The present invention relates to pharmaceutical compositions containing dimethyl fumarate (DMF). More specifically, the present invention relates to a pharmaceutical composition for oral use in treating hyperproliferative, inflammatory or autoimmune disorders by administering a low daily dosage in the range of 410 mg±5% or 400 mg±5% dimethyl fumarate, wherein the pharmaceutical formulation is in the form of an erosion matrix tablet.
Fumaric acid esters, i.e. dimethyl fumarate in combination with salts of ethylhydrogen fumarate have been used in the treatment of psoriasis for many years. The combination is marketed under the trade name Fumaderm®. It is in the form of enteric coated tablets for oral use.
Fumaderm® is available in two different dosage strengths (Fumaderm® intial and Fumaderm®):
The two strengths are intended to be applied in an individually based dose regimen starting with Fumaderm® initial in an escalating dose, and then after e.g. three weeks of treatment switching to Fumaderm®. However, a high frequency of side effects causes some patient discontinuation early in treatment. It is contemplated that the gastrointestinal side effects and flushing can, at least partially, be explained by the release properties of the prescription formulation, leading to high local drug concentration on the intestinal mucosa and subsequent high plasma concentration of drug metabolite.
To reduce the side effects, EP-A-1 131 065, EP-A-1 059 920 and EP-A-1 123 092 suggest the preparation of DMF and/or MMF containing microtablets.
Another approach to reduce unwanted side effects is the preparation of controlled-release formulations as disclosed in WO 2006/037342 A2.
Furthermore, specific controlled-release formulations are disclosed in WO 2010/079222 A1. Such controlled-release formulations comprise one or more fumaric acid esters in an erosion matrix tablet having an enteric coating that is thinner than enteric coatings usual in the art. The pharmaceutical formulations disclosed in WO 2010/079222 show excellent pharmacokinetic parameters.
In 2008, Kappos et al. disclosed the results of a phase IIb study concerning the efficacy and safety of the oral fumarate formulation “BG00012” in patients with relapsing-remitting multiple sclerosis. The study results show that neither a dose of 120 mg/day nor a dose of 360 mg/day exhibit a statistically significant difference compared to placebo with respect to the main endpoints (brain disease activity, including the mean total number of Gd+ lesions, and new or newly enlarging T2-hyperintense lesions). Only the dose of 720 mg/day was found to have statistically significant effect compared to placebo.
After that, subsequent phase Ill clinical studies (DEFINE and CONFIRM) showed that a dose of DMF of 480 mg/day has similar efficacy as the dose of 720 mg/day in treating multiple sclerosis in almost every endpoint measured.
The DMF formulations and dosing regimens administered in clinical trials have been associated with flushing and gastrointestinal (GI) side-effects, such, diarrhea, stomach ache, stomach pain, abdominal pain, abdominal cramps, nausea, flatulence, tenesmus, meteorism, an increased frequency of stools, a feeling of fullness, and/or upper abdominal cramps.
In view of the above, it is the object to be solved by the present invention to lower the daily dose of dimethyl fumarate in an effective oral formulation for use in the treatment of hyperproliferative, inflammatory or autoimmune disorders.
It has been surprisingly found that the solution to solve the above object is to use dimethyl fumarate as the sole active ingredient in an erosion matrix tablet at a dose of 410 mg±5% per day or 400 mg±5% per day.
The erosion matrix formulation will enable the slow and controlled release of the active ingredient DMF within the enteric lumen. The slow release enables the exposure of the enteral immune system, even prior to absorption into the systemic circulation and during the absorption process, to the active principle for a prolonged period of time. This local exposure induces immune modulation locally in addition to the systemic pharmacological action. These locally modulated immune cells mediate the systemic pharmacological action, in addition to possible systemic effects. By this slow and controlled release, the activity of DMF on the cells in the local immune system is improved, making a pharmacological activity of the drug at the unexpected low dose level of 410 mg±5% or 400 mg±5% per day possible.
More specifically, the present invention concerns the following aspects:
According to the first aspect, the present invention is directed to a pharmaceutical composition for oral use in treating hyperproliferative, inflammatory or autoimmune disorders, wherein said composition is in the form of an erosion matrix tablet comprising a tablet core and one or more coating(s), wherein the tablet core comprises
Dimethylfumarate is the only active ingredient contained in the pharmaceutical formulation.
According to another preferred aspect of the present invention, the tablet core of the pharmaceutical composition according to the above mentioned aspects comprises
It is preferred that the rate-controlling agent is a water-soluble polymer. It is even more preferred that the rate-controlling agent is a cellulose polymer or a cellulose derivative or a mixture thereof.
According to another preferred aspect of the present invention, the rate-controlling agent is selected from the group comprising hydroxypropyl cellulose, hydroxypropyl methyl cellulose (HPMC), methyl cellulose, carboxymethyl cellulose and mixtures thereof. Most preferably, the rate-controlling agent is hydroxypropyl cellulose.
According to another preferred aspect of the present invention, the tablet core of the pharmaceutical composition according to any one of the above aspects comprises a binder. According to a preferred embodiment, said binder is lactose.
According to more specific embodiments of the present invention, the tablet core of the pharmaceutical composition according to any one of the above aspects comprises:
More preferably, said tablet core comprises:
More preferably, said tablet core comprises:
It is even more preferred that said tablet core comprises:
In another aspect of the present invention, the amount of hydroxypropyl cellulose is 3-6% by weight in the above defined tablet cores.
According to further preferred embodiments of the present invention, said tablet core of said pharmaceutical composition according to any one of the above aspects further comprises 0.15-0.7% by weight of magnesium stearate and, optionally, 0.05 to 0.25% by weight of silicon dioxide.
In one aspect of the present inventions, said pharmaceutical composition is for administration once, twice or three times daily. Preferable is an administration once or twice daily.
