PHARMACEUTICAL COMPOSITION FOR TREATING ALZHEIMER'S DISEASE

Information

  • Patent Application
  • 20140058097
  • Publication Number
    20140058097
  • Date Filed
    November 01, 2013
    11 years ago
  • Date Published
    February 27, 2014
    10 years ago
Abstract
A pharmaceutical composition for treating Alzheimer's disease containing a compound represented by the general formula (I):
Description
TECHNICAL FIELD

The present invention relates to a pharmaceutical composition which has reducing effect to produce amyloid β protein and is useful as an agent for treating disease induced by production, secretion and/or deposition of amyloid β protein, especially Alzheimer's disease.


BACKGROUND ART

In the brain of Alzheimer's patient, the peptide composed of about 40 amino acids residue as is called amyloid β protein, that accumulates to form insoluble specks (senile specks) outside nerve cells is widely observed. It is concerned that this senile specks kill nerve cells to cause Alzheimer's disease. The therapeutic agents for Alzheimer's disease, such as decomposition agents of amyloid β protein and amyloid β vaccine, are under investigation.


Secretase is an enzyme which cleaves amyloid 3 precursor protein (APP) in cell and produce amyloid 13 protein. The enzyme which controls the production of N terminus of amyloid β protein is called as BACE 1 (beta-site APP-cleaving enzyme 1, β-secretase). It is thought that inhibition of this enzyme leads to reduction of producing amyloid β protein and that the therapeutic agent for Alzheimer's disease will be created by the inhibition.


Patent Literature 1 describes the compounds which are similar to those of the compounds contained in the pharmaceutical composition of the present invention, and the compounds have NO synthase enzyme inhibitory activity and are useful for dementia.


Patent Literature 2 to 10 describes the compounds which are known as BACE 1 inhibitor, however, have different structures from the compounds contained in the pharmaceutical composition of the present invention.

  • [Patent Literature 1] International Patent Application Publication WO96/014842
  • [Patent Literature 2] International Patent Application Publication WO02/96897
  • [Patent Literature 3] International Patent Application Publication WO04/043916
  • [Patent Literature 4] International Patent Application Publication WO2005/058311
  • [Patent Literature 5] International Patent Application Publication WO2005/097767
  • [Patent Literature 6] International Patent Application Publication WO2006/041404
  • [Patent Literature 7] International Patent Application Publication WO2006/041405
  • [Patent Literature 8] US Patent Application Publication US2007/0004786
  • [Patent Literature 9] US Patent Application Publication US2007/0004730
  • [Patent Literature 10] US Patent Application Publication US2007/27199
  • [Patent Literature 11] International Patent Application Publication WO2007/049532


DISCLOSURE OF INVENTION
Problems to be Solved by the Invention

The present invention provides pharmaceutical compositions which have reducing effects to produce amyloid β protein, especially BACE 1 inhibitory activity, and which are useful as an agent for treating disease induced by production, secretion and/or deposition of amyloid β protein.


Means to Solve the Problems

The present invention provides:


(a) a pharmaceutical composition for treating Alzheimer's disease containing a compound represented by the general formula (I):




embedded image


wherein ring A is an optionally substituted carbocyclic group or an optionally substituted heterocyclic group;




embedded image


wherein Alk1 is lower alkylene or lower alkenylene;


R0 is a hydrogen atom, lower alkyl or acyl;


X is S, O, or NR1;

R1 is a hydrogen atom or lower alkyl;


R2a and R2b are each independently a hydrogen atom, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted amino, optionally substituted amidino, optionally substituted acyl, optionally substituted carbamoyl, optionally substituted carbamoylcarbonyl, optionally substituted lower alkylsulfonyl, optionally substituted arylsulfonyl, an optionally substituted carbocyclic group or an optionally substituted heterocyclic group;


R3a, R3b, R4a and R4b are each independently a hydrogen atom, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted acyl, carboxy, optionally substituted lower alkoxycarbonyl, optionally substituted amino, optionally substituted carbamoyl, an optionally substituted carbocyclic group or an optionally substituted heterocyclic group;


n and m are each independently an integer of 0 to 3;


n+m is an integer of 1 to 3;


each R3a, each R3b, each R4a, and each R4b may be independently different;


R5 is a hydrogen atom, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, an optionally substituted carbocyclic group or an optionally substituted heterocyclic group;




embedded image


R5 and ring A can be taken together to form




embedded image


wherein R5a and R5b are each independently a hydrogen atom or lower alkyl;


s is an integer of 1 to 4;


each R5a and each R5b may be different;


with the proviso that the compound wherein n+m is 2; R5 is a hydrogen atom; and ring A is non-substituted phenyl is excluded,


its pharmaceutically acceptable salt, or a solvate thereof as an active ingredient, (a1) a pharmaceutical composition for treating Alzheimer's disease containing a compound represented by the general formula (I):




embedded image


wherein ring A is an optionally substituted carbocyclic group or an optionally substituted heterocyclic group;




embedded image


wherein Alk1 is lower alkylene;


R0 is a hydrogen atom, lower alkyl or acyl;


X is S, O, or NR1;

R1 is a hydrogen atom or lower alkyl;


R2a and R2b are each independently a hydrogen atom, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted amino, optionally substituted amidino, optionally substituted acyl, optionally substituted carbamoyl, optionally substituted lower alkylsulfonyl, optionally substituted arylsulfonyl, an optionally substituted carbocyclic group or an optionally substituted heterocyclic group;


R3a, R3b, R4a, and R4b are each independently a hydrogen atom, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted acyl, carboxy, optionally substituted lower alkoxycarbonyl, optionally substituted amino, optionally substituted carbamoyl, an optionally substituted carbocyclic group or an optionally substituted heterocyclic group;


n and m are each independently an integer of 0 to 3;


n+m is an integer of 1 to 3;


each R3, each R3b, each R4a, and each R4b may be independently different;


R5 is a hydrogen atom, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, an optionally substituted carbocyclic group or an optionally substituted heterocyclic group;




embedded image


R5 and ring A can be taken together to form




embedded image


wherein R5a and R5b are each independently a hydrogen atom or lower alkyl;


s is an integer of 1 to 4;


each R5a and each R5b may be different;


with the proviso that the compound wherein n+m is 2; R5 is a hydrogen atom; and ring A is non-substituted phenyl is excluded,


its pharmaceutically acceptable salt, or a solvate thereof as an active ingredient,


(b) the pharmaceutical composition for treating Alzheimer's disease according to (a), wherein X is S,


(c) the pharmaceutical composition for treating Alzheimer's disease according to (a), wherein n is 2, and m is 0,


(d) the pharmaceutical composition for treating Alzheimer's disease according to (a), wherein E is a bond,


(e) a pharmaceutical composition for treating Alzheimer's disease containing a compound represented by the general formula (I):




embedded image


wherein each symbols are the same as described in (a), with the proviso that the compounds as shown below;


i) wherein n+m is 2, R5 is a hydrogen atom, and ring A is non-substituted phenyl;


ii) wherein n is 2, m is 0, R2a is a hydrogen atom, R2b is a hydrogen atom or acetyl, R5 is methyl, and ring A is phenyl or 4-methoxyphenyl;


iii) wherein n is 2, m is 0, R2a is a hydrogen atom, R2b is a hydrogen atom or acetyl, R5 is ethyl, and ring A is 3,4-dimethoxyphenyl;


iv) wherein n is 2, m is 0, R2a is a hydrogen atom, R2b is a hydrogen atom or acetyl, and R5 and ring A is phenyl;


v) wherein n is 2, m is 0, R2a and R2b is a hydrogen atom, R5 and ring A are taken together to form




embedded image


wherein Me is methyl, and each symbols are the same as described above; and


vi) wherein n+m is 2,


R5 is a hydrogen atom, and


ring A is phenyl substituted with one or two substituent(s) selected from the group of hydroxy, halogen, lower alkyl, lower alkoxy, nitro, amino, lower


alkylcarbonylamino, mercapto, lower alkylthio, and carbamoyl,


non-substituted phenyl,


or non-substituted naphthyl; are excluded,


its pharmaceutically acceptable salt, or a solvate thereof as an active ingredient,


(f) the pharmaceutical composition for treating Alzheimer's disease according to (e), wherein X is S,


(g) the pharmaceutical composition for treating Alzheimer's disease according to (e) or (f), wherein n is 2, and m is 0,


(h) the pharmaceutical composition for treating Alzheimer's disease according to any one of (e) to (g), wherein R5 is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, an optionally substituted carbocyclic group or an optionally substituted heterocyclic group,


(i) the pharmaceutical composition for treating Alzheimer's disease according to any one of (e) to (h), wherein R2 is a hydrogen atom; R2b is a hydrogen atom, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl, or optionally substituted amidino,


(j) the pharmaceutical composition for treating Alzheimer's disease according to any one of (e) to (h), wherein NR2aR2b is represented by the formula:




embedded image


wherein R6, R7, and R8 are each independently a hydrogen atom, lower alkyl or acyl, Y is optionally substituted lower alkylene, optionally substituted lower alkenylene or optionally substituted lower alkynylene;


Z is O or S;

(k) the pharmaceutical composition for treating Alzheimer's disease according to any one of (e) to (j), wherein ring A is substituted phenyl,


(l) the pharmaceutical composition for treating Alzheimer's disease according to any one of (e) to (j), wherein ring A is represented by the formula:




embedded image


wherein R9, R10 and R11 are hydrogen atom or G;


G is halogen, hydroxy, cyano, nitro, mercapto, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted acyl, optionally substituted acyloxy, carboxy, optionally substituted lower alkoxycarbonyl, optionally substituted lower alkoxycarbonyloxy, optionally substituted aryloxycarbonyloxy, optionally substituted amino, optionally substituted carbamoyl, optionally substituted carbamoyloxy, optionally substituted lower alkylthio, optionally substituted arylthio, optionally substituted lower alkylsulfonyl, optionally substituted arylsulfonyl, optionally substituted lower alkylsulfinyl, optionally substituted arylsulfinyl, optionally substituted lower alkylsulfonyloxy, optionally substituted arylsulfonyloxy, an optionally substituted carbocyclic group, optionally substituted carbocyclicoxy, an optionally substituted heterocyclic group or optionally substituted heterocyclicoxy;


each G may be independently different,


(m) the pharmaceutical composition for treating Alzheimer's disease according to (l),


wherein G is represented by the formula:




embedded image


embedded image


wherein Q1, Q2, and Q3 are each independently a bond, optionally substituted lower alkylene, or optionally substituted lower alkenylene;


Q4 is optionally substituted lower alkylene or optionally substituted lower alkenylene;


W1 and W2 are each independently O or S;


W3 is O, S or NR12;

R12 is a hydrogen atom, lower alkyl, hydroxy lower alkyl, lower alkoxy lower alkyl, lower alkoxycarbonyl lower alkyl, carbocyclic lower alkyl or acyl;


R14 is a hydrogen atom or lower alkyl;


ring B is an optionally substituted carbocyclic group or an optionally substituted heterocyclic group;


Alk2 is optionally substituted lower alkyl;


p is 1 or 2;


if there are multiple W1, multiple W3, and multiple R12, each may be independently different;


in (xii), the position of an oxygen atom may be cis or trans to a substituent R14,


(n) the pharmaceutical composition for treating Alzheimer's disease according to (m), wherein ring B is aryl optionally substituted with one or more substituents selected from the group of halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted acyl, optionally substituted amino, cyano, optionally substituted carbamoyl, an optionally substituted carbocyclic group, optionally substituted carbocyclicoxy and an optionally substituted heterocyclic group, or


heteroaryl optionally substituted with one or more substituents selected from the group of halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted acyl, optionally substituted amino, cyano, optionally substituted carbamoyl, an optionally substituted carbocyclic group, optionally substituted carbocyclicoxy and an optionally substituted heterocyclic group,


(o) the pharmaceutical composition for treating Alzheimer's disease according to (m), wherein G is represented by the formula:




embedded image


wherein, each symbols are the same as described above,


(p) the pharmaceutical composition for treating Alzheimer's disease according to any one of (e) to (o), wherein R5 is C1 to C3 alkyl,


(q) the pharmaceutical composition for treating Alzheimer's disease according to any one of (e) to (o), wherein R5 is methyl,


(r) the pharmaceutical composition for treating Alzheimer's disease according to any one of (e) to (q), wherein


R3a and R3b are each independently a hydrogen atom, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkoxy or optionally substituted aryl,


(s) the pharmaceutical composition for treating Alzheimer's disease according to any one of (e) to (q), wherein


R3a and R3b are both hydrogen atoms,


(t) the pharmaceutical composition according to any one of (a) to (d) which is the composition for reducing amyloid p production,


its pharmaceutically acceptable salt, or a solvate thereof as an active ingredient,


(u) the pharmaceutical composition according to any one of (a) to (d) or (d) which is the composition for treating disease induced by production, secretion and/or deposition of amyloid β protein,


(v) a method for treating disease induced by production, secretion and/or deposition of amyloid β protein (for example, Alzheimer's disease) comprising administering the compound as defined in any one of formula (I) in above (a), its pharmaceutically acceptable salt, or a solvate thereof,


(w) use of the compound as defined in any one of formula (I) in above (a), its pharmaceutically acceptable salt, or a solvate thereof, in the manufacture of a medicament for the treatment of disease induced by production, secretion and/or deposition of amyloid β protein (for example, Alzheimer's disease),


(x) a method for treating Alzheimer's disease characterizing in administering the compound as defined in any one of formula (I) in above (a),


its pharmaceutically acceptable salt, or a solvate thereof,


(y) use of the compound as defined in any one of formula (I) in above (a),


its pharmaceutically acceptable salt, or a solvate thereof, in the manufacture of a medicament for the treatment of Alzheimer's disease.


Effect of the Invention

The composition of the present invention is useful as an agent for treating disease such as Alzheimer's disease induced by production, secretion and/or deposition of amyloid β protein.


Additionally, because the pharmaceutical composition of the present invention comprises the compound which has the characteristics: it has high inhibitory activity against BACE-1, it has high selectivity against other enzymes, and the like; as an active ingredient, it can be a medicament whose side effects are reduced. The pharmaceutical composition of the present invention can be a medicament which possess a great safety margin in side effect by comprising an optical active compound which has a suitable conformation as an active ingredient. The pharmaceutical composition of the present invention can be an excellent medicament because it comprises the compound which has the following characteristics as an active ingredient: high metabolic stability, high dissolubility, high oral absorbability, high bioavailability, preferable clearance, high transfer to brain, long half-life, high protein-unbound fraction, low inhibitory activity to hERG channel, low inhibitory activity to CYPs, and/or negative activity in Ames assay.







BEST MODE FOR CARRYING OUT THE INVENTION

As used herein, the “halogen” includes fluorine, chlorine, bromine, and iodine. A halogen part of the “halogeno lower alkyl”, the “halogeno lower alkoxy”, the “halogeno acyl”, the “halogeno lower alkylthio” and the “halogeno lower alkoxycarbonyl” is the same.


The “lower alkyl” includes a straight or branched alkyl of a carbon number of 1 to 15, preferably a carbon number of 1 to 10, further preferably a carbon number of 1 to 6, and more further preferably a carbon number of 1 to 3, and examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, hexyl, isohexyl, n-heptyl, isoheptyl, n-octyl, isooctyl, n-nonyl, and n-decyl.


A lower alkyl part of the “carbocyclic lower alkyl”, the “lower alkoxy”, the “halogeno lower alkyl”, the “halogeno lower alkoxy”, the “halogeno lower alkylthio”, the “hydroxy lower alkyl”, the “lower alkoxycarbonyl”, the “halogeno lower alkoxycarbonyl”, the “lower alkoxycarbonyl lower alkyl”, the “lower alkoxycarbonyloxy”, the “lower alkylamino”, the “lower alkylcarbonylamino”, the “lower alkoxycarbonylamino”, the “lower alkoxy lower alkyl”, the “lower alkylcarbamoyl”, the “hydroxy lower alkylcarbamoyl”, the “amino lower alkyl”, the “hydroxy imino lower alkyl”, the “lower alkoxy imino lower alkyl”, the “lower alkylthio”, the “lower alkylsulfonyl”, the “lower alkyl sulfamoyl”, the “lower alkylsulfinyl”, the “lower alkylsulfonyloxy”, the “lower alkoxycarbonyl lower alkynyl”, the “lower alkylthio lower alkyl”, the “aryl lower alkyl”, the “aryl lower alkylamino”, the “aryl lower alkoxycarbonyl”, the “aryl lower alkylcarbamoyl”, the “heterocyclic group lower alkylamino” and the “heterocyclic group lower alkylcarbamoyl” is the same as that of the aforementioned “lower alkyl”.


The example of the “optionally substituted lower alkyl” as a substituent of ring A is lower alkyl optionally substituted with one or more substituents selected from the “substituent group a”, “hydroxyimino” and “lower alkoxyimino”; the group defined as above (i), (ii), (iv), (vi), (viii), (x) (wherein each Q1 is optionally substituted lower alkylene); the group defined as (iii), (v), (vii), (ix) (wherein Q2 is optionally substituted lower alkylene); and the group (xii).


In other “optionally substituted lower alkyl” is optionally substituted with one or more substituents selected from the “substituent group α”.


The “substituent group α” is selected from the group of halogen, hydroxy, lower alkoxy, hydroxy lower alkoxy, lower alkoxy lower alkoxy, acyl, acyloxy, carboxy, lower alkoxycarbonyl, amino, acylamino, lower alkylamino, lower alkylthio, carbamoyl, lower alkylcarbamoyl, hydroxy lower alkylcarbamoyl, sulfamoyl, lower alkylsulfamoyl, lower alkylsulfinyl, cyano, nitro, aryl, and heterocyclic group.


Especially as a substituent of the “optionally substituted lower alkyl” in Alk2, halogen, hydroxy, lower alkoxy, lower alkoxy lower alkoxy, lower alkoxycarbonyl, amino, acylamino, lower alkylamino and/or lower alkylthio are preferable.


The example of the “optionally substituted lower alkoxy” as a substituent of ring A is lower alkoxy optionally substituted with one or more substituents selected from the above “substituent group α”; above (iii) wherein Q1 is optionally substituted lower alkylene, Q2 is a bond, W2 is O; above (v) wherein Q1 is optionally substituted lower alkylene, Q2 is a bond, W3 is O; above (vi) wherein Q1 is a bond, Q2 is optionally substituted lower alkylene, W2 is O; or above (xi) wherein Q4 is optionally substituted lower alkylene, W2 is O.


In other case, the substituents of the “optionally substituted lower alkoxy”, the “optionally substituted lower alkoxycarbonyl”, the “optionally substituted lower alkoxycarbonyloxy”, the “optionally substituted lower alkylsulfonyl”, the “optionally substituted lower alkylsulfinyl”, the “optionally substituted lower alkylsulfonyloxy” and the “optionally substituted lower alkylthio” are one or more substituents selected from the “substituent group a”.


The “lower alkenyl” includes a straight or branched alkenyl of a carbon number of 2 to 15, preferably a carbon number of 2 to 10, further preferably a carbon number of 2 to 6 and more further preferably a carbon number of 2 to 4 having one or more double bonds at an arbitrary position. Specifically examples include vinyl, allyl, propenyl, isopropenyl, butenyl, isobutenyl, prenyl, butadienyl, pentenyl, isopentenyl, hexenyl, isohexenyl, hexadienyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodenyl, tridecenyl, tetradecenyl, and pentadecenyl.


The “lower alkynyl” includes a straight or branched alkynyl of a carbon number of 2 to 10, preferably a carbon number of 2 to 8, further preferably a carbon number of 3 to 6, having one or more triple bonds at an arbitrary position. Specifically, examples include ethynyl, propenyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, and decynyl. These may further have a double bond at an arbitrary position.


A lower alkynyl part of the “lower alkoxycarbonyl lower alkynyl” is the same as that of above “lower alkynyl”.


The example of the “optionally substituted lower alkenyl” as a substituent of ring A is lower alkenyl optionally substituted with one or more substituents selected from the above “substituent group a”; above (i), (ii), (iv), (vi), (viii) or (x), wherein Q1 is optionally substituted lower alkenylene; (iii), (v), (vii) or (ix), wherein Q2 is optionally substituted lower alkenylene.


In other case, the substituents of the “optionally substituted lower alkenyl” and the “optionally substituted lower alkynyl” are one or more substituents selected from the “substituent group α”.


The example of the “optionally substituted lower amino” as a substituent of ring A is amino optionally substituted with one or more substituents selected from the group of lower alkyl, acyl, hydroxy, lower alkoxy, lower alkoxycarbonyl, a carbocyclic group and a heterocyclic group; (ii), wherein Q1 is a bond; (iv), wherein Q1 is a bond; (v), wherein Q2 is a bond, W3 is NR12; (ix), wherein Q2 is a bond; (xiii); or (xiv).


The example of the “optionally substituted carbamoyl” as a substituent of ring A is carbamoyl optionally substituted with one or more substituents selected from the group of lower alkyl, acyl, hydroxy, lower alkoxy, lower alkoxycarbonyl, a carbocyclic group and a heterocyclic group; (i), (viii), wherein each Q′ is bond; or (xv).


In other case, the substituents of the “optionally substituted amino”, the “optionally substituted amidino”, the “optionally substituted carbamoyl”, the “optionally substituted carbamoylcarbonyl”, and the “optionally substituted carbamoyloxy” are one or two substituents selected from the group of lower alkyl, acyl, hydroxy, lower alkoxy, lower alkoxycarbonyl, a carbocyclic group and a heterocyclic group, and the like.


The “acyl” includes acyl of a carbon number of 1 to 10, carbocyclic carbonyl and heterocyclic carbonyl. Specifically, formyl, acetyl, propyonyl, butylyl, isobutylyl, valeryl, pivaloyl, hexanoyl, acryloyl, propioloyl, methacryloyl, crotonoyl, benzoyl, cyclohexanecarbonyl, pyridinecarbonyl, furancarbonyl, thiophenecarbonyl, benzothiazolcarbonyl, pyradinecarbonyl, piperidinecarbonyl, thiomorpholinocarbonyl, and the like.


The part of the acyl of the “halogenoacyl”, the “acylamino” and the “acyloxy” is the same as the aforementioned “acyl”.


The substituent of the “optionally substituted acyl” and “optionally substituted acyloxy” is one or more substituents selected from the group of the “substituent group α”. The ring part of the “carbocyclic carbonyl” and the “heterocyclic carbonyl” is optionally substituted with one or more substituents selected from the group of “lower alkyl”; the “substituent group α”; and “lower alkyl substituted with one or more substituents selected from the group of the substituent α”.


The “carbocyclic group” includes cycloalkyl, cycloalkenyl, aryl and non-aromatic fused carbocyclic group.


The “cycloalkyl” includes a carbocyclic group of a carbon number of 3 to 10, preferably a carbon number of 3 to 8, further preferably a carbon number of 4 to 8, and examples include, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, and cyclodecyl, and the like.


The “cycloalkenyl” includes cycloalkenyl having one or more double bonds at an arbitrary position in a ring of the aforementioned cycloalkyl, and examples include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptynyl, cyclooctynyl, and cyclohexadienyl, and the like.


The “aryl” includes phenyl, naphthyl, anthryl, and phenanthryl, and the like, and phenyl is particularly preferable.


The “non-aromatic fused a carbocyclic group” includes group fused with two or more ring groups selected from the group of the above “cycloalkyl”, the “cycloalkenyl” and the “aryl”. Specifically, examples include indanyl, indenyl, tetrahydronaphthyl, and fluorenyl, and the like.


The carbocyclic part of the “carbocyclicoxy”, and the “carbocyclic lower alkyl” is the same as the aforementioned “carbocyclic group”. The aryl part of the “aryl lower alkyl”, the “aryloxy”, the “aryloxycarbonyl”, the “aryloxycarbonyloxy”, the “aryl lower alkoxycarbonyl”, the “arylthio”, the “arylamino”, the “aryl lower alkylamino”, the “arylsulfonyl”, the “arylsulfonyloxy”, the “arylsulfinyl”, the “arylsulfamoyl”, the “arylcarbamoyl” and the “aryl lower alkylcarbamoyl” is the same as the aforementioned “aryl”.


The “heterocyclic group” includes a heterocyclic group having one or more heteroatoms arbitrary selected from O, S, and N in a ring, specifically includes a 5- to 6-membered heteroaryl such as pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazolyl, triazinyl, tetrazolyl, isoxazolyl, oxazolyl, oxadiazolyl, isothiazolyl, thiazolyl, thiadiazolyl, isothiazolyl, furyl and thienyl; a bicyclic fused heterocyclic group such as indolyl, isoindolyl, indazolyl, indolidinyl, indolinyl, isoindolinyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, naphthyridinyl, quinoxalinyl, purinyl, pteridinyl, benzopyranyl, benzimidazolyl, benzioxazolyl, benzoxazolyl, benzoxadiazolyl, benzisothiazolyl, benzothiazolyl, benzothiadiazolyl, benzofuryl, isobenzofuryl, benzothienyl, benzotriazolyl, imidazopyridyl, pyrazolopyridyl, triazolopyridyl, imidazothiazolyl, pyrazinopyridazinyl, quinazolinyl, quinolyl, isoquinolyl, naphthyridinyl, dihydrobenzofuryl, tetrahydroquinolyl, tetrahydroisoquinolyl, dihydrobenzoxazine, tetrahydrobenzothienyl; a tricyclic fused heterocyclic group such as carbazolyl, acridinyl, xanthenyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, dibenzofuryl, and imidazoquinolyl; a non-aromatic heterocyclic group such as dioxanyl, thiiranyl, oxyranyl, oxathioranyl, azethidinyl, thianyl, pyrrolidinyl, pyrrolinyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperidyl, piperazinyl, morpholinyl, morpholino, thiomorpholinyl, thiomorpholino, dihydropyridyl, dihydrobenzoimidazolyl, tetrahydropyridyl, tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiazolyl, tetrahydroisothiazolyl, dihydroxadinyl, hexahydroazepinyl, tetrahydroazepyinyl. Preferable is a 5- to 6-membered heteroaryl, or a non-aromatic heterocyclic group.


The heterocyclic part of the “heterocyclicoxy”, the “heterocyclic thio”, the “heterocyclic carbonyl”, the “heterocyclic amino”, the “heterocyclic carbonylamino”, the “heterocyclic sulfamoyl”, the “heterocyclic sulfonyl”, the “heterocyclic carbamoyl”, the “heterocyclicoxycarbonyl”, the “heterocyclic lower alkylamino” and the “heterocyclic lower alkyl carbamoyl” is the same as the aforementioned “heterocyclic group”.


The example of the substituent of the “optionally substituted carbocyclic group” and the “optionally substituted heterocyclic group” in ring A is; the substituent α, wherein preferable is for example, halogen, hydroxy, acyl, acyloxy, carboxy, lower alkoxycarbonyl, carbamoyl, amino, lower alkylamino, lower alkylthio;


lower alkyl substituted with one or more substituents selected from the group of substituent α, wherein preferable is halogen, hydroxy, lower alkoxy, lower alkoxycarbonyl, and the like;


amino lower alkyl substituted with one or more substituents selected from the group of substituent α, wherein preferable is acyl, lower alkyl and/or lower alkoxy, and the like;


hydroxyimino lower alkyl; lower alkoxyimino lower alkyl;


lower alkenyl substituted with one or more substituents selected from the group of substituent α, wherein preferable is lower alkoxycarbonyl, halogen and/or halogeno lower alkoxycarbonyl, and the like;


lower alkynyl substituted with one or more substituents selected from the group of substituent α, wherein preferable is for example, lower alkoxycarbonyl,


lower alkoxy substituted with one or more substituents selected from the group of substituent α, wherein preferable is for example, lower alkyl carbamoyl and/or hydroxy lower alkyl carbamoyl,


lower alkylthio substituted with one or more substituents selected from the group of substituent α,


lower alkylamino substituted with one or more substituents selected from the group of substituent α,


lower alkylsulfonyl substituted with one or more substituents selected from the group of substituent α,


aryl lower alkoxycarbonyl substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


acyl substituted with one or more substituents selected from the group of substituent α,


cycloalkyl substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


lower alkylsulfinyl substituted with one or more substituents selected from the group of substituent α,


sulfamoyl,


aryl substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


heterocyclic group substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


aryloxy substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


heterocyclicoxy substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


arylthio substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


heteroarylthio substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


arylamino substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


heterocyclicamino substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


aryl lower alkylamino substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


heterocyclic lower alkylamino substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


lower alkyl sulfamoyl substituted with one or more substituents selected from the group of substituent α,


aryl sulfamoyl substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


heterocyclic sulfamoyl substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


arylsulfonyl substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


heterocyclic sulfonyl substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


aryl carbamoyl substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


heterocyclic carbamoyl substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


aryl lower alkylcarbamoyl substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


heterocyclic lower alkylcarbamoyl substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


aryloxycarbonyl substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


heterocyclicoxycarbonyl substituted with one or more substituents selected from the group of substituent α, azido, and lower alkyl,


lower alkylenedioxy optionally substituted with halogen; oxo; azido;




embedded image


embedded image


wherein Q1, Q2 and Q3 are each independently a bond, optionally substituted lower alkylene or optionally substituted lower alkenylene;


Q4 is optionally substituted lower alkylene or optionally substituted lower alkenylene;


W1 and W2 are each independently O or S;


W3 is O, S or NR12;

R12 is a hydrogen atom, lower alkyl, hydroxy lower alkyl, lower alkoxy lower alkyl, lower alkoxycarbonyl lower alkyl, carbocyclic group lower alkyl or acyl;


R14 is a hydrogen atom or lower alkyl;


ring B is an optionally substituted carbocyclic group or an optionally substituted heterocyclic group;


Alk2 is optionally substituted lower alkyl;


and the ring A is optionally substituted with one or more substituents selected from these groups.


If there are multiple W1, multiple W3, and multiple R12, each may be independently different.


In addition, an oxygen atom in (xii) may be cis or trans position to the substituent R14.


The substituent of the “substituted phenyl” is, in the same way, phenyl substituted with one or two substituents selected preferably from the group of the substituent α or (i) to (xv).


The substituent of the “optionally substituted carbocyclic group” or the “optionally substituted heterocyclic group” in ring B is optionally substituted with one or more substituents selected from the following group of, for example; the substituent α, wherein preferable is halogen, hydroxy, lower alkoxy, carboxy, lower alkoxycarbonyl, acyl, amino, lower alkylamino, acylamino, carbamoyl, lower alkylcarbamoyl, cyano, and nitro, and the like;


lower alkyl substituted with one or more substituents selected from the group of the substituent α, wherein preferable is halogen, hydroxy, and lower alkoxy, and the like;


amino lower alkyl, hydroxyimino lower alkyl, or lower alkoxyimino lower alkyl, substituted with one or more substituents selected from the group of substituent α; lower alkenyl substituted with one or more substituents selected from the group of substituent α;


lower alkynyl substituted with one or more substituents selected from the group of substituent α;


lower alkoxy substituted with one or more substituents selected from the group of substituent α, wherein preferable is halogen, hydroxy, and the like;


lower alkylthio substituted with one or more substituents selected from the group of substituent α, wherein preferable is halogen;


lower alkylamino substituted with one or more substituents selected from the group of substituent α, wherein preferable is amino;


lower alkylsulfonyl substituted with one or more substituents selected from the group of substituent α;


aryl lower alkoxycarbonyl substituted with one or more substituents selected from the group of substituent α and lower alkyl;


acyl substituted with one or more substituents selected from the group of substituent α, wherein preferable is halogen;


lower alkylsulfonyl substituted with one or more substituents selected from the group of substituent α;


sulfamoyl;


lower alkyl sulfamoyl substituted with one or more substituents selected from the group of substituent α;


cycloalkyl substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl;


aryl substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl;


heterocyclic group substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl, wherein preferable is halogen, lower alkyl, and the like;


aryloxy substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl;


heterocyclicoxy substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl;


arylthio substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl, wherein preferable is halogen, hydroxy, lower alkoxy, acyl, and the like;


heterocyclic thio substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl;


arylamino substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl, wherein preferable is halogen, hydroxy, lower alkoxy, acyl;


heterocyclic amino substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl;


aryl lower alkylamino substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl, wherein preferable is halogen, hydroxy, lower alkoxy, acyl;


heterocyclic lower alkylamino substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl;


arylsulfamoyl substituted with one or more substituents selected from the group of substituent α azido and lower alkyl;


heterocyclic sulfamoyl substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl;


arylsulfonyl substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl;


heterocyclic sulfonyl substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl;


arylcarbamoyl substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl;


heterocyclic carbamoyl substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl;


aryl lower alkylcarbamoyl substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl;


heterocyclic lower alkylcarbamoyl substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl;


aryloxy carbonyl substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl;


heterocyclicoxycarbonyl substituted with one or more substituents selected from the group of substituent α, azido and lower alkyl;


lower alkylenedioxy optionally substituted with halogen; oxo; and the like.


In other case, the substituent of the “optionally substituted carbocyclic group”, the “optionally substituted heterocyclic group”, the “optionally substituted carbocyclicoxy”, the “optionally substituted arylsulfonyl”, the “optionally substituted aryloxycarbonyloxy”, the “optionally substituted heterocyclicoxy”, the “optionally substituted arylsulfinyl”, the “optionally substituted arylsulfonyloxy”, the “optionally substituted arylthio” is one or more substituents selected from the group of “lower alkyl” and the “substituent a”.


“heteroaryl” include aromatic ring group in the aforementioned “heterocyclic group”.


The substituent of the “optionally substituted 5- to 6-membered heteroaryl” is the same as the substituent of the “optionally substituted heterocyclic group” in the aforementioned “ring B”. Preferable is one or more substituent selected from lower alkyl and a substituent α.


The “lower alkylene” includes a straight or branched bivalent carbon chain of a carbon number of 1 to 10, preferably a carbon number of 1 to 6, further preferably a carbon number of 1 to 3. Specifically, examples include methylene, dimethylene, trimethylene, teteramethylene, and methyltrimethylene, and the like.


The part of lower alkylene of the “lower alkylenedioxy” is the same as the aforementioned “lower alkylene”.


The “lower alkenylene” includes a straight or branched bivalent carbon chain of a carbon number of 2 to 10, preferably a carbon number of 2 to 6, further preferably a carbon number of 2 to 4 having double bond at an arbitrary position. Specifically, examples include vinylene, propenylene, butenylene, butadienylene, methylpropenylene, pentenylene, and hexenylene, and the like.


The “lower alkynylene” includes a straight or branched bivalent carbon chain of a carbon number of 2 to 10, preferably a carbon number of 2 to 6, further preferably a carbon number of 2 to 4 having triple bond at an arbitrary position. Specifically, examples include ethynylene, propynylene, butynylene, pentynylene, and hexynylene, and the like.


The substituent of the “optionally substituted lower alkylene”, the “optionally substituted lower alkenylene”, the “optionally substituted lower alkynylene” is the substituent α, preferable is halogen, hydroxy and the like.


The “each R3a, each R3b, each R4a, and each R4b may be independently different” means when n is 2 or 3, two or three R3a may be independently different, and two or three R3b may be independently different. In the same way, when m is 2 or 3, two or three R4a may be independently different, and two or three R4b may be independently different.




embedded image


R5 and ring A can be taken together to form




embedded image


means for example, include the following structures.




embedded image


wherein each symbols are the same as described above;


preferably, R5a and R5b are all hydrogen atoms.


In this description, “solvate” includes, for example, a solvate with an organic solvent and a hydrate, and the like. When hydrate is formed, arbitrary number of water molecules may be coordinated.


The compound (I) includes a pharmaceutically acceptable salt. Examples include salts with alkali metals (lithium, sodium or potassium, and the like), alkaline earth metals (magnesium or calcium, and the like), ammonium, organic bases or amino acids, and salts with inorganic acids (hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid, phosphoric acid or hydroiodic acid, and the like), and organic acid (acetic acid, trifluoroacetic acid, citric acid, lactic acid, tartaric acid, oxalic acid, maleic acid, fumaric acid, manderic acid, glutaric acid, malic acid, benzoic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, methanesulfonic acid, or ethanesulfonic acid, and the like). Particularly, hydrochloric acid, phosphoric acid, tartaric acid, or methanesulfonic acid is preferable. These salts can be formed by a conventional method.


In addition, the compound (I) is not limited to a specific isomer, but includes all possible isomers (keto-enol isomer, imine-enamine isomer, diastereo isomer, optical isomer, and rotational isomer, and the like) and racemates. For example, the compound (I), wherein R2a is a hydrogen atom, includes following tautomer.




embedded image


The compound (I) in this invention can be prepared by the process described in, for example Non-patent Document 1 or following process.


The synthesis of aminodihydrothiazine ring; Method A




embedded image


In formula, at least either R2b or R2c is a hydrogen atom, either R3 or R3d is each independently a hydrogen atom, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted acyl, carboxy, optionally substituted lower alkoxycarbonyl, optionally substituted amino, optionally substituted carbamoyl, an optionally substituted carbocyclic group or an optionally substituted heterocyclic group. Other symbols are the same as described above.


(Step 1)

To a solution of compound (a), which is commercially available or prepared by known method, in appropriate solvent or mixture of solvents, such as ether, tetrahydrofuran, and the like is added the Grignard reagent having substituent corresponds to the target compound; for example vinylmagnesium chloride, vinylmagnesium bromide, or propenylmagnesium bromide, and the like; at −100° C. to 50° C., preferably −80° C. to 0° C. The mixture is reacted for 0.2 to 24 hours, preferably 0.5 to 5 hours, to obtain compound (b).


(Step 2)

The compound (b) in solvent, such as toluene or absence of solvent is treated with thiourea derivatives having substituent corresponds to the target compound, such as thiourea, N-methylthiourea, N,N′-dimethylthiourea, and the like in the presence of an acid or mixture of acids, such as acetic acid, trifluoroacetic acid, hydrochloric acid, or sulfuric acid, and the like. The mixture is reacted at −20° C. to 100° C., preferably 0° C. to 50° C. for 0.5 to 120 hours, preferably 1 to 72 hours, to obtain the compound (c).


(Step 3)

The compound (c) in solvent, such as toluene or absence of solvent is treated with an acid or mixture of acids, such as trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, and the like. The mixture is reacted at −20° C. to 100° C., preferably 0° C. to 50° C. for 0.5 to 120 hours, preferably 1 to 72 hours, to obtain the compound (I-2), wherein R2b is a hydrogen atom, or the compound (I-1), wherein R2c is a hydrogen atom.


The synthesis of aminodihydrothiazine ring; Method B




embedded image


In formula, L is leaving group such as halogen or sulfonyloxy, and the like. Other symbols are the same as described above.


(Step 1)

The compound (d) which is commercially available or prepared by known method is reacted with thiocyanic acid; for example, sodium thiocyanic acid, ammonium thiocyanic acid, and the like; in solvent; for example, toluene, chloroform, tetrahydrofuran, and the like; in the presence of acid; for example, water, hydrochloric acid, sulfuric acid, and the like; at 0° C. to 150° C., preferably 20° C. to 100° C. for 0.5 to 24 hours, preferably 1 to 12 hours, to obtain the compound (e).


(Step 2)

To the compound (e) in solvent or mixture of solvents; for example, tetrahydrofuran, methanol, ethanol, water, and the like; in the presence or the absence of buffer like sodium dihydorgen phosphate, and the like; reducing agent; for example sodium borohydride, and the like; is added and the mixture is reacted at −80° C. to 50° C., preferably −20° C. to 20° C. for 0.1 to 24 hours, preferably 0.5 to 12 hours, to obtain the compound (f).


(Step 3)

The compound (f) in the presence or the absence of solvent; for example, toluene, dichloromethane, and the like; is reacted with halogenating agent; for example thionyl chloride, phosphorus oxychloride, carbon tetrabromide-triphenylphosphine, and the like; at −80° C. to 50° C., preferably −20° C. to 20° C. for 0.1 to 24 hours, preferably 0.5 to 12 hours, to obtain the compound (g). Alternatively, the compound (f) in the presence or the absence of solvent; for example, toluene, dichloromethane, and the like; under base; for example triethylamine, and the like; is reacted with sulfonating agent; for example, methanesulfonyl chloride, p-toluenesulfonylchloride, and the like; at −80° C. to 50° C., preferably −20° C. to 20° C. for 0.1 to 24 hours, preferably 0.5 to 12 hours, to obtain the compound (g).


(Step 4)

To the compound (g) in solvent or mixture of solvents, for example methanol, ethanol, water, and the like; is reacted with primary amine; for example, ammonia or methylamine, and the like; at −20° C. to 80° C., preferably 0° C. to 40° C. for 0.5 to 48 hours, preferably 1 to 24 hours, to obtain the compound (I-3).


The synthesis of aminodihydrothiazine ring; Method C




embedded image


In formula, R is a hydrogen atom or protective groups of carboxyl group. Other symbols are the same as described above.


(Step 1)

The compound (h) which is commercially available or prepared by known method is reacted with reducing agent; for example, lithium aluminium hydride, diisobutyl aluminium hydride, and the like; in solvent; for example tetrahydrofuran, ether, and the like; at −80° C. to 150° C., preferably 25° C. to 100° C. for 0.1 to 24 hours, preferably 0.5 to 12 hours, to obtain the compound (i).


(Step 2)

The compound (i) in solvent; for example, toluene, chloroform, tetrahydrofuran, and the like; in the presence or the absence of base; for example, diisopropylethylamine, triethylamine, pyridine, sodium hydroxide, and the like; is reacted with corresponding isothiocyanate; for example,


4-methoxybenzylisothiocyanate, t-butylisothiocyanate, and the like; or corresponding thiocarbamoylhalide; for example,


N,N-dimethylthiocarbamoylchloride, N,N-diethylthiocarbamoylchloride, and the like; at 0° C. to 150° C., preferably 20° C. to 100° C. for 0.5 to 120 hours, preferably 1 to 72 hours, to obtain the compound (j).


