The present disclosure relates to the technical field of pharmaceutical compositions, in particular to a pharmaceutical composition for corneal tissue repair by an insulin nanosystem and use thereof.
Corneal injuries of different etiologies, such as severe dry eye, infectious or non-infectious keratitis, chemical burns, corneal transplantation rejection, poor repair after various keratoplastic surgeries, and corneal trauma, remain the main and common clinical corneal diseases and disorders. Despite corresponding treatment, some patients are still unsatisfied with the efficacy, resulting in refractory corneal diseases. In this case, the infiltration of some cytokines and inflammatory factors in the tear and corneal tissue may lead to delayed corneal epithelial healing, recurrent corneal ulcers, neovascularization, edema, corneal opacity, and decreased visual acuity. Therefore, it is particularly important for the treatment of similar corneal diseases.
At present, main therapies used include anti-inflammation, anti-infection, administration of growth factors that promote corneal repair, and amniotic membrane transplantation. Topical administration of corticosteroids is beneficial to inhibit the development of inflammation, and amniotic membrane transplantation and various growth factors are beneficial to promote the repair and reconstruction of corneal tissue. Topical dropping is the preferred non-invasive anterior ocular segment administration route, and 90% of conventional ophthalmic preparations on the market are eye drops. However, the bioavailability of the topical dropping is relatively low, because the residence time and penetration of the drug are affected by a plurality of anatomical and physiological factors, for example: blinking, tear secretion, and nasolacrimal duct drainage make the drug stay in the eye for a shorter time. Also, the static and dynamic barriers of the eyeball will reduce the bioavailability of drugs in the eye, thereby affecting the therapeutic effect. In addition, frequent dropping of corticosteroids may produce side effects such as corneal toxicity and elevated intraocular pressure. Therefore, it is one of the urgent problems to seek for a novel ophthalmic preparation that is safe and effective, can reduce side effects and administration frequency, and improve patient compliance. In another aspect, for some refractory corneal ulcers, conventional methods such as anti-inflammation, anti-infection, promotion of corneal repair, and amniotic membrane transplantation are not effective. Relevant innovative therapies for corneal healing have become the focus of increasing concern.
In order to solve the above problems, the present disclosure provides a pharmaceutical composition for corneal tissue repair by an insulin nanosystem and use thereof on the basis of the prior art.
An objective of the present disclosure is to provide a pharmaceutical composition for corneal tissue repair by an insulin nanosystem and use thereof. The present disclosure prepares a novel ophthalmic pharmaceutical composition by encapsulating insulin in nanomaterials like liposome. The ophthalmic pharmaceutical composition has the advantages of safety, effectiveness, low side effects and low administration frequency, and can effectively improve patient compliance; meanwhile, the ophthalmic pharmaceutical composition has important biological functions in anti-inflammation, anti-apoptosis and promoting nerve repair, and has more advantages in the treatment effects of anti-inflammation, anti-infection, and promoting corneal repair and strengthening amniotic membrane transplantation compared with a traditional treatment method.
The foregoing technical objective of the present disclosure is achieved through the following technical solutions:
A pharmaceutical composition for corneal tissue repair by an insulin nanosystem is prepared, including a nanomaterial-based drug delivery system and insulin encapsulated in the nanomaterial-based drug delivery system.
By adopting the above technical solution and utilizing unique properties of the nanomaterial, nanomaterials have more advantages than conventional drug delivery methods in delivering drugs for the treatment of eye diseases. Due to the advantages of excellent corneal penetrability, strong biocompatibility, non-toxicity, sustained release and long half-life mainly manifested in nanopreparations of drugs, a nano-controlled release system has an excellent application prospect in ophthalmology. In the present solution, after the insulin is encapsulated in liposome, an inner water phase of the liposome can protect the structure and conformation of the insulin, while an outer lipophilic layer helps improve absorption across the biomembrane barrier, and utilizes the biomembrane properties and drug delivery capabilities of the liposome to help improve bioavailability; and a liposome nano-controlled release system can effectively improve the ophthalmic drug delivery efficiency. The insulin has important biological functions in anti-inflammation, anti-apoptosis and promoting nerve repair. Encapsulating the insulin in the liposome can obtain a novel ophthalmic preparation that is safe and effective, with fewer side effects, low administration frequency and high patient compliance.