The pharmaceutical composition according to any one of the above aspects is for use in the treatment of psoriasis (including moderate to severe plaque psoriasis), psoriatic arthritis, neurodermatitis, inflammatory bowel disease, such as Crohn's disease and ulcerative colitis, polyarthritis, multiple sclerosis including relapsing—remitting multiple sclerosis (MS including RR-MS and progressive MS), juvenile-onset diabetes mellitus, Hashimoto's thyroiditis, Grave's disease, SLE (systemic lupus erythematosus), Cutaneous Lupus Erythematosus, Sjögren's syndrome, Pernicious anemia, Chronic active (lupoid) hepatitis, Rheumatoid arthritis (RA), lupus nephritis, myasthenia gravis, uveitis, refractory uveitis, vernal conjunctivitis, pemphigus vulgaris, scleroderma, optic neuritis, malignant melanoma, alopecia areata, cutaneous sarcoidosis, pain such as radicular pain, pain associated with radiculopathy, neuropathic pain or sciatica/sciatic pain, organ transplantation (prevention of rejection), sarcoidosis, necrobiosis lipoidica or granuloma annulare.
Most preferable is the treatment of psoriasis and multiple sclerosis.
Furthermore, the present invention relates to the following embodiments:
The pharmaceutical composition in the form of a matrix tablet according to the present application is a controlled-release formulation that releases the active ingredient, i.e. dimethyl fumarate, in a sustained manner. More specifically, the erosion matrix preferably results in release of the dimethyl fumarate—when subjected to an in vitro dissolution test carried out at 37° C. and a paddle speed of 100 rpm employing 0.1 N hydrochloric acid as dissolution medium during the first 2 hours of the test and then 0.05 M phosphate buffer pH 6.8 as dissolution medium—as follows:
within the first 2 hours after start of the test from about 0% w/w to about 10% w/w, preferably 0% w/w to about 5% w/w, more preferably 0% w/w to ≦2% w/w of the total amount of dimethyl fumarate contained in the pharmaceutical composition is released, and
within the first 2.5 hours after start of the test from about 2% w/w to about 20% w/w of the total amount of the dimethyl fumarate contained in the pharmaceutical composition is released, and
within the first 3.5 hours after start of the test from about 35% w/w to about 65% w/w, such as 25% w/w to about 65% of the total amount of dimethyl fumarate contained in the pharmaceutical composition is released, and
within the first 6 hours after start of the test 85% w/w of the total amount of dimethyl fumarate contained in the pharmaceutical composition is released.
In the present context the term “API”, which is an abbreviation for “active pharmaceutical ingredient” and the term “active substance” are used interchangeably and refers to dimethyl fumarate that is to be released from the pharmaceutical formulation according to the invention.
With respect to in vitro methods, well-established methods are available, especially methods described by official monographs like e.g. United States Pharmacopeia (USP) or the European Pharmacopoeia. A person skilled in the art will know which method to choose and how to select the specific conditions to carry out the in vitro test. For instance, the USP prescribes in vitro tests be carried out at 37+/−1.0 such as 37+/−0.5 degrees Celsius/Centigrade. In one aspect, a suitable dissolution test is one, wherein the dissolution profile is determined as described in the United States Pharmacopoeia at 37° C. using a paddle dissolution apparatus at 100 rpm employing 0.1 N hydrochloric acid as dissolution medium during the first 2 hours of the test and then followed by 0.05 M phosphate buffer pH 6.8 as dissolution medium for the remaining test period. A person skilled in the art will know how to adjust the conditions applied, e.g. temperature, pH, paddle speed, duration etc. In a further aspect, the in vitro dissolution testing is carried out as follows: A USP apparatus II (paddles) with 1 litre vessels is used. Bath temperature is set to 37° C.+/−0.5° C. and paddle speed to 100 rpm. One tablet is placed in one vessel containing 750 ml 0.1N HCl (pH 1.2) over 2 h. After that the pH is changed to 6.8 by adding 220 ml-250 ml 0.2 M sodium phosphate buffer. 2.5 ml samples are taken at least after 2 h, 2.5 h, 3.5 h and 6 h, immediately stored at 2-8° C. and analyzed by HPLC for DMF. The HPLC parameters are set as follows: Column: Phenomenex Luna C18, 50×4.6 mm, 3 μm; column oven temperature 30° C., mobile phase: Methanol:20 mM phosphate buffer pH 3.0 (35:65 V/V), inject volume: 5 μl, Flow rate: 0.8 ml/min, UV-Detector wavelength: 210 nm, run time 5 min, DMF retention time approximately 3.5 min.
The release in vivo may be tested by measuring the plasma concentration at predetermined time periods and thereby obtaining a plasma concentration versus time profile for the dimethyl fumarate or, if relevant, a metabolite thereof. Furthermore, it is contemplated that metabolism already takes place within the gastro-intestinal tract or during passage of the gastro-intestinal mucosa. Accordingly, when dimethyl fumarate is administered, the relevant component to search for in the plasma may be the monomethyl ester and not the dimethylester of fumaric acid.
Other tests may also be used to determine or to give a measure of the release of the active substance in vivo. Thus, animals (e.g. minipigs, dogs, monkeys etc.) may be used as a model. The animals receive the compositions under investigation and after specified periods of time, blood samples are collected and the content of the active ingredient (or metabolite thereof, if relevant) is determined in plasma or specific organs or extracted from the intestinal contents.
Another test involves the use of a specific segment of an animal or human intestine. The segment is placed in a suitable apparatus containing two compartments (a donor and a receiver) separated by the segment, and the composition under investigation is placed in a suitable medium in one compartment (the donor compartment). The composition will release the active substance that subsequently is transported across the intestinal segment. Accordingly, at suitable time intervals, the concentration of the active substance (or, if relevant, the metabolite) is measured in the receiver compartment.
A person skilled in the art will be able to adapt the above-mentioned method to the specific composition.
In the present context, the term “relative bioavailability” refers to a comparison of the amount of drug absorbed in vivo (expressed as area under the curve (AUC)) after administration of two different formulations or reference product. In the present context, the amount of drug absorbed, expressed as AUC, can be detected in the form of the actual drug administered, or as a metabolite thereof. The relative bioavailability can be expressed as a percentage of a reference AUC, i.e. AUC %.
In the present context the term “variability” refers to the variability of PK parameters (e.g. Cmax and AUC) after administration of a pharmaceutical formulation or a reference formulation. The variability can be expressed as the coefficient of variation (CV) for a PK parameter, i.e. the ratio of the standard deviation to the mean. Reference to PK parameter values herein, such as Cmax and Tmax, refers to mean values obtained from human clinical studies in either fed or fasted subjects.