(Step 3)

The compound (j) in solvent; for example, acetonitrile, toluene, dichloromethane, and the like; is reacted with halogenating agent; for example thionyl chloride, phosphorus oxychloride, carbon tetrabromide-triphenylphosphine, and the like; at −80° C. to 50° C., preferably −20° C. to 20° C. for 0.1 to 24 hours, preferably 0.5 to 12 hours, or alternatively, the compound (j) in solvent; for example, toluene, dichloromethane, and the like; in the presence of base; for example triethylamine, and the like; is reacted with sulfonating agent; for example, methanesulfonyl chloride, p-toluenesulfonylchloride, and the like; at −80° C. to 50° C., preferably −20=C to 20° C. for 0.1 to 24 hours, preferably 0.5 to 12 hours. The obtained halogenated compound or sulfonylated compound is reacted with base; for example, diisopropylamine, potassium carbonate, sodium hydrogencarbonate, sodium hydride, sodium hydroxide, and the like; at 0° C. to 150° C., preferably 20° C. to 100° C. for 0.5 to 120 hours, preferably 1 to 72 hours, to obtain the compound (1-4).


The synthesis of aminodihydrothiazine ring; Method D


The synthesis of aminothiazoline ring; Method A


The synthesis of tetrahydrothiazepine ring; Method A




embedded image


In formula, L is leaving group such as halogen or sulfonyloxy, and the like; m is an integer of 1 to 3; and the other symbols are the same as described above.


(Step 1)

The compound (k) which is commercially available or prepared by known method is reacted with azide reagent; for example, sodium azide, and the like; in solvent; for example N,N-dimethylformamide, tetrahydrofuran, and the like; at 0° C. to 200° C., preferably 40° C. to 150° C. for 0.5 to 24 hours, preferably 1 to 12 hours, to obtain the compound (l).


(Step 2)

The compound (l) is reacted with reducing agent; for example, lithium aluminium hydride, diisobutyl aluminium hydride, and the like; in solvent; for example tetrahydrofuran, ether, and the like; at −80° C. to 150° C., preferably 25° C. to 100° C. for 0.1 to 24 hours, preferably 0.5 to 12 hours, to obtain the compound (m).


(Step 3)

The compound (m) in solvent; for example, toluene, chloroform, tetrahydrofuran, and the like; is reacted with corresponding isothiocyanate; for example, methylisothiocyanate, ethylisothiocyanate, and the like; or corresponding thiocarbamoylhalide; for example, N,N-dimethylthiocarbamoylchloride, N,N-diethylthiocarbamoylchloride, and the like; at 0° C. to 150° C., preferably 20° C. to 100° C. for 0.5 to 120 hours, preferably 1 to 72 hours, to obtain the compound (n).


(Step 4)

The compound (n) in solvent; for example, acetonitrile, toluene, dichloromethane and the like; is reacted with halogenating agent; for example thionyl chloride, phosphorus oxychloride, carbon tetrabromide-triphenylphosphine, and the like; at −80° C. to 50° C., preferably −20° C. to 20° C. for 0.1 to 24 hours, preferably 0.5 to 12 hours, or alternatively, the compound (n) in solvent; for example, toluene, dichloromethane, and the like; in the presence of base; for example diisopropylethylamine, triethylamine, and the like; is reacted with sulfonating agent; for example, methanesulfonyl chloride, p-toluenesulfonylchloride, and the like; at −80° C. to 50° C., preferably −20° C. to 20° C. for 0.1 to 24 hours, preferably 0.5 to 12 hours. The obtained halogenated compound or sulfonylated compound is reacted with base; for example, diisopropylamine, potassium carbonate, sodium hydrogencarbonate, sodium hydride, sodium hydroxide, and the like; at 0° C. to 150° C., preferably 20° C. to 100° C. for 0.5 to 120 hours, preferably 1 to 72 hours, to obtain the compound (I-5).


The synthesis of aminodihydrothiazine ring; Method E


The synthesis of aminothiazoline ring; Method B


The synthesis of tetrahydrothiazepine ring; Method B




embedded image


In formula, at lease one of R2b and R2c is a hydrogen atom, n is an integer of 1 to 3, and the other symbols are the same as described above.


(Step 1)

The compound (o) which is commercially available or prepared by known method is reacted with substituted thiourea; for example, thiourea, N-methylthiourea, N,N,-dimethylthiourea, N,N′-dimethylthiourea, and the like; in solvent; for example, ethanol, methanol, tetrahydrofuran, toluene, and the like; at −20° C. to 200° C., preferably 0° C. to 150° C. for 0.5 to 200 hours, preferably 1 to 120 hours, to obtain the compound (p).


(Step 2)

To the compound (p) in solvent or mixture of solvents; for example, ether, tetrahydrofuran, and the like; the Grignard reagent having substituent corresponding to target compound; for example methylmagnesium chloride, ethylmagnesium bromide, or benzylmagnesium bromide, and the like; is added at −100° C. to 50° C., preferably −80° C. to 30° C., and the mixture is reacted for 0.2 to 24 hours, preferably 0.5 to 5 hours, to obtain the compound (q).


(Step 3)

To the compound (q) in the presence or the absence of solvent; for example, toluene, and the like; acid or mixture of acids, such as trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, and the like; is added and the mixture is reacted at −20° C. to 100° C., preferably 0° C. to 50° C. for 0.5 to 200 hours, preferably 1 to 150 hours, to obtain the compound (I-6)(wherein R2c is H), or the compound (I-7)(wherein R2b is H).


The synthesis of aminodihydrothiazine ring; Method F




embedded image


In formula, each symbols are the same as described above.


(Step 1)

The compound (r) which is commercially available or prepared by known method is reacted with ammonium chloride in solvent; for example, acetic acid, and the like; at 0° C. to 200° C., preferably 10° C. to 100° C. for 0.1 to 100 hours, preferably 0.5 to 24 hours, to obtain the compound (a).


(Step 2)

The compound (s) is reacted with reducing agent; for example, lithium aluminium hydride, diisobutyl aluminium hydride, and the like; in solvent; for example tetrahydrofuran, ether, and the like; at −80° C. to 150° C., preferably 0° C. to 100° C. for 0.1 to 24 hours, preferably 0.5 to 12 hours, to obtain the compound (t).


(Step 3)

The compound (t) in solvent; for example, toluene, chloroform, tetrahydrofuran, and the like; in the presence or the absence of base; for example, diisopropylethylamine, triethylamine, pyridine, sodium hydroxide, and the like; is reacted with corresponding isothiocyanate; for example, 4-methoxybenzylisothiocyanate, t-butylisothiocyanate, and the like; or corresponding carbamoylhalide; for example, N,N-dimethylthiocarbamoylchloride, N,N-diethylthiocarbamoylchloride, and the like; at 0° C. to 150° C., preferably 20° C. to 100° C. for 0.5 to 120 hours, preferably 1 to 72 hours, to obtain the compound (u).


(Step 4)

The compound (u) in solvent; for example, acetonitrile, toluene, dichloromethane, and the like; is reacted with halogenating agent; for example thionyl chloride, phosphorus oxychloride, carbon tetrabromide-triphenylphosphine, and the like; at −80° C. to 50° C., preferably −20° C. to 20° C. for 0.1 to 24 hours, preferably 0.5 to 12 hours, or alternatively, the compound (u) in solvent; for example, toluene, dichloromethane, and the like; in the presence of base; for example triethylamine, and the like; is reacted with sulfonating agent; for example, methanesulfonyl chloride, p-toluenesulfonylchloride, and the like; at −80° C. to 50° C., preferably −20° C. to 20° C. for 0.1 to 24 hours, preferably 0.5 to 12 hours. The obtained halogenated compound or sulfonylated compound is reacted with base; for example, diisopropylamine, potassium carbonate, sodium hydrogencarbonate, sodium hydride, sodium hydroxide, and the like; at 0° C. to 150° C., preferably 20° C. to 100° C. for 0.5 to 120 hours, preferably 1 to 72 hours, to obtain the compound (1-8).


The synthesis of aminodihydrooxazine ring; Method A


The synthesis of aminotetrahydrooxazepine ring; Method A




embedded image


In formula, each symbols are the same as described above.


(Step 1)

The compound (n) which is obtained by Step 3 (the compound (m) to the compound (n)) of “The synthesis of aminodihydrothiazine ring; Method D”, in solvent; for example, methanol, ethanol, N,N-dimethylformamide, tetrahydrofuran, and the like; in the presence or the absence of base; for example, diisopropylethylamine, triethylamine, pyridine, sodium hydroxide, and the like; is reacted with alkylating agent; for example, methyl iodide, dimethyl sulfate, benzyl bromide, and the like; at 0° C. to 200° C., preferably 40° C. to 150° C. for 0.1 to 48 hours, preferably 0.5 to 24 hours, to obtain the compound (v).


(Step 2)

The compound (v) in solvent; for example, N,N-dimethylformamide, tetrahydrofuran, dichloromethane, and the like; in the presence or the absence of base; for example, diisopropylethylamine, triethylamine, pyridine, sodium hydroxide, and the like; is reacted with metallic oxide; for example, silver oxide, mercury oxide, manganese dioxide, and the like; at 0° C. to 200° C., preferably 10° C. to 150° C. for 1 to 120 hours, preferably 0.5 to 100 hours, to obtain the compound (1-9).


The synthesis of aminodihydrooxazine ring; Method B


The synthesis of aminoxazoline ring


The synthesis of aminotetrahydrooxazepine ring; Method B




embedded image


In formula, R15 is optionally substituted lower alkyl; for example, t-butyl, benzyl, and the like; R16 is hydrogen atom or lower alkyl; n is an integer of 1 to 3, and the other symbols are the same as described above.


(Step 1)

The compound (w) which is commercially available or prepared by known method in solvent; for example, toluene, t-butylalcohol, tetrahydrofuran, and the like; in the presence of base; for example, diisopropylethylamine, triethylamine, pyridine, and the like; is reacted with azide reagent; for example, diphenyl phosphoryl azide, and the like; at 0° C. to 200° C., preferably 40° C. to 150° C. for 1 to 48 hours, preferably 0.5 to 24 hours, to obtain the compound (x).


(Step 2)

The compound (x) in solvent; for example, toluene, xylene, N,N-dimethylformamide, tetrahydrofuran, and the like; is reacted with alcohol; for example, t-butylalcohol, 3,4-dimethoxybenzylalcohol, 4-methoxybenzylalcohol, and the like; at 0° C. to 300° C., preferably 50° C. to 200° C. for 1 to 800 hours, preferably 5 to 500 hours, to obtain the compound (y).


(Step 3)

The compound (y) in the presence or the absence of solvent; for example, water, toluene, dichloromethane, methanol, 1,4-dioxane, acetic acid, ethyl acetate, and the like; in the presence of acid; for example, hydrochloric acid, sulfuric acid, hydrobromic acid, trifluoroacetic acid, and the like; at 0° C. to 200° C., preferably 25° C. to 150° C. for 0.1 to 48 hours, preferably 0.5 to 24 hours, to obtain the compound (z).


(Step 4)

The compound (z) in solvent; for example, toluene, chloroform, tetrahydrofuran, and the like; in the presence of base; for example, diisopropylethylamine, triethylamine, pyridine, and the like; is reacted with corresponding isothiocyanate, or thiocarbamoylhalide corresponding to target compound; for example, N,N-dimethylthiocarbamoylchloride, N,N-diethylthiocarbamoylchloride, and the like; at 0° C. to 150° C., preferably 20° C. to 100° C. for 0.5 to 120 hours, preferably 1 to 72 hours, to obtain the compound (aa).


(Step 5)

The compound (aa) in solvent; for example, methanol, ethanol, N,N-dimethylformamide, tetrahydrofuran, and the like; in the presence or the absence of base; for example, diisopropylethylamine, triethylamine, pyridine, sodium hydroxide, and the like; is reacted with alkylating agent; for example, methyl iodide, dimethyl sulfate, benzyl bromide, and the like; at 0° C. to 200° C., preferably 40° C. to 150° C. for 1 to 48 hours, preferably 0.5 to 24 hours, to obtain the compound (ab).


(Step 6)

The compound (ab) in solvent; for example, N,N-dimethylformamide, tetrahydrofuran, dichloromethane, and the like; in the presence of base; for example, diisopropylethylamine, triethylamine, pyridine, sodium hydroxide, and the like; is reacted with metallic oxide; for example, silver oxide, mercury oxide, manganese dioxide, and the like; at 0° C. to 200° C., preferably 10° C. to 150° C. for 1 to 120 hours, preferably 0.6 to 100 hours, to obtain the compound (1-10).


The synthesis of aminotetrahydropyrimidine ring




embedded image


In formula, each symbols are the same as described above.


(Step 1)

To the compound (ac) prepared by known method in solvent; for example, N,N-dimethylformamide, methanol, and the like; is reacted with azide reagent; for example, sodium azide, lithium azide, and the like; at 20° C. to 150° C., preferably 50° C. to 100° C. for 0.5 to 120 hours, preferably 1 to 72 hours, to obtain the compound (ad).


(Step 2)

To the suspension of lithium aluminium hydride in solvent; for example, tetrahydrofuran, or ether, and the like; the compound (ad) dissolved in solvent; for example, tetrahydrofuran, or diethyl ether, and the like; is added under nitrogen atmosphere, at −80° C. to 20° C., preferably −30° C. to 0° C., and the mixture is reacted for 1 minute to 10 hours, preferably 10 minutes to 1 hour, or alternatively to the compound (ad) in solvent; for example, ethanol, isopropanol, or n-butanol, and the like; Raney-Nickel is added at 10° C. to 110° C., preferably 50° C. to 80° C., and reacted for 1 minute to 10 hours, preferably 10 minutes to 1 hour, to obtain the compound (ae).


(Step 3)

The compound (ae) in solvent; for example, tetrahydrofuran, dichloromethane, and the like; in the presence of acid; for example, acetic acid, or propionic acid, and the like; is reacted with reducing agent; for example, sodium cyanoborohydride, sodium triacetoxyborohydride, and the like; at −50° C. to 100° C., preferably 0° C. to 50° C., for 0.1 to 48 hours, preferably 0.5 to 24 hours, or the compound (ae) in solvent; for example, tetrahydrofuran, N,N-dimethylformamide, and the like; in the presence of dehydrating agent; for example, 1-ehthyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxybenzotriazole, carbonyldiimidazole, and the like; or in the presence of base; for example, triethylamine, potassium carbonate, and the like; is reacted with carboxylic acid; for example, formic acid, acetic acid, and the like; at −50° C. to 100° C., preferably 0° C. to 50° C. for 0.1 to 48 hours, preferably 0.5 to 16 hours, to obtain the compound (a). And next, to the suspension of lithium aluminium hydride in solvent; for example, tetrahydrofuran, or diethyl ether, and the like; the aforementioned amide compound dissolved in solvent; for example, tetrahydrofuran, or ether, and the like; is added at −50° C. to 60° C., preferably 0° C. to 50° C., and the mixture is reacted for 1 minute to 48 hours, preferably 10 minutes to 10 hours, to obtain the compound (af).


(Step 4)

The compound (ae) or the compound (af) in solvent; for example, acetonitrile, tetrahydrofuran, N,N-dimethylformamide, and the like; is reacted with 3,5-dimethylpyrazole-1-carboxyamidine or S-methylthiourea at 0° C. to 150° C., preferably 20° C. to 100° C., and the mixture is reacted for 0.5 to 120 hours, preferably 1 to 24 hours, to obtain the compound (ag).


(Step 5)

To the compound (ag) (wherein at least either R2b or R2c is a hydrogen atom) in the presence or the absence of solvent; for example, toluene, and the like; acid; for example, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, and the like, or the mixture thereof; is added and the mixture is reacted at −20° C. to 100° C., preferably 0° C. to 50° C., and the mixture is reacted for 0.5 to 120 hours, preferably 1 to 72 hours, to obtain the compound (I-2) (wherein R2b is a hydrogen atom) or the compound (I-1) (wherein R2c is a hydrogen atom) respectively. Proviso, if R2a, R2b, and R2c have fragile structure under acidic condition; for example, t-butyloxycarbonyl, and the like; R2a, R2b, and R2c in the compound (I-1) or the compound (I-2) may be transformed into a hydrogen atom.


The synthesis of aminothiazoline ring; Method C




embedded image


In formula, Hal is halogen, and other symbols are the same as described above.


(Step 1)

The compound (ah) which is commercially available or prepared by known method in solvent; for example, toluene, chloroform, tetrahydrofuran, and the like; or in mixed-solvent; for example, chloroform-water, and the like; is reacted with halogen; for example, including iodine, bromine, chorine; phase transfer catalyst; for example, sodium thiocyanic acid, ammonium thiocyanic acid, and the like; at 0° C. to 15° C., preferably 20° C. to 100° C., for 0.6 to 48 hours, preferably 1 to 24 hours, to obtain the compound (ai).


(Step 2)

The compound (ai) in solvent; for example, toluene, chloroform, tetrahydrofuran, and the like; is reacted with amine having substituent corresponding to target compound; for example ammonia, methylamine, diethylamine, and the like; at 0° C. to 150° C., preferably 20° C. to 100° C., for 0.5 to 48 hours, preferably 1 to 24 hours, to obtain the compound (I-11).


The aminoacyl derivative-1




embedded image


In formula, R17 is optionally substituted lower alkyl, an optionally substituted carbocyclic group or an optionally substituted heterocyclic group, and the other symbols are the same as described above.


The compound (I-12) wherein R2b is a hydrogen atom in the presence or the absence of solvent; for example, tetrahydrofuran, dichloromethane, and the like; in the presence of base; for example, pyridine, triethylamine, and the like; is reacted with acylating agent having substituent corresponding to target compound; for example, benzoyl chloride, 2-furoyl chloride, acetic anhydride, and the like; at −80° C. to 100° C., preferably −20° C. to 40° C., for 0.1 to 24 hours, preferably 1 to 12 hours, or alternatively, the compound (I-12) in solvent; for example, N,N-dimethylformamide, tetrahydrofuran, dichloromethane, and the like; in the presence of dehydrating agent; for example, dicyclohexylcarbodiimide, carbonyldiimidazole, and the like; is reacted with carboxylic acid having substituent corresponding to target compound; for example, amino acid, glycolic acid, and the like; at −80° C. to 100° C., preferably −20° C. to 40° C., for 0.1 to 24 hours, preferably 1 to 12 hours, to obtain the compound (I-13) and/or the compound (I-14) (wherein R2 is a hydrogen atom).


The guanidino derivatives




embedded image


In formula, each symbols are the same as described above.


The compound (I-12) wherein R2b is a hydrogen atom in solvent; for example, acetonitrile, tetrahydrofuran, N,N-dimethylformamide, and the like; in the presence or the absence of base; for example, triethylamine, sodium hydrogencarbonate, and the like; is reacted with 3,5-dimethylpyrazole-1-carboxyamidine, or S-methylisothiourea etc. at 0° C. to 15° C., preferably 20° C. to 100° C., for 0.5 to 120 hours, preferably 1 to 24 hours, to obtain the compound (I-15).


The carbamoyl derivatives




embedded image


In formula, CONR18R19 is optionally substituted carbamoyl, and the other symbols are the same as described above.


The compound (I-16) having a carboxyl group as substituent of ring A in solvent; for example, N,N-dimethylformamide, tetrahydrofuran, dichloromethane, and the like; in the presence of dehydrating agent; for example, dicyclohexylcarbodiimide, carbonyldiimidazole, dicyclohexylcarbodiimide-N-hydroxybenzotriazole, and the like; is reacted with primary amine or secondary amine (aniline, 2-aminopyridine, dimethylamine etc.) at −80° C. to 100° C., preferably −20° C. to 40° C., for 0.1 to 24 hours, preferably 1 to 12 hours, to obtain the compound (I-17).


The acylamino derivative-2




embedded image


In formula, NHR20 is optionally substituted amino; NR20COR21 is optionally substituted acyl amino, optionally substituted ureido, carboxy amino having substituent on oxygen atom, and the other symbols are the same as described above.


The compound (I-18) having an optionally substituted amino group on ring A in the presence or the absence of solvent; for example, tetrahydrofuran, dichloromethane, and the like; in the presence or the absence of base; for example, pyridine, triethylamine, and the like; is reacted with reagent including acid chloride, acid anhydride, chloroformate ester derivatives, isocyanate derivatives (benzoyl chloride, 2-furoyl chloride, acetic anhydride, benzyl chloroformate, di-t-butyl dicarbonate, phenyl isocyanate etc.), at −80° C. to 100° C., preferably −20° C. to 40° C., for 0.1 to 24 hours, preferably 1 to 12 hours. Or alternatively, the compound (I-18) having an optionally substituted amino group on ring A in solvent; for example, N,N-dimethylformamide, tetrahydrofuran, dichloromethane, and the like; in the presence of dehydrating agent; for example, dicyclohexylcarbodiimide, carbonyldiimidazole, dicyclohexylcarbodiimide-N-hydroxybenzotriazole, and the like; is reacted with carboxylic acid having substituent corresponding to target compound; for example, benzoic acid, 2-pyridinecarboxylic acid, and the like; at −80° C. to 100° C., preferably −20° C. to 40° C., for 0.1 to 24 hours, preferably 1 to 12 hours, to obtain the compound (I-19).


The alkylamino derivatives




embedded image


In formula, NHR2 is optionally substituted amino, R22 is lower alkyl.


The compound (I-18) having an amino group on ring A in solvent; for example, dichloromethane, tetrahydrofuran, and the like; in the presence or the absence of acid; for example, acetic acid, and the like; is reacted with aldehyde having substituent corresponding to target compound; for example, benzaldehyde, pyridine-2-carboaldehyde, and the like; and reducing agent; for example, sodium borohydride, sodium triacetoxyborohydride, and the like; at −80° C. to 100° C., preferably 0° C. to 40° C., for 0.5 to 150 hours, preferably 1 to 24 hours, to obtain the compound (I-20).


The substituted alkoxy derivatives




embedded image


In formula, R23 is optionally substituted lower alkyl, an optionally substituted carbocyclic group or an optionally substituted heterocyclic group, etc., and the other symbols are the same as described above.


The compound (I-21) having a hydroxy group as substituent of A ring in solvent; for example, N,N-dimethylformamide, tetrahydrofuran, and the like; in the presence of base; for example potassium carbonate, sodium hydroxide, sodium hydride, and the like; is reacted with alkylating agent having substituent corresponding to target compound; for example, benzylchloride, methyl iodide, and the like; at −80° C. to 100° C., preferably 0° C. to 40° C., for 0.5 to 150 hours, preferably 1 to 24 hours, or alternatively, the compound (1-18) in solvent; for example, N,N-dimethylformamide, tetrahydrofuran, and the like; under Mitsunobu reagent; for example triphenylphosphine-azodicarboxylic acid ethyl ester, and the like; is reacted with alcohol; for example, 2-aminoethanol, and the like; at −80° C. to 100° C., preferably 0° C. to 40° C., for 0.5 to 72 hours, preferably 1 to 24 hours, to obtain the compound (I-22).


The introduction of substituent with palladium coupling reaction




embedded image


In formula, Hal is halogen, G is optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkoxycarbonyl, an optionally substituted carbocyclic group or an optionally substituted heterocyclic group etc., and the other symbols are the same as described above.


The compound (I-23) having halogen as substituent of A ring in solvent; for example, tetrahydrofuran, N,N-dimethylformamide, 1,2-dimethoxyethane, methanol, and the like; in the presence of base; for example, triethylamine, sodium carbonate, and the like; palladium catalyst; for example, palladium acetate, palladium chloride, and the like; and ligand; for example triphenylphosphine, and the like; is reacted with compound having substituent corresponding to target compound (styrene, propargyl alcohol, aryl boronic acid, carbon monoxide), with or without microwave irradiation, at −80° C. to 150° C., preferably 0° C. to 100° C., for 0.5 to 72 hours, preferably 1 to 24 hours, to obtain the compound (1-24).


The Oxime Derivatives




embedded image


In formula, in R24 is a hydrogen atom or optionally substituted lower alkyl etc., R25 is a hydrogen atom, optionally substituted lower alkyl, optionally substituted lower alkenyl or an optionally substituted carbocyclic group or an optionally substituted heterocyclic group etc., and the other symbols are the same as described above.


The compound (I-25) having an acyl group as substituent of A ring in solvent; for example, methanol, ethanol, and the like; in the presence or the absence of additives; for example, potassium acetate, and the like; is reacted with hydroxylamine having substituent corresponding to target compound (hydroxylamine, methoxylamine, O-benzylhydroxylamine, etc.) or the salt thereof, at 0° C. to 100° C., preferably 0° C. to 40° C., for 0.5 to 150 hours, preferably 1 to 72 hours, to obtain the compound (I-26).


Production of Optical Active Compounds,

For example, Optical active compound aq, one embodiment of the pharmaceutical composition of the present invention, can be synthesized in the following method.


1) n=2


1-1) X═S



embedded image


embedded image


wherein R5 is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, lower alkoxycarbonyl, optionally substituted carbamoyl, an optionally substituted cabocyclic group or an optionally substituted heterocyclic group, R26 is a chiral sulfoxide having optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted carbocyclic group or optionally substituted hetererocyclic group, R3a and R3b are each independently hydrogen, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkoxycarbonyl, optionally substituted carbamoyl, an optionally substituted carbocyclic group or an optionally substituted heterocyclic group, optionally substituted acyl, carboxy or optionally substituted amino, R27 is optionally substituted lower alkyl, optionally substituted lower alkenyl, R2a and R2b are each independently hydrogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted amino, optionally substituted amidino, optionally substituted acyl, optionally substituted carbamoyl, optionally substituted carbamoylcarbonyl, optionally substituted lower alkylsulfonyl, optionally substituted arylsulfonyl, an optionally substituted carbocyclic group or an optionally substituted heterocyclic group, L is an leaving group such as halogen, methanesulfonyloxy, trifluofomethansulfonyloxy ane the like, and other symbols are the same as described above.


The above compounds ak and al can be synthesized according to the method described in (1) T. Fujisawa et al., Tetrahedron Lett., 37, 3881-3884 (1996), (2) D. H. Hua et al, Sulfur Reports, vol. 21, pp. 211-239 (1999), (3) Y. Koriyama et al., Tetrahedron, 58, 9621-9628 (2002), (4) T. Vilavan et al, Current Organic Chemistry, 9, 1315-1392 (2005) and the like, or by optical resolution of each intermediate or final compound, or by the method described below. Examples of methods for optical resolution are separation of optical isomers using an optically active column, kinetic resolution by an enzyme reaction or the like, crystallization of diastereomers by salt formulation using a chiral acid or a chiral base, and a preferential crystallization etc.


Step 1

Compound ak can be obtained by reacting Compound aj, which is commercially available or can be prepared by a known method, with a chiral reagent having a substituent corresponding to the target compound such as para-toluene, tert-butylsulfine amide or the like at 60° C. to 120° C., preferably 80° C. to 100° C. in a solvent such as ether, tetrahydrofuran, toluene, benzene or the like or a mixed solvent such as ether-tetrahydrofuran or the like for 0.5 to 24 hours, preferably 0.5 to 5 hours in the presence of moleculer sieves or magnesium sulfate or the like, under continuous evaporation by Dean-Stark apparatus, or in the presence of a chiral reagent having a substituent corresponding to the target compound such as para-toluene, tert-butylsulfine amide ane the like according to the method described in the above literatures.


Step 2

Compound al can be diastereoselectively obtained by reacting compound ak with a metal, which is lithium, aluminum, zinc, titanium or the like, enolate of acetate ester or the like possessing a substituent corresponding to the target compound which is commercially available or prepared by a known method, at −100° C. to 0° C., preferably −80° C. to −50° C. for 0.5 to 24 hours, preferably 0.5 to 5 hours in a solvent such as ether, tetrahydrofuran, toluene, methylene chloride or a mixed solvent of ether-tetrahydrofuran or the like, or obtained according to the method described in the above literature (1) or (3). Alternatively, ketenesilyl acetate of acetate ester which is prepared from ester acetate or the like possessing a substituent corresponding to the target compound can be used.


Step 3

Compound am can be obtained by reacting Compound al in a solvent such as methanol, ethanol ether, tetrahydrofuran, 1,4-dioxane, methylene chloride, ethyl acetate or the like, which contains hydrogen chloride, trifluoroacetic acid or the like, or in trifluoroacetcic acid without a solvent, or at −30° C. to 100° C., preferably −10° C. to 90° C. for 0.5 to 12 hours, preferably 0.5 to 5 hours.


Step 4

To a solution of Compound am in a solvent such as ether, tetrahydrofuran, toluene or the like or a mixed solvent such as ether-tetrahydrofuran is added a reductant such as a boran-tetrahydrofuran complex, a boran-dimethylsulfide complex, a boran-triethylamine complex, a boran-pyridine complex or the like, or ether of tetrahydrofuran solution of them at −30° C. to 30° C., preferably −10° C. to 20° C. and the mixture is reacted for 0.5 to 12 hours, preferably 0.5 to 5 hours to obtain Compound an.


Step 5

To a solution of Compound an in a solvent such as methylene chloride, toluene or the like or a mixed solvent of methylene chloride-water or the like is added calcium carbonate, potassium carbonate or the like, and added thiophosgene at −30° C. to 50° C., preferably −10° C. to 25° C., followed by reacting for 0.5 to 12 hours, preferably 0.5 to 5 hours to obtain Compound ao.


Step 6

To a solution of Compound so in a solvent such as methylene chloride, tetrahydrofuran, toluene or the like are added oxalyl chloride, thionyl chloride or the like and a catalytic amount of N,N-dimethylformamide at −30° C. to 50° C., preferably −10° C. to 20° C. The mixture is reacted at 0° C. to 100° C., preferably 20° C. to 90° C. for 0.5 to 12 hours, preferably 0.5 to 5 hours to obtain Compound ap. Alternatively, Compound ap can be obtained by halogenation according to the method described in Comprehensive Organic Transformations, Richard C Larock (Mcgraw-Hill) or by reacting Compound so with a sulfonylation reagent such as methanesulfonyl chloride, p-toluene sulfonyl chloride or the like in the presence of a base such as diisopropylethylamine, triethylamine or the like in a solvent such as toluene, dichloromethane or the like at −80° C. to 50° C., preferably −20° C. to 20° C. for 0.1 to 24 hours, preferably 0.5 to 12 hours.


Step 7

To a solution of Compound ap in a solvent such as ethyl acetate, methylene chloride, tetrahydrofuran, toluene or the like is added 15 to 30% aqueous ammonia or a reagent having a substituent corresponding to the target compound such as tert-butyl amine at −30° C. to 50° C., preferably −10° C. to 30° C. The mixture is reacted at −10° C. to 30° C., preferably 0° C. to 30° C. for 0.5 to 72 hours to obtain Compound aq-i or Compound aq-ii.


In the case that thus-obtained Compound aq-i or Compound aq-ii is a compound wherein R2a and/or R2b is hydrogen, the target substituent R2a or R2b can be introduced by the usual method, if necessary.


1-2) Introduction of R3a and R3b



embedded image


wherein each symbols are the same as described above.


To obtain Compound aq-iii or aq-iv wherein R3a and R3b are substituted at the carbon atom neighboring to X, R3a and R3b may be introduced by conducting Step 3′ and Step 4′ instead of Step 3 and Step 4.


Step 3′

To a solution of Compound al in a solvent such as ether, tetrahydrofuran or the like or a mixed solvent such as ether-tetrahydrofuran or the like is added a Grignard reagent having a substituent corresponding to the target compound such as methyl magnesium chloride, ethyl magnesium bromide or the like at −100° C. to 50° C., preferably −80° C. to 30° C. to obtain Compound am′. Alternatively, after conversion of Compound al to Weinreb amide thereof, the compound is reacted sequentially with a Grignard reagent having a substituent corresponding to the target compound such as R3a MgBr, R3b MgBr or the like to obtain Compound am′. The reaction may be conducted for 0.2 to 24 hours, preferably 0.2 to 5 hours.


Step 4′

Compound an′ can be synthesized according to the above-mentioned Step 3. Compound an can be obtained by reacting Compound am′ in a solvent such as methanol, ethanol, ether, tetrahydrofuran, 1,4-dioxane, methylene chloride, ethyl acetate or the like which includes hydrogen chloride, trifluoroacetic acid or the like, without a solvent, or in trifluoroacetic acid without a solvent at −30° C. to 100° C., preferably −10° C. to 90° C. for 0.5 to 12 hours, preferably 0.5 to 5 hours.


Then, the target Compound aq-iii or aq-iv can be obtained by conducting the similar methods to Steps 5 to 7 mentioned in the above 1-1).


1-3) X═O



embedded image


wherein R28 is alkyl or optionally substituted alkylsulfonyl, optionally substituted carbocyclic sulfonyl or optionally substituted heterocyclic sulfonyl and other symbols are the same as described above.


The target compound can be obtained by conducting the following steps instead of Steps 5 to 7 described in the above 1-1).


Step 5′

Compound ao′ can be obtained by reacting Compound an′ with an isothiocyanate having the substituent corresponding to the target compound such as ally isothiocyanate, tert-butylisothiocyanate or the like or a thiocarbamoyl halide having the substituent corresponding to the target compound such as N,N-dimethylthiocarbamoyl chloride, N,N-diethylthiocarbamoyl chloride or the like in a solvent such as toluene, chloroform, tetrahydrofuran or the like at 0° C. to 150° C., preferably 20° C. to 100° C. for 0.5 to 120 hours, preferably 1 to 72 hours.


Step 6′

Compound ap″ can be obtained by reacting Compound ao′ with an alkylating agent such as methyl iodide, diethyl sulfate, benzylbromide or the like or a sulfonating agent such as p-toluensulfonyl chloride in the presence or absence of a base such as diisopropylethylamine, triethylamine, pyridine, sodium hydroxide or the like in a solvent such as methanol, ethanol, dimethylformamide, tetrahydrofuran or the like at 0° C. to 200° C., preferably 40° C. to 150° C. for 0.1 to 48 hours, preferably 0.5 to 24 hours.


Step 7′

Compound aq-v or aq-vi can be obtained by reacting Compound ap′ in the presence or absence of a base such as diisopropylethylamine, triethylamine, pyridine, sodium hydroxide or the like, in the presence or absence of a metallic oxide such as silver oxide, mercury oxide, manganese dioxide or the like, in a solvent such as dimethylformamide, tetrahydrofuran, dichloromethane or the like at 0° C. to 200° C., preferably 10° C. to 150° C. for 1 to 120 hours, preferably 0.5 to 100 hours.


1-4) X═N



embedded image


wherein each symbols are the same as described above.


Step 6″

Compound ap′″ can be obtained by reacting Compound ao′ with an azidation agent such as sodium azide, trimethylsillylazide or the like in the presence or absence of an acid such as trifluoroacetic acid or the like in a solvent such as chloroform, tetrahydrofuran or the like at −10° C. to 200° C., preferably 0° C. to 100° C. for 0.1 to 48 hours, preferably 0.5 to 24 hours.


Step 7″

Compound ar can be obtained by reacting Compound ap′″ with an alkylating agent such as methyl iodide, diethyl sulfate, benzylbromide or the like or a sulfonating agent such as p-toluensulfonyl chloride in the presence or absence of a base such as diisopropylethylamine, triethylamine, pyridine, sodium hydroxide or the like in a solvent such as methanol, ethanol, dimethylformamide, tetrahydrofuran or the like at 0=C to 200° C., preferably 40° C. to 150° C. for 0.1 to 48 hours, preferably 0.5 to 24 hours.


Step 8″

To a solution of Compound ar in a solvent such as tetrahydrofuran, ethyl acetate, methanol or the like is added a catalytic reduction catalyst such as 10% Pd/C, and the mixture is reacted under hydrogen atmosphere at normal pressures to 5 atm, preferably at normal pressure to 2 atm at 10° C. to 100° C., preferably 20° C. to 80° C. for 0.5 to 48 hours, preferably 6 to 20 hours to obtain Cyclized Compound aq-vii or aq-viii. Alternatively, Cyclized Compound aq-vii or aq-viii can be obtained by reducing a azide group of Compound ar by the method described in “Comprehensive Organic Transformations, Richard C Larock (Mcgraw-Hill)”. If necessary, the compound obtained by reduction may be treated with a base such as triethylamine, sodium hydroxide or the like to obtain Compound aq-vii or aq-viii.


2) n=3




embedded image


wherein the each symbols are the same as defined above.


Step 2″

Compound al′ can be obtained by reacting Compound ak with a Grignard reagent having a substituent corresponding to the target compound such as an allyl Grignard reagent in a solvent such as ether, tetrahydrofuran, toluene or the like or a mixed solvent such as ether-tetrahydrofuran at −80° C. to 50° C., preferably −40° C. to 30° C. for 0.5 to 12 hours, preferably 0.5 to 8 hours.


Step 3″

Compound an″ can be obtained by hydroboration, wherein Compound al′ is reacted with a reductant such as a boran-tetrahydrofuran complex, a boran-dimethylsulfide complex, a boran-triethylamine complex, a boran-pyridine complex or the like or an ether or tetrahydrofuran solution of them in a solvent such as ether, tetrahydrofuran, toluene or the like or a mixed solvent such as ether-tetrahydrofuran or the like at −30° C. to 30° C., preferably −15° C. to 20° C. for 0.5 to 12 hours, preferably 0.5 to 5 hours.


Substituents R3a and R3b can be introduced into thus-obtained Compound an″ by the method according to the above-mentioned 1-2).


3) Conversion of Substituents (1)



embedded image


wherein R13a and R13b are amino-protecting groups and the other symbols are the same as defined above.


Synthesis of Compound as-1

To a solution of Compound aq-1 in a solvent such as tetrahydrofuran, toluene, xylene or the like are added trisdibenzyliden acetone dipalladium, palladium acetate or palladium(0) prepared in situ and a phosphine ligand such as tri-tert-butylphosphine, dicyclohexylbiphenyl phosphine or the like, and further added a reagent having the substituent corresponding to the target compound such as lithium hexamethyl disilazide at −10° C. to 30° C., followed by reacting at 30° C. to 120° C., preferably 50° C. to 100° C. for 0.5 to 48 hours, preferably 3 to 20 hours to obtain Compound as-1.


An amino protecting group may be a group which is deprotected by the method described in “Protective Groups in Organic Synthesis, Theodora W Green (John Wiley & Sons)” etc. and the examples are lower alkoxycarbonyl, lower alkenyloxycarbonyl, trialkylsillyl, acyl, methansulfonyl, trifluoroethansulfonyl, toluensulfonyl and the like.


4) Conversion of Substituent (2)



embedded image


Synthesis of Compound as-2

To a solution of aq-2 in a solvent such as tetrahydrofuran, ethyl acetate, methanol or the like is added a catalytic reduction catalyst such as 10% Pd/C, and then the mixture is reacted at normal pressure to 5 atm, preferably normal pressure to 2 atm under hydrogen atmosphere for 0.5 to 48 hours, preferably 6 to 20 hours to obtain Compound as-2. Alternatively, Compound as-2 can be obtained by the method described in “Comprehensive Organic Transformations, Richard C Larock (Mcgraw-Hill)”.


5) Conversion of Substituent (3)



embedded image


wherein R14 is hydroxy, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted lower alkylthio, optionally substituted lower amino, optionally substituted aromatic carbocyclicoxy or heterocyclic oxy, optionally substituted aromatic carbocyclicamino or heterocyclic amino, optionally substituted aromatic carbocyclicthio or heterocyclicthio, cyano, azide, optionally substituted carbocyclic group, optionally substituted heterocyclic group, optionally substituted carbamoyl or the like and the other symbols are the same as defined above.


Synthesis of Compound as-3

To a solution of Compound aq-3 in a solvent such as tetrahydrofuran, ethanol or the like is added a reagent having the substituent corresponding to the target compound such as ethanol, methanethiol, dimethyl amine or the like at −10° C. to 30° C. and the mixture is reacted for 0.5 to 12 hours, preferably 1 to 8 hours to obtain Compound as-3.


Then, the similar reaction described in the above “4) Conversion of substituent (2)” may be conducted, and further a coupling reaction may be conducted according to the above-mentioned method for producing Compound (I-19), if necessary.


In all of above mentioned steps, if a compound having substituent which interrupts the reaction; (for example, hydroxy, mercapto, amino, formyl, carbonyl, carboxyl, etc.), the substituent of the compound is protected by methods described in Protective Groups in Organic Synthesis, Theodora W Green (John Wiley & Sons) beforehand, and is deprotected at preferable step.


The compound (I) in this invention presented below; in particular, X is S, and E is a bond or methylene; is preferable.


1) A compound represented by the general formula (I′),




embedded image


wherein, t is 0 or 1, the other symbols are the same as above (a), with the proviso that the compounds represented below;


i) wherein n+m is 2, Rs is a hydrogen atom, and ring A is non-substituted phenyl;


ii) wherein n is 2, m is 0, R2a is a hydrogen atom, R2b is a hydrogen atom or acetyl, R5 is methyl, and ring A is phenyl or 4-methoxyphenyl;


iii) wherein n is 2, m is 0, R2a is a hydrogen atom, R2b is a hydrogen atom or acetyl, R5 is ethyl, and ring A is 3,4-dimethoxyphenyl;


iv) wherein n is 2, m is 0, R2a is a hydrogen atom, R2b is a hydrogen atom or acetyl, and R5 and ring A are phenyl;


v) wherein n is 2, m is 0, R2a and R2b are a hydrogen atom, R5 and ring A are taken together to form




embedded image


and


vi) wherein n+m is 1 or 2; R5 is a hydrogen atom; and ring A is phenyl substituted by one or two substituent selected from hydroxy, halogen, lower alkyl, lower alkoxy, nitro, amino, lower alkyl carbonylamino, mercapto, lower alkylthio, carbamoyl, lower alkylamino, lower alkyl carbamoyl and lower alkoxycarbonyl; non-substituted phenyl, or non-substituted naphthyl; are excluded.


