This invention relates generally to the field of phacoemulsification and more particularly to phacoemulsification cutting tips.
The human eye in its simplest terms functions to provide vision by transmitting light through a clear outer portion called the cornea, and focusing the image by way of the lens onto the retina. The quality of the focused image depends on many factors including the size and shape of the eye, and the transparency of the cornea and lens.
When age or disease causes the lens to become less transparent, vision deteriorates because of the diminished light which can be transmitted to the retina. This deficiency in the lens of the eye is medically known as a cataract. An accepted treatment for this condition is surgical removal of the lens and replacement of the lens function by an IOL.
In the United States, the majority of cataractous lenses are removed by a surgical technique called phacoemulsification. During this procedure, a thin phacoemulsification cutting tip is inserted into the diseased lens and vibrated ultrasonically. The vibrating cutting tip liquefies or emulsifies the lens so that the lens may be aspirated out of the eye. The diseased lens, once removed, is replaced by an artificial lens.
A typical ultrasonic surgical device suitable for ophthalmic procedures consists of an ultrasonically driven handpiece, an attached cutting tip, and irrigating sleeve and an electronic control console. The handpiece assembly is attached to the control console by an electric cable and flexible tubings. Through the electric cable, the console varies the power level transmitted by the handpiece to the attached cutting tip and the flexible tubings supply irrigation fluid to and draw aspiration fluid from the eye through the handpiece assembly.
The operative part of the handpiece is a centrally located, hollow resonating bar or horn directly attached to a set of piezoelectric crystals. The crystals supply the required ultrasonic vibration needed to drive both the horn and the attached cutting tip during phacoemulsification and are controlled by the console. The crystal/horn assembly is suspended within the hollow body or shell of the handpiece by flexible mountings. The handpiece body terminates in a reduced diameter portion or nosecone at the body's distal end. The nosecone is externally threaded to accept the irrigation sleeve. Likewise, the horn bore is internally threaded at its distal end to receive the external threads of the cutting tip. The irrigation sleeve also has an internally threaded bore that is screwed onto the external threads of the nosecone. The cutting tip is adjusted so that the tip projects only a predetermined amount past the open end of the irrigating sleeve.
In use, the ends of the cutting tip and irrigating sleeve are inserted into a small incision of predetermined width in the cornea or sclera. The cutting tip is ultrasonically vibrated along its longitudinal axis within the irrigating sleeve by the crystal-driven ultrasonic horn, thereby emulsifying the selected tissue in situ. The hollow bore of the cutting tip communicates with the bore in the horn that in turn communicates with the aspiration line from the handpiece to the console. A reduced pressure or vacuum source in the console draws or aspirates the emulsified tissue from the eye through the open end of the cutting tip, the cutting tip and horn bores and the aspiration line and into a collection device. The aspiration of emulsified tissue is aided by a saline flushing solution or irrigant that is injected into the surgical site through the small annular gap between the inside surface of the irrigating sleeve and the cutting tip.
In one phacoemulsification procedure the horn is driven to produce oscillatory or rotational movement at the tip. Driving the tip in a torsional motion produces more effective cutting and less repulsion of lens material. Torsional tip motion also lends itself to improved tip designs. One such design is described herein.
In one embodiment of the present invention, a phacoemulsification tip comprises a tube having a generally circular cross section and a distal end. The distal end has an opening. The tube encloses an aspiration lumen surrounded by and generally concentric with a structure section. The structure section comprises a plurality of structures selected from the group consisting of ridges, vanes, ribs, and fins. The plurality of structures project inward from an inner wall of the tube at the distal end of the tube. The plurality of the structures are oriented at an angle with respect to a face of the distal end of the tube.
In another embodiment of the present invention, a phacoemulsification tip comprises a tube having a generally circular cross section and a distal end. The distal end has an opening. The tube encloses an aspiration lumen surrounded by and generally concentric with a structure section. The structure section comprises a plurality of structures selected from the group consisting of ridges, vanes, ribs, and fins. The plurality of structures project inward from an inner wall of the tube at the distal end of the tube. The plurality of the structures are disposed at a non-perpendicular angle with respect to a plane that is tangent to a curved outer surface of the tube.
Reference is now made in detail to the exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like parts.
Tip 110 is typically a thin needle made of titanium or stainless steel that is designed to emulsify a lens when vibrated ultrasonically. Tip 110 is typically cylindrical in shape, has a small diameter of about 20-30 gauge, and has a length suitable for removal of a lens when inserted into the anterior chamber of the eye.
Horn 120 is typically made of a rigid material suitable for medical use (such as a titanium alloy). Horn 120 has a reduced diameter section 125 that is connected to a tip interface 115. Tip interface 115 typically has a threaded connection that accepts tip 110. In this manner tip 110 is screwed onto horn 120 at tip interface 115. This provides a rigid connection between tip 110 and horn 120 so that vibration can be transmitted from horn 120 to tip 110.
Piezoelectric crystals 130 supply ultrasonic vibrations that drive both the horn 120 and the attached cutting tip 110 during phacoemulsification. Piezoelectric crystals 130 are affixed to horn 120. Crystals 130 are typically ring shaped, resembling a hollow cylinder and constructed from a plurality of crystal segments. When excited by a signal from console 140, crystals 130 resonate, producing vibration in horn 120.
Console 140 includes a signal generator that produces a signal to drive piezoelectric crystals 130. Console 140 has a suitable microprocessor, micro-controller, computer, or digital logic controller to control the signal generator. In operation, console 140 produces a signal that drives piezoelectric crystals 130. Piezoelectric crystals 130, when excited, cause horn 120 to vibrate. Tip 110, connected to horn 120, also vibrates. When tip 110 is inserted into the anterior chamber of the eye and vibrated, it acts to emulsify a cataractous lens.
When the tips of
From the above, it may be appreciated that the present invention provides an improved phacoemulsification tip useful for the removal of a cataractous lens. In the present invention, the cutting tip is has a plurality of internal oriented structures. These structures facilitate cutting and/or removal of lens material. The present invention is illustrated herein by example, and various modifications may be made by a person of ordinary skill in the art.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3589363 | Banko | Jun 1971 | A |
4223676 | Wuchinich | Sep 1980 | A |
4246902 | Martinez | Jan 1981 | A |
4493694 | Wuchinich | Jan 1985 | A |
4515583 | Sorich | May 1985 | A |
4589415 | Haaga | May 1986 | A |
4609368 | Dotson, Jr. | Sep 1986 | A |
4816018 | Parisi | Mar 1989 | A |
4869715 | Sherburne | Sep 1989 | A |
4922902 | Wuchinich et al. | May 1990 | A |
4989583 | Hood | Feb 1991 | A |
5151099 | Young et al. | Sep 1992 | A |
5154694 | Kelman | Oct 1992 | A |
5359996 | Hood | Nov 1994 | A |
5725495 | Strukel et al. | Mar 1998 | A |
5984904 | Steen et al. | Nov 1999 | A |
5989209 | Barrett | Nov 1999 | A |
6007555 | Devine | Dec 1999 | A |
6159175 | Strukel et al. | Dec 2000 | A |
6283974 | Alexander | Sep 2001 | B1 |
6354331 | Fisher et al. | Mar 2002 | B1 |
6533750 | Sutton et al. | Mar 2003 | B2 |
6605078 | Adams | Aug 2003 | B2 |
20020151917 | Barry | Oct 2002 | A1 |
20060217739 | Tjia et al. | Sep 2006 | A1 |
20070060926 | Escaf | Mar 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20100087846 A1 | Apr 2010 | US |