In the present context the term “tolerability” refers to the potential of a drug to be endured by subjects and/or patients. In one aspect, “tolerability” is determined as the potential of a drug to be endured by subjects and/or patients in early stages of treatment, such as within the first three months of start of therapy, such as within the first month of start of therapy, such as within the first two weeks of start of therapy, such as within the first week of start of therapy, such as within the first three days of start of therapy, such as within the first day of start of therapy, such as after the first dose of the therapy. A drug with better tolerability produces fewer side effects in a subject and/or patient c.f. a drug with worse tolerability.
In the present context the term “substantial absence of” refers to a level of less than about 1%, such as less than about 0.5%, such as less than about 0.3%, such as about 0.0%.
In the present context the terms “rate-controlling agent” and “rate-controlling agent in the form of a polymeric matrix material” are used interchangeably and refer to an agent that is able to sustain and/or prolong the in vivo and/or in vitro release of the active substance.
As mentioned above, the in vivo and/or in vitro release of the active substance is “controlled”, i.e. prolonged and/or slow compared with the commercially available Fumaderm® composition. In the present context, the term “controlled” is intended to indicate that the active substance is released during a longer time period than Fumaderm® such as at least during a time period that is at least 1.2 times, such as, e.g., at least 1.5 times, at least 2 times, at least 3 times, at least 4 times or at least 5 times greater than that of Fumaderm®. Thus, if e.g. 100% of dimethyl fumarate is released from Fumaderm® tablets 3 hours after the start of a suitable test, then 100% of dimethyl fumarate in a composition according to the invention is released at least 3.6 hours after the start of a suitable test.
The formulation according to the invention is contemplated to provide improved tolerability, such as fewer and/or less severe gastrointestinal (GI) side-effects, such as fewer and/or less severe redness episodes, such as fewer and/or less severe flushing episodes.
As used in the present invention, a gastrointestinal (GI) side effect may include, but is not limited to diarrhea, emesis, stomach ache, stomach pain, abdominal pain, abdominal cramps, nausea, flatulence, tenesmus, meteorism, an increased frequency of stools, a feeling of fullness and upper abdominal cramps.
In the present context, a reduction of GI related side effects is intended to denote a decrease in severity and/or incidence among a given treated patient population, comparing the GI side effects observed after administration of the formulation according to the invention to the GI side effects observed after administration of Fumaderm®. A reduction in GI related side effects according to this definition could thus be construed as a substantial reduction in incidence of any of the GI side effect listed above, such as at least a 10% reduction in incidence or more preferably at least 20% reduction in incidence or even more preferable a more than 30% reduction in incidence. A reduction in GI related side effect can also be expressed as a substantial reduction in severity in any of the GI side effects listed above, such as a reduction in severity and/or frequency of diarrhea, emesis, stomach ache, stomach pain, abdominal pain, abdominal cramps, nausea, flatulence, tenesmus, meteorism, increased frequency of stools, a feeling of fullness or upper abdominal cramps. The reduction of GI related side effects, as described above, can be monitored in a clinical trial setting, either comparing the administration of the formulation according to the invention head on with Fumaderm® or with placebo. In case of a placebo controlled trial, the incidence of GI related side effects in the patients receiving the formulation according to the invention compared to the placebo group, can be compared to historical trials comparing Fumaderm® to placebo (see e.g. Altmeyer et al, J. Am. Acad. Dermatol. 1994; full reference: Altmeyer P J et al., Antipsoriatic effect of fumaric acid derivatives. Results of a multicenter double-blind study in 100 patients. J. Am. Acad. Dermatol. 1994; 30:977-81).
In a further aspect, the formulation according to the invention—upon oral administration and in comparison to that obtained after oral administration of Fumaderm® tablets in an equivalent dosage—reduce (GI) side-effects (frequency and/or severity).
WO 2010/079222 A1 discloses that an erosion matrix formulation upon oral administration and in comparison to that obtained after oral administration of Fumaderm® tablets in an equivalent dosage reduces unwanted side effects, in particular flushing (frequency and/or severity). Frequency and strength of these and other side effects are further reduced in view of the low daily dosage of 400 mg±5% or 410 mg±5%.
In the present context the term “flushing” describes episodic attacks of redness of the skin together with a sensation of warmth or burning of the face and/or neck, and less frequently the upper trunk and abdomen or the whole body. It is the transient nature of the attacks that distinguishes flushing from the persistent erythema of photosensitivity or acute contact reactions. Repeated flushing over a prolonged period of time can lead to telangiectasia and occasionally to classical rosacea of the face (Greaves M W. Flushing and flushing syndromes, rosacea and perioral dermatitis. In: Champion R H, et al, eds. Rook/Wilkinson/Ebling textbook of dermatology, 6th ed., vol. 3. Oxford, UK: Blackwell Scientific, 1998: 2099-2104).
In the present context, a reduction of flushing is intended to denote a decrease in severity and/or incidence/frequency among a given treated patient population of flushing observed after administration of the formulation according to the invention compared with flushing observed after administration of Fumaderm® and can be measured e.g. as described by O'Toole et al. Cancer 2000, 88(4): p. 770-776. A reduction in flushing according to this definition could thus be construed as a reduction in incidence and/or severity of flushing. In one aspect of the invention, the incidence of flushing is reduced by at least about a quarter, in another aspect of the invention the incidence is reduced by at least about a third, in another aspect of the invention the incidence is reduced by at least about half, and in a further aspect of the invention, the flushing incidence is reduced by about two thirds or more. Likewise, the severity is in one aspect of the invention reduced by at least about a quarter, in another aspect of the invention by at least about a third, in another aspect of the invention by at least half, and in a further aspect of the invention by at least about two thirds. A one hundred percent reduction in flushing incidence and severity is most preferable, but is not required. The reduction of flushing, as described above, can be monitored in a clinical trial setting, e.g. comparing the administration of the compound according to the invention with e.g. administration of Fumaderm®. In case of a Fumaderm® controlled trial, the incidence and severity, defined as mild, moderate or severe, of flushing in the patients receiving the compound according to the invention compared to the Fumaderm® group, can be compared.
In one aspect, the severity of flushing is determined as the body surface area involved. In one embodiment, such a clinical trial can be carried out as described above under “Clinical trial in patients”. In another embodiment, such a clinical trial can be carried out as described above under “Clinical trial in healthy volunteers”.