In addition, in formula (I′), preferable is the compound represented below.


2) The compound, wherein n is 1 and m is 0 (this compound is represented by nm-1),


3) the compound, wherein n is 2 and m is 0 (this compound is represented by nm-2),


4) the compound, wherein n is 3 and m is 0 (this compound is represented by nm-3),


5) the compound, wherein R2a is a hydrogen atom; R2b is a hydrogen atom, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted lower alkylsulfonyl, or optionally substituted amidino (this compound is represented by R2-1),


6) the compound, wherein R2a is a hydrogen atom; R2b is a hydrogen atom, optionally substituted lower alkyl or optionally substituted acyl (this compound is represented by R2-2),


7) the compound, wherein NR2aR2b is represented by the following formula:




embedded image


wherein each symbols are the same as described above.


R6, R7 and R8 are each independently a hydrogen atom, lower alkyl or acyl,


Y is optionally substituted lower alkylene, optionally substituted lower alkenylene or optionally substituted lower alkynylene,


Z is O or S (this compound is represented by R2-3),


8) the compound, wherein NR2aR2b is NH2 (this compound is represented by R2-4),


9) the compound, wherein ring A is substituted phenyl or substituted pyridyl (this compound is represented by A-1),


10) the compound, wherein ring A is represented by the following formula:




embedded image


wherein R9, R10 and R11 is a hydrogen atom or G,


G is halogen, hydroxy, cyano, nitro, mercapto, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted acyl, optionally substituted acyloxy, carboxy, optionally substituted lower alkoxycarbonyl, optionally substituted lower alkoxycarbonyloxy, optionally substituted aryloxycarbonyloxy, optionally substituted amino, optionally substituted carbamoyl, optionally substituted carbamoyloxy, optionally substituted lower alkylthio, optionally substituted arylthio, optionally substituted lower alkylsulfonyl, optionally substituted arylsulfonyl, optionally substituted lower alkylsulfinyl, optionally substituted arylsulfinyl, optionally substituted lower alkylsulfonyloxy, optionally substituted arylsulfonyloxy, optionally substituted sulfamoyl, an optionally substituted carbocyclic group, optionally substituted carbocyclicoxy, an optionally substituted heterocyclic group or optionally substituted heterocyclicoxy, each G may be different (this compound is represented by A-2),


11) the compound, wherein ring A is represented by the following formula:




embedded image


wherein R9 and R10 are each independently a hydrogen atom, halogen, hydroxy, optionally substituted lower alkyl, cyano, nitro, optionally substituted lower alkoxy, optionally substituted acyl, optionally substituted amino, optionally substituted carbamoyl, optionally substituted carbamoyloxy, optionally substituted lower alkylsulfonyl, optionally substituted arylsulfonyl, optionally substituted lower alkylsulfonyloxy, optionally substituted arylsulfonyloxy, an optionally substituted carbocyclic group, optionally substituted carbocyclicoxy, an optionally substituted heterocyclic group or optionally substituted heterocyclicoxy, G is the same as described above 10) (this compound is represented by A-3),


12) the compound, wherein ring A is represented by the following formula:




embedded image


wherein R9 and R10 is the same as described in 11), G is the same as described in 10) (this compound is represented by A-4),


13) the compound, wherein ring A, R9, and R10 are defined in 11), G is optionally substituted amino (this compound is represented by A-5),


14) the compound, wherein ring A, R9 and R10 are defined in 11), G is optionally substituted arylcarbonylamino or optionally substituted heterocyclic carbonylamino,


15) the compound, wherein ring A, R9 and R10 are defined in 11), G is optionally substituted heterocyclic carbonylamino (this compound is represented by A-6),


16) the compound, wherein ring A is defined in 11), G is represented by the following formula:




embedded image


embedded image


embedded image


wherein Q1, Q2 and Q3 are each independently a bond, optionally substituted lower alkylene or optionally substituted lower alkenylene;


Q4 is optionally substituted lower alkylene or optionally substituted lower alkenylene;


W1 and W2 are each independently O or S;


W3 is O, S or NR12;

R12 is a hydrogen atom, lower alkyl, hydroxy lower alkyl, lower alkoxy lower alkyl, lower alkoxycarbonyl lower alkyl, carbocyclic lower alkyl or acyl;


R14 is a hydrogen atom or lower alkyl;


ring B is an optionally substituted carbocyclic group or an optionally substituted heterocyclic group;


Alk2 is optionally substituted lower alkyl; and


R9 and R10 are the same as described in 11) (this compound is represented by A-7),


17) the compound, wherein ring A, R9 and R10 are the group defined in 11); G is the group defined in 16); ring B is aryl optionally substituted with one or more substituents selected from halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted acyl, optionally substituted amino, cyano, optionally substituted carbamoyl, an optionally substituted carbocyclic group, optionally substituted carbocyclicoxy or an optionally substituted heterocyclic group or


heteroaryl optionally substituted with one or more substituents selected from halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted acyl, optionally substituted amino, cyano, optionally substituted carbamoyl, an optionally substituted carbocyclic group, optionally substituted carbocyclicoxy or an optionally substituted heterocyclic group; and the other symbols are the same as described in 16) (this compound is represented by A-8),


18) the compound, wherein ring A, R9 and R10 are defined in 11), G is represented by the following formula:




embedded image


wherein each symbols are the same as described in 16)


(this compound is represented by A-9),


19) the compound, wherein ring A is represented by the following formula:




embedded image


wherein G is defined in 16), ring B is optionally substituted aryl or optionally substituted heteroaryl, either R9 or R10 is a hydrogen atom; and the other is a hydrogen atom, halogen, optionally substituted lower alkyl, cyano, nitro, optionally substituted lower alkoxy, optionally substituted amino, optionally substituted carbamoyl, optionally substituted lower alkylsulfonyl, an optionally substituted carbocyclic group or an optionally substituted heterocyclic group (this compound is represented by A-10),


20) the compound, wherein ring A is represented by the following formula:




embedded image


wherein G is defined in 18), the other symbols are the same as described in 19) (this compound is represented by A-11),


21) the compound, wherein ring A is represented by the following formula:




embedded image


wherein G is defined in 16), ring B is optionally substituted phenyl, optionally substituted 5- to 6-membered heteroaryl, optionally substituted benzothiazolyl or optionally substituted benzothienyl, and R9 and R10 are the same as described in 19) (this compound is represented by A-12),


22) the compound, wherein ring A is represented by the following formula:




embedded image


wherein G is defined in 18), ring B is defined in 21), R9 and R10 are the same as described in 19) (this compound is represented by A-13),


23) the compound, wherein ring A is represented by the following formula:




embedded image


wherein R9 is a hydrogen atom, halogen, optionally substituted lower alkyl, cyano, nitro, optionally substituted lower alkoxy, optionally substituted amino, optionally substituted carbamoyl, optionally substituted lower alkylsulfonyl, an optionally substituted carbocyclic group or an optionally substituted heterocyclic group, ring B is the same as described in 21); and R12 is a hydrogen atom or lower alkyl (this compound is represented by A-14),


24) the compound, wherein R5 is a hydrogen atom or C1 to C3 alkyl (this compound is represented by R5-1),


25) the compound, wherein R5 is C1 to C3 alkyl (this compound is represented by R5-2),


26) the compound, wherein R5 is methyl (this compound is represented by R5-3),


27) the compound, wherein R3a and R3b are each independently a hydrogen atom, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkoxy or optionally substituted aryl (this compound is represented by R3-1),


28) the compound wherein, R3a is a hydrogen atom, halogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkoxy or optionally substituted aryl, R3b is a hydrogen atom, one R3 is a hydrogen atom when n is 2, one or two R2a is (are) a hydrogen atom(s) when n is 3 (this compound is represented by R3-2),


29) the compound, wherein R3a and R3b are all hydrogen atoms (this compound is represented by R3-3), and


in a compound represented by the general formula (I′), a compound, wherein the combination of n, m, R2a, R2b, ring A, R5, R3a, and R3b (m, R2, A, R5, R3) is the following compound.


(nm, R2, A, R5, R3)=(nm-1,R2-1,A-1,R5-1,R3-1),(nm-1,R2-1,A-1,R5-1,R3-2),(nm-1,R2-1,A-1,R5-2,R3-1),(n m-1,R2-1,A-1,R5-2,R3-2),(nm-1,R2-1,A-1,R5-3,R3-1),(nm-1,R2-1,A-1,R5-3,R3-2),(nm -1,R2-1,A-2,R5-1,R3-1),(nm-1,R2-1,A-2,R5-1,R3-2),(nm-1,R2-1,A-2,R5-2,R3-1),(nm-1,R2-1,A-2,R5-2,R3-2),(nm-1,R2-1,A-2,R5-3,R3-1),(nm-1,R2-1, A-2,R5-3,R3-2),(nm-1,R 2-1,A-3,R5-1,R3-1),(nm-1,R2-1,A-3,R5-1,R3-2),(nm-1,R2-1, A-3,R5-2,R3-1),(nm-1,R2-1,A-3,R5-2,R3-2),(nm-1,R2-1,A-3,R5-3,R3-1),(nm-1,A-3,R5-3,R3-2),(nm-1,R2-1, A-4,R5-1,R3-1),(nm-1,R2-1,A-4,R5-1,R3-2),(nm-1,R2-1,A-4,R5-2,R3-1),(nm-1,R2-1,A-4,R5-2,R3-2),(nm-1,R2-1,A-4,R5-3,R3-1),(nm-1,R2-1,A-4,R5-3,R3-2),(nm-1,R2-1,A-5, R5-1,R3-1),(nm-1,R2-1,A-5,R5-1,R3-2),(nm-1,R2-1,A-5,R5-2,R3-1),(nm-1,R2-1, A-5,R 5-2,R3-2),(nm-1,R2-1,A-5,R5-3,R3-1),(nm-1,R2-1,A-5,R5-3,R3-2),(nm-1,A-6,R5-1,R3-1),(nm-1,R2-1,A-6,R5-1,R3-2),(nm-1,R2-1,A-6,R5-2,R3-1),(nm-1,R2-1,A-6,R5-2, R3-2),(nm-1,A-6,R5-3,R3-1),(nm-1,R2-1,A-6,R5-3,R3-2),(nm-1,R2-1,A-7,R5-1,R3-1),(nm-1,R2-1,A-7,R5-1,R3-2),(nm-1,R2-1,A-7,R5-2,R3-1),(nm-1,R2-1,A-7,R5-2,R3-2),(nm-1,R2-1,A-7,R5-3,R3-1),(nm-1,R2-1,A-7,R5-3,R3-2),(nm-1,R2-1,A-8,R5-1,R3-1) ,(nm-1,R2-1,A-8,R5-1,R3-2),(nm-1,A-8,R5-2,R3-1),(nm-1,R2-( nm-1,R2-1,A-8,R5-3,R3-1),(nm-1,R2-1,A-8,R5-3,R3-2),(nm-1,R2-1,A-9,R5-1,R3-1),(n m-1,R2-1,A-9,R5-1,R3-2),(nm-1,R2-1,A-9,R5-2,R3-1),(nm-1,R2-1,A-9,R5-2,R3-2),(nm -1,R2-1,A-9,R5-3,R3-1),(nm-1,R2-1,A-9,R5-3,R3-2),(nm-1,R2-1,A-10,R5-1,R3-1),(nm-1,R2-1,A-10,R5-1,R3-2),(nm-1,R2-1,A-10,R5-2,R3-1),(nm-1,R2-1,A-10,R5-2,R3-2),(n m-1,R2-1,A-10,R5-3,R3-1),(nm-1,R2-1,A-10,R5-3,R3-2),(nm-1,R2-1,A-11,R5-1,R3-1),( nm-1,R2-1,A-11,R5-1,R3-2),(nm-1,R2-1,A-11,R5-2,R3-1),(nm-1,R2-1,A-11,R5-2,R3-2) ,(nm-1,R2-1,A-11,R5-3,R3-1),(nm-1,R2-1,A-11,R5-3,R3-2),(nm-1,R2-1,A-12,R5-1,R3-1),(nm-1,R2-1,A-12,R5-1,R3-2),(nm-1,R2-1,A-12,R5-2,R3-1),(nm-1,R2-1,A-12,R5-2,R 3-2),(nm-1,R2-1,A-12,R5-3,R3-1),(nm-1,R2-1,A-12,R5-3,R3-2),(nm-1,R2-1,A-13,R5-1, R3-1),(nm-1,R2-1,A-13,R5-1,R3-2),(nm-1,R2-1,A-13,R5-2,R3-1),(nm-1,R2-1,A-13,R5-2,R3-2),(nm-1,R2-1,A-13,R5-3,R3-1),(nm-1,R2-LA-13,R5-3,R3-2),(nm-1,R2-1,A-14,R5-1,R3-1),(nm-1,R2-1,A-14,R5-1,R3-2),(nm-1,R2-1,A-14,R5-2,R3-1),(nm-1,R2-1,A-14, R5-2,R3-2),(nm-1,R2-1,A-14,R5-3,R3-1),(nm-1,R2-1,A-14,R5-3,R3-2),(nm-1,R2-2,A-1,R5-1,R3-1),(nm-1,R2-2,A-1,R5-1,R3-2),(nm-1,R2-2, A-1,R5-2,R3-1),(nm-1,R2-2,A-1,R 5-2,R3-2),(nm-1,R2-2,A-1,R5-3,R3-1),(nm-1,R2-2,A-1,R5-3,R3-2),(nm-1,R2-2,A-2,R5-1,R3-1),(n 1,R3-2),(nm-1,R2-2,A-2,R5-2,R3-1),(nm-1,R2-2,A-2,R5-2, R3-2),(nm-1,R2-2,A-2,R5-3,R3-1),(nm-1,R2-2,A-2,R5-3,R3-2),(nm-1,R2-2,A-3,R5-1,R3-1),(nm-1,R2-2,A-3,R5-1,R3-2),(nm-1,R2-2,A-3,R5-2,R3-1),(nm-1,R2-2,A-3,R5-2,R3-2),(nm-1,R2-2,A-3,R5-3,R3-1),(nm-1,R2-2,A-3,R5-3,R3-2),(nm-1,R2-2,A-4,R5-1,R3-1) ,(nm-1,R3-2),(nm-1,R2-2,A-4,R5-2,R3-1),(nm-1,R2-2,A-4,R5-2,R3-2),( nm-1,R2-2,A-4,R5-3,R3-1),(nm-1,R2-2,A-4,R5-3,R3-2),(nm-1,R2-2,A-5,R5-1,R3-1),(n m-1,R2-2,A-5,R5-1,R3-2),(nm-1,R2-2,A-5,R5-2,R3-1),(nm-1,R2-2,A-5,R5-2,R3-2),(nm -1,R2-2,A-5,R5-3,R3-1),(nm-1,R2-2,A-5,R5-3,R3-2), nm-1,R2-2,A-6,R5-1,R3-1),(nm-1,R2-2,A-6,R5-1,R3-2),(nm-1,R2-2,A-6,R5-2,R3-1),(nm-1,R2-2,A-6,R5-2,R3-2),(nm-1,R 2-2,A-6,R5-3,R3-1),(nm-1,R2-2,A-6,R5-3,R3-2),(nm-1,R2-2,A-7,R5-1,R3-1),(nm-1,R2-2,A-7,R5-1,R3-2),(nm-1,R2-2,A-7,R5-2,R3-1),(nm-1,R2-2,A-7,R5-2,R3-2),(nm-1,R2-2, A-7,R5-3,R3-1),(nm-1,R2-2,A-7,R5-3,R3-2),(nm-1,R2-2,A-8,R5-1,R3-1),(nm-1,R2-2,A-8,R5-1,R3-2),(nm-1,R2-2,A-8,R5-2,R3-1),(nm-1,R2-2, A-8, R5-3,R3-1),(nm-1,R2-2,A-8,R5-3,R3-2),(nm-1,R2-2,A-9,R5-1,R3-1),(nm-1,R2-2,A-9,R 5-1,R3-2),(nm-1,R2-2,A-9,R5-2,R3-1),(nm-1,R2-2,A-9,R5-2,R3-2),(nm-1,R2-2,A-9,R5-3,R3-1),(nm-1,R2-2,A-9,R5-3,R3-2),(nm-1,R2-2,A-10,R5-1,R3-1),(nm-1,R2-2,A-10,R5-1,R3-2),(nm-1,R2-2,A-10,R5-2,R3-1),(nm-1,R2-2,A-10,R5-2,R3-2),(nm-1,R2-2,A-10, R5-3,R3-1),(nm-1,R2-2,A-10,R5-3,R3-2),(nm-1,R2-2,A-11,R5-1,R3-1),(nm-1,R2-2,A-1 1,R5-1,R3-2),(nm 1,R2-2,A-11,R5-2,R3-1),(nm-1,R2-2,A-11,R5-2,R3-2),(nm-1,R2-2,A -11,R5-3,R3-1),(nm-1,R2-2,A-11,R5-3,R3-2),(nm-1,R2-2,A-12,R5-1,R3-1),(nm- A-12,R5-1,R3-2),(nm-1,R2-2,A-12,R5-2,R3-1),(nm-1,R2-2,A-12,R5-2,R3-2),(nm-1,R2-2,A-12,R5-3,R3-1),(nm-1,R2-2,A-12,R5-3,R3-2),(nm-1,R2-2,A-13,R5-1,R3-1),(nm-1,R2-2,A-13,R5-1,R3-2),(nm-1,R2-2,A-13,R5-2,R3-1),(nm-1,R2-2,A-13,R5-2,R3-2),(nm-1, R2-2,A-13,R5-3,R3-1),(nm-1,R2-2,A-13,R5-3,R3-2),(nm-1,R2-2,A-14,R5-1,R3-1),(nm-1,R2-2,A-14,R5-1,R3-2),(nm-1,R2-2,A-14,R5-2,R3-1),(nm-1,R2-2,A-14,R5-2,R3-2),(n m-1,R2-2,A-14,R5-3,R3-1),(nm-1,R2-14,R5-3,R3-2),(nm-1,R2-3,A-1,R5-1,R3-1),( nm-1,R2-3,A-1,R5-1,R3-2),(nm-1,R5-2,R3-1),(nm-1,R2-3,A-1,R5-2,R3-2),(n m-1,R2-3,A-1,R5-3,R3-1),(nm-1,R2-3,A-1,R5-3,R3-2),(nm-1,R2-3,A-2,R5-1),(nm -1,R2-3,A-2,R5-1,R3-2),(nm-1,R2-3,A-2,R5-2,R3-1),(nm-1,R2-3,A-2,R5-2,R3-2),(nm-1,R2-3,A-2,R5-3,R3-1),(nm-1,R2-3,A-2,R5-3,R3-2),(nm-1,R2-3,A-3,R5-1,R3-1),(nm-1,R 2-3,A-3,R5-1,R3-2),(nm-1,R2-3,A-3,R5-2,R3-1),(nm-1,R2-3,A-3,R5-2,R3-2),(nm 1,R2-3,A-3,R5-3,R3-1),(nm-1,R2-3,A-3,R5-3,R3-2),(nm-1,R2-3,A-4,R5-1),(nm-1,R2-3, A-4,R5-1,R3-2),(nm-1,R2-3,A-4,R5-2,R3-1),(nm-1,R2-3,A-4,R5-2,R3-2),(nm-1,R2-3,A-4,R5-3,R3-1),(nm-1,R2-3,A-4,R5-3,R3 (nm-1,R2-3,A-5,R5-1,R3-1),(nm-1,R2-3,A-5, R5-1,R3-2),(nm-1,R2-3,A-5,R5-2,R3-1),(nm-1,R2-3,A-5,R5-2,R3-2),(nm-1,R2-3,A-5,R 5-3,R3-1),(nm-1,R2-3,A-5,R5-3,R3-2),(nm-1,R2-3,A-6,R5-1,R3-1),(nm-1,R2-3,A-6,R5-1,R3-2),(nm-1,R2-3,A-6,R5-2,R3-1),(nm-1,R2-3,A-6,R5-2,R3-2),(nm-1,R2-3,A-6,R5-3, R3-1),(nm-1,R2-3,A-6,R5-3,R3-2),(nm-1,R2-3,A-7,R5-1,R3-1),(nm-1,R2-3,A-7,R5-1,R 3-2),(nm-1,R2-3,A-7,R5-2,R3-1),(nm-1,R2-3,A-7,R5-2,R3-2),(nm-1,R2-3,A-7,R5-3,R3-1),(nm-1,R2-3,A-7,R5-3,R3-2),(nm-1,R2-3,A-8,R5-1,R3-1),(nm-1,R2-3,A-8,R5-1,R3-2) ,(nm-1,R2-3,A-8,R5-2,R3-1),(nm-1,R2-3,A-8,R5-2,R3-2),(nm-1,R2-3,A-8,R5-3,R3-1),( nm-1,R2-3,A-3,R3-2),(nm-1,R2-3,A-9,R5-1,R3-1),(nm-1,R2-3,A-9,R5-1,R3-2),(n m-1,R2-3,A-9,R5-2,R3-1),(nm-1,R2-3,A-9,R5-2,R3-2),(nm-1,R2-3,A-9,R5-3,R3-1),(nm -1,R2-3,A-9,R5-3,R3-2),(nm 1,R2-3,A-10,R5-1,R3-1),(nm-1,R2-3,A-10,R5-1,R3-2),(n m-1,R2-3,A-10,R5-2,R3-1),(nm-1,R2-3,A-10,R5-2,R3-2),(nm-1,R2-3,A-10,R5-3,R3-1),( nm-1,R2-3,A-10,R5-2),(nm-1,R2-3,A-11,R5-1,R3-1),(nm-1,R2-3,A-11,R5-1,R3-2) ,(nm-1,R2-3,A-11,R5-2,R3-1),(nm-1,R2-3,A-11,R5-2,R3-2),(nm-1,R2-3,A-11,R5-3,R3-1),(nm-1,R2-3,A-11,R5-3,R3-2),(nm-1,R2-3,A-12,R5-1,R3-1),(nm-1,R2-3,A-12,R5-1,R3-2),(nm-1,R2-3,A-12,R5-2,R3-1),(nm-1,R2-3,A-12,R5-2,R3-2),(nm-1,R2-3,A-12,R5-3, R3-1),(nm-1,R2-3,A-12,R5-3,R3-2),(nm-1,R2-3,A-13,R5-1,R3-1),(nm-1,R2-3,A-13,R5-1,R3-2),(nm-1,R2-3,A-13,R5-2,R3-1),(nm-1,R2-3,A-13,R5-2,R3-2),(nm-1,R2-3,A-13,R 5-3,R3-1),(nm-1,R2-3,A-13,R5-3,R3-2),(nm-1,R2-3,A-14,R5-1,R3-1),(nm-1,R2-3,A-14, R5-1,R3-2),(nm-1,R2-3,A-14,R5-2,R3-1),(nm-1,R2-3,A-14,R5-2,R3-2),(nm-1,R2-3,A-1 4,R5-3,R3-1),(nm-1,R2-3, A-14,R5-3,R3-2),(nm-1,R2-4,A-1,R5-1,R3-1),(nm-1,R2-4,A-1,R5-1,R3-2),(nm-1,R2-4,A-1,R5-2,R3-1),(nm-1,R2-4,A-1,R5-2,R3-2),(nm-1,R2-4,A-1, R5-3,R3-1),(nm-1,R2-4,A-1,R5-3,R3-2),(nm-1,R2-4,A-2,R5-1,R3-1),(nm-1,R2-4,A-2,R 5-1,R3-2),(nm-1,R2-4,A-2,R5-2,R3-1),(nm-1,R2-4,A-2,R5-2,R3-2),(nm-1,R2-4,A-2,R5-3,R3-1),(nm-1,R2-4,A-2,R5-3,R3-2),(nm-1,R2-4,A-3,R5-1,R3-1),(nm-1,R2-4,A-3,R5-1, R3-2),(nm-1,R2-4,A-3,R5-2,R3-1),(nm-1,R2-4,A-3,R5-2,R3-2),(nm-1,R2-4,A-3,R5-3,R 3-1),(nm-1,R2-4, A-3,R5-3,R3-2),(nm-1,R2-4,A-4,R5-1,R3-1),(nm-1,R2-4,A-4,R5-1,R3-2),(nm-1,R2-4,A-4,R5-2,R3-1),(nm-1,R2-4,A-4,R5-2,R3-2),(nm-1,R2-4,A-4,R5-3,R3-1) ,(nm-1,R2-4,A-4,R5-3,R3-2),(nm-1,R2-4,A-5,R5-1,R3-1),(nm-1,R2-4,A-5,R5-1,R3-2),( nm-1,R2-4,A-5,R5-2,R3-1),(nm-1,R2-4,A-5,R5-3,R3-1),(n m-1,R2-4,A-5,R5-3,R3-2),(nm-1,R2-4,A-6,R5-1,R3-1),(nm-1,R2-4,A-6,R5-1,R3-2),(nm -1,R2-4,A-6,R5-2,R3-1),(nm-1,R2-4,A-6,R5-2,R3-2),(nm-1,R2-4,A-6,R5-3,R3-1),(nm-1,R2-4,A-6,R5-3,R3-2),(nm-1,R2-4,A-7,R5-1,R3-1),(nm-1,R2-4,A-7,R5-1,R3-2),(nm-1,R 2-4,A-7,R5-2,R3-1),(nm-1,R2-4,A-7,R5-2,R3-2),(nm-1,R2-4,A-7,R5-3,R3-1),(nm-1,R2-4,A-7,R5-3,R3-2),(nm-1,R2-4,A-8,R5-1,R3-1),(nm-1,R2-4,A-8,R5-1,R3-2),(nm-1,R2-4, A-8,R5-2,R3-1),(nm-1,R2-4,A-8,R5-2,R3-2),(nm-1,R2-4, A-8,R5-3,R3-1),(nm-1,R2-4,A-8,R5-3,R3-2),(nm-1,R2-4,A-9,R5-1,R3-1),(nm-1,R2-4,A-9,R5-1,R3-2),(nm-1,R2-4,A-9, R5-2,R3-1),(nm-1,R2-4,A-9,R5-2,R3-2),(nm-1,R2-4,A-9,R5-3,R3-1),(nm-1,R2-4,A-9,R 5-3,R3-2),(nm-1,R2-4,A-10,R5-1,R3-1),(nm-1,R2-4,A-10,R5-1,R3-2),(nm-1,R2-4,A-10, R5-2,R3-1),(nm-1,R2-4,A-10,R5-2,R3-2),(nm-1,R2-4,A-10,R5-3,R3-1),(nm-1,R2-4,A-1 0,R5-3,R3-2),(nm-1,R2-4,A-11,R5-1,R3-1),(nm-1,R5-1,R3-2),(nm-1,R2-4,A -11,R5-2,R3-1),(nm-1,R2-4,A-11,R5-2,R3-2),(nm-1,R2-4,A-11,R5-3,R3-1),(nm-1,R2-4, A-11,R5-3,R3-2),(nm-1,R2-4,A-12,R5-1,R3-1),(nm-1,R2-4,A-12,R5-1,R3-2),(nm-1,R2-4,A-12,R5-2,R3-1),(nm-1,R2-4,A-12,R5-2,R3-2),(nm-1,R2-4,A-12,R5-3,R3-1),(nm-1,R 2-4,A-12,R5-3,R3-2),(nm-1,R2-4,A-13,R5-1,R3-1),(nm-1,R2-4,A-13,R5-1,R3-2),(nm-1, R2-4,A-13,R5-2,R3-1),(nm-1,R2-4,A-13,R5-2,R3-2),(nm-1,R2-4,A-13,R5-3,R3-1),(nm-1,R2-4,A-13,R5-3,R3-2),(nm-1,R2-4,A-14,R5-1,R3-1),(nm-1,R2-4,A-14,R5-1,R3-2),(n m-1,R2-4,A-14,R5-2,R3-1),(nm-1,R2-4,A-14,R5-2,R3-2),(nm-1,R2-4,A-14,R5-3,R3-1),( nm-1,R2-4,A-14,R5-3,R3-2),


(nm-2,R2-1,A-1,R5-1,R3-1),(nm-2,R2-1,A-1,R5-1,R3-2),(nm-2,R2-1,A-1,R5-2,R3-1),(n m-2,R2-1,A-1,R5-2,R3-2),(nm-2,R2-1,A-1,R5-3,R3-1),(nm-2,R2-1,A-1,R5-3,R3-2),(nm -2,R2-1,A-2,R5-1,R3-1),(nm-2,R2-1,A-2,R5-1,R3-2),(nm-2,R2-1, A-2,R5-2,R3-1),(nm-2,R2-1,A-2,R5-2,R3-2),(nm-2,R2-1,A-2,R5-3,R3-1),(nm-2,R2-1,A-2,R5-3,R3-2),(nm-2,R 2-1,A-3,R5-1,R3-1),(nm-2,R2-1,A-3,R5-1,R3-2),(nm-2,R2-1,A-3,R5-2,R3-1),(nm-2,R2-1,A-3,R5-2,R3-2),(nm-2,R2-1,A-3,R5-3,R3-1),(nm-2,R2-3,R53,R3-2),(nm-2,R2-1, A-4,R5-1,R3-1),(nm-2,R2-1,A-4,R5-1,R3-2),(nm-2,R2-1,A-4,R5-2,R3-1),(nm-2,R2-1,A-4,R5-2,R3-2),(nm-2,R2-1,A-4,R5-3,R3-1),(nm-2,R2-1,A-4,R5-3,R3-2),(nm-2,R2-1,A-5, R5-1,R3-1),(nm-2,R2-1,A-5,R5-1,R3-2),(nm-2,R2-1, A-5,R5-2,R3-1),(nm-2,R2-1,A-5,R 5-2,R3-2),(nm-2,R2-1,A-5,R5-3,R3-1),(nm-2,R2-1,A-5,R5-3,R3-2),(nm-2,R2-1,A-6,R5-1,R3-1),(nm-2,R2-1,A-6,R5-1,R3-2),(nm-2,R2-1,A-6,R5-2,R3-1),(nm-2,R2-1,A-6,R5-2, R3-2),(nm-2,R2-1, A-6,R5-3,R3-1),(nm-2,R2-1,A-6,R5-3,R3-2),(nm-2,R2-1,A-7,R5-1,R 3-1),(nm-2,R2-1,A-7,R5-1,R3-2),(nm-2,R2-1,A-7,R5-2,R3-1),(nm-2,R2-1,A-7,R5-2,R3-2),(nm-2,R2-1,A-7,R5-3,R3-1),(nm-2,R2-1,A-7,R5-3,R3-2),(nm-2,R2-1,A-8,R5-1,R3-1) ,(nm-2,R2-1,A-8,R5-1,R3-2),(nm-2,R2-1,A-8,R5-2,R3-1),(nm-2,R2-1,A-8,R5-2,R3-2),( nm-2,R2-1,A-8,R5-3,R3-1),(nm-2,R2-1,A-8,R5-3,R3-2),(nm-2,R2-1,A-9,R5-1,R3-1),(n m-2,R2-1,A-9,R5-1,R3-2),(nm-2,R2-1, A-9,R5-2,R3-1),(nm-2,R2-1,A-9,R5-2,R3-2),(nm -2,R2-1, A-9,R5-3,R3-1),(nm-2,R2-1,A-9,R5-3,R3-2),(nm-2,R2-1,A-10,R5-1,R3-2),(nm-2,R2-1,A-10,R5-2,R3-1),(nm-2,R2-1,A-10,R5-2,R3-2),(n m-2,R2-1,A-10,R5-3,R3-1),(nm-2,R2-1,A-10,R5-3,R3-2),(nm-2,R2-1,A-11,R5-1,R3-1),( nm-2,R2-1,A-11,R5-1,R3-2),(nm-2,R2-1,A-11,R5-2,R3-1),(nm-2,R2-1,A-11,R5-2,R3-2) ,(nm-2,R2-1,A-11,R5-3,R3-1),(nm-2,R2-1,A-11,R5-3,R3-2),(nm-2,R2-1,A-12,R5-1,R3-1),(nm-2,R2-1,A-12,R5-1,R3-2),(nm-2,R2-1,A-12,R5-2,R3-1),(nm-2,R2-1,A-12,R5-2,R 3-2),(nm-2,R2-1,A-12,R5-3,R3-1),(nm-2,R2-1,A-12,R5-3,R3-2),(nm-2,R2-1,A-13,R5-1, R3-1),(nm-2,R2-1,A-13,R5-1,R3-2),(nm-2,R2-13,R5-2,R3-1),(nm-2,R2-1, A-13,R5-2,R3-2),(nm-2,R2-1,A-13,R5-1),(nm-2,R2-1,A-13,R5-3,R3-2),(nm-2,R2-1,A-14,R 5-1,R3-1),(nm-2,R2-1,A-14,R5-1,R3-2),(nm-2,R2-1,A-14,R5-2,R3-1),(nm-2,R2-1,A-14, R5-2,R3-2),(nm-2,R2-1,A-14,R5-3,R3-1),(nm-2,R2-1,A-14,R5-3,R3-2),(nm-2,R2-2,A-1,R5-1,R3-1),(nm-2,R2-2,A-1,R5-1,R3-2),(nm-2,R2-2,A-1,R5-2,R3-1),(nm-2,R2-5-2,R3-2),(nm-2,R2-2,A-1,R5-3,R3-1),(nm-2,R2-2,A-1,R5-3,R3-2),(nm-2,R2-2,A-2,R5-1,R3-1),(nm-2,R2-2, A-2,R5-1,R3-2),(nm-2,R2-2,A-2,R5-2,R3-1),(nm-2,R2-2,A-2,R5-2, R3-2),(nm-2,R2-2,A-2,R5-3,R3-1),(nm-2,R2-2,A-2,R5-3,R3-2),(nm-2,R2-2,A-3,R5-1,R 3-1),(nm-2,R2-2,A-3,R5-1,R3-2),(nm-2,R2-2,A-3,R5-2,R3-1),(nm-2,R2-2,A-3,R5-2,R3-2),(nm-2,R2-2,A-3,R5-3,R3-1),(nm-2,R2-2,A-3,R5-3,R3-2),(nm-2,R2-2,A-4,R5-1,R3-1), (nm-2,R2-2,A-4,R5-1,R3-2),(nm-2,R2-2,A-4,R5-2,R3-1),(nm-2,R2-2,A-4,R5-2,R3-2),( nm-2,R2-2,A-4,R5-3,R3-1),(nm-2,R2-2,A-4,R5-3,R3-2),(nm-2,R2-2,A-5,R5-1,R3-1),(n m-2,R2-2,A-5,R5-1,R3-2),(nm-2,R2-2,A-5,R5-2,R3-1),(nm-2,R2-2,A-5,R5-2,R3-2),(nm -2,R2-2,A-5,R5-3,R3-1),(nm-2,R2-2, A-5,R5-3,R3-2),(nm-2,R2-2,A-6,R5-1,R3-1),(nm-2,R2-2,A-6,R5-1,R3-2),(nm-2,R2-2,A-6,R5-2,R3-1),(nm-2,R2-2,A-6,R5-2,R3-2),(nm-2,R 2-2, A-6,R5-3,R3-1),(nm-2,R2-2,A-6,R5-3,R3-2),(nm-2,R2-2,A-7,R5-1,R3-1),(nm-2,R2-2,A-7,R5-1,R3-2),(nm-2,R2-2,A-7,R5-2,R3-1),(nm-2,R2-2, A-7,R5-3,R3-1),(nm-2,R2-2,A-7,R5-3,R3-2),(nm-2,R2-2,A-8,R5-1,R3-1),(nm-2,R2-2,A-8,R5-1,R3-2),(nm-2,R2-2,A-8,R5-2,R3-1),(nm-2,R2-2,A-8,R5-2,R3-2),(nm-2,R2-2,A-8, R5-3,R3-1),(nm-2,R2-2,A-8,R5-3,R3-2),(nm-2,R2-2,A-9,R5-1,R3-1),(nm-2,R2-2,A-9,R 5-1,R3-2),(nm-2,R2-2,A-9,R5-2,R3-1),(nm-2,R2-2,A-9,R5-2,R3-2),(nm-2,R2-2,A-9,R5-3,R3-1),(nm-2,R2-2,A-9,R5-3,R3-2),(nm-2,R2-2,A-10,R5-1,R3-1),(nm-2,R2-2,A-10,R5-1,R3-2),(nm-2,R2-2,A-10,R5-2,R3-1),(nm-2,R2-2,A-10,R5-2,R3-2),(nm-2,R2-2,A-10, R5-3,R3-1),(nm-2,R2-2,A-10,R5-3,R3-2),(nm-2,R2-2,A-11,R5-1,R3-1),(nm-2,R2-2,A-1 1,R5-1,R3-2),(nm-2,R2-2,A-11,R5-2,R3-1),(nm-2,R2-2,A-11,R5-2,R3-2),(nm-2,R2-2,A -11,R5-3,R3-1),(nm-2,R2-2,A-11,R5-3,R3-2),(nm-2,R2-2,A-12,R5-1,R3-1),(nm-2,R2-2, A-12,R5-1,R3-2),(nm-2,R2-2,A-12,R5-2,R3-1),(nm-2,R2-2,A-1.2,R5-2,R3-2),(nm-2,R2-2,A-12,R5-3,R3-1),(nm-2,R2-2,A-12,R5-3,R3-2),(nm-2,R2-2,A-13,R5-1,R3-1),(nm-2,R 2-2,A-13,R5-1,R3-2),(nm-2,R2-2,A-1.3,R5-2,R3-1),(nm-2,R2-2,A 13,R5-2,R3-2),(nm-2, R2-2,A-13,R5-3,R3-1),(nm-2,R2-2,A-13,R5-3,R3-2),(nm-2,R2-2,A-14,R5-1,R3-1),(nm-2,R2-2,A-14,R5-1,R3-2),(nm-2,R2-2,A-14,R5-2,R3-1),(nm-2,R2-2,A-14,R5-2,R3-2),(n m-2,R2-2,A-14,R5-3,R3-1),(nm-2,R2-2,A-14,R5-3,R3-2),(nm-2,R2-3,A-1,R5-1,R3-1),( nm-2,R2-3,A-1,R3-2),(nm-2,R2-3,A-1,R5-2,R3-1),(nm-2,R2-3,A-1,R5-2,R3-2),(n m-2,R2-3,A-1,R5-3,R3-1),(nm-2,R2-3,A-1,R5-3,R3-2),(nm-2,R2-3,A-2,R5-1,R3-1),(nm -2,R2-3,A-2,R5-1,R3-2),(nm-2,R2-3,A-2,R5-2,R3-1),(nm-2,R2-2,R3-2),(nm-2,R2-3,A-2,R5-3,R3-1),(nm 3,R5-1,R3-1),(nm-2,R 2-3,A-3,R5-1,R3-2),(nm-2,R2-3,A-3,R5-2,R3-1),(nm-2,R2-3,A-3,R5-2,R3-2),(nm-2,R2-3,A-3,R5-3,R3-1),(nm-2,R2-3,A-3,R5-3,R3-2),(nm-2,R2-3,A-4,R5-1,R3-1),(nm-2,R2-3, A-4,R5-1,R3-2),(nm-2,R2-3,A-4,R5-2,R3-1),(nm-2,R2-3,A-4,R5-2,R3-2),(nm-2,R2-3,A-4,R5-3,R3-1),(nm-2,R2-3,A-4,R5-3,R3-2),(nm-2,R2-3,A-5,R5-1,R3-1),(nm-2,R2-3,A-5, R5-1,R3-2),(nm-2,R2-3,A-5,R5-2,R3-1),(nm-2,R2-3,A-5,R5-2,R3-2),(nm-2,R2-3,A-5,R 5-3,R3-1),(nm-2,R2-3,A-5,R5-3,R3-2),(nm-2,R2-3,A6,R5-1,R3-1),(nm-2,R2-3,A-6,R5-1,R3-2),(nm-2,R2-3,A-6,R5-2,R3-1),(nm-2,R2-3,A-6,R5-2,R3-2),(nm-2,R2-3,A-6,R5-3, R3-1),(nm-2,R2-3,A-6,R5-3,R3-2),(nm-2,R2-3,A-7,R5-1,R3-1),(nm-2,R2-3, A-7,R5-1,R 3-2),(nm-2,R2-3,A-7,R5-2,R3-1),(nm-2,R2-3,A-7,R5-2,R3-2),(nm-2,R2-3,A-7,R5-3,R3-1),(nm-2,R2-3,A-7,R5-3,R3-2),(nm-2,R2-3,A-8,R5-1,R3-1),(nm-2,R2-3,A-8,R5-1,R3-2) ,(nm-2,R2-3,A-8,R5-2,R3-1),(nm-2,R2-3,A-8,R5-2,R3-2),(nm-2,R2-3,A-8,R5-3,R3-1),( nm-2,R2-3, A-8,R5-3,R3-2),(nm-2,R2-3,A-9,R5-1,R3-1),(nm-2,R2-3,A-9,R5-1,R3-2),(n m-2,R2-3,A-9,R5-2,R3-1),(nm-2,R2-3,A-9,R5-2,R3-2),(nm-2,R2-3,A-9,R5-3,R3-1),(nm -2,R2-3,A-9,R5-3,R3-2),(nm-2,R2-3,A-10,R5-1,R3-1),(nm-2,R2-3,A-10,R5-1,R3-2),(n m-2,R2-3,A-1.0,R5-2,R3-1),(nm-2,R2-3,A-10,R5-2,R3-2),(nm-2,R2-3,A-10,R5-3,R3-1),( nm-2,R2-3,A-10,R5-3,R3-2),(nm-2,R2-3,A-11,R5-1,R3-1),(nm-2,R2-3,A-11,R5-1,R3-2) ,(nm-2,R2-3,A-11,R5-2,R3-1),(nm-2,R2-3,A-11,R5-2,R3-2),(nm-2,R2-3,A-11,R5-3,R3-1),(nm-2,R2-3,A-11,R5-3,R3-2),(nm-2,R2-3,A-12,R5-1,R3-1),(nm-2,R2-3,A-12,R5-1,R 3-2),(nm-2,R2-3,A-1.2,R5-2,R3-1),(nm-2,R2-3,A-12,R5-2,R3-2),(nm-2,R2-3,A-12,R5-3, R3-1),(nm-2,R2-3,A-12,R5-3,R3-2),(nm-2,R2-3,A-13,R5-1,R3-1),(nm-2,R2-3,A-13,R5-1,R3-2),(nm-2,R2-3,A-13,R5-2,R3-1),(nm-2,R2-3,A-13,R5-2,R3-2),(nm-2,R2-3,A-13,R5-3,R3-1),(nm-2,R2-3,A-13,R5-3,R3-2),(nm-2,R2-3,A-14,R5-1,R3-1),(nm-2,R2-3,A-14, R5-1,R3-2),(nm-2,R2-3,A-14,R5-2,R3-1),(nm-2,R2-3,A-14,R5-2,R3-2),(nm-2,R2-3,A-1 4,R5-3,R3-1),(nm-2,R2-3,A-14,R5-3,R3-2),(nm-2,R2-4,A-1,R5-1,R3-1),(nm-2,R2-4,A-1,R5-1,R3-2),(nm-2,R2-4,A-1,R5-2,R3-1),(nm-2,R2-4,A-1,R5-2,R3-2),(nm-2,R2-4,A-1, R5-3,R3-1),(nm-2,R2-4,A-1,R5-3,R3-2),(nm-2,R2-4,A-2,R5-1,R3-1),(nm-2,R2-4,A-2,R 5-1,R3-2),(nm-2,R2-4,A-2,R5-2,R3-1),(nm-2,R2-4,A-2,R5-2,R3-2),(nm-2,R2-4,A-2,R5-3,R3-1),(nm-2,R2-4,A-2,R5-3,R3-2),(nm-2,R2-4,A-3,R5-1,R3-1),(nm-2,R2-4,A-3,R5-1, R3-2),(nm-2, R2-4,A-3, R5-2,R3-1),(nm-2, R2-4,A-3,R5-2, R3-2), (nm-2,R2-4,A-3,R5-3,R 3-1),(nm-2,R2-4,A-3,R5-3,R3-2), (nm-2,R2-4,A-4,R5-1,R3-1),(nm-2,R2-4,A-4,R5-1,R3-2),(nm-2,R2-4, A-4,R5-2,R3-1),(nm-2,R2-4,A-4,R5-2,R3-2),(nm-2,R2-4,A-4,R5-3,R3-1) ,(nm-2,R2-4,A-4,R5-3,R3-2),(nm-2,R2-4,A-5,R5-1,R3-1),(nm-2,R2-4,A-5,R5-1,R3-2),( nm-2,R21),(nm-2,R2-4,A-5,R5-2,R3-2),(nm-2,R2-4,A-5,R5-1),(n m-2,R2-4,A-5,R5-3,R3-2),(nm-2,R2-4,A-6,R5-1,R3-1),(nm-2,R2-4,A-6,R5-1,R3-2),(nm -2,R2-4,A-6,R5-2,R3-1),(nm-2,R2-4,A-6,R5-2,R3-2),(nm-2,R2-4,A-6,R5-3,R3-1),(nm-2,R2-4,A-6,R5-3,R3-2),(nm-2,R2-4,A-7,R5-1,R3-1),(nm-2,R2-4,A-7,R5-1,R3-2),(nm-2,R2-4,A-7,R5-2,R3-1),(nm-2,R2-4,A-7,R5-2,R3-2),(nm-2,R2-4,A-7,R5-3,R3-1),(nm-2,R2-4,A-7,R5-3,R3-2),(nm-2,R2-4,A-8,R5-1,R3-1),(nm-2,R2-4,A-8,R5-1,R3-2),(nm-2,R2-4, A-8,R5-2,R3-1),(nm-2,R2-4,A-8,R5-2,R3-2),(nm-2,R2-4,A-8,R5-3,R3-1),(nm-2,R2-4,A-8,R5-3,R3-2),(nm-2,R2-4,A-9,R5-1,R3-1),(nm-2,R2-4,A-9,R5-1,R3-2),(nm-2,R2-4,A-9, R5-2,R3-1),(nm-2,R2-4,A-9,R5-2,R3-2),(nm-2,R2-4,A-9,R5-3,R3-1),(nm-2,R2-4-A-9,R5-3,R3-2),(nm-2,R2-4,A-10,R5-1,R3-1),(nm-2,R2-4,A-10,R5-1,R3-2),(nm-2,R2-4,A-10, R5-2,R3-1),(nm-2,R2-4,A-10,R5-2,R3-2),(nm-2,R2-4,A-10,R5-3,R3-1),(nm-2,R2-4,A-1 0,R5-3,R3-2),(nm-2,R2-4,A-11,R5-1,R3-(nm-2,R2-4,A-11,R5-1,R3-2),(nm-2,R2-4,A -11,R5-2,R3-1),(nm-2,R2-4,A-11,R5-2,R3-2),(nm-2,R2-4,A-11,R5-3,R3-1),(nm-2,R2-4, A-11,R5-3,R3-2),(nm-2,R2-4,A-12,R5-1,R3-1),(nm-2,R2-4,A-12,R5-1,R3-2),(nm-2,R2-4,A-12,R5-2,R3-1),(nm-2,R2-4,A-12,R5-2,R3-2),(nm-12,R5-3,R3-1),(nm-2,R 2-4,A-12,R5-3,R3-2),(nm-2,R2-4,A-13,R5-1,R3-1),(nm-2,R2-4,A-13,R5-1,R3-2),(nm-2, R2-4,A-13,R5-2,R3-1),(nm-2,R2-4,A-13,R5-2,R3-2),(nm-2,R2-4,A-13,R5-3,R3-1),(nm-2,R2-4,A-13,R5-3,R3-2),(nm-2,R2-4,A-14,R5-1,R3-1),(nm-2,R2-4,A-14,R5-1,R3-2),(n m-2,R2-4,A-14,R5-2,R3-1),(nm-2,R2-4,A-14,R5-2,R3-2),(nm-2,R2-4,A-14,R5-3,R3-1),( nm-2,R2-4,A-14,R5-3,R3-2),


