The samples were assessed for mortality 9 days after infestation.


The following compounds gave an effect of at least 80% average mortality at an application rate of 500 ppm:


P14, P18, P19, and P20.

Claims
  • 1. A compound of the formula I
  • 2. The compound according to claim 1, wherein R1 is hydrogen; methyl or cylopropyl-methyl.
  • 3. The compound according to claim 1, wherein X1 is N.
  • 4. The compound according to claim 1, wherein X1 is C—CF3.
  • 5. The compound according to claim 1, wherein R4 is Y-2, Y-3, Y-5, Y-8 or Y-9.
  • 6. The compound according to claim 1, wherein R6 is selected from SCF3, SCHF2, SCH2CF3, OCF3, OCHF2, OCH2CF3, OCH2CHF2, OCF2CHF2, OCH2CF2CHF2, OCF2CF2CF3, OCF2CHFCF3, OCF(CF3)2, CHF2, CF2CF3, CF2Cl, CF2Br, CF2CF2CF3, and CF(CF3)2.
  • 7. A composition comprising a compound as defined in claim 1, one or more auxiliaries and diluent, and optionally one more other active ingredient.
  • 8. A method of combating and controlling insects, acarines, nematodes or molluscs which comprises applying to a pest, to a locus of a pest, or to a plant susceptible to attack by a pest an insecticidally, acaricidally, nematicidally or molluscicidally effective amount of a compound as defined in claim 1.
  • 9. A method for the protection of plant propagation material from the attack by insects, acarines, nematodes or molluscs, which comprises treating the propagation material or the site, where the propagation material is planted, with an effective amount of a compound as defined in claim 1.
  • 10. A plant propagation material, such as a seed, comprising, or treated with or adhered thereto, a compound as defined in claim 1.
  • 11. A method of controlling parasites in or on an animal in need thereof comprising administering an effective amount of a compound as defined in claim 1.
  • 12. A compound of formula II
  • 13. A compound of formula III
  • 14. A compound of formula VI
  • 15. A compound of formula X
Priority Claims (2)
Number Date Country Kind
18194317.6 Sep 2018 EP regional
19155122.5 Feb 2019 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2019/074429 9/12/2019 WO 00