In a further aspect, the formulation according to the invention—upon oral administration and in comparison to that obtained after oral administration of Fumaderm® tablets in an equivalent dosage—reduce redness (frequency and/or severity).
In the present context the term “redness” describes episodic attacks of redness of the skin. In one aspect, the redness occurs in the face, neck, and less frequently the upper trunk and abdomen.
In the present context, a reduction of redness is intended to denote a decrease in severity and/or incidence/frequency among a given treated patient population of redness observed after administration of the formulation according to the invention compared with redness observed after administration of Fumaderm® and can e.g. be assessed by a clinician or nurse.
A reduction in redness according to this definition could thus be construed as a reduction in incidence and/or severity of redness. In one aspect of the invention, the incidence of redness is reduced by at least about a quarter, in another aspect of the invention the incidence is reduced by at least about a third, in another aspect of the invention the incidence is reduced by at least about half, and in a further aspect of the invention, the redness incidence is reduced by about two thirds or more. Likewise, the severity is in one aspect of the invention reduced by at least about a quarter, in another aspect of the invention by at least about a third, in another aspect of the invention by at least half, and in a further aspect of the invention by at least about two thirds. A one hundred percent reduction in redness incidence and severity is most preferable, but is not required. The reduction of redness, as described above, can be monitored in a clinical trial setting, e.g. comparing the administration of the compound according to the invention with e.g. administration of Fumaderm®. In case of a Fumaderm® controlled trial, the incidence and severity, defined as mild, moderate or severe, of redness in the patients receiving the compound according to the invention compared to the Fumaderm® group, can be compared.
In one aspect, the severity of redness is determined as the body surface area involved.
In one embodiment, such a clinical trial can be carried out as described above under “Clinical trial in patients”.
In another embodiment, such a clinical trial can be carried out as described above under “Clinical trial in healthy volunteers”.
In one embodiment, the relative bioavailability of the formulation of the invention compared to Fumaderm® is at least about 75%, such as at least about 80%, such as at least about 85%, such as at least about 90%, such as at least about 95%, such as about 100%.
In the present context the term “erosion matrix” refers to a matrix wherein the release of the API does not depend upon intrinsic diffusion processes but rather is the result of the rate of the matrix erosion. By stripping off the erodible matrix layers in a well-controlled manner, predetermined amounts of the API will be obtained, with the release of API being dependent on the rate of swelling and dissolution or erosion of the matrix and on the rate of dissolution, solubility and rate of diffusion of the API.
In an aspect of the invention, the rate-controlling agent is a water-soluble polymer. As used herein, the term “water-soluble polymer” means a conventional polymer for pharmaceutical use, having a solubility of more than 10 mg/ml in water. Suitable water-soluble polymers includes, but are not limited too, for example, hydroxypropylmethyl cellulose, hydroxypropyl cellulose, methyl cellulose and carboxymethyl cellulose. According to a preferred embodiment, the water-soluble polymer is hydroxypropyl cellulose.
As used herein, the term “water-insoluble polymer” means a conventional polymer for pharmaceutical use, having a solubility of not more than 10 mg/ml in water.
In a further aspect of the invention, the erosion matrix contains essentially no water-insoluble polymer. In yet a further aspect, the erosion matrix contains no water-insoluble polymer.
In the present context the term “essentially no” refers to a level of less than about 1%, such as less than about 0.5%, such as less than about 0.3%, such as about 0.0%.
In an aspect of the invention, the rate-controlling agent is a water-soluble polymer and the erosion matrix contains essentially no water-insoluble polymer.
According to a preferred aspect of the invention, the rate-controlling agent is a water-soluble polymer and the erosion matrix contains no water-insoluble polymer.
In an embodiment of the invention, the rate-controlling agent is a cellulose polymer or a cellulose derivative or a mixture thereof. As non-limiting examples of a cellulose polymer or a cellulose derivative or a mixture thereof may be mentioned hydroxypropyl cellulose, hydroxypropyl methyl cellulose (HPMC), methyl cellulose, carboxymethyl cellulose and mixtures thereof.
According to the most preferred embodiment of the present invention, the rate-controlling agent is hydroxypropyl cellulose.
Many different grades of hydroxypropyl cellulose exist depending on e.g. the molecular weight thereof, the degree of etherification, viscosity etc. Non-limiting exemplary embodiments of commercially available hydroxypropyl celluloses are obtainable from e.g. 5 Aqualon or Nippon Soda under the trade names Klucel® HPC-L, HPC-SL, HPC-SSL, HPC-M, HPC-H etc. In an embodiment of the invention, the rate-controlling agent is hydroxypropyl cellulose having a viscosity (mPa·s) of 3.0-5.9 as measured in an aqueous solution containing 2% by weight of dry HPC at 20° C. In an embodiment of the invention, the rate-controlling agent is HPC-SL.
According to the present invention, the rate-controlling agent is present in an amount of 1-50% by weight, 1-40% by weight, such as 3-35% by weight, such as 4-15% by weight, such as 4-10% by weight, such as 3-15% by weight, such as 3-12% by weight, such as 3-10% by weight, such as 3-6% by weight, such as 3-5.5% by weight, and such as 4-6% by weight.
In an aspect, the present invention relates to a pharmaceutical formulation comprising an erosion matrix which comprises:
The amount of rate-controlling agent varies in accordance with the specific rate-controlling agent used, the release profile aimed at, the level and nature of any excipients and additives present in the core tablet, etc.
According to a preferred embodiment of the invention, the pharmaceutical composition further comprises a binder.