(nm-3,R2-1,A-1,R5-1,R3-1),(nm-3,R2-1,A-1,R5-1,R3-2),(nm-3,R2-1,A-1,R5-2,R3-1),(n m-3,R2-1,A-1,R5-2,R3-2),(nm-3,R2-1,A-1,R5-3,R3-1),(nm-3,R2-1,A-1,R5-3,R3-2),(nm -3,R2-1,A-2,R5-1,R3-1),(nm-3,R2-1,A-2,R5-1,R3-2),(nm-3,R2-1,A-2,R5-2,R3-1),(nm-3,R2-1,A-2,R5-2,R3-2),(nm-3,R2-1,A-2,R5-3,R3-1),(nm-3,R3-2),(nm-3,R 2-1,A-3,R5-1,R3-1),(nm-3,R2-1,A-3,R5-1,R3-2),(nm-3,R2-1,A-3,R5-2,R3-1),(nm-3,R2-1,A-3,R5-2,R3-2),(nm-3,R2-1,A-3,R5-3,R3-1),(nm-3,R2-1,A-3,R5-3,R3-2),(nm-3,R2-1, A-4,R5-1,R3-1),(nm-3,R2-1,A-4,R5-1,R3-2),(nm-3,R2-4,R5-2,R3-1),(nm-3,R2-1,A-4,R5-2,R3-2),(nm-3,R2-1,A-4,R5-3,R3-1),(nm-3,R2-1,A-4,R5-3,R3-2),(nm-3,R2-1,A-5, R5-1,R3-1),(nm-3,R2-1,A-5,R5-1,R3-2),(nm-3,R2-1,A-5,R5-2,R3-1),(nm-3,R2-1, A-5,R 5-2,R3-2),(nm-3,R2-1,A-5,R5-3,R3-1),(nm-3,R2-1,A-5,R5-3,R3-2),(nm-3,R2-1,A-6,R5-1,R3-1),(nm-3,R2-1,A-6,R5-1,R3-2),(nm-3,R2-1,A-6,R5-2,R3-1),(nm-3,R2-1,A-6,R5-2, R3-2),(nm-3,R2-1,A-6,R5-3,R3-1),(nm-3,R2-1,A-6,R5-3,R3-2),(nm-3,R2-1,A-7,R5-3-1),(nm-3,R2-1, A-7,R5-1,R3-2),(nm-3,R2-1,A-7,R5-2,R3-1),(nm-3,R2-1,A-7,R5-2,R3-2),(nm-3,R2-1,A-7,R5-3,R3-1),(nm-3,R2-1,A-7,R5-3,R3-2),(nm-3,R2-1-A-8,R5-1,R3-1) ,(nm-3,R2-1,R3-2),(nm-3,R2-1,A-8,R5-2,R3-1),(nm-3,R2-1,A-8,R5-2,R3-2),( nm-3,R2-1,A-8,R5-3,R3-1),(nm-3,R2-1,A-8,R5-3,R3-2),(nm-3,R2-1,A-9,R5-1,R3-1),(n m-3,R2-1,A-9,R5-1,R3-2),(nm-3,R2-1,A-9,R5-2,R3-1),(nm-3,R2-1,A-9,R5-2,R3-2),(nm -3,R2-1,A-9,R5-3,R3-1),(nm-3,R2-1,A-9,R5-3,R3-2),(nm-3,R2-1,A-10,R5-1,R3-1),(nm-3,R2-1,A-10,R5-1,R3-2),(nm-3,R2-1,A-10,R5-2,R3-1),(nm-3,R2-1,A-10,R5-2,R3-2),(n m-3,R2-1,A-10,R5-3,R3-1),(nm-3,R2-1,A-10,R5-3,R3-2),(nm-3,R2-1,A-11,R5-1,R3-1),( nm-3,R2-1,A-11,R5-1,R3-2),(nm-3,R2-1,A-11,R5-2,R3-1),(nm-3,R2-1,A-11,R5-2,R3-2) ,(nm-3,R2-1,A-11,R5-3,R3-1),(nm-3,R2-1,A-11,R5-3,R3-2),(nm-3,R2-1,A-12,R5-1,R3-1),(nm-3,R2-1,A-12,R5-1,R3-2),(nm-3,R2-1,A-12,R5-1),(nm-3,R2-1,A-12,R5-2,R 3-2),(nm-3,R2-1,A-12,R5-3,R3-1),(nm-3,R2-1,A-12,R5-3,R3-2),(nm-3,R2-1,A-13,R5-1, R3-1),(nm-3,R2-1,A-13,R5-1,R3-2),(nm-3,R2-1,A-13,R5-2,R3-1),(nm-3,R2-1,A-13,R5-2,R3-2),(nm-3,R2-1,A-13,R5-3,R3-1),(nm-3,R2-1,A-13,R5-3,R3-2),(nm-3,R2-1,A-14,R 5-1,R3-1),(nm-3,R2-1, A-1.4,R5-1,R3-2),(nm-3,R2-1,A-14,R5-2,R3-1),(nm-3,R2-1,A-14, R5-2,R3-2),(nm-3,R2-1,A-14,R5-3,R3-1),(nm-3,R2-1,A-14,R5-3,R3-2),(nm-3,R2-2,A-1,R5-1,R3-1),(nm-3,R2-2,A-1,R5-1,R3-2),(nm-3,R2-2,A-1,R5-2,R3-1),(nm-3,R2-2,A-1,R 5-2,R3-2),(nm-3,R2-2,A-1,R5-3,R3-1),(nm-3,R2-2,A-1,R5-3,R3-2),(nm-3,R2-2,A-2,R5-1,R3-1),(nm-3,R2-2,A-2,R5-1,R3-2),(nm-3,R2-2,A-2,R5-2,R3-1),(nm-3,R2-2,A-2,R5-2, R3-2),(nm-3,R2-2,A-2,R5-3,R3-1),(nm-3,R2-2,A-2,R5-3,R3-2),(nm-3,R2-2,A-3,R5-1,R3-1),(nm-3,R2-2,A-3,R5-1,R3-2),(nm-3,R2-2,A-3,R5-2,R3-1),(nm-3,R2-2,A-3,R5-2,R3-2),(nm-3,R2-2,A-3,R5-3,R3-1),(nm-3,R2-2,A-3,R5-3,R3-2),(nm-3,R2-2,A-4,R5-1,R3-1) ,(nm-3,R2-2,A-4,R5-1,R3-2),(nm-3,R2-2,A-4,R5-2,R3-1),(nm-3,R2-2,A-4,R5-2,R3-2),( nm-3,R2-2,A-4,R5-3,R3-1),(nm-3,R2-2,A-4,R5-3,R3-2),(nm-3,R2-2,A-5,R5-1,R3-1),(n m-3,R2-2,A-5,R5-1,R3-2),(nm-3,R2-2,A-5,R5-2,R3-1),(nm-3,R2-2,A-5,R5-2,R3-2),(nm -3,R2-2,A-5,R5-3,R3-1),(nm-3,R2-2,A-5,R5-3,R3-2),(nm-3,R2-2,A-6,R5-1,R3-1),(nm-3,R2-2,A-6,R5-1,R3-2),(nm-3,R2-2,A-6,R5-2,R3-1),(nm-3,R2-2,A-6,R5-2,R3-2),(nm-3,R 2-2,A-6,R5-3,R3-1),(nm-3,R2-2,A-6,R5-3,R3-2),(nm-3,R2-2,A-7,R5-1,R3-1),(nm-3,R2-2,A-7,R5-1,R3-2), (nm-3,R2-2,A-7,R5-2,R3-1),(nm-3,R2-2,A-7,R5-2,R3-2),(nm-3,R2-2, A-7,R5-3,R3-1),(nm-3,R2-2,A-7,R5-3,R3-2),(nm-3,R2-2,A-8,R5-1,R3-1),(nm-3,R2-2,A-8,R5-1,R3-2),(nm-3,R2-2,A-8,R5-2,R3-1),(nm-3,R2-2,A-8,R5-2,R3-2),(nm-3,R2-2,A-8, R5-3,R3-1),(nm-3,R2-2,A-8,R5-3,R3-2),(nm-3,R2-2,A-9,R5-1,R3-1),(nm-3,R2-2,A-9,R 5-1,R3-2),(nm-3,R2-2,A-9,R5-2,R3-1),(nm-3,R2-2,A-9,R5-2,R3-2),(nm-3,R2-2,A-9,R5-3,R3-1),(nm-3,R2-2,A-9,R5-3,R3-2),(nm-3,R2-2,A-10,R5-1,R3-1),(nm-3,R2-2,A-10,R5-1,R3-2),(nm-3,R2-2,A-10,R5-2,R3-1),(nm-3,R2-2,A-10,R5-2,R3-2),(nm-3,R2-2,A-10, R5-3,R3-1),(nm-3,R2-2,A-10,R5-3,R3-2),(nm-3,R2-2,A-11,R5-1,R3-1),(nm-3,R2-2,A-1 1,R5-1,R3-2),(nm-3,R2-2,A-11,R5-2,R3-1),(nm-3,R2-2,A-11,R5-2,R3-2),(nm-3,R2-2,A -11,R5-3,R3-1),(nm-3,R2-2,A-11,R5-3,R3-2),(nm-3,R2-2,A-12,R5-1,R3-1),(nm-3,R2-2, A-12,R5-1,R3-2),(nm-3,R2-2,A-12,R5-2,R3-1),(nm-3,R2-2,A-12,R5-2,R3-2),(nm-3,R2-2,A-12,R5-3,R3-1),(nm-3,R2-2,A-12,R5-3,R3-2),(nm-3,R2-2,A-13,R5-1,R3-1),(nm-3,R 2-2,A-13,R5-1,R3-2),(nm-3,R2-2,A-13,R5-2,R3-1),(nm-3,R2-2,A-13,R5-2,R3-2),(nm-3, R2-2,A-13,R5-3,R3-1),(nm-3,R2-2,A-13,R5-3,R3-2),(nm-3,R2-2,A-14,R5-1,R3-1),(nm-3,R2-2,A-14,R5-1,R3-2),(nm-3,R2-2,A-14,R5-2,R3-1),(nm-3,R2-2,A-14,R5-2,R3-2),(n m-3,R2-2, A-14,R5-3,R3-1),(nm-3,R2-2,A-14,R5-3,R3-2),(nm-3,R2-3,A-1,R5-1,R3-1),( nm-3,R2-3,A-1,R5-1,R3-2),(nm-3,R2-3,A-1,R5-2,R3-1),(nm-3,R2-3,A-1,R5-2,R3-2),(n m-3,R2-3,A-1,R5-3,R3-1),(nm-3,R2-3,A-1,R5-3,R3-2),(nm-3,R2-3,A-2,R5-1,R3-1),(nrn -3,R2-3,A-2,R5-1,R3-2),(nm-3,R2-3,A-2,R5-2,R3-1),(nm-3,R2-3,A-2,R5-2,R3-2),(nm-3,R2-3,A-2,R5-3,R3-1),(nm-3,R2-3,A-2,R5-3,R3-2),(nm-3,R2-3,A-3,R5-1,R3-1),(nm-3,R 2-3,A-3,R5-1,R3-2),(nm-3,R2-3,A-3,R5-2,R3-1),(nm-3,R2-3,A-3,R5-2,R3-2),(nm-3,R2-3,A-3,R5-3,R3-1),(nm-3,R2-3,A-3,R5-3,R3-2),(nm-3,R2-3,A-4,R5-1,R3-1),(nm-3,R2-3, A-4,R5-1,R3-2),(nm-3,R2-3,A-4,R5-2,R3-1),(nm-3,R2-3,A-4,R5-2,R3-2),(nm-3,R2-3,A-4,R5-3,R3-1),(nm-3,R2-3,A-4,R5-3,R3-2),(nm-3,R2-3,A-5,R5-1,R3-1),(nm-3,R2-3,A-5, R5-1,R3-2),(nm-3,R2-3,A-5,R5-2,R3-1),(nm-3,R2-3,A-5,R5-2,R3-2),(nm-3,R2-3,A-5,R 5-3,R3-1),(nm-3,R2-3,A-5,R5-3,R3-2),(nm-3,R2-3,A-6,R5-1,R3-1),(nm-3,R2-3,A-6,R5-1,R3-2),(nm-3,R2-3,A-6,R5-2,R3-1),(nm-3,R2-3,A-6,R5-2,R3-2),(nm-3,R2-3,A-6,R5-3, R3-1),(nm-3,R2-3,A-6,R5-3,R3-2),(nm-3,R2-3,A-7,R5-1,R3-1),(nm-3,R2-3,A-7,R5-1,R 3-2),(nm-3,R2-3,A-7,R5-2,R3-1),(nm-3,R2-3,A-7,R5-2,R3-2),(nm-3,R2-3,A-7,R5-3,R3-1),(nm-3,R2-3,A-7,R5-3,R3-2),(nm-3,R2-3,A-8,R5-1,R3-1),(nm-3,R2-3,A-8,R5-1,R3-2) ,(nm-3,R2-3,A-8,R5-2,R3-1),(nm-3,R2-3,A-8,R5-2,R3-2),(nm-3,R2-3,A-8,R5-3,R3-1),( nm-3,R2-3,A-8,R5-3,R3-2),(nm-3,R2-3,A-9,R5-1,R3-1),(nm-3,R2-3,A-9,R5-1,R3-2),(n m-3,R2-3,A-9,R5-2,R3-1),(nm-3,R2-3,A-9,R5-2,R3-2),(nm-3,R2-3,A-9,R5-3,R3-1),(nm -3,R2-3,A-9,R5-3,R3-2),(nm-3,R2-3,A-10,R5-1,R3-1),(nm-3,R2-3,A-10,R5-1,R3-2),(n m-3,R2-3,A-10,R5-2,R3-1),(nm-3,R2-3,A-10,R5-2,R3-2),(nm-3,R2-3,A-10,R5-3,R3-1),( nm-3,R2-3,A-10,R5-3,R3-2),(nm-3,R2-3,A-11,R5-1,R3-1),(nm-3,R2-3,A-11,R5-1,R3-2) ,(nm-3,R2-3,A-11,R5-2,R3-1),(nm-3,R2-3,A-11,R5-2,R3-2),(nm-3,R2-3,A-11,R5-3,R3-1),(nm-3,R2-3,A-11,R5-3,R3-2),(nm-3,R2-3,A-12,R5-1,R3-1),(nm-3,R2-3,A-12,R5-1,R 3-2),(nm-3,R2-3,A-12,R5-2,R3-1),(nm-3,R2-3,A-12,R5-2,R3-2),(nm-3,R2-3,A-12,R5-3, R3-1),(nm-3,R2-3,A-12,R5-3,R3-2),(nm-3,R2-3,A-13,R5-1,R3-1),(nm-3,R2-3,A-13,R5-1,R3-2),(nm-3,R2-3,A-13,R5-2,R3-1),(nm-3,R2-3, A-13,R5-2,R3-2),(nm-3,R2-3,A-13,R 5-3,R3-1),(nm-3,R2-3,A-13,R5-3,R3-2),(nm-3,R2-3,A-14,R5-1,R3-1),(nm-3,R2-3,A-14, R5-1,R3-2),(nm-3,R2-3,A-14,R5-2,R3-1),(nm-3,R2-3,A-14,R5-2,R3-2),(nm-3,R2-3,A-1 4,R5-3,R3-1),(nm-3,R2-3,A-14,R5-3,R3-2),(nm-3,R2-4,A-1,R5-1,R3-1),(nm-3,R2-4,A-1,R5-1,R3-2),(nm-3,R2-4,A-1,R5-2,R3-1),(nm-3,R2-4,A-1,R5-2,R3-2),(nm-3,R2-4,A-1, R5-3,R3-1),(nm-3,R2-4,A-1,R5-3,R3-2),(nm-3,R2-4,A-2,R5-1,R3-1),(nm-3,R2-4,A-2,R 5-1,R3-2),(nm-3,R2-4,A-2,R5-2,R3-1),(nm-3,R2-4,A-2,R5-2,R3-2),(nm-3,R2-4,A-2,R5-3,R3-1),(nm-3,R2-4,A-2,R5-3,R3-2),(nm-3,R2-4,A-3,R5-1,R3-1),(nm-3,R2-4,A-3,R5-1, R3-2),(nm-3,R2-4,A-3,R5-2,R3-1),(nm-3,R2-4,A-3,R5-2,R3-2),(nm-3,R2-4,A-3,R5-3,R 3-1),(nm-3,R2-4,A-3,R5-3,R3-2),(nm-3,R2-4,A-4,R5-1,R3-1),(nm-3,R2-4,A-4,R5-1,R3-2),(nm-3,R2-4,A-4,R5-2,R3-1),(nm-3,R2-4,A-4,R5-2,R3-2),(nm-3,R2-4,A-4,R5-3,R3-1) ,(nm-3,R2-4,A-4,R5-3,R3-2),(nm-3,R2-4,A-5,R5-1,R3-1),(nm-3,R2-4,A-5,R5-1,R3-2),( nm-3,R2-4,A-5,R5-2,R3-1),(nm-3,R2-4,A-5,R5-2,R3-2),(nm-3,R2-4,A-5,R5-3,R3-1),(n m-3,R2-4, A-5,R5-3,R3-2),(nm-3,R2-4,A-6,R5-1,R3-1),(nm-3,R2-4,A-6,R5-1,R3-2),(nm -3,R2-4,A-6,R5-2,R3-1),(nm-3,R2-4,A-6,R5-2,R3-2),(nm-3,R2-4,A-6,R5-3,R3-1),(nm-3, R2-4,A-6,R5-3,R3-2),(nm-3,R2-4,A-7,R5-1,R3-1),(nm-3,R2-4,A-7,R5-1,R3-2),(nm-3,R 2-4,A-7,R5-2,R3-1),(nm-3,R2-4,A-7,R5-2,R3-2),(nm-3,R2-4,A-7,R5-3,R3-1),(nm-3,R2-4,A-7,R5-3,R3-2),(nm-3,R2-4,A-8,R5-1,R3-1),(nm-3,R2-4,A-8,R5-1,R3-2),(nm-3,R2-4, A-8,R5-2,R3-1),(nm-3,R2-4,A-8,R5-2,R3-2),(nm-3,R2-4,A-8,R5-3,R3-1),(nm-3,R2-4,A-8,R5-3,R3-2),(nm-3,R2-4,A-9,R5-1,R3-1),(nm-3,R2-4,A-9,R5-1,R3-2),(nm-3,R2-4, A-9, R5-2,R3-1),(nm-3,R2-4,A-9,R5-2,R3-2),(nm-3,R2-4,A-9,R5-3,R3-1),(nm-3,R2-4,A-9,R 5-3,R3-2),(nm-3,R2-4,A-10,R5-1,R3-1),(nm-3,R2-4,A-10,R5-1,R3-2),(nm-3,R2-4,A-10, R5-2,R3-1),(nm-3,R2-4,A-10,R5-2,R3-2),(nm-3,R2-4,A-10,R5-3,R3-1),(nm-3,R2-4,A-1 0,R5-3,R3-2),(nm-3,R2-4,A-11,R5-1,R3-1),(nm-3,R2-4,A-11,R5-1,R3-2),(nm-3,R2-4,A -11,R5-2,R3-1),(nm-3,R2-4,A-11,R5-2,R3-2),(nm-3,R2-4,A-11,R5-3,R3-1),(nm-3,R2-4, A-11,R5-3,R3-2),(nm-3,R2-4,A-12,R5-1,R3-1),(nm-3,R2-4,A-12,R5-1,R3-2),(nm-3,R2-4,A-12,R5-2,R3-1),(nm-3,R2-4,A-12,R5-2,R3-2),(nm-3,R2-4,A-12,R5-3,R3-1),(nm-3,R 2-4,A-12,R5-3,R3-2),(nm-3,R2-4,A-13,R5-1,R3-1),(nm-3,R2-4,A-13,R5-1,R3-2),(nm-3, R2-4,A-13,R5-2,R3-1),(nm 13,R5-2,R3-2),(nm-3,R2-4,A-13,R5-3,R3-1),(nm-3,R2-4, A-13,R5-3,R3-2),(nm-3,R2-4,A-14,R5-1,R3-1),(nm-3,R2-4, A-14,R5-1,R3-2),(n m-3,R2-4,A-14,R5-2,R3-1),(nm-3,R2-4,A-14,R5-2,R3-2),(nm-3,R2-4,A-14,R5-3,R3-1),( nm-3,R2-4,A-14,R5-3,R3-2), and (nm-3,R2-4,A-14,R5-3,R3-3).


In the compound represented by the general formula (I′), a compound, wherein the combination of n, m, R2a, R2b, ring A, R5, R3a, and R3b (m, R2, A, R5, R3) is one of the above compound, and E is a bond.


The compounds of the invention can be employed in the treatment and/or prevention of disease associated with the generation, secretion or deposition of β-amyloid protein, such as dementia of the Alzheimer's type (Alzheimer's disease, senile dementia of Alzheimer type), Down's syndrome, memory impairment, prion disease (Creutzfeldt-Jakob disease), mild cognitive impairment (MCI), Dutch type of hereditary cerebral hemorrhage with amyloidosis, cerebral amyloid angiopathy, other type of degenerative dementia, mixed dementia with Alzheimer's and vascular type, dementia with Parkinson's Disease, dementia with progressive supranuclear palsy, dementia with Cortico-basal degeneration, Alzheimer's disease with diffuse Lewy body disease, age-related macular degeneration, Parkinson's Disease, amyloid angiopathy and so on.


The compounds of the invention can be administrated in combination with other pharmaceutical agents such as other therapeutic drugs for Alzheimer's disease, acetylcholinesterase inhibitors and so on. The compounds of the invention can be treated with concomitantly with the anti-dementia agents such as Donepezil Hydrochloride, Tacrine, Galantamine, Rivastigmine, Zanapezil, Memantine, Vinpocetine.


When the present compound is administered to a human, it can be administered orally as powders, granules, tablets, capsules, pills, solutions, or the like, or parenterally as injectables, suppositories, transdermal absorbable agents, absorbable agents, or the like. In addition, the present compound can be formulated into pharmaceutical preparations by adding pharmaceutical additives such as excipients, binders, wetting agents, disintegrating agents, lubricants and the like, which are suitable for formulations and an effective amount of the present compound.


A dose is different depending on state of disease, an administration route, and an age and a weight of a patient, and is usually 0.1 μg to 1 g/day, preferably 0.01 to 200 mg/day when orally administered to an adult, and is usually 0.1 μg to 10 g/day, preferably 0.1 to 2 g/day when parenterally administered.


Following examples and test examples illustrate the present invention in more detail, but the present invention is not limited by these examples.


In example, the meaning of each abbreviation is following.


Me methyl


Et ethyl


iPr or Pri isopropyl


Ph phenyl


Bn benzyl


Boc t-butoxycarbonyl


TBDPS t-butyldiphenylsilyl


EXAMPLE
Reference Example 1
The Synthesis of Compound 588



embedded image


embedded image


Under nitrogen atmosphere, the compound (1-1)(7.98 g) was dissolved into diethyl ether (330 ml)-tetrahydrofuran (36 ml), vinylmagnesium chloride in tetrahydrofuran solution (1.32 mol/L, 44.8 ml) was added under cooling with dryice-acetone bath, and stirred for 20 min. Then, the reaction solution was stirred for 30 min under cooling with ice-water bath and stirred for 35 min at room temperature. And then, saturated ammonium chloride solution was added to the mixture, the mixture was extracted with ethyl acetate, and organic layer was washed with saturated ammonium chloride solution, saturated sodium hydrogencarbonate solution, and brine, and dried over anhydrous magnesium sulfate, and the solvent was evaporated. Then, the residue was purified by silica gel column chromatography to afford the compound (1-2)(6.00 g).



1H-NMR (CDCl3): 1.63 (3H, s), 2.08 (1H, br), 5.20 (1H, dd, J=10.6, 1.6 Hz), 5.31 (1H, dd, J=17.1, 1.6 Hz), 6.09 (1H, m), 7.46 (1H, m), 7.52 (1H, dd, J=3.4, 2.6 Hz), 7.80 (1H, dd, J=3.9, 2.6 Hz), 8.06 (1H, br)


Step 2

The compound (1-2)(6.36 g) was dissolved into acetic acid (30 ml), and added thiourea (1.50 g), 1 mol/L hydrochloride-acetic acid solution (20.7 ml). The reaction mixture was stirred at room temperature for 3 hours, then stirred at 40° C. for 3 hours, then stirred at room temperature for 66 hours, and at 40° C. for 19 hours. Thiourea (0.450 g), and 1 mol/L hydrochloric acid-acetic acid solution (7.53 ml) was added, and stirred at 40° C. for 23 hours. After the consumption of the compound (1-2), the solvent was evaporated under reduced pressure, then the obtained residue was crystallized from methanol-diethyl ether to afford the compound (1-3)(5.23 g) as crystal. On the other hand, filtrate was evaporated under reduced pressure, and the compound (1-3)(3.00 g) was obtained as a crude solid product.



1H-NMR (DMSO-d6): 2.09 (3H, s), 4.10 (2H, d, J=7.3 Hz), 5.94 (1H, t, J=7.7 Hz), 7.50 (1H, s), 7.75 (1H, s), 7.87 (1H, s), 9.17 (3H, br), 11.46 (1H, s)


Step 3

The compound (1-3)(5.23 g) dissolved in trifluoroacetic acid (25 ml) was added methanesulfonic acid (2.14 ml) dropwise under cooling with ice-water bath. After addition, the reaction mixture was stirred at room temperature for 3.5 hours. After the consumption of the compound (1-3), the solvent was evaporated under reduced pressure. To the residue obtained was added water and sodium carbonate, and then extracted with ethyl acetate. The organic layer was washed with saturated sodium hydrogencarbonate solution, and was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure to afford the compound (1-4)(4.90 g) as a crude product.



1H-NMR (CDCl3): 1.53 (3H, s), 1.90 (1H, m), 2.09 (1H, m), 2.74 (1H, m), 2.97 (1H, m), 4.32 (2H, br), 7.34 (1H, t, J=1.6 Hz), 7.37 (1H, t, J=1.8 Hz), 7.86 (1H, t, J=1.8 Hz)


Step 4

Under nitrogen atmosphere, the compound (1-4)(4.90 g) dissolved in tetrahydrofuran was added di-t-butyl-dicarbonate (2.97 g) and triethylamine (1.89 ml) under cooling with ice-water bath and then stirred for 2 hours. The reaction mixture was stirred at room temperature for 3 hours. The reaction mixture was added water, and then extracted with ethyl acetate. The organic layer was washed with water, and dried over anhydrous magnesium sulfate, then the solvent was evaporated under reduced pressure. Then the obtained residue was crystallized from ethyl acetate-diethyl ether to afford the compound (1-5)(4.62 g) as crystal.



1H-NMR (CDCl3): 1.36 (9H, s), 1.72 (3H, s), 2.10 (1H, m), 2.41 (1H, m), 2.62 (1H, m), 2.75 (1H, m), 7.22 (1H, s), 7.48 (1H, s), 8.29 (1H, s)


Step 5

The compound (1-5)(1.00 g) was dissolved into tetrahydrofuran (8.7 ml), and 1 mol/L lithium hydroxide (4.43 ml) was added and stirred at 50° C. for 4 hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate, and the organic layer was washed with water, brine successively, and dried over anhydrous magnesium sulfate, and the solution was evaporated under reduced pressure. The obtained residue was purified by medium-pressured silica gel column chromatography to afford the compound (1-6)(0.668 g).



1H-NMR (CDCl3): 1.51 (9H, s), 1.63 (3H, s), 2.06 (1H, m), 2.40 (1H, m), 2.68-2.74 (2H, m), 3.83 (2H, br), 6.51 (1H, t, J=1.8 Hz), 6.72-6.74 (2H, m)


Step 6

The compound (1-6)(20.0 mg) was dissolved into 4 mol/L hydrochloric acid in 1,4-dioxane, and the mixture was stirred for 16 hours. The reaction solvent was evaporated under reduced pressure and the obtained residue was crystallized from methanol-diethyl ether to afford the compound (588)(14.7 mg).



1H-NMR (DMSO-d6): 1.59 (3H, s), 2.09-2.76 (4H, m), 6.44 (1H, t, J=1.6 Hz), 6.60 (1H, t J=1.9 Hz), 6.71 (1H, t, J=2.0 Hz), 10.4 (1H, s)


Reference Example 2
The Synthesis of Compound 835



embedded image


Step 1

The compound (2-1)(2020 mg) was dissolved into chloroform (20 ml), then water (4 ml) and sodium thiocyanate (1470 mg) were added at room temperature with stirring, and then sulfuric acid (1.94 ml) was added dropwise under cooling with ice-water bath. After an addition was complete, the reaction mixture was warmed to room temperature and then stirred for 345 minutes, then stirred at 60° C. overnight. Because the compound (2-1) was remained (checked by TLC), the reaction mixture was cooled to room temperature, then sodium thiocyanate (1470 mg), water (5 ml) and sulfuric acid (1.94 ml) were added successively. After the reaction mixture was warmed to 60° C., the mixture was stirred for 1 day. Saturated sodium bicarbonate solution was added to the reaction mixture to be basic condition under cooling with ice-water bath, and then the reaction mixture was extracted with ethyl acetate. The organic layer was washed with brine, then dried over anhydrous magnesium sulfate. The solvent was evaporated and the obtained residue was purified by silica gel column chromatography to afford the compound (2-2)(968 mg).



1H-NMR (CDCl3, 270 MHz): 1.99 (3H, s), 3.55 (1H, d, J=16.1 Hz), 3.69 (1H, d, J=16.1 Hz), 7.12-7.64 (8H, m), 7.82-7.95 (2H, m) Step 2


The compound (2-2)(842 mg) was dissolved into ethanol (8.4 ml), sodium dihydorgen phosphate and an aqueous solution of sodium borohydride (113.2 mg) in water (2.8 ml) were added successively under cooling with ice-water bath with stirring, and the mixture was stirred for 30 minutes. After the consumption of the compound (2-2)(checked by TLC), ethyl acetate and water were added to the reaction mixture under cooling with ice-water bath, and then stirred for a few minutes. The reaction mixture was extracted with ethyl acetate. The organic layer was washed with water, brine successively, and dried over anhydrous magnesium sulfate. The solvent was evaporated to afford the compound (2-3)(904.8 mg) as a crude product.


Step 3

To a solution of compound (2-3)(900 mg) in toluene (10 ml) was added a solution of thionyl chloride (0.7 ml) in toluene (5 ml) under cooling with ice-water bath with stirring, and then stirred for 1 hour at the same temperature. After the consumption of the compound (2-3)(checked by TLC), the reaction solvent was evaporated under reduced pressure to afford the compound (2-4)(1076.8 mg) as a crude product.


Step 4

The compound (2-4)(1070 mg) was dissolved into about 7 mol/L ammonia in methanol (20 ml) at room temperature, then the mixture was stirred for 1 day. After the consumption of the compound (2-4)(checked by TLC), the reaction solvent was evaporated under reduced pressure to afford the compound (835)(2633 mg) as a crude product.


Reference Example 3
The Synthesis of Compound 561



embedded image


Step 1

To tetrahydrofuran (30 ml) under cooling with ice-water bath with stirring, lithium aluminium hydride (0.63 g) was added portionwise, then a solution of compound (3-1)(1.94 g) in tetrahydrofuran (40 ml) was added dropwise. The reaction mixture was reacted for 20 minutes at room temperature, then reacted for 3 hours under reflux. Then ice was added in small portions under cooling, and then stirred for 1 day at room temperature. The reaction mixture was filtered and the filtrate was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography to afford the compound (3-2)(0.90 g).



1H-NMR (CDCl3): 1.22 (3H, s), 3.08 (1H, d, J=12.5 Hz), 3.34 (1H, d, J=12.5 Hz), 3.85 (1H, d, J=11.0 Hz), 4.11 (1H, d, J=11.0 Hz), 7.21-7.25 (1H, m), 7.34-7.40 (2H, m), 7.46-7.50 (2H, m).


Step 2

The compound (3-2)(0.90 g) was dissolved into tetrahydrofuran (15 ml), t-butylisothiocyanate (0.69 g) in tetrahydrofuran (5 ml) was added under cooling with ice-water bath with stirring. The reaction mixture was stirred for 3 days at room temperature, water was added and extracted with dichloromethane. The organic layer was dried over anhydrous magnesium sulfate, then the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography to afford the compound (3-3)(1.33 g).



1H-NMR (CDCl3): 1.12 (9H, s), 1.34 (3H, s), 3.15 (1H, br), 3.76 (1H, d, J=11.2 Hz), 3.87 (1H, dd, J=14.2, 4.6 Hz), 4.13 (1H, d, J=11.2 Hz), 4.23 (1H, dd, J=14.2, 6.6 Hz), 5.18 (1H, br), 6.01 (1H, br), 7.23-7.28 (1H, m), 7.34-7.41 (4H, m).


Step 3

The compound (3-3)(315 mg) was dissolved into acetonitrile (3 ml), triphenylphosphine (440 mg), and carbon tetrachloride (520 mg) in acetonitrile (3 ml) were added under cooling with ice-water bath with stirring. The reaction mixture was stirred for 1 hour at room temperature, and then potassium carbonate (460 mg) was added and stirred for 2 days at room temperature. Then water was added to the reaction mixture and the mixture was extracted with dichloromethane. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography to afford the compound (3-4)(0.23 g).



1H-NMR (CDCl3): 1.30 (9H, s), 1.36 (3H, s), 3.13 (1H, d, J=12.2 Hz), 3.24 (1H, dd, J=12.2, 2.3 Hz), 3.51 (1H, br), 3.53 (1H, d, J=15.2 Hz), 3.99 (1H, dd, J=15.2, 2.3 Hz), 7.20-7.25 (H, m), 7.30-7.36 (2H, m), 7.39-7.43 (2H, m).


Step 4

To the compound (3-4)(0.22 g), cone, hydrochloric acid (4.5 ml) was added, then stirred for 2 hours under reflux, and then the reaction solvent was evaporated under reduced pressure. The obtained residue was crystallized from methanol-diethyl ether to afford the compound (561)(0.16 g).



1H-NMR (DMSO-d6): 1.33 (3H, s), 3.33-3.49 (2H, m), 3.65-3.96 (2H, m), 7.29 (1H, t. J=7.6 Hz), 7.40 (2H, t. J=7.6 Hz), 7.48 (2H, t. J=7.6 Hz).


Reference Example 4
The Synthesis of Compound 534



embedded image


Step 1

The compound (4-1)(0.72 g) was dissolved into N,N-dimethylformamide (15 ml), then sodium azide (0.31 g) was added. The reaction mixture was stirred at 100° C. for 13 hours, then water was added and the mixture was extracted with diethyl ether, the organic layer was dried over anhydrous magnesium sulfate to afford the compound (4-2)(0.71 g) as a crude product.