Further, the nanomaterial-based drug delivery system is a liposome.
The pharmaceutical composition for corneal tissue repair by an insulin nanosystem provided by the present disclosure is used in corneal repair.
Clinically, insulin is mainly used to treat diabetes. However, it has been shown that the insulin is not only an important metabolic regulating hormone, but also an important antiinflammatory factor, an anti-apoptotic factor, and a nerve repair factor, playing important biological roles in anti-inflammation, anti-infection, and promoting nerve repair; it has been shown that the insulin is involved in the regulation of inflammation and apoptosis by binding to receptors to activate the phosphatidylinositol-3-kinase (PI3K) pathway and the mitogen-activated protein kinase (MAPK) pathway; the insulin has protective effects on retinal Mǔller cells, nerves, and rat cortical neurons; topical use of insulin drops in patients with refractory neurotrophic corneal ulcers has found that complete corneal regeneration and repair can be achieved within 7-25 days. Therefore, the insulin has great potential in the treatment of corneal injury, not only avoiding adverse effects caused by long-term use of corticosteroids, but also having the advantages in promoting corneal repair, protecting and repairing corneal nerves.
To sum up, the present disclosure has the following beneficial effects:
The present invention is further described in detail below with reference to accompanying drawings and an example.
Example: A pharmaceutical composition for corneal tissue repair by an insulin nanosystems included liposomes and insulin encapsulated in the liposomes. The pharmaceutical composition for corneal tissue repair by an insulin nanosystem could be used in corneal repair, and its preparation steps were as follows:
As a highly efficient nano-controlled release system, insulin liposomes facilitate the realization of safe, effective and precise drug release. At the same time, the use of insulin can not only avoid the adverse reactions of long-term use of corticosteroids, but also can promote corneal repair and protect and repair corneal nerves; as a novel ophthalmic preparation, insulin liposomes can effectively reduce corneal toxicity, elevated intraocular pressure, and other side effects, and can effectively lower the administration frequency.
At present, tetrandrine-PFOB-loaded liposomes have been successfully prepared, and their characterization detection, along with analyses of safety concentration, and in vivo and in vitro accumulation and distribution, has been carried out. It has been found in the treatment of dry eyes in living rabbits that tetrandrine-PFOB-loaded liposomes have an obvious therapeutic effect on dry eyes and a lower effect on intraocular pressure.
As shown in
The present disclosure further detected the physicochemical properties of the insulin liposomes, and the steps were as follows:
As shown in
As shown in
As shown in
As shown in
The present disclosure further detected the encapsulation efficiency and drug loading capacity of the insulin liposome, and test methods were as follows: a quantity of insulin liposomes were prepared, and the drug encapsulation efficiency and drug loading capacity were determined by the demulsification method; insulin encapsulation efficiency = drug loading capacity / total input × 100%; drug loading capacity of insulin = drug loading capacity / total amount of liposomes × 100%.
As shown in
In the foregoing example of the present disclosure, a novel ophthalmic pharmaceutical composition is prepared by encapsulating insulin in nanomaterials like liposome. The ophthalmic pharmaceutical composition has the advantages of safety, effectiveness, low side effects and low administration frequency, and can effectively improve patient compliance; meanwhile, the ophthalmic pharmaceutical composition has important biological functions in anti-inflammation, anti-apoptosis and promoting nerve repair, and has more advantages in the treatment effects of anti-inflammation, anti-infection, and promoting corneal repair and strengthening amniotic membrane transplantation compared with a traditional treatment method.
This specific example is only an explanation of the present disclosure, but it is not a limitation of the present disclosure. After reading this specification, those skilled in the art can make modifications without creative contribution to the present example as needed, but they are protected by patent law as long as these modifications fall within the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202111347384.0 | Nov 2021 | CN | national |