Non-limiting examples of a binder include water-soluble sugars and sugar alcohols, such as lactose, saccharose, glucose, sorbitol, mannitol etc. In a particularly preferred embodiment, said binder is lactose. Lactose is commercially available in a number of different grades depending i.e. on the manufacturing method used resulting in a range of particle sizes, particle size distributions etc. Examples of lactose include, but are not limited to anhydrous lactose, lactose made from alpha-lactose-monohydrate, agglomerated lactose, granulated lactose, crystalline lactose, crystalline, sieved lactose, sieved lactose (e.g. PrismaLac®, such as PrismaLac® 40), crystalline, abrasive lactose (e.g. GranuLac®, such as GranuLac® 70, GranuLac® 140, GranuLac® 200, GranuLac® 230 and GranuLac® 400), improved lactose, agglomerated lactose (e.g. Tablettose®, such as Tablettose® 70, Tablettose® 80 and Tablettose® 100), improved lactose, spraydried lactose (FlowLac®, such as FlowLac® 90 and FlowLac® 100). Lactose is available from e.g. Meggle Pharma under the trade names PrismaLac®, Capsulae®, such as Capsulac® 60, SacheLae®, SpheroLac®, Inhalac® GranuLae®, such as GranuLac® 70, GranuLac® 140, GranuLac® 200, GranuLac® 230 and GranuLac® 400, SorboLac®, Tablettose®, such as Tablettose® 70, Tablettose® 80 and Tablettose® 100, 25 FlowLac®, such as FlowLac® 90 and FlowLac® 100.
In one aspect, the lactose is agglomerated lactose. In another aspect, the lactose is spraydried lactose. In another aspect, the lactose is abrasive lactose.
In an embodiment of the invention, the tablet core of the pharmaceutical composition according to the invention comprises:
According to another preferred embodiment of the present invention, the tablet core of the pharmaceutical composition according to the present invention comprises:
Even more preferred is an embodiment, wherein the tablet core of the pharmaceutical composition of the present invention comprises:
In another preferred embodiment of the invention, the tablet core of the pharmaceutical composition according to the present invention comprises:
In an embodiment the composition according to the invention further comprises one or more lubricants.
In a preferred embodiment the pharmaceutical composition according to the invention further comprises one or more lubricant(s) and/or one or more flow control agent(s).
More specifically, in an embodiment of the invention, the tablet core of the pharmaceutical composition according to the present invention comprises:
In an even more preferred embodiment of the invention, the tablet core of the pharmaceutical composition according to the invention comprises:
In an even more preferred embodiment of the invention, the tablet core of the pharmaceutical composition according to the invention comprises:
In another even more preferred embodiment of the invention, the tablet core of the pharmaceutical composition according to the invention comprises:
In yet another particularly preferred embodiment of the invention, the tablet core of the pharmaceutical composition according to the invention comprises:
In the most preferred embodiment of the invention, the tablet core of the pharmaceutical composition according to the invention comprises:
According to the present invention, any pharmaceutically acceptable lubricant common in the art may be used in the pharmaceutical composition of the present invention. Magnesium stearate may be preferably used as a lubricant.
According to the present invention, any pharmaceutically acceptable flow control agent common in the art may be used in the pharmaceutical composition of the present invention. Silicon dioxide may be preferably used as a flow control agent.
In an embodiment the formulation according to the invention may further comprise pharmaceutically acceptable excipients and additives selected from the group comprising lubricants, glidants, disintegrants, flow control agents, solubilizers, pH control agents, surfactants and emulsifiers. The amounts of such excipients and additives may be adjusted such that the properties of the pharmaceutical composition are not deteriorated.
In an embodiment, the formulation according to the invention is manufactured without the use of a disintegrant, i.e. it is preferred that the pharmaceutical composition of the present invention does not contain any disintegrant. However, small amounts of a disintegrant are allowed as long as the presence of the disintegrant does not causes the erosion matrix tablet to disintegrate.
According to the present invention, at least one of the one or more coating(s) is an enteric coating.
Enteric coating materials may be selected from any of a number of commercially available 30 coating materials. Non-limiting examples thereof include Eudragit® E, L, S, L30 D-55, Kollicoat® 30D, Cellulose Acetate Phthalate, Polyvinyl Acetate Phthalate, and Hypromellose Phthalate. According to a preferred embodiment, the solution used as coating solution for preparing the essential enteric coating comprises Eudragit® L30 D-55, triethyl citrate, glycerol monostearate, and Polysorbate 80.
According to the present invention, said essential enteric coating is applied at a level of 1.5 to 3.5% by weight of the tablet core, such as 2.0 to 3.5% by weight of the tablet core, such as 2 to 3% by weight of the tablet core. According to a particularly preferred embodiment, the coating additionally fulfills the proviso that it is typically applied to a level of about 2.0 mg/cm2 to about 3.5 mg/cm2 of the core tablet, such as about 2.5 mg/cm2 to about 3.5 mg/cm2 of the core tablet, such as about 2.8 mg/cm2 to about 3.3 mg/cm2 of the core tablet.
Enteric coating is a well-established approach to prevent or minimise drug release in the stomach and allow release in the small intestine. Such enteric polymer coatings work on the principle of pH dependent solubility: insoluble in the low pH conditions of the stomach but soluble in the near neutral pH environment of the proximal small intestine having a pH in the range 5-6.
For drugs requiring absorption in the small intestine this leaves open only a narrow window of release, such as about 6 h, such as about 5 hours, such as about 4 hours, such as about 3 hours, hours between dissolution of the enteric coating and release of the API from the formulation. It has been found that rapid dissolution of the enteric coating is possible by the application of a relatively thin coat, i.e. an amount of 1.5 to 3.5% by weight of enteric coating relative to the tablet core, while surprisingly still obtaining the required protection against the acid environment of the stomach as e.g. shown—when subjected to an in vitro dissolution test employing 0.1 N hydrochloric acid as dissolution medium during 2 hours—by less than 10%, such as less than 5%, such as less than 2%, such as about 0% release of the fumaric ester contained in the formulation.
In an embodiment of the invention, the formulation according to the invention comprises an enteric coating and the in vivo release of the dimethyl fumarate displays an earlier onset of release than the prior art formulation Fumaderm®, such as at least 20 minutes, at least 30 minutes, at least 40 minutes, at least 50 minutes, at least 60 minutes, at least 70 minutes, at least 80 minutes, at least 90 minutes, at least 100 minutes, at least 110 minutes, or at least 120 minutes earlier than Fumaderm® under fasting conditions.
In an embodiment of the invention, the formulation according to the invention comprises an enteric coating and the in vivo release of the dimethyl fumarate displays a lag time of 15 minutes to 2 hours under fasting conditions, such as a lag time of at the most 120 minutes, at the most 110 minutes, at the most 100 minutes, at the most 90 minutes, at the most 80 minutes, at the most 70 minutes, at the most 60 minutes, at the most 50 minutes, at the most 40 minutes, at the most 30 minutes, at the most 20 minutes, or at the most 15 minutes under fasting conditions.