Step 2

To a solution of the compound (4-2)(0.71 g) in tetrahydrofuran (10 ml), lithium aluminium hydride (0.14 g) was added portionwise under cooling with ice-water bath with stirring, then stirred for 2 hours at room temperature. After the consumption of the starting material, ice was added in small portions, then stirred for 18 hours at room temperature. The reaction mixture was filtered then filtrate was evaporated under reduced pressure to afford the compound (4-3)(0.89 g) as a crude product.


Step 3

The compound (4-3)(0.89 g) was dissolved into tetrahydrofuran (10 ml), then t-butylisothiocyanate (0.56 g) in tetrahydrofuran (5 ml) was added under cooling with ice-water bath with stirring. The reaction mixture was stirred for 4 hours at room temperature, and water was added, and then extracted with dichloromethane, and the organic layer was dried over anhydrous magnesium sulfate. Then the residue was purified by silica gel column chromatography to afford the compound (4-4)(0.72 g).



1H-NMR (CDCl3): 1.39 (9H, s), 2.08 (3H, s), 2.09-2.15 (2H, m), 3.37-3.44 (1H, m), 3.80-3.87 (1H, m), 5.97 (1H, br.), 6.86 (1H, br.), 7.28-7.43 (5H, m).


Step 4

The compound (4-4)(120 mg) was dissolved into acetonitrile (2 ml), triphenylphosphine (170 mg), and carbon tetrachloride (200 mg) in acetonitrile (1 ml) were added under cooling with ice-water bath with stirring. The reaction mixture was stirred for 5 hours at room temperature, and then potassium carbonate (177 mg) was added and stirred for 5 days at room temperature. Then water was added to the reaction mixture and the mixture was extracted with dichloromethane, the organic layer was dried over anhydrous magnesium sulfate, then the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography to afford the compound (4-5)(0.06 g).



1H-NMR (CDCl3): 1.35 (9H, s), 1.59 (3H, s), 1.91 (1H, ddd, J=13.5, 8.8, 5.0 Hz), 2.06 (1H, dt, J=13.5, 5.0 Hz), 3.00 (1H, ddd, J=15.1, 8.8, 5.0 Hz), 3.30 (1H, dt, J=15.1, 5.0 Hz), 7.24-7.38 (5H, m).


Step 5

To the compound (4-5)(0.06 g), conc. hydrochloric acid (3 ml) was added, then the mixture was stirred for 1 hour under reflux, and the solvent was evaporated under reduced pressure. The obtained residue was crystallized from methanol-water to afford the compound (534)(0.02 g).



1H-NMR (DMSO-d6): 1.43 (3H, s), 1.77 (1H, dt. J=8.4, 3.4 Hz), 2.11 (1H, d. J=9.2 Hz), 2.48-2.50 (1H, m), 2.83-2.99 (1H, m), 6.12 (1H, br), 6.65 (1H, br), 7.21-7.24 (1H, m), 7.31-7.37 (4H, m).


Reference Example 5
The Synthesis of Compound 1008



embedded image


Step 1

The compound (5-1)(3.00 g) was dissolved into ethanol (30 ml), and thiourea (1.13 g) was added, and then the mixture was refluxed for 26 hours, and the solvent was evaporated under reduced pressure. The obtained residue was crystallized from ethyl acetate/hexane to afford the compound (5-2)(4.03 g).



1H-NMR (DMSO-d6): 1.95 (2H, quint, J=6.8 Hz), 3.13 (2H, t, J=6.8 Hz), 3.21 (2H, t, J=6.8 Hz), 3.85 (3H, s), 7.06 (2H, d, J=8.8 Hz), 7.95 (2H, d, J=8.8 Hz), 9.18 (4H, br).


Step 2

The compound (5-2)(1.00 g) was dissolved into tetrahydrofuran (25 ml), then di-t-butyl-dicarbonate (1.74 g), and triethylamine (0.88 g) were added, and then the mixture was stirred for 3 hours at room temperature. Water was added to the reaction mixture, and the mixture was extracted with dichloromethane. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography to afford the compound (5-3)(1.24 g).



1H-NMR (CDCl3): 1.50 (9H, s), 2.07-2.17 (2H, m), 2.98 (2H, t, J=7.8 Hz), 3.09 (2H, t, J=6.3 Hz), 6.95 (2H, d, J=8.9 Hz), 7.95 (2H, d, J=8.9 Hz).


Step 3

The compound (5-3)(1.18 g) was dissolved into tetrahydrofuran (12 ml), then 0.9 mol/L methylmagnesium bromide in tetrahydrofuran solution (10.1 ml) was added under cooling with acetonitrile-dryice bath with stirring, and then reaction mixture was stirred for 1 hour, then stirred for 30 minutes at room temperature. After the reaction, saturated ammonium chloride solution was added under cooling with ice-water bath with stirring, then the mixture was extracted with diethyl ether, and the organic layer was dried over anhydrous magnesium sulfate, and then the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to afford the compound (5-4)(0.39 g).



1H-NMR (CDCl3): 1.51 (9H, s), 1.63 (3H, s), 1.55-1.65 (2H, m), 1.87-1.91 (2H, m), 2.96-3.12 (2H, m), 6.86 (2H, d, J=8.9 Hz), 7.36 (2H, d, J=8.9 Hz).


Step 4

The compound (5-4)(0.24 g) was dissolved into trifluoroacetic acid (6 ml), and stirred for 20 hours at room temperature, then the reaction solvent was evaporated under reduced pressure. To the residue, water and saturated sodium hydrogencarbonate was added, and then extracted with dichloromethane. The organic layer was dried over anhydrous sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography to afford the compound (1008)(0.06 g).



1H-NMR (CDCl3): 1.54 (3H, s), 1.77-1.87 (1H, m), 1.90-1.97 (1H, m), 2.20-2.36 (2H, m), 2.67-2.79 (2H, m), 3.81 (3H, s), 5.30 (2H, br), 6.87 (2H, d, J=9.0 Hz), 7.33 (2H, d, J=9.0 Hz).


Reference Example 6
The Synthesis of Compound 783



embedded image


Step 1

The compound (6-1)(0.55 g) was dissolved into methanol (7 ml), and methyl iodide (0.36 g) was added at room temperature with stirring. The mixture was stirred at room temperature for 18 hours, then the reaction solvent was evaporated under reduced pressure to afford the compound (6-2)(0.92 g) as a crude product.


Step 2

The compound (6-2)(0.92 g) was dissolved into tetrahydrofuran (7 ml), then triethylamine (0.24 g) and silver oxide (1.1 g) was added. The mixture was stirred at room temperature for 3 days, then the insolubles was removed by filtration, then the filtrate was evaporated under reduced pressure, and then the obtained residue was purified by silica gel column chromatography to afford the compound (6-3)(0.31 g).



1H-NMR (CDCl3): 1.35 (9H, s), 1.60 (3H, s), 1.92 (1H, ddd, J=9.2, 5.8, 3.4 Hz), 2.07 (1H, dt, J=9.2, 3.4 Hz), 3.00 (1H, ddd, J=9.2, 5.8, 3.4 Hz), 3.30 (1H, dt, J=9.2, 3.4 Hz), 7.24-7.38 (5H, m).


Step 3

To the compound (6-3)(0.22 g), conc. hydrochloric acid (3 ml) was added, then the mixture was stirred for 1 hour under reflux, and then the reaction solvent was evaporated under reduced pressure. The obtained residue was crystallized from water to afford the compound (783)(0.13 g).



1H-NMR (DMSO-d6): 1.44 (3H, s), 1.78 (1H, dt. J=12.4, 4.2 Hz), 2.12 (1H, d. J=8.9 Hz), 2.51-2.52 (1H, m), 2.96 (1H, d. J=4.2 Hz), 6.12 (1H, br), 6.66 (1H, br), 7.21-7.24 (1H, m), 7.32-7.37 (4H, m).


Reference Example 7
The Synthesis of Compound 69



embedded image


Step 1

A solution of the compound (7-1)(1.93 g), diphenylphosphoryl azide (1.60 g), and triethylamine (0.59 g) in toluene (20 ml) was stirred at 80° C. for 3 hours, and water was added, and then the mixture was extracted with diethyl ether. The organic layer was dried over anhydrous sodium sulfate, and then the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to afford the compound (7-2)(1.69 g).



1H-NMR (CDCl3): 1.00 (9H, s), 1.72 (3H, s), 2.17-2.22 (2H, m), 3.49-3.58 (1H, m), 3.70-3.80 (1H, m), 7.20-7.42 (10H, m), 7.58-7.63 (5H, m).


Step 2

The compound (7-2)(1.68 g) was dissolved into toluene (9 ml), and 3,4-dimethoxybenzylalcohol (0.79 g) was added, the mixture was refluxed for 8 hours. To the reaction mixture, water was added, then the mixture was extracted with dichloromethane, and the organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to afford the compound (7-3)(2.09 g).



1H-NMR (CDCl3): 1.03 (9H, s), 1.87 (3H, s), 2.04 (2H, m), 3.48 (1H, m), 3.51 (1H, m), 3.62 (3H, s), 3.65 (3H, s), 4.95 (1H, d, J=12.2 Hz), 5.03 (1H, d, J=12.2 Hz), 6.80-7.09 (3H, m), 7.22-7.42 (10H, m), 7.56-7.64 (5H, m).


Step 3

The compound (7-3)(2.09 g) was dissolved into 1,4-dioxane (15 ml), and 4 mol/L hydrochloric acid-1,4-dioxane (15 ml) solution was added, then stirred at room temperature for 24 hours. To the reaction mixture, water and 1 mol/L-sodium hydroxide solution were added and extracted with dichloromethane, then the organic layer was dried over anhydrous sodium sulfate, and then the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to afford the compound (7-4)(0.45 g).



1H-NMR (CDCl3): 1.57 (3H, s), 1.07-1.98 (2H, m), 3.48-3.56 (1H, m), 3.72-3.86 (1H, m), 7.23-7.45 (15H, m).


Step 4

The compound (7-4)(0.44 g) was dissolved into tetrahydrofuran (15 ml), t-butylisothiocyanate (0.41 g) and diisopropylethylamine (0.46 g) were added. After the mixture was stirred at room temperature for 3 days, water was added, and extracted with dichloromethane, then the organic layer was dried over anhydrous sodium sulfate, and then the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to afford the compound (7-5)(0.17 g).



1H-NMR (CDCl3): 1.79 (3H, s), 1.82-2.20 (2H, m), 3.71-3.81 (2H, m), 5.09 (1H, br), 7.30-7.52 (5H, m).


Step 5

The compound (7-5)(0.17 g) was dissolved into tetrahydrofuran (3.4 ml), then methyl iodide (0.11 g) was added at room temperature with stirring. The mixture was stirred for 23 hours, the reaction solvent was evaporated under reduced pressure to afford the compound (7-6)(0.28 g) as a crude product.


Step 6

The compound (7-6)(0.28 g) was dissolved into tetrahydrofuran (5 ml), then triethylamine (74 mg) and silver oxide (0.34 g) were added. The mixture was stirred at room temperature for 20 hours, then insolubles were removed by filtration, and then the filtrate was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to afford the compound (7-7)(0.14 g).



1H-NMR (CDCl3): 1.36 (9H, s), 1.49 (3H, s), 1.96-2.09 (2H, m), 2.77-3.83 (1H, m), 4.05-4.10 (1H, m), 7.19 (1H, t, J=7.3 Hz), 7.31 (2H, t, J=7.3 Hz), 7.44 (2H, d, J=7.3 Hz).


Step 7

To the compound (7-7)(0.12 g) conc. hydrochloric acid (9 ml) was added, then stirred for 1 hour under reflux, and then the reaction solvent was evaporated under reduced pressure. The obtained residue was crystallized from methanol-water to afford the compound (69)(0.10 g).



1H-NMR (DMSO-d6): 1.65 (3H, s), 2.28-2.35 (1H, m), 2.39-2.44 (1H, m), 3.97 (1H, dt, J=7.8, 3.0 Hz), 4.53 (1H, dt, J=7.8, 3.0 Hz), 7.32-7.44 (5H, m), 8.44 (21, br), 10.33 (1H, 8).


Reference Example 8
The Synthesis of Compound 256



embedded image


embedded image


Step 1

The compound (8-1)(4890 mg) was dissolved into N,N-dimethylformamide (100 ml), then sodium azide (5720 mg) was added at room temperature with stirring, and the solution was warmed to 80° C., and stirred for 12 hours. After the consumption of the compound (8-1)(checked by TLC), the reaction mixture was cooled to room temperature, then diethyl ether and water were added, and then the mixture was extracted with diethyl ether. The organic layer was washed with brine, and dried over magnesium sulfate. The solvent was evaporated under reduced pressure to afford the compound (8-2)(4940 mg) as a crude product.


Step 2

To the suspension of lithium aluminium hydride (1080 mg) in tetrahydrofuran (90 ml) under nitrogen atmosphere under cooling with ice-water bath, the compound (8-2)(4940 mg) in tetrahydrofuran (15 ml) solution was added, the reaction mixture was stirred for 30 minutes. After the consumption of the compound (8-2)(checked by TLC), 1 mol/L sodium hydroxide solution was added under cooling with ice-water bath, then stirred for a while. The generated gel was removed with filtration, and the filtrate was extracted with diethyl ether. The organic layer was washed with brine, and dried over magnesium sulfate. The solvent was evaporated under reduced pressure to afford the compound (8-3)(4219.1 mg) as a crude product.


Step 3

The compound (8-3)(800 mg) was dissolved into acetonitrile (16 ml), the compound (8-4)(1840 mg) was added with stirring at room temperature, and stirred for 13 hours. After the consumption of the compound (8-3)(checked by TLC), the reaction solvent was evaporated under reduced pressure, the obtained residue was purified by silica gel column chromatography to afford the compound (8-5)(1550.7 mg).


8-5-(Z): 1H-NMR (CDCl3, 270 MHz): 1.49 (18H, s), 2.06 (3H, d, J=1.4 Hz), 3.91-4.00 (2H, m), 5.54 (1H, td, J=7.1, 1.4 Hz), 7.12-7.41 (5H, m), 8.17-8.25 (1H, m), 11.47 (1H, s)


8-5-(E): 1H-NMR (CDCl3, 270 MHz): 1.49 (9H, s), 1.52 (9H, s), 2.09 (3H, d, J=1.5 Hz), 4.24 (2H, dd, J=6.6, 5.3 Hz), 5.80 (1H, td, J=6.6, 1.5 Hz), 7.21-7.48 (5H, m), 8.28-8.38 (1H, m), 11.51 (1H, s)


Step 4

The compound (8-5)(474.1 mg) was dissolved into trifluoroacetic acid (4.5 ml) under cooling with ice-water bath, then warmed to room temperature, and stirred for 4 hours. After the consumption of the compound (8-5)(checked by NMR), the reaction mixture was poured into floating ice—1 mol/L sodium hydroxide solution to be neutralized, then the mixture was extracted with ethyl acetate. The organic layer was washed with brine, and dried over magnesium sulfate. The solvent was evaporated under reduced pressure to afford the compound (8-6)(326.4 mg) as a crude product.


Step 5

The compound (8-6)(326.4 mg) was dissolved into 1,4-dioxane (2.4 ml), sodium hydroxide (195 mg) and water (1.2 ml) were added successively, then di-t-butyl dicarbonate (0.84 ml) was added under cooling with ice-water bath. The reaction mixture was warmed to room temperature, and stirred for 15 hours, then the consumption of the compound (8-6) was checked by LC-MS. After added water to the reaction mixture, the mixture was extracted with ethyl acetate. The organic layer was washed with brine, and dried over magnesium sulfate. The solvent was evaporated under reduced pressure, and the obtained residue was purified by silica gel column chromatography to afford the compound (8-7)(113.6 mg).



1H-NMR (CDCl3, 400 MHz): 1.46 (9H, s), 1.51 (9H, s), 1.64 (3H, s), 2.06 (1H, ddd, J=13.4, 11.4, 5.0 Hz), 2.27 (1H, dt, J=13.4, 4.6 Hz), 3.15 (1H, ddd, J=12.9, 11.3, 4.6 Hz), 3.70 (1H, dt, J=12.9, 4.7 Hz), 7.23-7.29 (1H, m), 7.33-7.38 (4H, m)


Step 6

The compound (8-7)(110 mg) was dissolved into 4 mol/L hydrochloric acid-1,4-dioxane solution (1 ml) under cooling ice-water bath, the mixture was warmed to room temperature, and stirred for 2 days, then the consumption of the compound (8-7) was checked by LC-MS, and diethyl ether and water were added at room temperature. After separation of diethyl ether layer, water layer was evaporated under reduced pressure. To the obtained residue, methanol was added, then the generated crystal was filtered. The methanol in the filtrate was evaporated under reduced pressure to afford the compound (256)(69 mg).



1H-NMR (DMSO-d6, 400 MHz): 1.57 (3H, s), 1.87-1.96 (1H, m), 2.30 (1H, dt, J=13.6, 3.8 Hz), 2.60 (1H, td, J=12.0, 3.7 Hz), 3.25 (1H, ddd, J=12.8, 8.2, 4.4 Hz), 6.93 (2H, s), 7.27-7.44 (5H, m), 7.94 (1H, s), 8.63 (1H, s)


Reference Example 9
The Synthesis of Compound 24



embedded image


The compound (9-1)(0.39 g) was dissolved into chloroform (20 ml), iodine (1.53 g), potassium thiocyanate (1.25 g), catalytic amount of tetrabutylammonium chloride, and water (1 ml) were added at room temperature, then stirred for 15 hours. To the reaction mixture, 10% thiosodium sulfate solution and water were added, and the mixture was extracted with dichloromethane. The organic layer was dried over anhydrous sodium sulfate, the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to afford the compound (9-2)(0.56 g).



1H-NMR (CDCl3): 1.95 (3H, s), 3.62 (2H, s), 7.30-7.40 (4H, m).


Step 2

To a solution of the compound (9-2)(0.56 g) in tetrahydrofuran (10 ml), t-butylamine (0.24 g) was added and stirred at room temperature for 18 hours. The reaction solvent was evaporated under reduced pressure, then the obtained residue was purified by silica gel column chromatography to afford the compound (9-3)(190 mg).



1H-NMR (CDCl3): 1.43 (9H, s), 1.56 (3H, s), 3.27 (1H, d, J=10.6 Hz), 3.36 (1H, d, J=10.6 Hz), 7.28 (2H, d, J=8.2 Hz), 7.43 (2H, d, J=8.2 Hz).


Step 3

To the compound (9-3)(190 mg), conc. hydrochloric acid (3 ml) was added, then stirred at 100° C. for 3 hours. To the reaction mixture, 6 mol/L sodium hydroxide was added to neutralize, the mixture was extracted with dichloromethane. The organic layer was dried with anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography, then crystallized from dichloromethane/n-hexane to afford the compound (24)(110 mg).



1H-NMR (CDCl3): 1.62 (3H, s), 3.47 (1H, d, J=10.6 Hz), 3.52 (1H, d, J=10.6 Hz), 4.59 (2H, br), 7.29 (2H, d, J=8.6 Hz), 7.39 (2H, d, J=8.6 Hz).


Reference Example 10
The Synthesis of Compound 48



embedded image


Step 1

The compound (10-1)(79.6 mg) and (10-2)(120 mg) were dissolved into N,N-dimethylformamide (3 ml), then 1-hydroxybenzotriazole (54.6 mg) and N,N′-diisopropylcarbodiimide (0.063 ml) were added, then the reaction mixture was stirred overnight at room temperature. Then after the consumption of the compound (10-1), water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine, and dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to afford the compound (10-3)(110.2 mg) as a crude product of diastereomer.



1H-NMR (CDCl3): 0.78-1.00 (6H, m,), 1.14 (9/2H, s), 1.16 (9/2H, s) 1.52 (3/2H, s), 1.54 (3/2H, s) 1.86-2.28 (3H, m), 2.56-2.89 (2H, m), 3.80 (3/2H, s), 3.81 (3/2H, s) 4.04-4.14 (1H, m), 6.80-6.91 (2H, m), 7.08-7.22 (2H, m), 7.30-7.51 (6H, m), 7.61-7.76 (4H, m)


Step 2

The compound (10-3)(100 mg) was dissolved into tetrahydrofuran (3 ml) under nitrogen atmosphere, then 1 mol/L tetrabutylammonium fluoride in tetrahydrofuran (0.18 ml) was added at 0° C. with stirring, then the reaction mixture was stirred at 0° C. for 5 minutes. After the consumption of the compound (10-3), water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine, and dried over magnesium sulfate, then the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to afford the compound (48)(40.7 mg) as a mixture of diastereomers.



1H-NMR (CDCl3): 0.80-0.90 (3H, m) 1.01-1.12 (3H, m) 1.70 (3H, m), 2.02-2.31 (2H, m) 2.39-2.55 (1H, m), 2.61-2.90 (2H, m) 3.53-3.70 (1H, m) 3.81 (3H, m), 3.96-4.08 (1H, m) 6.87-6.96 (2H, m), 7.13-7.22 (2H, m)


Reference Example 11
The Synthesis of Compound 707



embedded image


Step 1

The compound (11-1)(150 mg) was dissolved into acetonitrile (5 ml), then the compound (11-2)(219.6 mg) was added at room temperature with stirring, and then the reaction mixture was warmed to 60° C., and stirred for 25 hours. The compound (11-1) was remained (checked by TLC). The reaction solvent was evaporated under reduced pressure, then the obtained residue was purified by silica gel column chromatography to afford the compound (11-1)(211.4 mg).



1H-NMR (CDCl3, 400 MHz): 1.46 (9H, s), 1.50 (9H, s), 1.57 (3H, s), 1.90 (1H, ddd, J=13.7, 10.0, 3.8 Hz) 2.11 (1H, ddd, J=13.7, 6.5, 3.7 Hz) 2.68-2.76 (1H, m), 2.86-2.93 (1H, m), 3.88 (3H, s), 6.91 (1H, t, J=8.6 Hz) 6.99-7.03 (1H, m), 7.06 (1H, dd, J=13.0, 2.2 Hz), 10.14 (1H, s), 13.93 (1H, s)


Step 2

The compound (11-3)(210 mg) was dissolved into 4 mol/L hydrochloric acid in 1,4-dioxane (4 ml) under cooling with ice-water bath, then the mixture was warmed to room temperature and stirred for 67 hours. After the consumption of the compound (11-3)(checked by LC/MS), the reaction solvent was evaporated under reduced pressure. The obtained residue was crystallized from methanol-diethyl ether, and crystal was collected by filtration and washed with diethyl ether to afford compound (707)(140.2 mg).



1H-NMR (DMSO-d6, 400 MHz): 1.56 (3H, s), 1.90-2.01 (1H, m), 2.43-2.62 (2H, m), 2.95-3.03 (1H, m), 3.84 (3H, s), 7.10-7.27 (3H, m), 7.76 (3H, br s), 8.26 (1H, br s), 9.42 (1H, s)


Reference Example 12
The Synthesis of Compound 845



embedded image


Step 1

The compound (12-1)(50 mg) and piperidine (17.9 mg) were dissolved into N,N-dimethylformamide (2 ml), then O-(7-azabenzotriazo-1-yl)-1,1,3,3-tetramethyluroniumhexafluorophosphate (79.8 mg) was added, and then the mixture was stirred at room temperature for 40 hours. After the consumption of the compound (12-1), the solvent was evaporated under reduced pressure with heating. To the obtained residue, saturated sodium hydrogencarbonate solution was added, and extracted with ethyl acetate. The organic layer was washed with brine, and dried over magnesium sulfate, then the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to afford the compound (845)(30.7 mg).



1H-NMR (CDCl3): 1.60 (3H, s), 1.51-1.82 (6H, m), 1.87-1.98 (1H, m), 2.09-2.19 (1H, m), 2.91-2.97 (2H, m), 3.64-3.68 (4H, m), 6.73 (1H, d, J=4.05 Hz), 7.14 (1H, d, J=4.05 Hz)


Reference Example 13
The Synthesis of Compound 1262



embedded image


Step 1

The compound (13-1)(50.0 mg) was dissolved into tetrahydrofuran (1 ml) under nitrogen atmosphere, then triethylamine (19 μl), and 4-bromobenzoyl chloride (30.1 mg) were added under cooling with ice-water bath, and stirred for 40 minutes. The reaction solvent was evaporated under reduced pressure, and then the obtained residue was dissolved into ethyl acetate. The solution was washed with saturated sodium hydrogencarbonate solution, and dried over magnesium sulfate, and then the solvent was evaporated under reduced pressure. The generated crystal was collected by filtration to afford the compound (13-2)(57.2 mg).



1H-NMR (CDCl3): 1.48 (9H, s), 1.68 (3H, s), 2.08 (1H, m), 2.44 (1H, m), 2.65 (1H, m), 2.76 (1H, m), 7.18 (1H, s), 7.32 (1H, s), 7.64 (2H, d, J=8.2 Hz), 7.78 (2H, d, J=8.2 Hz), 8.15 (1H, s), 8.25 (1H, br)


Step 2

The compound (13-2)(62.3 mg) was dissolved into 4 mol/L hydrochloric acid-1,4-dioxane and stirred for 24 hours. The reaction solvent was evaporated under reduced pressure. The obtained residue was crystallized from methanol/diethyl ether to afford the compound (1262)(44.7 mg).



1H-NMR (DMSO-d6): 1.67 (3H, s), 2.10 (1H, m), 2.50-2.61 (3H, m), 7.33 (1H, s), 7.74 (1H, s), 7.77 (2H, d, J=8.6 Hz), 7.91 (2H, d, J=8.6 Hz), 8.08 (1H, s), 10.6 (1H, s)


Reference Example 14
The Synthesis of Compound 753



embedded image


Step 1

The compound (14-1)(46 mg) was dissolved into dichloromethane (2 ml), then 4-chlorobenzaldehyde (20 mg) and acetic acid (17 mg) was added at room temperature, and then stirred for 20 minutes, and then sodium triacetoxyborohydride (45 mg) was added under cooling with ice-water bath. The mixture was stirred at room temperature for 14 hours, and then water was added and extracted with dichloromethane. The organic layer was dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to afford the compound (14-2)(52 mg).



1H-NMR (CDCl3): 1.50 (9H, s), 1.64 (3H, s), 2.02-2.10 (1H, m), 2.40 (1H, dt, J=14.0, 4.1 Hz), 2.62-2.74 (2H, m), 4.30 (2H, s), 6.49 (1H, ddd, J=, 7.8, 2.0, 0.8 Hz), 6.52 (1H, t, J=2.0 Hz), 6.60 (1H, ddd, J=, 7.8, 2.0, 0.8 Hz), 7.16 (1H, t, J=7.8 Hz), 7.18-7.33 (4H, m).


Step 2

To the compound (14-2)(52 mg), 4 mol/L hydrochloric acid in 1,4-dioxane solution (4 ml) was added, then the mixture was stirred at room temperature for 4 days, and then the reaction solvent was evaporated under reduced pressure. The obtained residue was crystallized from methanol/diethyl ether to afford the compound (753)(42 mg).



1H-NMR (DMSO-d6): 1.58 (3H, s), 2.00 (1H, ddd, J=, 14.3, 11.3, 3.3 Hz), 2.49-2.57 (2H, m), 3.07 (1H, dt, J=12.7, 3.3 Hz), 4.27 (2H, s), 6.47 (1H, d, J=8.2 Hz), 6.51-6.53 (2H, m), 7.08 (1H, t, J=8.2 Hz), 7.37 (4H, s), 8.80 (2H, br).


Reference Example 15
The Synthesis of Compound 1135



embedded image


Step 1

To a solution of the compound (15-1)(101 mg), 2-propanol (56 μl), and triphenylphosphine (189 mg) in tetrahydrofuran (2 ml), diethyl azodicarboxylate (2.2 mol/L) in toluene (328 μl) was added dropwise, then stirred for 1 hour at room temperature. After the consumption of the compound (15-1), the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to afford the compound (15-2)(280 mg) as a mixture of triphenylphosphine oxide and diethyl hydrazodicarboxylate.


Step 2

To the suspension of 5-chloropyridine-2-carboxylic acid (47 mg) in toluene (1 ml), N,N-dimethylformamide (1 drop) and thionylchloride (91 μl) were added and stirred at 100° C. for 1 hour. The solvent was evaporated under reduced pressure, then the obtained residue was dissolved into tetrahydrofuran (1 ml), and then the mixture of the compound (15-2) (280 mg), and pyridine (194 μl) in tetrahydrofuran (0.5 ml) were added dropwise at 0° C. and stirred for 10 minutes. After the consumption of the compound (15-2), water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with water, and then the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to afford the compound (15-3)(68 mg) as a mixture of diethyl hydrazodicarboxylate.


Step 3

To the compound (15-3)(68 mg) as a mixture of diethyl hydrazodicarboxylate, 4 mol/L in hydrochloric acid in 1,4-dioxane solution (1 ml) was added, then the mixture was stirred at room temperature for 16 hours. After the consumption of the compound (44), the reaction solvent was evaporated under reduced pressure. The obtained residue was crystallized from 2-propanol/diethyl ether to afford the compound (1135)(36 mg).



1H-NMR (DMSO-d6): 1.30 (3H, d, J=6.4 Hz), 1.31 (3H, d, J=6.4 Hz), 1.65 (3H, s), 2.04-2.11 (1H, m), 2.50-2.64 (2H, m), 3.12-3.16 (1H, m), 4.61 (1H, sep, J=6.4 Hz), 6.66 (1H, t, J=2.0 Hz), 7.48 (1H, t, J=2.0 Hz), 7.60 (1H, t, J=2.0 Hz), 8.16 (1H, dd, J=8.4, 0.8 Hz), 8.22 (1H, dd, J=8.4, 2.4 Hz), 8.79 (1H, dd, J=2.4, 0.8 Hz), 10.33 (1H, s), 10.72 (1H, s).


Reference Example 16
The Synthesis of Compound 161



embedded image


Step 1

The compound (16-1)(200 mg), palladium acetate (4.7 mg), and tri-(o-tolyl)phosphine (12.5 mg), were dissolved into N,N-dimethylformamide (2 ml) under nitrogen atmosphere, then n-butylamine (0.196 ml), and p-chlorostyrene (0.074 ml) were added at room temperature with stirring, then the solution was warmed to 80° C., and stirred for 3 hours. After the consumption of the compound (16-1)(checked by TLC), the reaction mixture was cooled to room temperature, and saturated ammonium chloride solution was added to the mixture. The mixture was extracted with ethyl acetate, the organic layer was washed with water and brine, and dried over magnesium sulfate, and then the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to afford the compound (16-2)(213.1 mg).



1H-NMR (CDCl3, 400 MHz): 1.54 (18H, s), 1.64 (3H, s), 1.96 (1H, ddd, J=13.7, 9.1, 4.0 Hz) 2.10 (1H, ddd, J=13.7, 8.1, 3.4 Hz) 2.86 (1H, ddd, J=12.3, 9.1, 3.4 Hz), 3.03 (1H, ddd, J=12.3, 8.1, 4.0 Hz), 7.08 (1H, d, J=16.4 Hz) 7.15 (1H, d, J=16.4 Hz), 7.27-7.40 (5H, m) 7.44 (2H, d, J=8.8 Hz), 7.58 (1H, s)


Step 2

The compound (16-2)(213 mg) was dissolved into 4 mol/L hydrochloric acid in 1,4-dioxane (5 ml) under cooling with ice-water bath, then the mixture was warmed to room temperature and stirred for 63 hours. After the consumption of the compound (16-2)(checked by LC/MS), the reaction mixture was diluted with diethyl ether. The generated crystal was collected by filtration, and washed with diethyl ether to afford the compound (161)(108.6 mg).



1H-NMR (DMSO-d6, 400 MHz): 1.69 (3H, s), 2.08-2.18 (1H, m), 2.56-2.70 (2H, m), 3.13-3.20 (1H, m), 7.23 (1H, d, J=8.0 Hz), 7.31 (1H, d, J=17.0 Hz), 7.35 (1H, d, J=17.0 Hz), 7.45 (2H, d, J=8.6 Hz), 7.46 (1H, t, 7.6 Hz), 7.59 (1H, d, J=2.0 Hz), 7.61-7.64 (1H, m), 7.64 (2H, d, J=8.6 Hz), 8.53-9.50 (2H, br), 10.67 (1H, br s)


Reference Example 17
The Synthesis of Compound 597



embedded image


Step 1

The solution of compound (17-1)(135 mg), O-methxylhydroxylamine hydrochloride (39 mg), and potassium acetate (27 mg) in methanol (3 ml) was stirred at room temperature for 16 hours, then water was added. The mixture was extracted with dichloromethane, the organic layer was dried over anhydrous sodium sulfate, then the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to afford the compound (17-2)(110 mg).



1H-NMR (CDCl3): 1.51 (9H, s), 1.70 (3H, s), 2.14 (1H, ddd, J=14.4, 11.4, 3.4 Hz), 2.22 (3H, s), 2.48 (1H, m), 2.65 (1H, dt, J=12.6, 11.4 Hz), 2.78 (1H, ddd, J=12.6, 5.6, 3.4 Hz), 4.00 (3H, s), 7.30 (1H, d, J=7.8 Hz), 7.38 (1H, d, J=7.8 Hz), 7.54-7.57 (2H, m).


Step 2

To the compound (17-2)(110 mg), 4 mol/L hydrochloric acid in 1,4-dioxane (4.5 ml) solution was added and stirred for 4 days at room temperature, then the reaction solvent was evaporated under reduced pressure. The obtained residue was crystallized from methanol/diethyl ether to afford compound (597)(65 mg).



1H-NMR (DMSO-d6): 1.67 (3H, s), 2.08-2.15 (1H, m), 2.20 (3H, s), 2.56-2.64 (2H, m), 3.14-3.17 (1H, m), 3.92 (3H, s), 7.37 (1H, d, J=8.0 Hz), 7.48 (1H, d, J=8.0 Hz), 7.56 (1H, s), 7.62 (1H, d, J=8.0 Hz).


Reference Example 18
The Synthesis of Compounds 134 and 135



embedded image


Step 1

The compound (18-1) (2020 mg) was dissolved into chloroform (20 ml), and water (4 ml) and sodium thiocyanate (1470 mg) were added to the solution with stirring at room temperature. Sulfuric acid (1.94 ml) was added dropwise to the reaction mixture under cooling with ice-water bath. After the addition was completed, the reaction mixture was warmed to room temperature and then stirred for 345 minutes, then stirred at 60° C. for overnight. Because the compound (18-1) was remained (checked by TLC), the reaction mixture was cooled to room temperature, then sodium thiocyanate (1470 mg), water (5 ml) and sulfuric acid (1.94 ml) were added successively. After the reaction mixture was warmed to 60° C., the mixture was stirred for 1 day. A saturated sodium bicarbohydrate solution was added to the reaction mixture to be basic condition under cooling with ice-water bath, and then the reaction mixture was extracted with ethyl acetate. The organic layer was washed with brine, then dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure and the obtained residue was subjected to silica gel chromatography to afford the compound (18-2) (968 mg).



1H-NMR (CDCl3, 270 MHz): 1.99 (3H, s), 3.55 (1H, d, J=16.1 Hz), 3.69 (1H, d, J=16.1 Hz), 7.12-7.64 (8H, m), 7.82-7.95 (2H, m)


Step 2

The compound (18-2) (842 mg) was dissolved into ethanol (8.4 ml). Sodium dihydorgen phosphate (1600 mg) and sodium borohydride (113.2 mg) in water (2.8 ml) were added to the solution successively under cooling with ice-water bath with stirring, and the mixture was stirred for 30 minutes at the same temperature. After the consumption of the compound (18-2) (checked by TLC), ethyl acetate and water were added to the mixture under cooling with ice-water bath, and then stirred for a few minutes. The reaction mixture was extracted with ethyl acetate. The organic layer was washed with water and brine successively, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to afford the compound (18-3) (904.8 mg) as a crude product.


Step 3

To a stirring solution of the compound (18-3) (900 mg) in toluene (10 ml) was added a solution of thionyl chloride (0.7 ml) in toluene (5 ml) under cooling with ice-water bath, and stirred for 1 hour at the same temperature. After the consumption of the compound (18-3)(checked by TLC), the reaction solution was concentrated under reduced pressure to afford the compound (18-4)(1076.8 mg) as a crude product.


Step 4

The compound (18-4) (1070 mg) was dissolved into ca. 7 mol/L ammonia in methanol (20 ml) at room temperature, then the mixture was stirred for 1 day. After the consumption of the compound (18-4)(checked by TLC), the reaction solution was concentrated under reduced pressure to afford the compound (18-5) (2633 mg) as a crude product.


Step 5

The compound (18-5)(2633 mg) was dissolved into tetrahydrofuran (10 ml), and 4-dimethylaminopyridine (43.2 mg) and di-t-butyl dicarbonate (0.976 ml) were added to the solution successively under cooling with ice-water bath with stirring. The reaction mixture was warmed to room temperature and then stirred for 260 minutes. Because the compound (18-5) was remained (checked by TLC) in the reaction solution, di-t-butyl dicarbonate (0.488 ml) was added to the reaction mixture at room temperature and then stirred at the same temperature for overnight. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with brine, then dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure and the obtained residue was subjected to silica gel column chromatography to afford the compound (18-6a) (99.6 mg) and the compound (18-6b) (183.2 mg).


18-6a: 1H-NMR (CDCl3, 400 MHz): 1.49 (9H, s), 1.80 (3H, s), 2.22 (1H, t, J=13.6 Hz), 2.36 (1H, dd, J=14.2, 3.4 Hz), 4.63 (1H, dd, J=12.6, 3.4 Hz), 7.27-7.47 (10H, m)


18-6b: 1H-NMR (CDCl3, 400 MHz): 1.53 (9H, s), 1.72 (3H, s), 2.34 (1H, t, J=13.0 Hz), 2.66 (1H, dd, J=14.0, 2.5 Hz), 3.86 (1H, dd, J=12.4, 2.5 Hz), 7.20-7.45 (10H, m)


Step 6

The compound (18-6a) (99.6 mg) was dissolved into a 4 mol/L hydrogen chloride in 1,4-dioxane solution (4 ml) on icebath, and the mixture was warmed to room temperature and then stirred for 6 days. After the consumption of the compound (18-6a) (checked by LC-MS), the reaction mixture was concentrated under reduced pressure. The obtained residue was crystallized from dichloromethane-ethyl acetate, and the crystals were collected by filtration and washed with ethyl acetate to afford the compound (441) (52.4 mg).



1H-NMR (DMSO-d6, 400 MHz): 1.83 (31H, s), 2.43 (1H, t, J=13.2 Hz), 2.55 (1H, dd, J=14.0, 2.8 Hz), 5.10 (1H, dd, J=12.4, 2.8 Hz), 7.34-7.48 (6H, m), 7.53-7.57 (4H, m), 8.35-8.90 (0.5H, br), 8.95-9.55 (0.5H, br), 10.7 (1H, s)


Step 7

The compound (18-6b) (183 mg) was dissolved into a 4 mol/L of hydrogen chloride in 1,4-dioxane solution (8 ml) on ice bath, and the mixture was warmed to room temperature and then stirred for 6 days. Because the compound (18-6b) was remained (checked by LC-MS), 4 mol/L of hydrogen chloride in 1,4-dioxane solution (2 ml) was added to the reaction mixture at room temperature, and then the mixture was stirred at 40° C. for overnight. The reaction mixture was concentrated under reduced pressure, a saturated sodium bicarbonate aqueous solution was added to be basic condition, and the reaction mixture was extracted with ethyl acetate. The organic layer was washed with brine, and then dried over anhydrous magnesium sulfate. After the solvent was evaporated under reduced pressure, the obtained residue was subjected to silica gel column chromatography and crystallized from dichloromethane-diisopropyl ether. The crystals were collected by filtration and washed with diisopropyl ether to afford the compound (835) (32.2. mg).



1H-NMR (CDCl3, 400 MHz): 1.64 (3H, s), 1.95 (1H, t, J=13.2 Hz), 2.52 (1H, dd, J=13.8, 3.0 Hz), 3.84 (1H, dd, J=12.6, 3.0 Hz), 4.16-4.76 (2H, br), 7.20-7.39 (10H, m)


Reference Example 19



embedded image


embedded image


Step 1

After the compound (19-1) was added dropwise to sulfuric acid (279 ml) under cooling on acetonitrile/dry ice bath with stirring, the mixture of fuming nitric acid (42 ml) and sulfuric acid (98 ml) was added dropwise to the mixture. After stirred for 16 minutes, the reaction mixture was gradually added into ice. The precipitated crystals were collected by filtration and dried to afford the compound (19-2) (77.79 g).



1H-NMR (CDCl3) δ: 2.71 (3H, d, J=4.9 Hz), 7.34 (1H, t, J=9.3 Hz), 8.40 (1H, ddd. J=9.3, 6.2, 3.0 Hz), 8.78 (1H, dd, J=6.2, 3.0 Hz).


Step 2

After the mixed solution of the compound (19-2) (73.94 g), (R)-(+)-2-methyl-2-propane sulfinamide (53.82 g) and tetraethyl orthotitanate (230.20 g) in tetrahydrofuran (500 ml) was heated and refluxed for 2.5 hours. The reaction mixture was gradually poured into ice and the precipitated insoluble was removed by filtration. The filtrate was extracted with ethyl acetate, and the organic layer was dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure and the obtained residue was crystallized from ethyl acetate/n-hexane to afford the compound (19-3) (85.44 g).



1H-NMR (CDCl3) δ: 1.34 (9H, s), 2.81 (3H, d, J=3.5 Hz), 7.29 (1H, t, J=8.9 Hz), 8.31 (1H, dt, J=8.9, 2.9 Hz), 8.55 (1H, dd, J=6.3, 2.9 Hz).