According to a preferred embodiment of the invention, the release of the dimethyl fumarate—when subjected to an in vitro dissolution test employing 0.1 N hydrochloric acid as dissolution medium during the first 2 hours of the test and then 0.05 M phosphate buffer pH 6.8 as dissolution medium is as follows:
within the first 2 hours after start of the test from about 0% w/w to about 10% w/w, preferably 0% w/w to about 5% w/w, more preferably 0% w/w to <2% w/w of the total amount of dimethyl fumarate contained in the pharmaceutical composition is released, and
within the first 2.5 hours after start of the test from about 2% w/w to about 20% w/w of the total amount of the dimethyl fumarate contained in the pharmaceutical composition is released, and
within the first 3.5 hours after start of the test from about 25% w/w to about 65%, such as 35% w/w to about 65% w/w of the total amount of dimethyl fumarate contained in the pharmaceutical composition is released, and
within the first 5 hours after start of the test >85% w/w of the total amount of dimethyl fumarate contained in the pharmaceutical composition is release.
In an embodiment the pharmaceutical composition according to the invention is for administration once, twice or three times daily.
According to a preferred embodiment, the pharmaceutical composition is for administration once daily. In such a case, the pharmaceutical composition according to the present invention may preferably contain a total amount of dimethyl fumarate as the active substance of 400 mg±5%, preferably about 400 mg, or 410 mg±5%, preferably about 410 mg. It is most preferred that the total amount of dimethyl fumarate as active substance is about 400 mg.
According to another preferred embodiment according to the present invention, the pharmaceutical composition is for administration two times daily. If the total daily dose is to be 410 mg, in such a case the pharmaceutical composition preferably contains a total amount of dimethyl fumarate of 205 mg. If the total daily dose is to be 400 mg, in such a case the pharmaceutical composition preferably contains a total amount of dimethyl fumarate of 200 mg.
The daily dosage of the controlled release pharmaceutical composition according to the invention that is administered to treat a patient depends on a number of factors among which are included, without limitation, weight and age and the underlying causes of the condition or disease to be treated, and is within the skill of a physician to determine.
According to the present invention, the daily dosage of dimethyl fumarate is 410 mg±5%, i.e. a range of 389.5 to 430.5 mg. The daily dosage may be given in, e.g. one, two or three doses.
According to an alternative embodiment, the daily dosage of dimethyl fumarate is 400 mg±5%, i.e. a range of 380 to 420 mg. The daily dosage may be given in, e.g. one, two or three doses. In the case of administration of the daily dosage of a total amount 400 mg in two doses, it is possible to administer two oral dosage forms, such as two tablets, twice daily (b.i.d.). In such a case the oral dosage form, such as a tablet, contains 100 mg of DMF as the active substance. In the case of a tablet having an amount of 100 mg of DMF as active ingredient, it is preferred that the tablet comprises: 45 to 60% by weight of dimethylfumarate as the active ingredient, 30 to 50% by weight of lactose and 3 to 12% by weight, preferably 3 to 6% by weight of HPC.
Preparation of the erosion matrix tablets according to the invention may be obtained by granulation, followed by tableting, enteric coating and optionally film coating of the core tablets obtained. The core can for example be made by conventional wet granulation or continuous granulation such as extrusion followed by compaction of the granules into tablets. The core may then be coated using an appropriate technology, preferably by air suspension.
An aspect of the invention is a method for preparing the formulation according to the invention, comprising the steps of:
In an embodiment of the invention any of or all of the above steps are performed at a temperature to allow a product temperature not exceeding 40° C., such as not exceeding 35° C., such as not exceeding 30° C. Thus it has surprisingly been shown that the preparation of the formulation according to the invention may be obtained by the use of solely water as solvent, thus obviating the need for any organic solvents. Furthermore all process steps may be carried out at a rather low temperature. Thereby any sublimation of the active pharmaceutical ingredient is minimised or reduced and an energy-efficient process is obtained, mitigating loss of API, thus reducing cost as well as improving environmental and workers' safety.
In the present context particle size is measured by conventional sieve analysis known to the person skilled in the art.
It is preferred that the mean particle size of the active pharmaceutical ingredient (the dimethyl fumarate) is reduced, e.g. by sieving or milling, such that at least 50% of the particles have a particle size of less than 800 μm, such as less than 600 μm, such as less than 500 μm, such as less than 400 μm, such as less than 300 μm, such as less than 200 μm prior to step a) above.
In another preferred embodiment, the mean particle size of the active pharmaceutical ingredient (the dimethyl fumarate) is reduced, e.g. by sieving or milling, such that at least 80% of the particles have a particle size of less than 800 μm, such as less than 600 μm, such as less than 500 μm, such as less than 400 μm, such as less than 200 μm, prior to step a) above.
According to a preferred embodiment, the mean particle size of the crystalline active pharmaceutical ingredient dimethyl fumarate is reduced, e.g. by sieving or milling, such that at least 90% of the particles have a particle size of less than 800 μm, such as less than 600 μm, such as less than 500 μm, such as less than 400 μm, such as less than 200 μm, prior to step a) above.
In an embodiment of the invention the mean particle size of the crystalline active pharmaceutical ingredient dimethyl fumarate may be reduced, e.g. by sieving or milling, wherein said sieving or milling is performed producing a minimum amount of heat. Thereby any sublimation of the active pharmaceutical ingredient is minimised or reduced and an energy-efficient process is obtained, mitigating loss of API, thus reducing cost as well as improving environmental and workers' safety. The sieving or milling may take place as a single sieving or milling step or may optionally be repeated several times to obtain the required particle distribution.
In one embodiment of the invention, the sieving or milling takes place as a two-step process.
In one embodiment of the invention, where the sieving or milling is performed as several steps an agent for reducing agglomeration is added in between the steps.
In one aspect, a lower amount of rate-controlling agent enables manufacture of a tablet with a high drug load such as at least 35%, 40%, 45%, 50%, 55%, or 60% dimethyl fumarate based on the total tablet weight.
In an embodiment of the invention step b) is performed in a fluid bed granulator.
Another aspect of the invention is a method for preparing the formulation according to the invention, comprising the steps of:
In an embodiment of the invention step b) is performed in a fluid bed granulator.
Another embodiment of the invention is a method for preparing the formulation according to the invention, comprising the steps of:
Another embodiment of the invention is a method for preparing the formulation according to the invention, comprising the steps of:
Another embodiment of the invention is a method for preparing the formulation according to the invention, comprising the steps of:
In an embodiment of the invention the fumaric acid ester is preblended with one or more pharmaceutically acceptable excipients before step a) above.
The stability of the formulations according to the invention may be determined by measuring the initial in vitro dissolution profile of the tablets and the in vitro dissolution profile after different periods of storage and comparing the in vitro dissolution profiles obtained. In an embodiment of the invention the tablets are stable for at least 6 months, such as at least 9 months, such as at least 12 months, such as at least 18 months, such as at least 24 months, such as 36 months.
The stability of the formulations according to the invention may also be determined by standardized methods for measuring any changes in for example assay, colour or degradation products.
In an embodiment of the invention, stability of a formulation can be defined by objective criteria, such as e.g. a certain maximum change of the amount of API released at a predetermined time point during a standardized in vitro dissolution test, when comparing the initial testing time point to testing at a later point in time. In an embodiment of the invention, the amount of the API released from the formulation stored under ICH conditions (such as degrees C./60% RH, such as 30 degrees C./65% RH, such as 40 degrees C./75% RH) for a certain period of time (such as at least 1 month, such as at least 3 months, such as at least 6 months, such as at least 9 months, such as at least 12 months, such as at least 18 months, such as at least 24 months, such as at least 36 months) c.f. the initial time point (time=0, set down of stability testing)—when subjected to an in vitro dissolution test employing 0.1 N hydrochloric acid as dissolution medium during the first 2 hours of the test and then 0.05 M phosphate buffer pH 6.8 as dissolution medium—is as follows:
1 hour after start of the test, a difference of less than 10 percentage points, such as less than 9 percentage points, such as less than 8 percentage points, such as less than 6 percentage points, such as less than 4 percentage points, such as less than 2 percentage points, such as less than 1 percentage point in the amount of the active pharmaceutical ingredient released from the formulation is observed, and/or
2 hours after start of the test, a difference of less than 10 percentage points, such as less than 9 percentage points, such as less than 8 percentage points, such as less than 6 percentage points, such as less than 4 percentage points, such as less than 2 percentage points, such as less than 1 percentage point in the amount of the active pharmaceutical ingredient released from the formulation is observed, and/or
3 hours after start of the test, a difference of less than 10 percentage points, such as less than 9 percentage points, such as less than 8 percentage points, such as less than 6 percentage points, such as less than 4 percentage points, such as less than 2 percentage points, such as less than 1 percentage point in the amount of the active pharmaceutical ingredient released from the formulation is observed, and/or
4 hours after start of the test, a difference of less than 10 percentage points, such as less than 9 percentage points, such as less than 8 percentage points, such as less than 6 percentage points, such as less than 4 percentage points, such as less than 2 percentage points, such as less than 1 percentage point in the amount of the active pharmaceutical ingredient released from the formulation is observed, and/or
5 hours after start of the test, a difference of less than 10 percentage points, such as less than 9 percentage points, such as less than 8 percentage points, such as less than 6 percentage points, such as less than 4 percentage points, such as less than 2 percentage points, such as less than 1 percentage point in the amount of the active pharmaceutical ingredient released from the formulation is observed.
The pharmaceutical formulation according to the present invention is for use for the treatment of psoriasis, psoriatic arthritis, neurodermatitis, inflammatory bowel disease, such as Crohn's disease and ulcerative colitis, polyarthritis, multiple sclerosis (MS), juvenile-onset diabetes mellitus, Hashimoto's thyroiditis, Grave's disease, SLE (systemic lupus erythematosus), Sjogren's syndrome, Pernicious anemia, Chronic active (lupoid) hepatitis, Rheumatoid arthritis (RA), lupus nephritis, myasthenia gravis, uveitis, refractory uveitis, vernal conjunctivitis, pemphigus vulgaris, scleroderma, optic neuritis, pain such as radicular pain, pain associated with radiculopathy, neuropathic pain or sciatica/sciatic pain, organ transplantation (prevention of rejection), sarcoidosis, necrobiosis lipoidica or granuloma annulare.
In a particularly preferred embodiment of the invention the composition according to the invention is for use in the treatment of psoriasis, including mild to moderate, moderate to severe, or severe plaque psoriasis.
In a preferred embodiment of the invention the composition according to the invention is for use in the treatment of psoriatic arthritis.
In another particularly preferred embodiment of the invention the composition according to the invention is for use in the treatment of multiple sclerosis, including relapsing-remitting or progressive multiple sclerosis.
In another preferred embodiment of the invention the composition according to the invention is for use in the treatment of rheumatoid arthritis.
It is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims. Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, the preferred methods and materials are described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
During the carrying out of all the following steps in the examples necessary precautions are to be taken (protective clothing with external air supply, double gloves, arm covers, breathing mask, etc. and/or contained equipment have to be used).
1212 g of dimethyl fumarate is blended with 2.9 g of Aerosil® and de-agglomerated by milled through a 613 μm screens—app. 3%>500 μm, approx. 20%>250 μm and approx. 25%<100 μm. The mean particle size was 165 μm.
1105 g of the milled material is blended further with 107.5 g of HPC-SL and 1278 g of granulated lactose (Tablettose® 100). Finally, 9.1 g of magnesium stearate is added and the mixture blended again. The blend is pressed into elongated tablets with weight of 465 mg. The core tablets are enteric coated as described below.
1150 g of dimethyl fumarate is blended with 2.8 g of Aerosil® and de-agglomerated by milled through a 613 μm screens—app. 3%>500 μm, approx. 22%>250 μm and approx. 25%<100 μm. The mean particle size is 175 μm.
1048.5 g of the milled material is blended further with 102 g of HPC-SL and 1341 g of granulated lactose (Tablettose® 100). Finally, 8.7 g of magnesium stearate is added and the mixture blended again. The blend is pressed into elongated tablets with weight of 490 mg. The core tablets are enteric coated as described below.