Step 3

A solution of t-butyl acetate (6.08 g) in tetrahydrofuran (10 ml) was added dropwise to a solution of 2M lithium diisopropylamide in tetrahydrofuran/n-heptane/ethyl benzene (27.9 ml) under cooling on acetone/dry ice bath with stirring. After stirred for 20 minutes, a solution of chlorotitanium triisopropoxide (17.5 ml) in tetrahydrofuran (30 ml) was added dropwise to the mixture. The mixture was stirred for 1 hour and a solution of the compound (19-3) (5.00 g) in tetrahydrofuran (10 ml) was added dropwise to the mixture. After reacted for 1 hour, the mixture was gradually poured into an aqueous solution of ammonium chloride under cooling on ice-water bath with stirring, and the precipitated insoluble was removed by filtration. The filtrate was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The residue was subjected to silica gel chromatography to afford the compound (19-4) (5.49 g).



1H-NMR (CDCl3) δ: 1.30 (9H, s), 1.35 (9H, s), 1.86 (3H, s), 3.11 (1H, dd, J=16.2, 2.1 Hz), 3.26 (1H, dd, J=16.2, 2.1 Hz), 5.55 (1H, s), 7.18 (1H, dd, J=11.1, 8.9 Hz), 8.18 (1H, ddd, J=8.9, 4.0, 2.9 Hz), 8.53 (1H, dd, J=7.0, 2.9 Hz).


Ration of diastereomers: S:R97/3, HPLC Column: AS-RH, Detection:254 nm: Column temp.: 25° C., Mobile phase: 40% MeCNaq., Flow rate: 0.5 ml/min.


*It is known that stereochemistry of the obtained compound (19-4) is preferentially afforded (S) isomer as described in Literature A, and each of diastereomers can be arbitrarily synthesized by using appropriate metal species or reaction conditions.


Literature A



  • (1) T. Fujisawa et al., Tetrahedron Lett., 37, 3881-3884 (1996), (2) D. H. Hua et al, Sulfur Reports, vol. 21, pp. 211-239 (1999), (3) Y. Koriyama et al., Tetrahedron, 58, 9621-9628 (2002), (4) Yong Qin et al., J. Org. Chem., 71, 1588-1591 (2006)



Step 4

To the compound (19-4) (12.74 g) was added a solution of 4M hydrochloric acid in 1,4-dioxane (50 ml). After the mixture was stirred at 80° C. for 1 hour, diethyl ether (50 ml) was added to the mixture. The precipitated crystals were collected by filtration, and dried to afford the compound (19-5) (7.67 g).



1H-NMR (DMSO-d6) δ: 1.76 (3H, s), 3.25 (2H, s), 7.62 (1H, dd, J=11.4, 9.4 Hz), 8.33-8.48 (2H, m).


Step 5

To a stirred solution of the compound (19-5) (141.32 g) in tetrahydrofuran (707 ml) was added dropwise a solution of 1M boran tetrahydrofuran complex in tetrahydrofuran (2029 ml) under cooling on ice-water bath. After reacted for 3 hours 6 minutes, the mixture was added into the mixture of sodium bicarbonate (511 g), ice (1500 g) and ethyl acetate (3000 ml) at room temperature with stirring. The mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure to afford the compound (19-6) (115.46 g) as a crude product.


Step 6

To the compound (19-6) (3.76 g) obtained in Step 5 was added toluene (25 ml) and water (12.5 ml). Potassium carbonate (7.97 g) and thiophosgene (2.85 g) was added to the stirring mixture subsequently under cooling on ice-water bath. After reacted for 3 hours, water was added to the mixture and extracted with toluene, and the organic layer was dried over anhydrous magnesium sulfate, and a part of the solvent was removed under reduced pressure to afford the compound (19-7) as a crude product.


Step 7

To a stirred solution of the compound (19-7) obtained in Step 6 in toluene (17.4 ml) was added thionyl chloride (6.67 g) and N,N-dimethylformamide (0.128 ml) at room temperature. After stirred for 2 hours at 80° C., water was added to the mixture and extracted with toluene. Solvent was evaporated under reduced pressure to afford the compound (19-8) (4.03 g).


Step 8

To a stirred solution of the compound (19-8) (4.03 g) from Step 7 in tetrahydrofuran (23.8 ml) was added, 28% aqueous ammonia (23.8 ml) on ice bath, and the mixture was stirred at room temperature for 3 days. The solvent of the reaction mixture was evaporated under reduced pressure, and then ethyl acetate was added. Hydrochloric acid (6 ml) was added to the stirred mixture under cooling with ice-water bath, and the precipitated crystals were washed with ethyl acetate and water, then dried to afford the compound (19-9) (2.14 g).



1H-NMR (DMSO-d6) δ: 1.76 (3H, s), 2.13-2.24 (1H, m), 2.68-2.74 (2H, m), 3.19-3.25 (1H, m), 7.63 (1H, dd, J=11.4, 8.9 Hz), 8.07 (1H, dd, J=7.0, 3.5 Hz), 8.36 (1H, dt, J=8.9, 3.5 Hz), 11.22 (1H, s).


Step 9

The compound (19-9) (100 mg) was dissolved into methanol (2 ml), 10% palladium carbon powder (50 mg) was added and then stirred at room temperature for 18 hours. The insoluble was removed by filtration, the solvent of the filtrate was removed under reduced pressure. Sodium carbonate and water were added to the mixture. The mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate, and a solvent was evaporated under reduced pressure to afford the compound (19-10) (68 mg).


Reference Example 20



embedded image


embedded image


Step 1

The compound (20-1) (9.13 g) and 3′-bromoacetophenone (15.0 g) were dissolved into tetrahydrofuran (250 ml), and tetraethoxy titanium (39.5 ml) was added to the solution at room temperature with stirring and then stirred at 75° C. for 5 hours. After the consumption of the compound (20-1), brine was added to the mixture. The precipitated titanium oxide was removed by filtration, and the filtrate was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography to afford the compound (20-2) (20.1 g).



1H-NMR (CDCl3): 1.33 (9H, s), 2.75 (3H, s), 7.30 (1H, t. J=7.8) 7.59-7.63 (1H, m), 7.79 (1H, d, J=7.8) 8.0 (1H, s)


Step 2

To a solution of diisopropylamine (42.1 ml) in tetrahydrofuran (100 ml) was added dropwise n-butyl lithium in hexane solution (2.64 M, 79.5 ml) at −78° C. under nitrogen atmosphere. After stirred at 0° C. for 30 minutes, the mixture was cooled to −78° C. again and a solution of t-butyl acetate (26.9 ml) in tetrahydrofuran (100 ml) was added dropwise to the mixture. After stirred −78° C. for 30 minutes, chloro(triisopropoxy)titanium in tetrahydrofuran (150 ml) was added dropwise to the mixture. The mixture was stirred at the same temperature for 70 minutes, the compound (2) (20.1 g) in tetrahydrofuran (100 ml) was added dropwise to the mixture and stirred at −78° C. for 3 hours. After the consumption of the compound (20-2), an aqueous solution of ammonium chloride was added. The precipitated titanium oxide was removed by filtration and the filtrate was extracted with ethyl acetate. The organic layer was washed with brine, then dried over anhydrous magnesium sulfate. The solvent was removed under reduced pressure to afford the compound (20-3) as a crude product (26.4 g).


Step 3

The crude product of the compound (20-3) (26.4 g) was dissolved into toluene (80 ml) and added dropwise to a 1.0 M diisobuty alminium hydride in toluene (253 ml) with stirring at 0° C. The reaction mixture was stirred at room temperature for 1.5 hours. After the consumption of the compound (20-3), a 1M hydrochloric acid aqueous solution was added. The mixture was extracted with ethyl acetate, the organic layer was washed with brine, then dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by crystallization to afford the compound (20-4) (18.1 g).



1H-NMR (CDCl3): 1.28 (9H, s,), 1.71 (3H, s), 2.19-2.24 (2H, m), 3.27-3.32 (1H, m), 3.54-3.66 (1H, m), 3.87-3.97 (1H, m), 5.10-5.11 (1H, m), 7.22 (1H, t. J=8.1) 7.32-7.41 (2H, m), 7.56-7.58 (1H, m)


Step 4

The compound (20-4) (18.1 g) was dissolved into methanol (130 ml) and a 10% hydrochloric acid-methanol solution (130 ml) was added to the solution with stirring at room temperature. Then, the reaction mixture was stirred at room temperature for 4 hours. After consumption of the compound (20-4), a 1M hydrochloric acid aqueous solution was added. The mixture was washed with ethyl acetate, the aqueous layer was neutralized with a 2M sodium hydroxide aqueous solution and extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure to afford the crude product of the compound (20-5) (14.1 g).


Step 5

The crude product of the compound (20-5) (32.8 g) and potassium carbonate (37.1 g) were dissolved into a mixed solvent of toluene (450 ml) and water (225 ml), and thiophosgene (15.3 ml) was added dropwise to the mixture with stirring at 0° C. The reaction mixture was stirred at 0° C. for 1 hour. After consumption of the compound (20-5), water was added. After the mixture was extracted with ethyl acetate, the organic layer was washed with brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to afford the crude product of the compound (20-6) (38.4 g).


Step 6

The crude product of the compound (20-6) (38.4 g) was dissolved into toluene (384 ml), and thionyl chloride (29.4 ml) and N,N-dimethylformaide (1.04 ml) were added dropwise to the solution with stirring at 0° C. The reaction mixture was stirred at 80° C. for 5 hours. After consumption of the compound (6), the solvent was evaporated under reduced pressure to afford the crude product of the compound (20-7) (40.9 g).


Step 7

The crude product of the compound (20-7) (40.9 g) was dissolved into tetrahydrofuran (250 ml), and 25% aqueous ammonia (250 ml) was added dropwise to the solution at 0° C. The reaction mixture was stirred at room temperature for 16 hours. After consumption of the compound (6), a saturated solution of sodium hydrogencarbonate was added. The organic layer was separated and the aqueous solution was extracted with dichloromethane. The combined organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure to afford the crude product of the compound (20-8) (38.3 g).


Step 8

The crude product of the compound (20-8) (38.3 g) was dissolved into tetrahydrofuran (383 ml), and di-t-butyl dicarbonate (61.5 g) and N,N-dimethylaminopyridine (1.64 g) were added to the solution, and the mixture was stirred at room temperature for 72 hours. After consumption of the compound (20-8), the solvent was evaporated under reduced pressure and the residue was subjected to silica gel chromatography to afford the compound (20-9) (45.3 g).



1H-NMR (CDCl3): 1.54 (9H, s,), 1.57 (3H, s), 1.96 (2H, t, J=6.0), 2.80-2.92 (1H, m), 3.00-3.13 (1H, m), 7.21 (1H, t. J=8.1) 7.28-7.41 (2H, m), 7.52-7.55 (1H, m)


Step 9

The compound (20-9) (12.1 g), tris dibenzylidene acetone dipalladium (1.14 g) and dicyclohexyl biphenyl phosphine (0.88 g) were dissolved into toluene (125 ml) under nitrogen atmosphere, and a solution of 1.6M lithium hexamethyl disilazide in tetrahydrofuran (46.9 ml) was added with stirring at room temperature. The reaction mixture was warmed to 80° C. and then stirred for 16 hours. After consumption of the compound (20-9), the mixture was cooled to 0° C. and diethyl ether and a 1M hydrochloric acid aqueous solution were added. After stirring at 0° C. for 10 minutes, the mixture was neutralized by the addition of a saturated aqueous solution of sodium carbonate. The mixture was extracted with ethyl acetate, the organic layer was washed with brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure and the residue was subjected to silica gel chromatography to afford the compound (20-10) (6.84 g).



1H-NMR (CDCl3): 1.51 (9H, s), 1.69 (3H, s), 2.01-2.12 (1H, m), 2.40-2.51 (1H, m), 2.67-2.76 (2H, m), 6.55-6.67 (3H, m), 7.15 (1H, t. J=8.1)


Reference Example
The Synthesis of Compound 241



embedded image










          • Indazole-3-carboxylic acid (71 mg) and the compound (19-10) (100 mg) were dissolved into methanol (5 ml), and 4-(4,6-dimethoxy-1,3,5-triazine-2-yl)-4-methylnmorpholinium chloride (173 mg) was added to the mixture with stirring at room temperature. The mixture was stirred for 5 hours. The reaction was quenched by the addition of brine, and the reaction mixture was extracted with ethyl acetate, dried over anhydrous magnesium sulfate and then concentrated. The crude product was purified by silica gel chromatography (NH2-silica gel, 2-8% MeOH/CHCl3) to afford the compound (241) (66 mg).












1H-NMR (DMSO-d6) δ: 1.49 (3H, s), 1.78-1.86 (1H, m), 2.13-2.21 (1H, m), 2.59-2.67 (1H, m), 2.96-3.02 (1H, m), 7.11 (1H, t, J=10.7 Hz), 7.29 (1H, t, J=7.8 Hz), 7.45 (1H, t, J=7.5 Hz), 7.66 (1H, d, J=8.8 Hz), 7.74-7.78 (1H, m), 7.80-7.83 (1H, m), 8.21 (1H, d, J=8.6 Hz), 10.25 (1H, s).


Reference Example 22
The Synthesis of Compound 702



embedded image


1-methylpyrazole-5-carboxylic acid (80 mg) and the compound (19-10) (145 mg) were dissolved into methanol (3 ml), and 4-(4,6-dimethoxy-1,3,5-triazine-2-yl)-4-methylmorpholinium chloride (251 mg) was added to the mixture with stirring at room temperature, and the mixture was stirred for 5 hours. The reaction was quenched by addition of brine, and the mixture was extracted with ethyl acetate, dried over anhydrous magnesium sulfate and concentrated. The crude product was purified by silica gel chromatography (NH2-silica gel, 0-4% MeOH/CHCl3) to afford the compound (702) (146 mg).



1H-NMR (CDCl3) δ: 1.65 (3H, s), 1.91-1.98 (1H, m), 2.57-2.62 (1H, m), 2.68-2.75 (1H, m), 2.92-2.97 (1H, m), 4.18 (3H, s), 6.82 (1H, br s), 7.02-7.08 (1H, m), 7.28-7.32 (1H, m), 7.44 (1H, s), 7.92-7.96 (1H, m).


Reference Example 23
The Synthesis of the Compound 737



embedded image


3-chloro-1-methylpyrazole-5-carboxylic acid (102 mg) and the compound (19-10) (145 mg) were dissolved into methanol (3 ml), and 4-(4,6-dimethoxy-1,3,5-triazine-2-yl)-4-methylmorpholinium chloride (251 mg) was added to the mixture with stirring at room temperature, and the mixture was stirred for 5 hours. The reaction was quenched by addition of brine, and the mixture was extracted with ethyl acetate, dried over anhydrous magnesium sulfate and concentrated to afford crude product. The crude product was purified by silica gel chromatography (NH2-silica gel, 33-78% AcOEt/Hexane) to afford the compound (737) (51 mg).



1H-NMR (CDCl3) δ: 1.59 (3H, s), 1.87-1.94 (1H, m), 2.47-2.53 (1H, m), 2.67-2.73 (1H, m), 2.93-2.99 (1H, m), 4.10 (3H, s), 6.62 (1H, s), 7.04 (1H, t, J=10.2 Hz), 7.33 (1H, d, J=4.3 Hz), 7.85 (1H, br s).


Reference Example 24
The Synthesis of the Compound 949



embedded image


5-fluoro-2-pyridine carboxylic acid (70.7 mg) was dissolved into methanol (2 ml), and 4-(4,6-dimethoxy-1,3,5-triazine-2-yl)-4-methylmorpholinium chloride (180.1 mg) was added to the mixture with stirring at room temperature. The mixture was stirred for 5 minutes and a solution of the compound (19-10) (119.9 mg) in methanol (2 ml) was added to the reaction solution with stirring under cooling with ice-water bath. After stirred for 3 hours, a 0.5M aqueous solution of sodium hydroxide was added to the mixture with stirring under cooling with ice-water bath, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure and the obtained residue was subjected to silica gel chromatography to afford the compound (949) (149.4 mg).



1H-NMR (CDCl3): 1.63 (3H, s), 1.82-2.00 (1H, m), 2.43-2.58 (1H, m), 2.72-2.82 (1H, m), 2.95-3.02 (1H, m), 7.06 (1H, dd, J=11.7, 9.0 Hz), 7.43-7.48 (1H, m), 7.97-8.03 (1H, m), 8.15-8.18 (1H, m), 8.42 (1H, d, J=8.1 Hz), 8.72 (1H, s), 9.91 (1H, br s)


Reference Example 25
The Synthesis of the Compound 943



embedded image


5-trifluoromethyl-2-pyridine carboxylic acid (95.7 mg) was dissolved into methanol (2 ml), and 4-(4,6-dimethoxy-1,3,5-triazine-2-yl)-4-methylmorpholinium chloride (180.1 mg) was added to the solution with stirring at room temperature. After stirring for 5 minutes, a solution of the compound (19-10) (119.9 mg) in methanol (2 ml) was added to the reaction mixture with stirring under cooling with ice-water bath. After stirring for 3 hours, a 0.5N aqueous solution of sodium hydroxide was added with stirring under cooling with ice-water bath, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure, and the obtained residue was subjected to silica gel chromatography to afford the compound (943) (174.5 mg).



1H-NMR (CDCl3) δ: 1.63 (3H, s), 1.82-2.00 (1H, m), 2.36-2.52 (1H, m), 2.72-2.82 (1H, m), 2.95-3.02 (1H, m), 7.07 (1H, dd, J=11.7, 8.1 Hz), 7.39-7.42 (1H, m), 7.55-7.63 (1H, m), 7.96-8.02 (1H, m), 8.33 (1H, dd, J=4.8, 9.0 Hz), 8.45 (1H, d, J=2.4 Hz), 9.78 (1H, br s).


Reference Example 26
The Synthesis of the Compound 578



embedded image


Step 1

To a stirred solution of 2,5-dimethylfuran carboxylic acid (115 mg) and the compound (20-10) (290 mg) in methanol (2 ml) was added 4-(4,6-dimethoxy-1,3,5-triazine-2-yl)-4-methylmorpholinium chloride (273 mg) at room temperature. After stirring for 2 hours, the reaction was quenched by addition of a saturated aqueous solution of sodium hydrogencarbonate, and the mixture was extracted with ethyl acetate. The mixture was washed with water and brine successively, dried and concentrated to afford crude product (300 mg). The crude product was purified by silica gel chromatography (silica gel, 50-66% AcOEt/hexane) to afford the compound (26-1) (221 mg).



1H-NMR (CDCl3) δ: 7.64-7.60 (1.0H, m), 7.43-7.41 (2.0H, m), 7.35 (1.0H, L, J=7.93 Hz), 7.04-7.02 (1.0H, m), 6.17 (1.0H, s), 2.80-2.61 (2.0H, m), 2.59 (3.0H, s), 2.56-2.52 (1.0H, m), 2.30 (3.0H, s), 2.19-2.06 (1.0H, m), 1.71 (3.0H, s), 1.52 (9.0H, s).


Step 2

The compound (26-1) (221 mg) was dissolved into dichloromethane (1 ml) and trifluofoacetic acid (1 ml) was added to the solution with stirring at room temperature. After stirring for 1 hour 10 minutes, the solvent was evaporated. Ethyl acetate and an aqueous solution of sodium carbonate were added to the residue and the mixture was stirred for 1 hour. The mixture was extracted with ethyl acetate and washed with an aqueous solution of sodium carbonate, water and brine successively. The organic layer was dried, and concentrated to afford crude product (154 mg). The crude product was purified by recrystallization (hexane/AcOEt) to afford the compound (578) (24 mg).



1H-NMR (CDCl3) δ: 7.79 (1.0H, br s), 7.65-7.64 (1.0H, m), 7.48-7.41 (1.0H, m), 7.31 (1.0H, t, J=8.01 Hz), 7.04-7.01 (1.0H, m), 6.23 (1.0H, br s), 2.93-2.65 (2.0H, m), 2.57 (3.0H, br s), 2.40 (1.0H, ddd, J=14.11, 5.34, 3.43 Hz), 2.27 (3.0H, br s), 2.09-1.92 (1.0H, m), 1.67 (3.0H, s).


Reference Example 27
The Synthesis of the Compound 472



embedded image


The compound (27-1) (256 mg) and 3-amino-5-chloropicolinic acid hydrochloride (266 mg) were suspended in methanol (2.6 ml), and N-methylmorpholine (153 μl) was added to the suspension, and the mixture was stirred at room temperature. After stirred for 6 minutes, 4-(4,6-dimethoxy-1,3,5-triazine-2-yl-4-methylmorpholinium chloride (385 mg) was added to the mixture, and stirred for 1 hour 10 minutes, and left to stand for 13 hours 20 minutes additionally. The solvent was evaporated, and ethyl acetate, methanol and an aqueous solution of sodium carbonate were added to the residue and stirred for 40 minutes. The aqueous layer was removed, the organic layer was washed with a saturated aqueous solution of sodium hydrogencarbonate and brine, and dried over magnesium sulfate. The magnesium sulfate was removed by filtration, the filtrate was concentrated under reduced pressure, and the obtained residue was purified by silica gel chromatography (Yamazen HI-FLASH column NH2-40W-M, ethyl acetate:hexane=1:1). The obtained fraction was concentrated and the residue was crystallized from ethyl acetate. The crystals were collected by filtration, washed with diethyl ether and dried to afford the compound (472) (82.0 mg).



1H-NMR (DMSO-d6) δ: 1.41 (3H, s), 1.72 (1H, ddd, J=13.7, 10.2, 3.6 Hz), 2.02 (1H, m), 2.58 (1H, m), 2.90 (1H, ddd, J=11.9, 6.6, 3.6 Hz), 5.77 (2H, brs), 7.09 (1H, dt, J=7.9, 1.3 Hz), 7.13 (2H, brs), 7.27 (1H, t, J=8.0 Hz), 7.33 (1H, d, J=2.2 Hz), 7.68-7.72 (2H, m), 7.85 (1H, d, J=2.0 Hz), 10.23 (1H, s).


The other compounds were synthesized in the same way. The structural formulas and physical constants are shown below.












TABLE 1







No.
Structure









1


embedded image









2


embedded image









3


embedded image









4


embedded image









5


embedded image









6


embedded image









7


embedded image









8


embedded image









9


embedded image




















TABLE 2







10


embedded image







11


embedded image







12


embedded image







13


embedded image







14


embedded image







15


embedded image







16


embedded image







17


embedded image







18


embedded image



















TABLE 3







19


embedded image







20


embedded image







21


embedded image







22


embedded image







23


embedded image







24


embedded image







25


embedded image







26


embedded image







27


embedded image







28


embedded image



















TABLE 4







29


embedded image







30


embedded image







31


embedded image







32


embedded image







33


embedded image







34


embedded image







35


embedded image







36


embedded image







37


embedded image







38


embedded image







39


embedded image



















TABLE 5







40


embedded image







41


embedded image







42


embedded image







43


embedded image







44


embedded image







45


embedded image







46


embedded image







47


embedded image



















TABLE 6







48


embedded image







49


embedded image







50


embedded image







51


embedded image







52


embedded image







53


embedded image







54


embedded image







55


embedded image



















TABLE 7







56


embedded image







57


embedded image







58


embedded image







59


embedded image







60


embedded image







61


embedded image







62


embedded image







63


embedded image







64


embedded image







65


embedded image



















TABLE 8







66


embedded image







67


embedded image







68


embedded image







69


embedded image







70


embedded image







71


embedded image







72


embedded image







73


embedded image







74


embedded image



















TABLE 9







75


embedded image







76


embedded image







77


embedded image







78


embedded image







79


embedded image







80


embedded image







81


embedded image







82


embedded image



















TABLE 10







83


embedded image







84


embedded image







85


embedded image







86


embedded image







87


embedded image







88


embedded image







89


embedded image







90


embedded image







91


embedded image



















TABLE 11







92


embedded image







93


embedded image







94


embedded image







95


embedded image







96


embedded image







97


embedded image







98


embedded image







99


embedded image







100 


embedded image







101 


embedded image



















TABLE 12







102


embedded image







103


embedded image







104


embedded image







105


embedded image







106


embedded image







107


embedded image







108


embedded image







109


embedded image



















TABLE 13







110


embedded image







111


embedded image







112


embedded image







113


embedded image







114


embedded image







115


embedded image







116


embedded image







117


embedded image







118


embedded image







119


embedded image



















TABLE 14







120


embedded image







121


embedded image







122


embedded image







123


embedded image







124


embedded image







125


embedded image







126


embedded image







127


embedded image







128


embedded image







129


embedded image



















TABLE 15







130


embedded image







131


embedded image







132


embedded image







133


embedded image







134


embedded image







135


embedded image







136


embedded image







137


embedded image







138


embedded image







139


embedded image



















TABLE 16







140


embedded image







141


embedded image







142


embedded image







143


embedded image







144


embedded image







145


embedded image







146


embedded image







147


embedded image



















TABLE 17







148


embedded image







149


embedded image







150


embedded image







151


embedded image







152


embedded image







153


embedded image







154


embedded image







155


embedded image







156


embedded image







157


embedded image



















TABLE 18







158


embedded image







159


embedded image







160


embedded image







161


embedded image







162


embedded image







163


embedded image



















TABLE 19







164


embedded image







165


embedded image







166


embedded image







167


embedded image







168


embedded image







169


embedded image







170


embedded image







171


embedded image







172


embedded image







173


embedded image







174


embedded image



















TABLE 20







175


embedded image







176


embedded image







177


embedded image







178


embedded image







179


embedded image







180


embedded image







181


embedded image







182


embedded image







183


embedded image







184


embedded image







185


embedded image



















TABLE 21







186


embedded image







187


embedded image







188


embedded image







189


embedded image







190


embedded image







191


embedded image







192


embedded image







193


embedded image







194


embedded image



















TABLE 22







195


embedded image







196


embedded image







197


embedded image







198


embedded image







199


embedded image







200


embedded image







201


embedded image







202


embedded image







203


embedded image







204


embedded image



















TABLE 23







205


embedded image







206


embedded image







207


embedded image







208


embedded image







209


embedded image







210


embedded image







211


embedded image







212


embedded image



















TABLE 24







213


embedded image







214


embedded image







215


embedded image







216


embedded image







217


embedded image







218


embedded image







219


embedded image







220


embedded image







221


embedded image







222


embedded image



















TABLE 25







223


embedded image







224


embedded image







225


embedded image







226


embedded image







227


embedded image







228


embedded image







229


embedded image







230


embedded image







231


embedded image







232


embedded image



















TABLE 26







233


embedded image







234


embedded image







235


embedded image







236


embedded image







237


embedded image







238


embedded image







239


embedded image







240


embedded image







241


embedded image







242


embedded image







243


embedded image



















TABLE 27







244


embedded image







245


embedded image







246


embedded image







247


embedded image







248


embedded image







249


embedded image







250


embedded image







251


embedded image







252


embedded image







253


embedded image



















TABLE 28







254


embedded image







255


embedded image







256


embedded image







257


embedded image







258


embedded image







259


embedded image







260


embedded image







261


embedded image







262


embedded image







263


embedded image







264


embedded image



















TABLE 29







265


embedded image







266


embedded image







267


embedded image







268


embedded image







269


embedded image







270


embedded image







271


embedded image







272


embedded image







273


embedded image



















TABLE 30







274


embedded image







275


embedded image







276


embedded image







277


embedded image







278


embedded image







279


embedded image







280


embedded image







281


embedded image



















TABLE 31







282


embedded image







283


embedded image







284


embedded image







285


embedded image







286


embedded image







287


embedded image







288


embedded image







289


embedded image







290


embedded image







291


embedded image



















TABLE 32







292


embedded image







293


embedded image







294


embedded image







295


embedded image







296


embedded image







297


embedded image







298


embedded image







299


embedded image



















TABLE 33







300


embedded image







301


embedded image







302


embedded image







303


embedded image







304


embedded image







305


embedded image







306


embedded image







307


embedded image







308


embedded image







309


embedded image



















TABLE 34







310


embedded image







311


embedded image







312


embedded image







313


embedded image







314


embedded image







315


embedded image







316


embedded image







317


embedded image



















TABLE 35







318


embedded image







319


embedded image







320


embedded image







321


embedded image







322


embedded image







323


embedded image







324


embedded image







325


embedded image







326


embedded image







327


embedded image







328


embedded image



















TABLE 36







329


embedded image







330


embedded image







331


embedded image







332


embedded image







333


embedded image







334


embedded image







335


embedded image







336


embedded image







337


embedded image







338


embedded image







339


embedded image



















TABLE 37







340


embedded image







341


embedded image







342


embedded image







343


embedded image







344


embedded image







345


embedded image







346


embedded image







347


embedded image







348


embedded image



















TABLE 38







349


embedded image







350


embedded image







351


embedded image







352


embedded image







353


embedded image







354


embedded image







355


embedded image







356


embedded image







357


embedded image



















TABLE 39







358


embedded image







359


embedded image







360


embedded image







361


embedded image







362


embedded image







363


embedded image







364


embedded image







365


embedded image







366


embedded image







367


embedded image







368


embedded image







369


embedded image



















TABLE 40







370


embedded image







371


embedded image







372


embedded image







373


embedded image







374


embedded image







375


embedded image







376


embedded image







377


embedded image







378


embedded image



















TABLE 41







379


embedded image







380


embedded image







381


embedded image







382


embedded image







383


embedded image







384


embedded image







385


embedded image







386


embedded image







387


embedded image







388


embedded image







389


embedded image



















TABLE 42







390


embedded image







391


embedded image







392


embedded image







393


embedded image







394


embedded image







395


embedded image







396


embedded image







397


embedded image



















TABLE 43







398


embedded image







399


embedded image







400


embedded image







401


embedded image







402


embedded image







403


embedded image







404


embedded image







405


embedded image







406


embedded image







407


embedded image



















TABLE 44







408


embedded image







409


embedded image







410


embedded image







411


embedded image







412


embedded image







413


embedded image







414


embedded image







415


embedded image







416


embedded image



















TABLE 45







417


embedded image







418


embedded image







419


embedded image







420


embedded image







421


embedded image







422


embedded image







423


embedded image







424


embedded image



















TABLE 46







425


embedded image







426


embedded image







427


embedded image







428


embedded image







429


embedded image







430


embedded image







431


embedded image







432


embedded image







433


embedded image



















TABLE 47







434


embedded image







435


embedded image







436


embedded image







437


embedded image







438


embedded image







439


embedded image







440


embedded image







441 (race mate)


embedded image







442


embedded image



















TABLE 48







443


embedded image







444


embedded image







445


embedded image







446


embedded image







447


embedded image







448


embedded image







449


embedded image







450


embedded image







451


embedded image







452


embedded image







453


embedded image




















TABLE 49








454


embedded image








455


embedded image








456


embedded image








457


embedded image








458


embedded image








459


embedded image








460


embedded image








461


embedded image








462


embedded image








463


embedded image








464


embedded image




















TABLE 50








465


embedded image








466


embedded image








467


embedded image








468


embedded image








469


embedded image








470


embedded image








471


embedded image








472


embedded image








473


embedded image








474


embedded image



















TABLE 51







475


embedded image







476


embedded image







477


embedded image







478


embedded image







479


embedded image







480


embedded image







481


embedded image







482


embedded image







483


embedded image



















TABLE 52







484


embedded image







485


embedded image







486


embedded image







487


embedded image







488


embedded image







489


embedded image







490


embedded image







491


embedded image







492


embedded image



















TABLE 53







493


embedded image







494


embedded image







495


embedded image







496


embedded image







497


embedded image







498


embedded image







499


embedded image







500


embedded image







501


embedded image







502


embedded image







503


embedded image



















TABLE 54







504


embedded image







505


embedded image







506


embedded image







507


embedded image







508


embedded image







509


embedded image







510


embedded image







511


embedded image







512


embedded image







513


embedded image







514


embedded image



















TABLE 55







515


embedded image







516


embedded image







517


embedded image







518


embedded image







519


embedded image







520


embedded image







521


embedded image







522


embedded image







523


embedded image







524


embedded image



















TABLE 56







525


embedded image







526


embedded image







527


embedded image







528


embedded image







529


embedded image







530


embedded image







531


embedded image







532


embedded image







533


embedded image







534


embedded image







535


embedded image



















TABLE 57







536


embedded image







537


embedded image







538


embedded image







539


embedded image







540


embedded image







541


embedded image







542


embedded image







543


embedded image







544


embedded image







545


embedded image







546


embedded image




















TABLE 58








547


embedded image








548


embedded image








549


embedded image








550


embedded image








551


embedded image








552


embedded image








553


embedded image








554


embedded image








555


embedded image



















TABLE 59







556


embedded image







557


embedded image







558


embedded image







559


embedded image







560


embedded image







561


embedded image







562


embedded image







563


embedded image







564


embedded image







565


embedded image







566


embedded image





















TABLE 60









567


embedded image









568


embedded image









569


embedded image









570


embedded image









571


embedded image









572


embedded image









573


embedded image









574


embedded image




















TABLE 61







575


embedded image







576


embedded image







577


embedded image







578


embedded image







579


embedded image







580


embedded image







581


embedded image







582


embedded image







583


embedded image







584


embedded image





















TABLE 62









585


embedded image









586


embedded image









587


embedded image









588


embedded image









589


embedded image









590


embedded image









591


embedded image




















TABLE 63







592


embedded image







593


embedded image







594


embedded image







595


embedded image







596


embedded image







597


embedded image







598


embedded image







599


embedded image







600


embedded image







601


embedded image







602


embedded image



















TABLE 64







603


embedded image







604


embedded image







605


embedded image







606


embedded image







607


embedded image







608


embedded image







609


embedded image







610


embedded image







611


embedded image







612


embedded image







613


embedded image



















TABLE 65







614


embedded image







615


embedded image







616


embedded image







617


embedded image







618


embedded image







619


embedded image







620


embedded image







621


embedded image







622


embedded image







623


embedded image







624


embedded image



















TABLE 66







625


embedded image







626


embedded image







627


embedded image







628


embedded image







629


embedded image







630


embedded image







631


embedded image







632


embedded image







633


embedded image







634


embedded image







635


embedded image



















TABLE 67







636


embedded image







637


embedded image







638


embedded image







639


embedded image







640


embedded image







641


embedded image







642


embedded image







643


embedded image



















TABLE 68







644


embedded image







645


embedded image







646


embedded image







647


embedded image







648


embedded image







649


embedded image







650


embedded image







651


embedded image







652


embedded image







653


embedded image







654


embedded image







655


embedded image







656


embedded image



















TABLE 69







657


embedded image







658


embedded image







659


embedded image







660


embedded image







661


embedded image







662


embedded image







663


embedded image







664


embedded image







665


embedded image



















TABLE 70







666


embedded image







667


embedded image







668


embedded image







669


embedded image







670


embedded image







671


embedded image







672


embedded image







673


embedded image







674


embedded image



















TABLE 71







675


embedded image







676


embedded image







677


embedded image







678


embedded image







679


embedded image







680


embedded image







681


embedded image







682


embedded image







683


embedded image



















TABLE 72







684


embedded image







685


embedded image







686


embedded image







687


embedded image







688


embedded image







689


embedded image







690


embedded image







691


embedded image







692


embedded image



















TABLE 73







693


embedded image







694


embedded image







695


embedded image







696


embedded image







697


embedded image







698


embedded image







699


embedded image







700


embedded image







701


embedded image







702


embedded image



















TABLE 74







703


embedded image







704


embedded image







705


embedded image







706


embedded image







707


embedded image







708


embedded image







709


embedded image







710


embedded image







711


embedded image







712


embedded image



















TABLE 75







713


embedded image







714


embedded image







715


embedded image







716


embedded image







717


embedded image







718


embedded image







719


embedded image





















TABLE 76









720


embedded image









721


embedded image









722


embedded image









723


embedded image









724


embedded image









725


embedded image









726


embedded image









727


embedded image









728


embedded image









729


embedded image




















TABLE 77







730


embedded image







731


embedded image







732


embedded image







733


embedded image







734


embedded image







735


embedded image







736


embedded image







737


embedded image







738


embedded image







739


embedded image



















TABLE 78







740


embedded image







741


embedded image







742


embedded image







743


embedded image







744


embedded image







745


embedded image







746


embedded image







747


embedded image







748


embedded image







749


embedded image



















TABLE 79







750


embedded image







751


embedded image







752


embedded image







753


embedded image







754


embedded image







755


embedded image







756


embedded image







757


embedded image







758


embedded image







759


embedded image





















TABLE 80









760


embedded image









761


embedded image









762


embedded image









763


embedded image









764


embedded image









765


embedded image









766


embedded image









767


embedded image









768


embedded image









769


embedded image




















TABLE 81







770


embedded image







771


embedded image







772


embedded image







773


embedded image







774


embedded image







775


embedded image







776


embedded image







777


embedded image



















TABLE 82







778


embedded image







779


embedded image







780


embedded image







781


embedded image







782


embedded image







783


embedded image







784


embedded image







785


embedded image







786


embedded image







787


embedded image







788


embedded image







789


embedded image



















TABLE 83







790


embedded image







791


embedded image







792


embedded image







793


embedded image







794


embedded image







795


embedded image







796


embedded image







797


embedded image







798


embedded image





















TABLE 84









799


embedded image









800


embedded image









801


embedded image









802


embedded image









803


embedded image









804


embedded image









805


embedded image









806


embedded image









807


embedded image









808


embedded image









809


embedded image




















TABLE 85







810


embedded image







811


embedded image







812


embedded image







813


embedded image







814


embedded image







815


embedded image







816


embedded image







817


embedded image







818


embedded image



















TABLE 86









embedded image


819







embedded image


820







embedded image


821







embedded image


822







embedded image


823







embedded image


824







embedded image


825







embedded image


826







embedded image


827

















TABLE 87









embedded image


828







embedded image


829







embedded image


830







embedded image


831







embedded image


832







embedded image


833







embedded image


834







embedded image


835 (race- mate)







embedded image


836

















TABLE 88









embedded image


837







embedded image


838







embedded image


839







embedded image


840







embedded image


841







embedded image


842







embedded image


843







embedded image


844







embedded image


845

















TABLE 89









embedded image


846







embedded image


847







embedded image


848







embedded image


849







embedded image


850







embedded image


851







embedded image


852







embedded image


853







embedded image


854







embedded image


855

















TABLE 90









embedded image


856







embedded image


857







embedded image


858







embedded image


859







embedded image


860







embedded image


861







embedded image


862







embedded image


863







embedded image


864

















TABLE 91









embedded image


865







embedded image


866







embedded image


867







embedded image


868







embedded image


869







embedded image


870







embedded image


871







embedded image


872







embedded image


873







embedded image


874



















TABLE 92











embedded image


875









embedded image


876









embedded image


877









embedded image


878









embedded image


879









embedded image


880









embedded image


881









embedded image


882


















TABLE 93









embedded image


883







embedded image


884







embedded image


885







embedded image


886







embedded image


887







embedded image


888







embedded image


889







embedded image


890







embedded image


891

















TABLE 94









embedded image


892







embedded image


893







embedded image


894







embedded image


895







embedded image


896







embedded image


897







embedded image


898







embedded image


899







embedded image


900







embedded image


901

















TABLE 95









embedded image


902







embedded image


903







embedded image


904







embedded image


905







embedded image


906







embedded image


907







embedded image


908







embedded image


909







embedded image


910







embedded image


911







embedded image


912

















TABLE 96









embedded image


913







embedded image


914







embedded image


915







embedded image


916







embedded image


917







embedded image


918







embedded image


919







embedded image


920

















TABLE 97









embedded image


921







embedded image


922







embedded image


923







embedded image


924







embedded image


925







embedded image


926







embedded image


927







embedded image


928







embedded image


929







embedded image


930

















TABLE 98









embedded image


931







embedded image


932







embedded image


933







embedded image


934







embedded image


935







embedded image


936







embedded image


937







embedded image


938

















TABLE 99







939


embedded image







940


embedded image







941


embedded image







942


embedded image







943


embedded image







944


embedded image







945


embedded image







946


embedded image







947


embedded image





















TABLE 100









948


embedded image









949


embedded image









950


embedded image









951


embedded image









952


embedded image









953


embedded image









954


embedded image









955


embedded image






















TABLE 101









956


embedded image









957


embedded image









958


embedded image









959


embedded image









960


embedded image









961


embedded image









962


embedded image









963


embedded image






















TABLE 102









964


embedded image









965


embedded image









966


embedded image









967


embedded image









968


embedded image









969


embedded image









970


embedded image






















TABLE 103









971


embedded image









972


embedded image









973


embedded image









974


embedded image









975


embedded image









976


embedded image









977


embedded image






















TABLE 104









978


embedded image









979


embedded image









980


embedded image









981


embedded image









982


embedded image









983


embedded image









984


embedded image









985


embedded image









986


embedded image






















TABLE 105









987


embedded image









988


embedded image









989


embedded image









990


embedded image









991


embedded image









992


embedded image









993


embedded image









994


embedded image









995


embedded image




















TABLE 106







 996


embedded image







 997


embedded image







 998


embedded image







 999


embedded image







1000


embedded image







1001


embedded image







1002


embedded image







1003


embedded image







1004


embedded image





















TABLE 107









1005


embedded image









1006


embedded image









1007


embedded image









1008


embedded image









1009


embedded image









1010


embedded image









1011


embedded image









1012


embedded image









1013


embedded image




















TABLE 108







1014


embedded image







1015


embedded image







1016


embedded image







1017


embedded image







1018


embedded image







1019


embedded image







1020


embedded image







1021


embedded image



















TABLE 109







1022


embedded image







1023


embedded image







1024


embedded image







1025


embedded image







1026


embedded image







1027


embedded image







1028


embedded image







1029


embedded image







1030


embedded image



















TABLE 110







1031


embedded image







1032


embedded image







1033


embedded image







1034


embedded image







1035


embedded image







1036


embedded image







1037


embedded image







1038


embedded image







1039


embedded image



















TABLE 111







1040


embedded image







1041


embedded image







1042


embedded image







1043


embedded image







1044


embedded image







1045


embedded image







1046


embedded image







1047


embedded image







1048


embedded image



















TABLE 112







1049


embedded image







1050


embedded image







1051


embedded image







1052


embedded image







1053


embedded image







1054


embedded image







1055


embedded image







1056


embedded image







1057


embedded image



















TABLE 113







1058


embedded image







1059


embedded image







1060


embedded image







1061


embedded image







1062


embedded image







1063


embedded image







1064


embedded image







1065


embedded image







1066


embedded image







1067


embedded image



















TABLE 114







1068


embedded image







1069


embedded image







1070


embedded image







1071


embedded image







1072


embedded image







1073


embedded image







1074


embedded image







1075


embedded image



















TABLE 115







1076


embedded image







1077


embedded image







1078


embedded image







1079


embedded image







1080


embedded image







1081


embedded image







1082


embedded image







1083


embedded image







1084


embedded image







1085


embedded image



















TABLE 116







1086


embedded image







1087


embedded image







1088


embedded image







1089


embedded image







1090


embedded image







1091


embedded image







1092


embedded image







1093


embedded image







1094


embedded image



















TABLE 117







1095


embedded image







1096


embedded image







1097


embedded image







1098


embedded image







1099


embedded image







1100


embedded image







1101


embedded image







1102


embedded image



















TABLE 118







1103


embedded image







1104


embedded image







1105


embedded image







1106


embedded image







1107


embedded image







1108


embedded image







1109


embedded image







1110


embedded image







1111


embedded image



















TABLE 119







1112


embedded image







1113


embedded image







1114


embedded image







1115


embedded image







1116


embedded image







1117


embedded image







1118


embedded image



















TABLE 120







1119


embedded image







1120


embedded image







1121


embedded image







1122


embedded image







1123


embedded image







1124


embedded image







1125


embedded image







1126


embedded image







1127


embedded image







1128


embedded image



















TABLE 121







1129


embedded image







1130


embedded image







1131


embedded image







1132


embedded image







1133


embedded image







1134


embedded image







1135


embedded image







1136


embedded image



















TABLE 122







1137


embedded image







1138


embedded image







1139


embedded image







1140


embedded image







1141


embedded image







1142


embedded image







1143


embedded image







1144


embedded image







1145


embedded image







1146


embedded image



















TABLE 123







1147


embedded image







1148


embedded image







1149


embedded image







1150


embedded image







1151


embedded image







1152


embedded image







1153


embedded image







1154


embedded image







1155


embedded image







1156


embedded image



















TABLE 124







1157


embedded image







1158


embedded image







1159


embedded image







1160


embedded image







1161


embedded image







1162


embedded image







1163


embedded image







1164


embedded image



















TABLE 125









embedded image


1165







embedded image


1166







embedded image


1167







embedded image


1168







embedded image


1169







embedded image


1170







embedded image


1171







embedded image


1172







embedded image


1173

















TABLE 126









embedded image


1174







embedded image


1175







embedded image


1176







embedded image


1177







embedded image


1178







embedded image


1179







embedded image


1180







embedded image


1181







embedded image


1182







embedded image


1183

















TABLE 127









embedded image


1184







embedded image


1185







embedded image


1186







embedded image


1187







embedded image


1188







embedded image


1189







embedded image


1190







embedded image


1191







embedded image


1192







embedded image


1193







embedded image


1194

















TABLE 128









embedded image


1195







embedded image


1196







embedded image


1197







embedded image


1198







embedded image


1199







embedded image


1200







embedded image


1201







embedded image


1202







embedded image


1203

















TABLE 129









embedded image


1204







embedded image


1205







embedded image


1206







embedded image


1207







embedded image


1208







embedded image


1209







embedded image


1210







embedded image


1211







embedded image


1212

















TABLE 130









embedded image


1213







embedded image


1214







embedded image


1215







embedded image


1216







embedded image


1217







embedded image


1218







embedded image


1219







embedded image


1220







embedded image


1221

















TABLE 131









embedded image


1222







embedded image


1223







embedded image


1224







embedded image


1225







embedded image


1226







embedded image


1227







embedded image


1228







embedded image


1229







embedded image


1230







embedded image


1231

















TABLE 132









embedded image


1232







embedded image


1233







embedded image


1234







embedded image


1235







embedded image


1236







embedded image


1237







embedded image


1238







embedded image


1239







embedded image


1240







embedded image


1241







embedded image


1242

















TABLE 133









embedded image


1243







embedded image


1244







embedded image


1245







embedded image


1246







embedded image


1247







embedded image


1248







embedded image


1249







embedded image


1250







embedded image


1251







embedded image


1252

















TABLE 134









embedded image


1253







embedded image


1254







embedded image


1255







embedded image


1256







embedded image


1257







embedded image


1258







embedded image


1259







embedded image


1260







embedded image


1261

















TABLE 135









embedded image


1262







embedded image


1263







embedded image


1264







embedded image


1265







embedded image


1266







embedded image


1267







embedded image


1268







embedded image


1269







embedded image


1270







embedded image


1271







embedded image


1272







embedded image


1273

















TABLE 136









embedded image


1274







embedded image


1275







embedded image


1276







embedded image


1277







embedded image


1278







embedded image


1279







embedded image


1280







embedded image


1281







embedded image


1282











embedded image













TABLE 137








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λmax: nm)



















1



213.4






305.3


3
285 dec.