1095 g of dimethyl fumarate is blended with 2.7 g of Aerosil® and de-agglomerated by milled through a 613 μm screens—app. 3%>500 μm, approx. 22%>250 μm and approx. 25%<100 μm. The mean particle size is 175 μm.
997.5 g of the milled material is blended further with 97 g of HPC-SL and 1397 g of granulated lactose (Tablettose® 100). Finally, 8.3 g of magnesium stearate is added and the mixture blended again. The blend is pressed into elongated tablets with weight of 515 mg. The core tablets are enteric coated as described below.
1528 g of dimethyl fumarate is blended with 3.8 g of Aerosil® and de-agglomerated by milled through a 613 μm screens—app. 3%>500 μm, approx. 22%>250 μm and approx. 25%<100 μm. The mean particle size is 175 μm.
1392.5 g of the milled material is blended further with 125 g of HPC-SL and 973.5 g of granulated lactose (Tablettose® 100). Finally, 9 g of magnesium stearate is added and the mixture blended again. The blend is pressed into elongated tablets with weight of 180 mg. The core tablets are enteric coated as described below.
1375 g of dimethyl fumarate is blended with 3.5 g of Aerosil® and de-agglomerated by milled through a 613 μm screens—app. 3%>500 μm, approx. 22%>250 μm and approx. 25%<100 μm. The mean particle size is 175 μm.
1253.25 g of the milled material is blended further with 118.75 g of HPC-SL and 1118.75 g of granulated lactose (Tablettose® 100). Finally, 9.5 g of magnesium stearate is added and the mixture blended again. The blend is pressed into elongated tablets with weight of 400 mg. The core tablets are enteric coated as described below.
A gastric acid-resistant coating fluid is prepared by heating 8.7 kg of purified water to 70-80° C., then 166 g of triethyl citrate, 49 g of glyceryl monostearate (Cutina GMS V), and 20 g of Tween 80 is added and stirred with the UltraTurrax for 10 minutes to achieve a homogenous mixture. 10.7 kg of purified water is added and the mixture is stirred with a propeller stirrer until the emulsion had reached room temperature. This emulsion is then added slowly to 5.5 kg of Eudragit® L30 D 55 dispersion. The resulting gastric acid-resistant coating fluid is sprayed on the core tablets directly in a perforated drum coater. After that the tables are cured over 2 hours at 40° C. The amount of solids to be sprayed onto the tablets corresponds to a 2.75% weight increase resulting in a real weight increase of the coated tablets compared to core tablets of app. 2.4%.
A gastric acid-resistant coating fluid is prepared by heating 8.7 kg of purified water to 70-80° C., then 166 g of triethyl citrate, 49 g of glyceryl monostearate (Cutina GMS V), and 20 g of Tween 80 is added and stirred with the UltraTurrax for 10 minutes to achieve a homogenous mixture. 10.7 kg of purified water is added and the mixture was stirred with a propeller stirrer until the emulsion has reached room temperature. This emulsion is then added slowly to 5.5 kg of Eudragit® L30 D 55 dispersion. The resulting gastric acid-resistant coating fluid is sprayed on the core tablets directly in a perforated drum coater. After that the tables are cured over 2 hours at 40° C. The amount of solids to be sprayed onto the tablets corresponds to a 3.2% weight increase resulting in a real weight increase of the coated tablets compared to core tablets of app. 2.8%.
A gastric acid-resistant coating fluid is prepared by heating 8.7 kg of purified water to 70-80° C., then 166 g of triethyl citrate, 49 g of glyceryl monostearate (Cutina GMS V), and 20 g of Tween 80 is added and stirred with the UltraTurrax for 10 minutes to achieve a homogenous mixture. 10.7 kg of purified water is added and the mixture was stirred with a propeller stirrer until the emulsion has reached room temperature. This emulsion is then added slowly to 5.5 kg of Eudragit® L30 D 55 dispersion. The resulting gastric acid-resistant coating fluid is sprayed on the core tablets directly in a perforated drum coater. After that the tables are cured over 2 hours at 40° C. The amount of solids to be sprayed onto the tablets corresponds to a 2.4% weight increase resulting in a real weight increase of the coated tablets compared to core tablets of app. 2.1%.
A unit dosage form consisting essentially of e.g. 410 mg±5%, 205 mg±5%, or 102.5 mg±5% dimethyl fumarate formulated as an enterically coated erosion matrix tablet may be prepared using the methods described above. In one embodiment, the 410 mg dose of dimethyl fumarate is administered once daily. In another embodiment, the 205 mg unit dosage form is administered twice daily. And in yet another embodiment, the 102.5 mg unit dosage form is administered as two tablets twice a day. Such low dosing regimens are especially advantageous in reducing side effects associated with dimethyl fumarate therapies.
A unit dosage form consisting essentially of e.g. 400 mg±5%, 200 mg±5%, or 100 mg±5% dimethyl fumarate formulated as an enterically coated erosion matrix tablet may be prepared using the methods described above. In one embodiment, the 400 mg dose of dimethyl fumarate is administered once daily. In another embodiment, the 200 mg unit dosage form is administered twice daily. And in yet another embodiment, the 100 mg unit dosage form is administered as two tablets twice a day. Such low dosing regimens are especially advantageous in reducing side effects associated with dimethyl fumarate therapies.
In some embodiments, to increase tolerability to die thy fumarate, patients are uptitrated to the 400 or 410 mg daily dose during an initial dosing phase which includes, for example, administering 100, 200, or 205 mg for at least one week prior to administering a daily maintenance dose of 400 or 410 mg. In one working example, a patient is administered 200 mg for one to two weeks followed by weekly administration of the 400 mg per day daily dose. In another working example, a patient is administered 100 mg for one to two weeks, followed by a period where 200 mg is administered for a period of time, and then followed by administration of the 400 mg daily dose.
Number | Date | Country | Kind |
---|---|---|---|
13181735.5 | Aug 2013 | EP | regional |
13190304.9 | Oct 2013 | EP | regional |
14180569.7 | Aug 2014 | EP | regional |
Number | Date | Country | |
---|---|---|---|
62035898 | Aug 2014 | US | |
61895740 | Oct 2013 | US | |
61870096 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14914031 | Feb 2016 | US |
Child | 15584439 | US |