4
amorphous


219


5



215, 262


6
147-148


8
214-217


9
oil


220


18
181-183


23



213.4






272.2






305.3


24
116-117


26
182-184


30



267.4


33



253.3






305.3


37
amorphous


219, 275


38
240-244



(dec.)


39



285.2


42
187-188


43



218.1






275.7


48



230






275


57
197-198


58
234-240


62
198-201


69
194-195


71



216.9






268.6


73
266-269


77

δ in d20-DMSO: 1.67 (3H, s), 2.13-2.06 (1H, m),

422.543




2.63-2.55 (2H, m), 3.16-3.13 (4H, m), 3.65-3.63 (2H,




m), 4.76-4.73 (2H, m), 7.15-7.08 (2H, m), 7.30 (1H, t,




J = 8.0 Hz), 7.35 (1H, s), 7.42 (1H, t, J = 8.0 Hz),




7.60 (1H, d, J = 8.0 Hz), 7.69 (1H, d, J = 8.0 Hz),




7.73 (1H, brs), 7.86 (1H, d, J = 8.0 Hz), 10.52 (1H, s)


78


1H NMR (CDCl3) δ: 1.76 (3H, s), 2.02 (1H, s),

365 [M + 1]




2.58 (1H, d, J = 14.1 Hz), 2.78 (2H, d, J = 6.9 Hz),




3.80 (3H, d, J = 13.1 Hz), 4.54 (2H, s), 6.45 (1H, s),




6.55-6.57 (2H, m), 6.66 (1H, d, J = 8.7 Hz), 7.10 (1H, t, J = 7.0 Hz),




7.22 (2H, td, J = 7.7, 1.4 Hz), 7.34 (1H, d,




J = 9.1 Hz), 7.56 (1H, d, J = 7.7 Hz).


80



220.4






280.4




















TABLE 138








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λmax: nm)



















85
147-148
1.54 (3H, s), 1.75-1.86 (1H, m), 2.08-2.18 (1H, m),






2.33 (3H, s), 2.63-2.74 (1H, m), 2.81-2.90 (1H, m),




4.36 (2H, br), 7.13 (2H, d, J = 8.6 Hz), 7.20 (2H, d, J = 8.6 Hz)




(solvent: CDCl3)


86
141-142


91


372 [M + 1]
201





296
206






216


96



309


97

δ in d13-DMSO: 1.64 (3H, s), 2.03-1.97 (1H, m),




2.63-2.57 (2H, m), 3.28-3.25 (1H, m), 7.22 (1H, q, J = 12.4,




9.0 Hz), 7.82-7.77 (2H, m), 8.60 (1H, s), 8.79 (1H,




s), 10.37 (1H, s)


99
221-224


101
264-265


104
amorphous


229, 280


113

1.58 (s, 3H), 1.88 (ddd, J = 14.1, 10.9, 3.7 Hz, 1H),




2.24 (ddd, J = 14.1, 5.9, 3.5 Hz, 1H), 2.73 (ddd,




J = 12.3, 10.9, 3.5 Hz, 1H), 2.88 (ddd, J = 12.3, 5.9,




3.7 Hz, 1H), 3.83 (d, J = 15.4 Hz, 1H), 3.87 (d,




J = 15.4 Hz, 1H), 7.02-7.04 (m, 1H), 7.25-7.31 (m, 2H),




7.36 (d, J = 2.0 Hz, 1H), 7.45-7.50 (m, 2H), 8.52 (d,




J = 5.2 Hz, 1H), 9.43 (s, 1H) (solvent: CDCl3)


114



214.5






306.5


115

δ in d6-DMSO: 1.47 (3H, s), 1.80-1.74 (1H, m,




2.22-2.18 (1H, m), 2.60-2.55 (1H, m), 2.96-2.93 (1H, m),




6.14 (1H, s), 6.93 (1H, s), 7.09-7.04 (2H, m),




7.63-7.61 (1H, m), 7.68-7.66 (1H, m), 9.85 (1H, s),




11.63 (1H, brs)


120
amorphous


213


121
166-167


125
>300


126
amorphous


229, 271


127
280-285


128
159-163


129
219-222


130
128-131
1.56 (3H, s), 1.83-1.93 (1H, m), 2.16 (1H, dq, J = 13.85,
344 [M + 1]




3.41 Hz), 2.29 (3H, s), 2.72-2.77 (1H, m),




2.90-2.94 (1H, m), 4.13 (3H, s), 6.42 (1H, s),




7.10-7.14 (1H, m), 7.32 (1H, d, J = 7.91 Hz),




7.37-7.38 (1H, m), 7.60-7.63 (1H, m). (solvent: CDCl3)


132
147-150


134



228.5




















TABLE 139








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λmax: nm)



















139
287-290
1.77 (s, 3H), 2.10 (ddd, J = 14.0, 10.8, 3.6 Hz, 1H),






2.64-2.70 (4H, m), 2.76 (td, J = 12.8, 3.6 Hz, 1H),




2.90 (dt, J = 12.8, 3.6 Hz, 1H), 7.05 (ddd, J = 8.0,




2.0, 0.8 Hz, 1H), 7.41 (t, J = 8.0 Hz, 1H),




7.69-7.72 (m, 2H), 8.32 (dd, J = 8.0, 0.8 Hz, 1H), 8.40 (dd, J = 8.0,




2.0 Hz, 1H), 9.14 (dd, J = 2.0, 0.8 Hz, 1H)




(solvent: CDCl3 + CD3OD)


141

δ in d17-DMSO: 1.41 (3H, s), 1.75-1.70 (1H, m),




2.03-1.99 (1H, m), 2.62-2.56 (1H, m), 2.94-2.89 (1H,




m), 3.89 (3H, s), 6.88 (1H, d, J = 8.8 Hz), 7.05 (1H, d, J = 7.6 Hz),




7.24 (1H, t, J = 8.0 Hz), 7.66-7.63 (3H, m),




8.45-8.44 (1H, m), 9.90 (1H, s)


148


362 [M + 1]
200





286
208






212






218






262


149
143-145


157

δ in d6-DMSO: 1.20 (6H, d, J = 6.6 Hz), 1.41 (3H, s),




1.65-1.77 (1H, m), 1.96-2.07 (1H, m), 2.55-2.63 (1H,




m), 2.85-2.95 (1H, m), 4.04-4.16 (1H, m), 5.79 (2H,




bs), 7.07 (1H, d, J = 8.1 Hz), 7.25 (1H, t, J = 8.1 Hz),




7.72-7.78 (3H, m), 7.93 (1H, s), 8.64 (1H, s), 9.96 (1H,




s).


159
amorphous


285


161
247-251


163
amorphous


164
91-96
1.68 (s, 3H), 2.07-2.15 (m, 1H), 3.13-3.20 (m, 1H),




7.12 (d, J = 7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H),




7.90-7.94 (m, 2H), 8.83 (br s, 1H), 8.96 (br s, 1H),




9.31 (br s, 1H), 10.36 (s, 1H), 10.86 (s, 1H)


165
246-248


166
amorphous


220, 275


176
amorphous


217, 278


178
224-225


181



261.5


189



259


193
266-268


196



212


202
117-118
0.85 (3H, t, J = 7.3 Hz), 1.02-1.19 (1H, m),




1.34-1.54 (1H, m), 1.72-1.89 (3H, m), 2.04-2.15 (1H, m),




2.61-2.82 (2H, m), 3.80 (3H, s), 4.32 (2H, br), 6.85 (2H,




d, J = 8.9 Hz), 7.18 (2H, d, J = 8.9 Hz)




(solvent: CDCl3)




















TABLE 140








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λmax: nm)







204
205-208
1.64 (d, J = 1.2 Hz, 3H), 1.95 (ddd, J = 14.0, 10.8,






3.6 Hz, 1H), 2.45 (ddd, J = 14.0, 6.4, 3.6 Hz, 1H),




2.75 (ddd, J = 12.4, 10.8, 3.6 Hz, 1H), 2.99 (ddd, J = 12.4,




6.4, 3.6 Hz, 1H), 7.09 (dd, J = 11.6, 8.8 Hz,




1H), 7.47 (dd, J = 7.2, 2.8 Hz, 1H), 8.03 (ddd, J = 8.8,




4.4, 2.8 Hz, 1H), 8.89 (s, 2H), 9.75 (s, 1H)




(solvent: CDCl3)


213
oil


216, 272


214



212.2






292.3






356.5


216



242.7


220
191-193

363 [M + 3]





361 [M + 1]





287





285


224
oil
1.58 (3H, s), 1.87 (1H, ddd, J = 13.9, 10.5, 3.7),

222




2.13 (1H, ddd, J = 13.9, 6.3, 3.7), 2.25 (3H, s),




2.68 (1H, ddd, J = 12.1, 10.5, 6.2), 2.89 (1H, ddd, J = 12.1,




6.3, 3.7), 5.23 (2H, s), 7.28-7.48 (4H, m),




7.60 (1H, s), 7.75 (1H, d, J = 8.0), 8.56 (1H, dd, J = 5.0,




1.4), 8.70 (1H, d, J = 1.4)




(solvent: CDCl3)


227



213


232


1H-NMR (CDCl3) δ: 1.59 (3H, s), 1.83-1.90 (1H,

378 [M + 1]




m), 2.35-2.47 (4H, m), 2.60-2.67 (1H, m),




2.87-2.92 (1H, m), 4.70 (2H, br s), 6.87-6.98 (2H, m),




7.16 (1H, d, J = 6.6 Hz), 7.27 (2H, d, J = 7.8 Hz),




7.61 (2H, d, J = 8.1 Hz).


233
oil


224, 272


235
196-200


238


1H-NMR (CDCl3) δ: 1.68 (3H, s), 1.97-2.00 (1H,

362 [M + 1]




m), 2.53 (1H, dt, J = 14.4, 3.7 Hz), 2.63-2.79 (2H,




m), 4.52 (2H, s), 6.56-6.66 (3H, m), 7.17 (1H, t, J = 8.0 Hz),




7.43-7.52 (3H, m), 7.81 (4H, dd, J = 11.6,




5.7 Hz).


241
187-190
1H-NMR (DMSO-d6) δ: 1.49 (3H, s),




1.78-1.86 (1H, m), 2.13-2.21 (1H, m), 2.59-2.67 (1H, m),




2.96-3.02 (1H, m), 7.11 (1H, t, J = 10.7 Hz), 7.29 (1H, t,




J = 7.8 Hz), 7.45 (1H, t, J = 7.5 Hz), 7.66 (1H, d, J = 8.8 Hz),




7.74-7.78 (1H, m), 7.80-7.83 (1H, m),




8.21 (1H, d, J = 8.6 Hz), 10.25 (1H, s).


243
182-184
1.46 (s, 3H), 1.75-1.83 (m, 1H), 2.08-2.16 (m, 1H),




2.55-2.63 (m, 1H), 2.92-2.98 (m, 1H), 4.02 (s, 3H),




7.11 (d, J = 8.0 Hz, 1H), 7.31 (t, J = 8.0 Hz, 1H),




7.77 (d, J = 8.0 Hz, 1H), 7.82 (br s, 1H), 8.41 (d, J = 1.2 Hz,




1H), 8.90 (d, J = 1.2 Hz, 1H), 10.38 (s, 1H)




(solvent: CDCl3)




















TABLE 141








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λmax: nm)



















244
222-224





251


351 [M + 1]
200





311
204





275
215






285


255
238-239


256
oil


215, 257


259
amorphous
1.58 (3H, s), 2.01 (1H, ddd, J = 15.2, 12.2, 3.4),

229




2.46-2.56 (2H, m), 3.07 (1H, ddd, J = 13.3, 5.7, 3.5),

298




4.24 (2H, s), 6.53 (1H, d, J = 7.6), 6.59-6.61 (2H, m),




7.09-7.12 (1H, m), 7.11 (2H, d, J = 7.6), 7.24 (2H, d, J = 7.6),




8.82 (2H, br) (solvent: DMSO-d6)


263


363 [M + 1]
200





287
284


267
114-115


268



214.5






298.2


271
oil


229, 276


275

(CDCl3) 1.66 (3H, d, J = 1.2 Hz), 1.98 (1H, ddd, J = 14.0,




10.4, 3.7 Hz), 2.47 (1H, ddd, J = 14.0, 6.7, 3.5 Hz),




2.79 (1H, ddd, J = 12.0. 10.4, 3.5 Hz), 3.02 (1H, ddd,




J = 12.0, 6.7, 3.7 Hz), 4.45 (2H, br), 6.16 (2H, br),




7.04-7.11 (2H, m), 7.38 (1H, dd, J = 7.2, 2.9 Hz),




7.88 (1H, d, J = 2.0 Hz), 7.96 (1H, ddd, J = 8.9, 4.2, 2.9 Hz),




9.88 (1H, s)


277



216






228






281


279



214.5






292.3


281
amorphous
1.55 (3H, s), 1.83 (1H, ddd, J = 13.9, 10.6, 3.9),

233




2.10 (1H, ddd, J = 13.9, 6.5, 3.6), 2.67 (1H, ddd, J = 12.2,

301




10.6, 3.6), 2.87 (1H, ddd, J = 12.2, 6.5, 3.9),




4.49 (2H, d, J = 5.6), 4.85 (1H, br), 6.38 (1H, dt, J = 8.5,




0.9), 6.59 (1H, ddd, J = 7.2, 5.2, 0.9),




7.21-7.24 (2H, m), 7.28-7.32 (2H, m), 7.40 (1H, ddd, J = 8.5,




7.2, 1.8), 8.11 (1H, ddd, J = 5.2, 1.8, 0.8)




(solvent: CDCl3)


282
146-147


284
181.5


293

1.57 (s, 3H), 1.78-1.89 (m, 1H), 2.10-2.19 (m, 1H),




2.69 (ddd, J = 11.9, 10.8, 3.5 Hz, 1H), 2.83-2.91 (m,




1H), 7.15-7.35 (m, 5H)




(solvent: CDCl3)


299



293.5




















TABLE 142








MS
UV


No.
mp (° C.)
1H-NMR (δ)
(m/z)
(λmax: nm)







301

(CDCl3) 1.53 (3H, s), 1.80 (1H, ddd, J = 14.0, 10.4, 3.6 Hz),






2.12 (1H, ddd, J = 14.0, 6.0, 3.6 Hz), 2.75 (1H,




ddd, J = 12.0, 10.4, 3.6 Hz), 2.85 (1H, ddd, J = 12.0,




6.0, 3.6 Hz), 3.64 (2H, s), 4.32 (2H, br), 6.55 (1H, ddd,




J = 8.0, 2.0, 0.8 Hz), 6.66 (1H, t, J = 2.0 Hz), 6.70 (1H,




ddd, J = 8.0, 2.0, 0.8 Hz), 7.11 (1H, t, J = 8.0 Hz)


302
122-126
1.41 (s, 3H), 1.67-1.76 (m, 1H), 1.98-2.06 (m, 1H),




2.55-2.63 (m, 1H), 2.86-2.94 (m, 1H), 3.19 (s, 6H),




5.75 (s, 2H), 7.08 (d, J = 8.0 Hz, 1H), 7.26 (t, J = 8.0 Hz,




1H), 7.73 (d, J = 8.0 Hz, 1H), 7.76 (br s, 1H),




8.16 (s, 1H), 8.73 (s, 1H), 10.00 (s, 1H) (solvent:




CDCl3)


306



231, 258,






289


307

1.83 (ddd, J = 13.9, 10.3, 3.6 Hz, 1H), 2.13 (ddd, J = 13.6,




6.2, 3,5 Hz, 1H), 2.53 (s, 3H), 2.66-2.75 (m,




1H), 2.90 (ddd, J = 12.2, 6.3, 3.8 Hz, 1H), 7.09 (d, J = 7.8 Hz,




1H), 7.32 (t, J = 8.0 Hz, 1H), 7.37 (s, 1H),




7.63 (d, J = 7.8 Hz, 1H), 8.79 (s, 1H) (solvent:




CDCl3)


308
167-168


309
241-244


319



308.9


329
238-239


330



213.4






263.9


332



212.2


333
154-158


339
217-218


341
amorphous


216






249


342
184-187


344

(DMSO) 1.49 (3H, s), 1.73-1.85 (1H, m),




2.15-2.28 (1H, m), 2.54-2.66 (1H, m), 2.92-3.04 (1H, m),




5.86 (2H, s), 7.03-7.25 (3H, m), 7.40-7.48 (2H, m),




7.64-7.78 (3H, m), 10.31 (1H, s), 11.74 (1H, s)


353



279.3






364.5


354
102-103


356
amorphous
1.73 (s, 3H), 2.09-2.17 (m, 1H), 2.40 (s, 3H),

267




2.65-2.73 (m, 2H), 3.15-3.23 (m, 1H), 3.81 (s, 3H),




7.07 (d, J = 7.2 Hz, 2H), 7.29 (br s, 1H), 7.36 (d, J = 8.0 Hz,




2H), 7.61 (d, J = 8.0 Hz, 2H), 7.78 (br s, 1H),




7.90 (d, J = 7.2 Hz, 2H), 8.00 (br s, 1H), 10.32 (s,




1H) (solvent: DMSO-d6)


357
amorphous


224, 298




















TABLE 143








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λmax: nm)



















358

1.57 (3H, s), 1.80-1.91 (1H, m), 2.15-2.18 (1H, m),
360 [M + 1]





2.70-2.94 (2H, m), 3.94 (3H, s), 4.67 (2H, s),




6.75 (1H, s), 7.05-7.08 (1H, m), 7.31 (1H, t, J = 7.91 Hz),




7.53 (1H, t, J = 1.98 Hz), 7.64-7.67 (1H, m),




8.64 (1H, s), (solvent: CDCl3)


359
212-214
1.46 (s, 3H), 1.73-1.83 (m, 1H), 2.13-2.20 (m, 1H),




2.54-2.61 (m, 1H), 2.62 (s, 3H), 2.93-3.00 (m, 1H),




5.84 (br s, 2H), 7.12 (dd, J = 12.0, 8.8 Hz, 1H),




7.73-7.78 (m, 1H), 7.81 (dd, J = 7.2, 2.4 Hz, 1H), 8.68 (s,




1H), 9.13 (s, 1H), 10.59 (s, 1H) (solvent: CDCl3)


360
amorphous


222


361



280.4


364
oil

344[M + 1]
227, 271


367

(CDCl3) 1.78 (3H, s), 2.07 (1H, ddd, J = 14.0, 12,4, 3.6 Hz),




2.61 (1H, br d, J = 14.0 Hz), 2.84 (1H, td, J = 12.4,




3.2 Hz), 2.94 (1H, td, J = 12.4, 3.6 Hz), 4.08 (3H, s),




7.07 (1H, ddd, J = 8.0, 2.0, 0.8 Hz), 7.40 (1H, t, J = 8.0 Hz),




7.63 (1H, ddd, J = 8.0, 2.0, 0.8 Hz), 7.74 (1H, t,




J = 2.0 Hz), 8.18 (1H, d, J = 1.2 Hz), 9.02 (1H, d, J = 12 Hz),




9.56 (1H, s)


375



217


380
181-182
0.86 (t, J = 7.2 Hz, 3H), 1.82-1.98 (m, 3H), 2.24 (br,




1H), 2.74 (td, J = 12,0, 3.6 Hz, 1H), 2.84 (dt, J = 12.0,




4.0 Hz, 1H), 7.08 (ddd, J = 8.0, 2.0, 0.8 Hz,




1H), 7.37 (t, J = 8.0 Hz, 1H), 7.58 (t, J = 2.0 Hz,




2H), 7.76 (ddd, J = 8.0, 2.0, 0.8 Hz, 1H), 7.88 (dd, J = 8.4,




2.4 Hz, 1H), 8.25 (dd, J = 8.4, 0.8 Hz, 1H),




8.57 (dd, J = 2.4, 0.8 Hz, 1H), 9.84 (s, 1H)




(solvent: CDCl3)


383
oil


225, 269,






288


389
amorphous


292


393



213.4






316.0


395
amorphous


217, 269


396
211-213
1.64 (s, 3H), 1.96 (ddd, J = 14.0, 10.4, 4.0 Hz, 1H),




2.44 (ddd, J = 14.0, 6.8, 3.6 Hz, 1H), 2.75 (ddd, J = 12.4,




10.4, 3.6 Hz, 1H),, 2.99 (ddd, J = 12.4, 6,8, 4.0 Hz,




1H), 4.50 (2H, br), 7.08 (dd, J = 11.6, 8.8 Hz,




1H), 7.45 (dd, J = 6.8, 2.8 Hz, 1H), 8.01 (ddd, J = 8.8,




4.4, 2.8 Hz, 1H), 8.16 (ddd, J = 8.0, 2.0, 0.8 Hz,




1H), 8.43 (d, J = 8.0 Hz, 1H), 8.89 (dd, J = 2.0, 0.8 Hz,




1H), 9.91 (s, 1H)




(solvent: CDCl3)


401
106-107




















TABLE 144








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λ max: nm)



















405
192-194
1.41(s, 3H), 1.68-1.77(m, 1H), 1.96-2.05(m, 1H),






2.55-2.63(m, 1H), 2.88-2.95(m, 1H), 4.15(s, 3H),




5.74(s, 2H), 7.13(d, J = 8.0 Hz, 1H), 7.29(t, J = 8.0




Hz, 1H), 7.44(d, J = 8.8 Hz, 1H), 7.75(d, J = 8.0 Hz,




1H), 7.86(br s, 1H), 8.20(d, J = 8.8 Hz, 1H), 10.73(s,




1H) (solvent: CDCl3)


406



276.9


408
221-224
1.74(3H, s), 2.28(2H, m), 2.67(2H, m), 2.91(3H, s),




3.82(3H, s), 6.90(2H, d, J = 9.0), 7.19(2H, d, J = 9.0)




(solvent: CDCl3)


409
oil


215


410
178-182
1.37(d, J = 6.0 Hz, 6H), 1.42(s, 3H), 1.70-1.78(m,




1H), 2.00-2.08(m, 1H), 2.53-2.61(m, 1H), 2.88-




2.95(m, 1H), 5.36(quintet, J = 6.0 Hz, 1H), 7.11(d,




J = 8.0 Hz, 1H), 7.29(t, J = 8.0 Hz, 1H), 7.75(d, J =




8.0 Hz, 1H), 7.80(br s, 1H), 8.32(d, J = 1.2 Hz, 1H),




8.87(d, J = 1.2 Hz, 1H), 10.32(s, 1H)




(solvent: CDCl3)


411



218, 264


413
251-254


415
amorphous


226, 290


417
137-139


422

(CDCl3) 1.45(3H, s), 1.70-1.84(1H, m), 1.96-




2.04(1H, m), 2.88-2.96(1H, m), 3.04-3.14(1H, m),




6.86(1H, d, J = 15.9 Hz), 6.42(1H, d, J = 15.9 Hz), 7.22-




7.41(5H, m)


426



211.0






312.4


427



216


429
oil


211






259


430

(DMSO) 1.07(3H, s), 1.53-1.66(4H, m), 2.50-




2.70(2H, m), 2.92-3.10(2H, m), 5.48(1H, s), 7.11-




7.21(3H, m), 7.23-7.29(2H, m)


432
oil


216, 272


436
254-256


441
161-165


443


1H-NMR (CDCl3) δ: 1.55 (4H, s), 1.74-1.80 (1H,

362[M + 1]




m), 2.13-2.17 (1H, m), 2.68-2.73 (2H, m), 4.33 (1H,




br s), 4.48 (2H, d, J = 4.0 Hz), 4.76 (2H, t, J = 20.1




Hz), 6.52 (1H, dd, J = 7.9, 1.8 Hz), 6.63-6.65 (2H,




m), 7.13 (1H, t, J = 7.8 Hz), 7.45-7.51 (2H, m),




7.79-7.82 (4H, m).




















TABLE 145








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λ max: nm)


















444
214-215
1.41(s, 3H), 1.66-1.76(m, 1H), 1.97-2.05(m, 1H),





2.53-2.62(m, 1H), 2.62(s, 3H), 2.86-2.93(m, 1H),




5.79(br s, 2H), 7.12(d, J = 8.0 Hz, 1H), 7.28(t, J =




8.0 Hz, 1H), 7.74(d, J = 8.0 Hz, 1H), 7.81(br s, 1H),




8.68(s, 1H), 9.14(s, 1H), 10.52(s, 1H)




(solvent: CDCl3)


445
92-93


446
oil
1.57(3H, s), 1.86(1H, ddd, J = 13.9, 10.4, 3.7),
219




2.13(1H, ddd, J = 13.9, 6.5, 3.6), 2.25(3H, s),
252




2.35(3H, s), 2.70(1H, ddd, J = 12.2, 10.4, 3.6),




2.89(1H, ddd, J = 12.2, 6.5, 3.7), 4.35(2H, br),




5.19(2H, s), 7.17(2H, d, J = 8.0), 7.31-7.34(4H, m),




7.50(1H, ddd, J = 5.8, 3.0, 1.8), 7.55-7.60(1H, m)




(solvent: CDCl3)


448

δ in d6-DMSO: 1.4(3H, s), 1.67-1.75(1H, m),




1.98-2.05(1H, m), 2.52-2.61(1H, m). 2.86-2.94(1H,




m), 5.79(2H, bs), 7.14(1H, d, J = 7.8 Hz), 7.30(1H, t,




J = 7.8 Hz), 7.73(1H, bd, J = 7.8 Hz), 7.81(1H, t,




J = 1.8 Hz), 8.94(1H, m), 9.11(1H, m), 10.63(1H, bs).


452
132-134


456
147-149


457
153-155


465
194.6


466


211


470
281 (dec.)


482

1.60 (s, 3H), 1.91 (ddd, J = 14.0, 10.8, 4.0 Hz, 1H),




2.23 (ddd, J = 14.0, 6.4, 3.6 Hz, 1H), 2.77 (ddd, J =




12.0, 10.8, 3.6 Hz, 1H), 2.93 (ddd, J = 12.0, 6.4, 4.0




Hz, 1H), 7.16 (ddd, J = 8.0, 2.0, 0.8 Hz, 1H), 7.37 (t,




J = 8.0 Hz, 1H), 7.61 (t, J = 2.0 Hz, 1H), 7.75 (ddd,




J = 8.0, 2.0, 0.8 Hz, 1H), 8.14 (d, J = 1.6 Hz, 1H),




8.80 (d, J = 1.6 Hz, 1H), 9.79 (s, 1H)




(solvent: CDCl3)


483
224-227

211, 289


490

1.64 (3H, s) 2.03-2.12 (1H, m) 2.49-2.62 (m) 3.12-




3.16 (1H m) 7.22 (1H, dd, J = 4.2 Hz) 7.27 (1H, bs)




7.75 (1H bs) 7.87 (1H, dd, J = 4.2 Hz) 8.04 (1H, s)




8.12 (1H, dd, J = 4.2 Hz) 10.64 (1H, s) 10.72 (1H,




s)(solvent: DMSO-d6)


491

1.58 (s, 3H), 1.85-1.96 (m, 1H), 2.15-2.24 (m, 1H),




2.50 (s, 3H), 2.67 (s, 3H), 2.71-2.81 (m, 1H), 2.90-




2.98 (m, 1H), 7.13 (d, J = 6.2 Hz, 1H), 7.35 (t, J =




8.0 Hz, 1H), 7.40 (s, 1H), 7.55 (d, J = 7.6 Hz, 1H)




(solvent: CDCl3)


493


216




















TABLE 146








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λ max: nm)



















494

δ in d6-DMSO: 1.37(3H, s), 1.62-1.70(1H, m),
366[M + 1]





2.0-2.12(1H, m), 2.40-2.50(1H, m), 2.79-2.83(1H,




m), 3.82(3H, s), 4.52(2H, d, J = 5.4 Hz), 6.19(1H, m),




6.54(1H, d, J = 7.8 Hz), 6.62(1H, d, J = 8.1 Hz), 6.75(1H,




s), 7.01(1H, t, J = 8.1 Hz), 7.14-7.25(2H, m), 7.51(1H,




d, J = 8.1 Hz), 7.60(1H, d, J = 7.5 Hz).


496
152-154


497

δ in d6-DMSO: 1.48(3H, s), 1.83-1.77(1H, m),




2.61-2.56(1H, m), 2.99-2.95(1H, m), 3.86(3H, s),




6.07(1H, s), 6.95(1H, s), 7.03-7.02(1H, m), 7.09-




7.06(1H, m), 7.58-7.57(1H, m), 7.64-7.62(1H, m),




9.83(1H, s)


498
122-125


500
181-184


501
155-158


502
137-138


504
209-219


511
211-214
1.58 (s, 3H), 1.90 (ddd, J = 14.0. 10.0. 3.6 Hz, 1H),




2.15 (ddd, J = 14.0, 6.8, 3.6 Hz, 1H), 2.77 (ddd, J =




12.4, 10.0, 3.6 Hz, 1H), 2.94 (ddd, J = 12.4, 6.8, 3.6




Hz, 1H), 4.34 (2H, br), 7.17 (ddd, J = 8.0, 2.0, 0.8




Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.50 (d, J = 2.0




Hz, 1H), 7.56 (td, J = 2.0 Hz, 1H), 7.70 (ddd, J =




8.0, 2.0, 0.8 Hz, 1H), 8.08 (d, J = 1.6 Hz), 9.70 (s,




1H) (solvent: CDCl3)


515
204-208
1.61 (s, 3H), 1.90 (ddd, J = 14.0, 10.8, 3.6 Hz, 1H),




2.22 (ddd, J = 14.0, 6.0, 3.6 Hz, 1H), 2.77 (ddd, J =




12.4, 10.8, 3.6 Hz, 1H), 2.93 (ddd, J = 12.4, 6.0, 3.6




Hz, 1H), 7.15 (ddd, J = 8.0, 2.0, 0.8 Hz, 1H), 7.39 (t,




J = 8.0 Hz, 1H), 7.65 (t, J = 2.0 Hz, 1H), 7.80 (ddd,




J = 8.0, 2.0, 0.8 Hz, 1H), 8.89 (s, 2H), 9.77 (s, 1H)




(solvent: CDCl3)


516



292.3


525
105-106


528
173-174
1.60 (s, 3H), 1.89 (ddd, J = 14.0, 10.8, 3.6 Hz, 1H),




2.22 (ddd, J = 14.0, 6.4, 3.2 Hz, 1H), 2.44 (s, 3H),




2.77 (ddd, J = 12.4, 10.8, 3.2 Hz, 1H), 2.91 (ddd, J =




12.4, 6.4, 3.6 Hz, 1H), 4.50 (br, 2H), 7.11 (ddd, J =




8.0, 2.0, 0.8 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H), 7.67-




7.71 (m, 2H), 7.74 (ddd, J = 8.0, 2.0, 0.8 Hz, 1H),




8.18 (d, J = 8.4 Hz, 1H), 8.44(d, J = 1.6 Hz, 1H),




9.98 (s, 1H) (solvent: CDCl3)


532



305.3


533
180-181


534
201-204


549
100-101


551
139-141


554



216




















TABLE 147








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λ max: nm)







556

(CDCl3) 1.67(3H, d, J = 1.2 Hz), 1.98(1H, ddd, J = 14.0,






10.4, 3.7 Hz), 2.47(1H, ddd, J = 14.0, 6.7, 3.5 Hz),




2.79(1H, ddd, J = 12.0, 10.4, 3.5 Hz), 3.02(1H, ddd,




J = 12.0, 6.7, 3.7 Hz), 4.11(3H, s), 4.45(2H, br),




7.10(1H, dd, J = 11.7, 8.8 Hz), 7.41(1H, dd, J = 6.9, 2.8




Hz), 8.04(1H, ddd, J = 8.8, 4.0, 2.8 Hz), 8.20(1H, d,




J = 1.4 Hz), 9.06(1H, d, J = 1.4 Hz), 9.51(1H, s)


558


358[M + 1]
200





282


559



224


560

δ in d10-DMSO: 1.72(3H, s), 2.12-2.05(1H, m),




2.71-2.61(2H, m), 3.22-3.19(1H, m), 6.52(1H, s),




7.26(1H, q, J = 11.6, 9.2 Hz), 7.55(1H, s), 7.66-




7.62(2H, m), 7.79-7.77(1H, m), 7.90-7.88(1H, m),




8.07(1H, s), 10.42(1H, s), 11.55(1H, s)


561
235-240


567
oil


212


570
188-187


573
112-114


577

δ in d19-DMSO: 2.14-2.07(1H, m), 2.88-2.70(3H,




m), 3.07, 3.26(2H, abq, J = 12.0 Hz), 3.73(3H, s),




5.40(2H, s), 6.51(1H, s), 6.85(1H, d, J = 12.0 Hz),




7.34(1H, d, J = 8.0 Hz)


584
152-153


586

δ in d7-DMSO: 1.71(3H, s), 2.10-2.04(1H, m),




2.69-2.59(2H, m), 3.20-3.17(1H, m), 4.00(3H, s),




7.13(1H, d, J = 7.4 Hz), 7.33-7.23(3H, m), 7.55(1H,




d, J = 8.4 Hz), 7.72-7.68(1H, m), 7.92-7.90(1H, m),




10.60(1H, s)


588
155-156


593
oil


226


595
oil
1.56(3H, s), 1.86(1H, ddd, J = 13.9, 10.1. 3.7),




2.11(1H, ddd, J = 13.9, 6.6, 3.6), 2.32(3H, s),




2.70(1H, ddd, J = 12.3, 10.1, 3.6), 2.90(1H, ddd, J =




12.3, 6.6, 3.7), 5.25(2H, s), 7.29-7.35(4H, m),




7.47(1H, dt, J = 6.8, 2.0), 7.56-7.58(1H, m), 8.59(2H,

220




d, J = 6.0) (solvent: CDCl3)


596



215


597
192-194


600
178-180


601
181-192
1.59 (3H, s), 1.85-1.95 (1H, m), 2.15-2.22 (1H, m),
375[M + 1]




2.72-2.78 (1H, m), 2.88-2.98 (1H, m), 4.31 (3H, s),




7.13 (1H, d, J = 7.25 Hz), 7.33 (1H, t, J = 7.91 Hz),




7.59 (1H, s), 7.68 (1H, d, J = 7.91 Hz), 7.75 (1H,




s).(solvent: CDCl3)


602
272-285



(dec.)




















TABLE 148








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λ max: nm)



















605
230-233
1.63 (s, 3H), 1.94 (ddd, J = 14.0, 10.4, 3.6 Hz, 1H),






2.44 (ddd, J = 14.0, 6.4, 3.6 Hz, 1H), 2.75 (ddd, J =




12.4, 10.4, 3.6 Hz, 1H),, 2.98 (ddd, J = 12.4, 6.4, 3.6




Hz, 1H), 4.50 (2H, br), 7.06 (dd, J = 11.6, 8.8 Hz,




1H), 7.40 (dd, J = 7.2, 2.8 Hz, 1H), 7.59 (ddd, J =




8.8, 8.0, 2.8 Hz, 1H), 7.99 (ddd, J = 8.8, 4.4, 2.8 Hz,




1H), 8.33 (dd, J = 8.8, 4.4 Hz, 1H), 8.45 (d, J = 2.8




Hz, 1H), 9.78 (s, 1H) (solvent: CDCl3)


608



213.4






304.1


611
200-202


613



238


618

1.74(s, 3H), 1.97-2.07(m, 1H), 2.45-2.55(m, 1H),




2.77-2.85(m, 1H), 2.84(s, 3H), 2.90-2.96(m, 1H),




7.11(d, J = 8.0 Hz, 1H), 7.42(t, J = 8.0 Hz, 1H),




7.57(d, J = 8.8 Hz, 1H), 7.70(d, J = 8.0 Hz, 1H),




7.74(br s, 1H), 8.29(d, J = 8.8 Hz, 1H), 10.12(s, 1H)




(solvent: CDCl3)


620



212, 253


625
107-109


629

δ in d14-DMSO: 1.66(3H, s), 2.11-2.05(1H, m),




2.37(3H, s), 2.63-2.53(2H, m), 3.14-3.11(1H, m),




7.08-7.04(2H, t, J = 7.0 Hz), 7.43-7.35(4H, m), 7.83-




7.80(2H, m), 10.39(1H, s), 11.69(1H, s)


630

1.28 (3H, t, J = 7.7 Hz), 1.96 (1H, ddd, J = 3.8, 9.9,
301[M + 1]




13.7 Hz), 2.19 (1H, ddd, J = 3.5, 7.0, 13.7 Hz), 2.74




(1H, ddd, J = 3.6, 9.9, 12.2 Hz), 2.93 (1H, ddd, J = 3.8,




7.0, 12.1 Hz), 4.05-4.49 (4H, m), 7.40-7.50 (3H, m),




7.77-7.86 (1H, m) (solvent: CDCl3)


834

(CDCl3) 1.67(3H, d, J = 1.2 Hz), 1.98(1H, ddd, J = 14.0,




10.4, 3.7 Hz), 2.47(1H, ddd, J = 14.0, 6.7, 3.5 Hz),




2.79(1H, ddd, J = 12.0, 10.4, 3.5 Hz), 3.02(1H, ddd,




J = 12.0, 6.7, 3.7 Hz), 4.11(3H, s), 4.45(2H, br),




7.10(1H, dd, J = 11.7, 8.8 Hz), 7.41(1H, dd, J = 6.9, 2.8




Hz), 8.04(1H, ddd, J = 8.8, 4.0, 2.8 Hz), 8.20(1H, d,




J = 1.4 Hz), 9.06(1H, d, J = 1.4 Hz), 9.51(1H, s)


636
118-119


637



229, 275


643
155-157
1.60 (s, 3H), 1.90 (ddd, J = 14.0, 10.4, 3.6 Hz, 1H),




2.20 (ddd, J = 14.0, 6.8, 3.6 Hz, 1H), 2.77 (ddd, J =




12.0, 10.4, 3.6 Hz, 1H),, 2.93 (ddd, J = 12.0, 6.8, 3.6




Hz, 1H), 4.59 (brs, 1H), 7.16 (ddd, J = 8.0, 2.0, 0.8




Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.87 (t, J = 2.0 Hz,




1H), 7.71 (ddd, J = 8.0, 2.0, 0.8 Hz, 1H), 7.67 (dd, J =




10.0, 1.2 Hz, 1H), 8.73 (d, J = 1.2 Hz, 1H), 9.74 (s,




1H) (solvent: CDCl3)


644
201-203




















TABLE 149








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λ max: nm)







645
oil
1.58(3H, s), 1.87(1H, ddd, J = 14.0, 10.4, 3.6),

222




2.16(1H, ddd, J = 14.0, 6.3, 3.5), 2.34(3H, s),




2.70(1H, ddd, J = 12.3, 10.4, 3.5), 2.90(1H, ddd, J =




12.3, 6.3, 3.6), 5.38(2H, s), 7.18-7.33(3H, m),




7.43(1H, d, J = 8.0), 7.49-7.60(2H, m), 7.69(1H, dt,




J = 7.7, 1.9), 8.59(1H, ddd, J = 4.9, 1.9, 1.1)




(solvent: CDCl3)


649
161-162


651
193-196
1.59 (s, 3H), 1.90 (ddd, J = 14.0, 10.4, 3.6 Hz, 1H),




2.18 (ddd, J = 14.0, 6.4, 3.6 Hz, 1H), 2.76 (ddd, J =




12.4, 10.4, 3.6 Hz, 1H),, 2.93 (ddd, J = 12.4, 6.4, 3.6




Hz, 1H), 4.42 (br, 2H), 7.17 (ddd, J = 8.0, 2.0, 0.8




Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.64 (t, J = 2.0 Hz,




1H), 7.77 (ddd, J = 8.0, 2.0, 0.8 Hz, 1H), 8.20 (dd, J =




8.0, 2.0 Hz, 1H), 8.44 (dd, J = 8.0, 0.8 Hz, 1H),




8.91 (dd, J = 2.0, 0.8 Hz, 1H), 9.87 (s, 1H)




(solvent: CDCl3)


652

δ in d21-DMSO: 1.67(3H, s), 2.14-2.07(1H, m),




2.62-2.57(2H, m), 3.17-3.14(1H, m), 5.74(1H, s),




7.14(1H, d, J = 8.0 Hz), 7.44(1H, t, J = 8.0 Hz), 7.85-




7.81(2H, m), 8.01(1H, d. J = 12.0 Hz), 8.16(1H, d, J =




8.0 Hz), 8.77(1H, s), 10.95(1H, s)


653
193-194


654
oil


257


657
199-203


660
amorphous


223, 266


661

δ in d9-DMSO: 1.30(3H, t, J = 7.0 Hz), 1.69(3H, s),




2.10-2.04(1H, m), 2.20(3H, s), 2.67-2.62(2H, m),




3.20-3.17(1H, m), 4.40(2H, q, J = 14.0, 7.0 Hz),




6.83(1H, s), 7.25(1H, q, J = 12.0, 9.0 Hz), 7.62-




7.61(1H, m), 7.85-7.83(1H, m), 10.42(1H, s)


664
amorphous


225, 267


667
amorphous


226


673
oil


224


677
amorphous


216


680
159-160
1.63(3H, s), 1.65-1.80(1H, m), 2.53-2.64(1H, m),




2.75-2.88(2H, m), 3.83(3H, s), 4.32(2H, br), 6.87-




6.96(2H, m), 7.19-7.33(2H, m) (solvent: CDCl3)


681

δ in d6-DMSO: 1.43(3H, s), 1.66-1.74(1H, m),
338[M + 1]




2.02-2.07(1H, m), 2.56-2.63(1H, m), 2.85-2.90(1H,




m), 5.80(2H, bs), 6.91(1H, d, J = 7.8 Hz), 6.96-




6.98(2H, m), 7.25(1H, t, J = 7.8 Hz), 7.2-7.36(2H, m),




7.40(1H, m), 7.89-7.92(1H, m), 9.42(1H, bs),




10.78(1H, bs).


683
166-168




















TABLE 150








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λ max: nm)







687
164-187
1.60 (3H, s), 1.84-1.95 (1H, m), 2.21-2.26 (1H, m),
388[M + 1]





2.73-2.94 (2H, m), 3.92 (3H, s), 4.25 (3H, s), 7.10




(1H, d, J = 7.58 Hz), 7.34 (1H, t, J = 7.91 Hz), 7.40




(1H, s), 7.57 (1H, br s), 7.66 (1H, d, J = 7.91 Hz),




8.67 (1H, s). (solvent: CDCl3)


692

(CDCl3) 1.50(3H, s), 1.75-1.88(1H, m), 2.00-




2.10(1H, m), 2.91-2.99(1H, m), 3.08-3.18(1H, m),




6.21(1H, d, J = 15.9 Hz), 6.59(1H, d, J = 15.9 Hz), 7.42-




7.47(3H, m), 7.59(1H, dd, J = 8.6, 2.0 Hz), 7.74-




7.83(4H, m)


698



269


700
177-178


701

1.61(s, 3H), 1.90(m, 1H), 2.25(m, 1H), 2.81(m, 1H),




2.92(m, 1H), 3.86(s, 3H), 6.71(t-like, J = 1.8 Hz, 1H),




7.12(t-like, J = 1.8 Hz, 1H), 7.53(t-like, J = 1.8 Hz,




1H), 7.89(dd, J = 8.3 Hz, 2.4 Hz, 1H), 8.24(d, J =




8.3 Hz, 1H), 8.58(d, J = 2.4 Hz, 1H), 9.85(br, 1H)




(solvent: CDCl3)


702

1H-NMR (CDCl3) δ: 1.65 (3H, s), 1.91-1.98 (1H,




m), 2.57-2.62 (1H, m), 2.68-2.75 (1H, m), 2.92-2.97




(1H, m), 4.18 (3H, s), 6.82 (1H, br s), 7.02-7.08 (1H,




m), 7.28-7.32 (1H, m), 7.44 (1H, s), 7.92-7.96 (1H,




m).


707
167-174


709
 99-100
0.82(3H, t, J = 7.3 Hz), 1.72-1.90(3H, m), 2.06-




2.15(1H, m), 2.61-2.82(2H, m), 3.80(3H, s), 4.36(2H,




br), 6.86(2H, d, J = 8.9 Hz), 7.17(2H, d, J = 8.9 Hz)




(solvent: CDCl3)


717
157-162
1.58 (s, 3H), 1.90 (ddd, J = 14.0, 10.4, 3.6 Hz, 1H),




2.15 (ddd, J = 14.0, 6.8, 3.6 Hz, 1H), 2.76 (ddd, J =




12.4, 10.4, 3.6 Hz, 1H), 2.94 (ddd, J = 12.4, 6.8, 3.6




Hz, 1H), 3.49 (1H, S), 3.76 (2H, br), 7.17 (ddd, J =




8.0, 2.0, 0.8 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.38




(d, J = 1.6 Hz, 1H), 7.50 (t, J = 2.0 Hz, 1H), 7.73




(ddd, J = 8.0, 2.0, 0.8 Hz, 1H), 8.22 (d, J = 2.4 Hz),




9.26 (d, J = 2.4 Hz, 1H), 10.12 (s, 1H)




(solvent: CDCl3)


719
oil


226






254


720
133-138


725
amorphous
1.62 (s, 3H), 1.96-2.03(m, 1H), 2.38-2.49 (m, 1H),

265




2.63-2.71 (m, 1H), 3.05-3.12 (m, 1H), 6.73 (dd, J =




3.2, 1.6 Hz, 2H), 7.35(d, J = 3.2 Hz, 1H), 7.37 (br s,




1H), 7.57 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 8.4 Hz,




2H), 7.77 (br s, 1H), 7.96(br s, 1H), 8.01(br s, 1H),




10.35 (s, 1H) (solvent: DMSO-d6)


728
179-182


729
167-169




















TABLE 151








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λ max: nm)



















730



211.0






289.9


731
91-94


732
amorphous


211


735
166-168


737

1H-NMR (CDCl3) δ: 1.59 (3H, s), 1.87-1.94 (1H,




m), 2.47-2.53 (1H, m), 2.67-2.73 (1H, m), 2.93-2.99




(1H, m), 4.10 (3H, s), 6.62 (1H, s), 7.04 (1H, t, J =




10.2 Hz), 7.33 (1H, d, J = 4.3 Hz), 7.85 (1H, br s).


738
181-183


739



285


740
250 (dec.)


743
148-150
1.60 (s, 3H), 179-2.93 (m, 4H), 4.46 (2H, br), 7.09




(d, J = 2.0 Hz, 1H), 7.12 (ddd, J = 7.6, 2.0, 0.8 Hz,




1H), 7.18 (t, J = 2.0 Hz, 1H), 7.36 (d, J = 7.6, 2.0,




0.8 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 8.21(d, J = 2.0




Hz) (solvent: CDCl3)


744

δ in d8-DMSO: 1.47(3H, s), 1.82-1.78(1H, m),




2.22-2.18(1H, m), 2.62-2.56(1H, m), 3.00-2.96(1H,




m), 6.79(1H, s), 6.63(1H, s), 7.08-7.03(1H, m),




7.51(1H, s), 7.64-7.57(2H, m), 9.57(1H, s), 11.25(1H, s)


753
amorphous


225, 299


756
110-111
1.55(3H, s), 1.76-1.87(1H, m), 2.08-2.17(1H, m),




2.35(3H, s), 2.65-2.76(1H, m), 2.82-2.92(1H, m),




4.35(2H, br), 7.01-7.25(4H, m) (solvent: CDCl3)


758
156-157


766


336[M + 1]
203





260
212


767
 98-100


768

1.60 (3H, d. J = 1.3 Hz), 1.89-1.99 (1H, m), 2.29
362[M + 1]
213




(3H, s), 2.37-2.42 (1H, m), 2.70-2.75 (1H, m), 2.96-

263




3.00 (1H, m), 4.12 (3H, s), 6.39 (1H, s), 7.04 (1H, dd,




J = 11.5. 8.9 Hz), 7.18 (1H, dd, J = 6.9. 2.6 Hz),




7.60 (1H, s), 7.82-7.86 (1H, m). (solvent: CDCl3)


771


417[M + 1]
201





341


774


1H-NMR (CDCl3) δ: 1.77 (3H, s), 2.11-2.21 (1H,

400[M + 1]




m), 2.71-2.80 (1H, m), 2.87-2.99 (2H, m), 6.91 (1H,




d, J = 6.9 Hz), 7.28 (2H, s), 7.47 (1H, t, J = 8.1 Hz),




7.75 (1H, t, J = 8.6 Hz), 8.04 (1H, dd, J = 8.6, 2.3




Hz), 8.29 (1H, d, J = 8.2 Hz), 8.46 (1H, d, J = 2.2




Hz).




















TABLE 151








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λ max: nm)


















781

1.63 (s, 3H), 1.92 (ddd, J = 14.0, 10.8, 4.0 Hz, 1H),





2.29 (m, 1H), 2.78 (ddd, J = 12.4, 10.8, 3.6 Hz, 1H),,




2.91 (ddd, J = 12.4, 6.4, 4.0 Hz, 1H), 3.94 (3H, s),




7.09 (ddd, J = 8.0, 2.0, 0.8 Hz, 1H), 7.34 (dd, J =




8.8, 2.8 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H), 7.68 (t, J =




2.0 Hz, 1H), 7.71 (ddd, J = 8.0, 2.0, 0.8 Hz, 1H),




8.24 (d, J = 8.8 Hz, 1H), 8.28 (d, J = 2.8 Hz, 1H),




9.86 (s, 1H) (solvent: CDCl3)


783
205-206


786

1.66(3H, s), 2.10(1H, m), 2.57-2.64(2H, m), 3.16(1H,




m), 6.74(1H, s), 7.30(1H, s), 7.36(1H, s), 7.74(1H, s),




7.98(1H, s), 8.06(1H, s), 10.33(1H, s), 10.47(1H, s)




(solvent: DMSO-d6)


790
amorphous

223, 290


791

δ in d18-DMSO: 1.41(3H, s), 1.76-1.69(1H, m),




2.02-1.98(1H, m), 2.62-2.55(1H, m), 2.92-2.89(1H,




m), 7.13(1H, d, J = 7.6 Hz), 7.29(1H, t, J = 7.6 Hz),




7.62-7.59(2H, m), 8.71(1H, s), 9.28(1H, s), 10.46(1H, brs)


792


299.4


793
269 (dec.)


797


213.4





312.4


799


215, 240


800


225, 275


802

1.63 (s, 3H), 1.92 (ddd, J = 14.0, 11.2, 3.6 Hz, 1H),




2.28 (br, 1H), 2.78 (ddd, J = 12.4, 11.2, 3.6 Hz, 1H),




2.81 (s, 3H), 2.92 (ddd, J = 12.4, 6.4, 4.0 Hz, 1H),




7.10 (ddd, J = 8.0, 2.0, 0.8 Hz, 1H), 7.35 (t, J = 8.0




Hz, 1H), 7.56 (t, J = 2.0 Hz, 1H), 7.65 (d, J = 2.4




Hz, 1H), 7.74 (ddd, J = 8.0, 2.0, 0.8 Hz, 1H), 8.41 (d,




J = 2.4 Hz, 1H), 10.03 (s, 1H) (solvent: CDCl3)


803


271  


804
135-136


810
47-48


811
138-139


813
204-205
182 (s, 3H), 1.89-1.94 (m, 1H), 2.78 (ddd, J = 12.4,




6.4, 3.6 Hz, 1H), 4.50 (2H, br), 7.06 (dd, J = 11.6,




8.8 Hz, 1H), 7.40 (dd, J = 7.2, 2.8 Hz, 1H), 7.59




(ddd, J = 8.8, 8.0, 2.8 Hz, 1H), 7.99 (ddd, J = 8.8,




4.4, 2.8 Hz, 1H), 8.33 (dd, J = 8.8, 4.4 Hz, 1H), 8.45




(d, J = 2.8 Hz, 1H), 9.78 (s, 1H)(solvent: CDCl3)


814
oil

218, 272


816


214.5




















TABLE 152








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λ max: nm)



















820

(CDCl3) 1.66(3H, d, J = 1.2 Hz), 1.98(1H, ddd, J = 14.0,






10.4, 3.7 Hz), 2.47(1H, ddd, J = 14.0, 6.7, 3.5 Hz),




2.79(1H, ddd, J = 12.0, 10.4, 3.5 Hz), 3.02(1H, ddd,




J = 12.0, 6.7, 3.7 Hz), 4.45(2H, br), 6.16(2H, br),




7.04-7.11(2H, m), 7.38(1H, dd, J = 7.2, 2.9 Hz),




7.88(1H, d, J = 2.0 Hz), 7.96(1H, ddd, J = 8.9, 4.2, 2.9




Hz), 9.88(1H, s)


822



279


827
134-137


214.5






284.0


832



212, 299


833
oil


212, 273


834



217, 267


835
139-140


836



221.6






279.3


840
223-225


848
oil


223, 254


849
143-145


850

δ in d16-DMSO: 1.41(3H, s), 1.75-1.70(1H, m),




2.02-1.99(1H, m), 2.61-2.56(1H, m), 2.93-2.88(1H,




m), 7.13(1H, d, J = 8.0), 7.29(1H, t, J = 7.8 Hz),




7.35(1H, q, J = 8.4, 2.4 Hz) 7.66-7.63(2H, m), 8.52-




8.47(1H, m), 8.81(1H, s), 10.44(1H, s)


851
82-83
1.55(3H, s), 1.76-1.88(1H, m), 2.10-2.18(1H, m),




2.66-2.77(1H, m), 2.82-2.91(1H, m), 3.81 (3H, s),




6.73-6.78(1H, m), 6.88-6.92(2H, m), 7.21-7.29(1H,




m) (solvent: CDCl3)


855
oil


219


859


350[M + 1]
200





274
208






254


863
192-194
1.39(t, J = 7.2 Hz, 3H), 1.42(s, 3H), 1.71-1.79(m,




1H), 2.02-2.10(m, 1H), 2.55-2.62(m, 1H), 2.88-




2.96(m, 1H), 4.47(q, J = 7.2 Hz, 2H), 5.70-6.20(br s,




2H), 7.11(d, J = 8.0 Hz, 1H), 7.29(t, J = 8.0 Hz, 1H),




7.75(d, J = 8.0 Hz, 1H), 7.80(br s, 1H), 8.38(d, J =




1.2 Hz, 1H), 8.87(d, J = 1.2 Hz, 1H), 10.34(s, 1H)




(solvent: CDCl3)


866



293.5


869

1.65 (s, 3H), 1.90-2.01 (m, 3H), 2.32 (br, 1H), 2.80




(td, J = 12.0, 3.6 Hz, 1H), 2.85 (t, J = 8.0 Hz, 2H),




2.92 (ddd, J = 12.0, 5.6, 3.6, 1H), 3.75 (t, J = 8.0 Hz,




2H), 7.11 (ddd, J = 8.0, 2.0, 0.8 Hz, 1H), 7.37 (t, J =




8.0 Hz, 1H), 7.70 (t, J = 2.0 Hz, 1H), 7.73-7.76 (m,




2H), 8.22 (d, J = 7.6 Hz, 1H), 8.48 (d, J = 2.0 Hz,




1H), 10.00 (s, 1H) (solvent: CDCl3)


871
212-213




















TABLE 153








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λ max: nm)







875
oil


222, 271


876
oil


222


878
oil


211


881
141-144


887



262.7


892
251 (dec.)


893

δ in d12-DMSO: 1.70(3H, s), 2.10-2.04(1H, m),




2.69-2.59(2H, m), 3.20-3.17(1H, m), 6.80(1H, brs),




7.26-7.20(1H, m), 7.88-7.81(3H, m), 10.35(1H,




s)13.53(1H, brs)


895


378[M + 1]
202





302
208






216






221






265


896
amorphous


219, 264


897
212-214


900
205-207
1.61 (s, 3H), 1.91 (ddd, J = 14.0, 10.8, 4.0 Hz, 1H),




2.23 (ddd, J = 14.0, 6.4, 3.6 Hz, 1H), 2.77 (ddd, J =




12.4, 10.8, 3.6 Hz, 1H), 2.92 (ddd, J = 12.4, 6.4, 4.0




Hz, 1H), 7.15 (ddd, J = 8.0, 2.0, 0.8 Hz, 1H), 7.38 (t,




J = 8.0 Hz, 1H), 7.65 (t, J = 2.0 Hz, 1H), 7.79 (ddd,




J = 8.0, 2.0, 0.8 Hz, 1H), 8.99 (s, 2H), 9.78 (s, 1H)




(solvent: CDCl3)


906



212.2






273.4






350.5


908

δ in d15-DMSO: 1.66(3H, s), 2.11-2.05(1H, m),




2.37(3H, s), 2.63-2.54(2H, m), 3.16-3.11(1H, m),




3.16(3H, s), 7.08-6.96(3H, m), 7.49-7.41(3H, m),




7.85-7.81(2H, m), 10.52(1H, s)11.69(1H, s)


910
oil


211, 276


916
131-132


926

1.89(3H, s), 2.15(1H, m), 2.71-2.82(2H, m), 2.96(1H,




m), 3.04(3H, d, J = 4.9), 7.35(1H, dd, J = 8.7, 1.8),




7.50-7.55(2H, m), 7.74(1H, s), 7.82-7.90(3H, s),




10.40(1H, br), 11.36(1H, Br) (solvent: CDCl3)


928

1.20(t, J = 7.6 Hz, 3H), 1.53(br s, 3H), 1.82-1.97(m,




1H), 2.39(s, 3H), 2.61(q, J = 7.6 Hz, 2H), 2.99-




3.07(m, 1H), 6.93(br s, 1H), 7.33(d, J = 8.4 Hz, 2H),




7.54-7.58(m, 2H), 7.87(d, J = 8.4 Hz, 2H), 10.13(s,




1H) (solvent: CDCl3)


930
132.1-134.4

328[M + 1]


931



299


933
amorphous


212, 259




















TABLE 154








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λmax: nm)


















935
161-165
1.62 (s, 3H), 1.91 (ddd, J = 14.0, 10.4, 4.0 Hz, 1H),





2.24 (ddd, J = 14.0, 6.4, 3.6 Hz, 1H), 2.80 (ddd, J =




12.0, 10.4, 3.6 Hz, 1H), 2.93 (ddd, J = 12.0, 8.4, 4.0




Hz, 1H), 7.15 (ddd, J = 8.0, 2.0, 1.2 Hz, 1H), 7.39 (t,




J = 8.0 Hz, 1H). 7.66 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H),




7.75 (t, J = 2.0 Hz, 1H), 7.80-7.84 (m, 2H), 7.93




(ddd, J = 8.0, 2.0, 1.2 Hz), 8.21 (d, J = 8.4 Hz, 1H),




8.38 (d, J = 8.0 Hz, 1H), 8.41 (d, J = 8.0 Hz, 1H),




10.25 (s, 1H) (solvent: CDCl3)


936
169-170


939

δ in d6-DMSO: 1.72(3H, s), 2.11-2.05(1H, m),




2.70-2.60(2H, m), 3.21-3.18(1H, m), 7.20(1H, d, J =




9.2 Hz), 7.28(1H, q, J = 11.6, 9.2 Hz), 8.56-7.54(2H,




m), 7.69(1H, s), 7.90-7.85(2H, m), 10.69(1H, s),




12.17(1H, brs)


941


220


944
amorphous

219, 256


946

1.61 (s, 3H), 1.91 (ddd, J = 14.0. 10.8, 3.6 Hz, 1H),




2.26 (ddd, J = 14.0, 6.4, 3.6 Hz, 1H), 2.77 (ddd, J =




12.4, 10.8, 3.6 Hz, 1H),, 2.92 (ddd, J = 12.4, 6.4, 3.6




Hz, 1H), 7.13 (ddd, J = 8.0, 2.0, 1.2 Hz, 1H), 7.36 (t,




J = 8.0 Hz, 1H), 7.61 (t, J = 2.0 Hz, 1H), 7.72 (ddd,




J = 8.0, 2.0, 1.2 Hz, 1H), 7.91 (d, J = 2.4 Hz, 1H),




8.49 (d, J = 2.4 Hz, 1H), 9.75 (s, 1H)(solvent:




CDCl3)


947


215.7





276.9


960


261.5


964
185-187


966
oil

216


968
107-109


970

1.57 (s, 3H), 1.78-1.89 (m, 1H), 2.10-2.19 (m, 1H),




2.69 (ddd, J = 11.9, 10.8, 3.5 Hz, 1H), 2.83-2.91 (m,




1H), 7.15-7.35 (m, 5H) (solvent: CDCl3)


971

(DMSO) 1.49(3H, s), 1.73-1.86(1H, m), 2.16-




2.30(1H, m), 2.54-2.65(1H, m), 2.92-3.03(1H, m),




5.86(2H, s), 7.04-7.18(2H, m), 7.38-7.50(3H, m),




7.66-7.78(2H, m), 10.35(1H, s), 11.84(1H, s)


972

1.51 (3H, s) 1.91-1.95 (1H, m) 2.37 (3H, s) 3.00-3.05




(1H, m) 7.24 (1H s) 7.33 (2H, d J = 9.0 Hz) 7.66




(1H, s) 7.85 (2H, d J= 9.0 Hz) 8.03 (1H, s) 10.37 (1H,




s) (solvent: DMSO-d6)


974
amorphous

219


978
oil

222


984


255.7





318.4


990
126-129


994
130-131




















TABLE 155








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λ max: nm)



















998
amorphous


229, 290


1005
191-193


1006
88-90
2.42-2.47(2H, m), 2.80-2.86(2H, m), 7.78(6H, s),




6.83(4H, d, J = 8.9 Hz), 7.22(4H, d, J = 8.9 Hz)




(solvent: CDCl3)


1008
125-126


1010
90-91


1014
206-210


1020



216.9






245.1


1028
105-106


1034



212.2






286.4


1035
247-251



(dec.)


1037
amorphous


224, 272


1039
amorphous


217






249


1043
277-281


1044

(DMSO) 1.12(3H, s), 1.60(2H, d, J = 6.2 Hz), 1.73(2H,




d, J = 8.6 Hz), 2.65-2.90(2H, m), 2.93-3.13(2H, m),




5.55(1H, s), 7.34-7.52(3H, m), 7.68(1H, s), 7.79-




7.90(3H, m)


1052

1.75(s, 3H), 2.12-2.21(m, 1H), 2.40(s, 3H), 2.65-




2.73(m, 2H), 3.17-3.23(m, 1H), 7.37(d, J = 8.4 Hz,




2H), 7.40-7.44(m, 1H), 7.77(br s, 1H), 7.92-7.99(m,




5H), 8.47(br s, 1H), 8.70(d, J = 4.8 Hz, 1H), 10.37(s,




1H), 10.41(s, 1H) (solvent: CDCl3)


1055
169-170
1.56(3H, s), 1.78-1.89(1H, m), 2.04-2.15(1H, m),




2.68-2.79(1H, m), 2.86-2.95(1H, m), 4.32(2H, br),




6.94-7.02(4H, m), 7.05-7.12(1H, m), 7.25-7.37(4H,




m)(solvent: CDCl3)


1056



219


1059
262-267


1061



216


1062
136-137
1.53(3H, s), 1.76-1.88(1H, m), 2.03-2.13(1H, m),




2.63-2.73(1H, m), 2.85-2.94(1H, m), 4.35(2H, br),




7.23-7.32(4H, m) (solvent: CDCl3)


1064
84-85
1.52(3H, s), 1.73-1.89(1H, m), 1.97-2.07(1H, m),




2.64-2.81(1H, m), 2.82-2.91(1H, m), 2.87(3H, s),




3.77(3H, s), 4.10(1H, brs), 6.84(2H, d, J = 8.9 Hz),




7.28(2H, d, J = 8.6 Hz) (solvent: CDCl3)


1067
162-165


1068
132-134


230


1069
194-196


1074


324[M + 1]
200





248
207


1076
amorphous


217




















TABLE 156








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λ max: nm)







1084
146-149





1087



311.2


1088
amorphous
1.55 (3H, s), 1.83 (1H, ddd, J =

229




13.9, 10.5, 3.7), 2.09 (1H, ddd,

318




J = 13.9, 6.6, 3.6), 2.67 (1H,






ddd, J = 12.3, 10.5, 3.6), 2.88






(1H, ddd, J = 12.3, 6.6, 3.7),






4.48 (2H, d, J = 6.0), 4.91 (1H,






br), 6.33 (1H, dd, J = 8.8, 0.8),






7.19 (1H, d, J = 7.3, 7.23-7.30






(2H, m), 7.35 (1H, dd, J = 8.8,






2.8), 8.05 (1H, dd, J = 2.8, 0.8)






(solvent: CDCl3)




1094



216, 322


1100
278 (dec.)





1107
oil
1.58 (3H, s), 1.90 (1H, ddd, J =

226




13.9, 10.1, 3.7), 2.14 (1H, ddd,

284




J = 13.9 6.8, 3.6), 2.69 (1H, ddd,






J = 12.2, 10.1, 3.6), 2.94 (1H,






ddd, J = 12.2, 6.8, 3.7), 3.81 (3H,






s), 4.62 (2H, s), 6.90 (2H, d, J =






8.8), 7.30 (2H, d, J = 8.8), 7.43






(1H, t, J = 7.4), 7.57 (1H, ddd, J =






7.4, 1.6, 1.2), 7.81 (1H, ddd, J =






7.6, 1.6, 1.2), 7.95 (1H, t, J = 1.6)






(solvent: CDCl3)




1109
134-140





1110
109-110





1111
118-119





1114
121-124





1115
167-170
1.63 (s, 3H), 1.93 (ddd, J = 14.0,






10.4, 4.0 Hz, 1H), 2.24 (ddd, J =






14.0, 6.4, 3.6 Hz, 1H), 2.81 (ddd,






J = 12.4, 10.4, 3.6 Hz, 1H), 2.96






(ddd, J = 12.4, 6.4, 4.0 Hz, 1H),






4.49 (br, 2H), 7.19 (ddd, J = 8.0,






2.0, 0.8 Hz, 1H), 7.42 (t, J = 8.0






Hz, 1H), 7.74 (t, J = 2.0 Hz, 1H),






7.84 (ddd, J = 8.0, 2.0, 0.8 Hz,






1H), 7.88-7.95 (m, 2H), 8.22-






8.26 (m, 2H), 9.80 (s, 1H), 9.89






(s, 1H) (solvent: CDCl3)




1116
oil


220, 255,






307


1119
153-157





1120
213-214





1124
169-172


225


1125
195-198


222






256






289


1131
189-191





1132
175-180






(dec)





1133
amorphous


219, 292


1135
255-260






(dec.)





1139
140-141





1140
oil


218


1142
182-186






(dec.)




















TABLE 157








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λ max: nm)



















1147



214.5






275.7


1150



221.6






279.3


1153
156-159





1160

1.64 (3H, s) 2.02-2.12 (1H, m)






2.54-2.63 (1H, m) 3.11-3.16






(1H, m) 7.28 (1H, s) 7.70 (1H,






dd J = 8.1 Hz) 7.85 (1H, s)






8.04-8.17 (2H, m) 8.28 (1H s)






8.74 (1H d J = 5.1 Hz) 10.81






(1H, s) 10.96 (1H, s) (solvent:






DMSO-d6)




1161
192-193





1166
290-295

444






[M + 3]






442






[M + 1]






368






366



1172

1.55 (3H, s) 1.94-2.03 (1H, m)






2.18-2.27 (1H, m) 2.32 (3H, s)






3.03-3.07 (1H, m) 7.05 (1H, s)






7.09 (1H, s) 7.14 (1H, s) 7.37






(2H, d J = 9.0 Hz) 7. 66 (2H, d






J = 9.0 Hz) 10.65 (1H, s) 10.70






(1H, s) (solvent: DMSO-d6)




1181
194-195
1.60 (3H, s), 1.81-1.93 (1H, m),






2.13-2.22 (1H, m), 2.70-2.81






(1H, m), 2.86-2.96 (1H, m),






4.36 (2H, br), 7.29-7.46 (5H,






m), 7.53-7.61 (4H, m) (solvent:






CDCl3)




1184
194-150





1185



225.1






280.4


1193
182-183





1194


344
209





[M + 1]
214





268
261


1197
250-255






(dec.)





1199
274-283





1205
oil


E 213, 273






Z 219, 275


1207
106-108





1211

1.77 (s, 3H), 1.98-2.54 (m, 2H),






2.81 (s, 3H), 2.81-2.94 (m, 2H),






3.93 (s, 3H), 7.03 (ddd, J = 8.0,






2.0, 0.8 Hz, 1H), 7.08 (d, J = 2.4






Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H),






7.63 (t, J = 2.0 Hz, 1H), 7.69






(ddd, J = 8.0, 2.0, 0.8 Hz, 1H),






8.14 (d, J = 2.4 Hz, 1H), 10.13






(s, 1H) (solvent: CDCl3)




1213


406
20





[M + 1]
209





330
213




















TABLE 158








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λ max: nm)







1215
amorphous
1.64 (s, 3H), 2.07 (ddd, J =






14.1, 11.5, 3.8 Hz, 1H), 2.17






(s, 3H), 2.39 (ddd, J = 14.1,






5.3, 3.5 Hz, 1H), 2.72 (ddd,






J = 12.6, 11.5, 3.5 Hz, 1H),






2.80 (ddd, J = 12.6, 5.3, 3.8






Hz, 1H), 3.21 (t, J = 8.9 Hz,






2H), 4.58 (t, J = 8.9 Hz, 2H),






6.76 (d, J = 8.4 Hz, 1H), 6.97-






7.02 (m, 1H), 7.08-7.11 (m,






1H) (solvent: CDCl3)




1216



305.3


1217
263-266





1221
amorphous


220, 253


1223



226.3






280.4


1224

δ in d11-DMSO: 1.46 (3H, s),






1.83-1.77 (1H, m), 2.18-2.15






(1H, m), 2.61-2.56 (1H, m),






2.99-295 (1H, m), 7.08 (1H, q,






J = 12.0, 8.4 Hz), 7.72-7.66






(2H, m), 7.79 (2H, d, J = 9.2)






9.67 (1H, s)




1228
oil


224


1230
232-234





1240



216.9






285.2


1241
194-195





1242

δ in d21-DMSO: 1.41 (3H, m),






1.75-1.68 (1H, m), 2.04-1.99






(1H, m), 2.61-2.56 (1H, m),






2.88 (4H, s), 5.75 (2H, brs),






7.07 (1H, d, J = 4.0 Hz), 7.25






(1H, t, J = 8.0 Hz), 7.72 (1H,






d, J = 8.0 Hz), 7.75 (1H, s),






7.83 (1H, brs), 7.96 (1H, s),






8.67 (1H, s), 9.96 (1H, s)




1243
amorphous
1.58 (3H, s), 2.00 (1H, ddd,

223




J = 14.3, 11.5, 3.1), 2.53

299




(1H, m), 2.56 (1H, m), 3.07






(1H, dt, J = 12.5, 3.1), 4.26






(2H, s), 6.47-6.56 (3H, m),






7.07-7.15 (1H, m), 7.12 (2H,






t, J = 8.8), 7.39 (2H, dd, J =






8.8, 5.6), 8.76 (2H, br)






(solvent: DMSO-d6)




1244
268-288
1.68 (s, 3H), 2.11 (ddd, J =

219




15.2, 12.0, 4.0 Hz, 1H), 2.57-

288




2.64 (m, 2H), 3.16 (dt, J =






12.0, 4.0 Hz, 1H), 7.13 (ddd,






J = 8.0, 2.0, 0.8 Hz, 1H), 7.46






(t, J = 8.0 Hz, 1H), 7.89 (t, J =






2.0 Hz, 1H), 7.97 (ddd, J = 8.0,






2.0, 0.8 Hz, 1H), 8.35 (d, J =






8.0 Hz, 1H), 8.52 (dd, J = 8.0,






2.4 Hz, 1H), 9.12 (d, J = 2.4






Hz, 1H), 10.68 (s, 1H), 10.92






(s, 1H) (solvent: DMSO-d6)




1245
oil


286


1247



211


1255



242.7


1257
amorphous


211


1258


352
228





[M + 1]
276






301


1261
179-180





1262
278-281




















TABLE 159








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λ max: nm)







1263

1H-NMR (δ in d6-DMSO):
387





1.41 (3H, s), 1.65-1.77 (1H,
[M + 1]





m), 1.95-2.07 (1H, m), 2.54-






2.63 (1H, m), 2.84-2.94 (1H,






m), 3.39-3.46 (2H, m), 3.53-






3.61 (2H, m), 4.83 (1H, t, J =






5.4 Hz), 5.79 (2H, bs), 7.07






(1H, d, J = 7.5 Hz), 7.25 (1H,






t, J = 7.8 Hz), 7.73 (1H, d, J =






7.8 Hz), 7.76 (1H, m), 7.87-






7.93 (1H, m), 8.02 (1H, d, J =






1.2 Hz), 8.63 (1H, d, J = 1.2






Hz), 9.97 (1H, s).




1264

1H-NMR (δ in d6-DMSO):
413





1.41 (3H, s), 1.65-1.77 (1H,
[M + 1]





m), 1.95-2.07 (1H, m), 2.53-






2.63 (1H, m), 2.84-2.95 (1H,






m), 3.73 (8H, s), 5.79 (2H, ,






bs) 7.09 (1H, d, J = 7.8 Hz),






7.26 (1H, t, J = 7.8 Hz), 7.72






(1H, d, J = 7.8 Hz), 7.75-7.78






(1H, m), 8.34 (1H, d, J = 1.2






Hz), 8.76 (1H, d, J = 1.2 Hz),






10.08 (1H, bs).




1265

1H-NMR (DMSO-d6) δ: 1.42






(3H, s), 1.70-1.76 (1H, m),






2.02-2.05 (1H, m), 2.56-2.59






(1H, m), 2.87-2.93 (2H, m),






7.07 (1H, d, J = 7.6 Hz), 7.23-






7.26 (3H, m), 7.72-7.74 (2H,






m), 7.93 (1H, s), 8.60 (1H, s),






9.99 (1H, s).




1266

1H-NMR (δ in d6-DMSO):
369





1.43 (3H, s), 1.70-1.81 (1H,
[M + 1]





m), 1.97-2.10 (1H, m), 2.55-






2.64 (1H, m), 2.89-2.95 (1H,






m), 5.84 (2H, bs), 7.17 (1H,






d, J = 7.8 Hz), 7.33 (1H, t, J =






7.8 Hz), 9.98 (1H, d, J = 1.2






Hz), 10.01 (1H, d, J = 1.2 Hz),






10.74 (1H, bs).




1267

1H-NMR (CDCl3) δ: 1.82-
338





1.91 (1H, m), 2.04 (3H, s),
[M + 1]





2.22 (1H, ddd, J = 13.8, 5.2,






3.6 Hz), 2.67 (1H, dt, J = 16.7,






5.8 Hz), 2.80 (1H, dt, J = 12.4,






4.7 Hz), 6.95 (2H, d, J = 8.1






Hz), 7.06 (2H, td, J = 7.8, 1.2






Hz), 7.18 (1H, td, J = 7.6, 1.1






Hz), 7.27 (1H, d, J = 1.7 Hz),






7.32 (1H, d, J = 7.9 Hz), 7.42-






7.44 (2H, m), 7.80 (1H, dd,






J = 8.0, 1.9 Hz).




1268

1H-NMR (CDCl3) δ: 1.62
327





(3H, s), 1.89 (1H, t, J = 12.3
[M + 1]





Hz), 2.27-2.30 (1H, m), 2.69-






2.76 (1H, m), 2.85-2.88 (1H,






m), 7.11 (1H, dd, J = 11.4, 7.7






Hz), 7.30-7.53 (2H, m), 7.63






(1H, s), 7.71 (1H, d, J = 6.9






Hz).




1269

1H-NMR (DMSO-d6) δ: 1.40






(3H, s), 1.70-1.73 (1H, m),






1.99-2.02 (1H, m), 2.57-2.60






(1H, m), 2.88-2.90 (1H, m),






3.29 (3H, s), 3.52 (4H, s), 5.75






(2H, brs), 7.07 (1H, d, J = 7.6






Hz), 7.25 (1H, t, J = 7.7 Hz),






7.72 (1H, d, J = 8.3 Hz), 7.75






(1H, s), 7.92 (1H, brs), 8.03






(1H, s), 8.64 (1H, s), 9.96






(1H, s).




1271

1H-NMR (δ in d6-DMSO):
397





1.41 (3H, s), 1.65-1.75 (1H,
[M + 1]





m), 1.99-2.06 (5H, m), 2.52-






2.61 (1H, m), 2.85-2.93 (1H,






m), 3.55 (4H, t, J = 6.6 Hz),






5.79 (2H, bs), 7.05 (1H, d, J =






7.8 Hz), 7.25 (1H, t, J = 7.8






Hz), 7.70-7.75 (1H, m), 7.73-






7.77 (1H, m), 7.97 (1H, d, J =






1.2 Hz), 8.72 (1H, d, J = 1.2






Hz), 10.00 (1H, s).




















TABLE 160








MS
UV


No.
mp (° C.)
1H-NMR(δ)
(m/z)
(λ max: nm)







1272

(CDCl3) 1.61 (3H, s), 1.85-1.96






(1H, m), 2.17-2.27 (1H, m), 2.69-






2.79 (1H, m), 2.87-2.97 (1H, m),






7.17 (1H, d, J = 8.1 Hz), 7.38






(1H, t, J = 8.1Hz), 7.48-7.74 (5H,






m), 8.40 (2H, d, J = 7.5 Hz)




1273

1H-NMR (CDCl3) δ: 1.58 (3H,
395





s), 1.89 (1H, t, J = 11.2 Hz), 2.27
[M + 1]





(1H, s), 2.75-2.82 (2H, m), 6.61






(1H, dd, J = 20.3, 8.4 Hz), 7.10






(1H, d, J = 7.2 Hz), 7.37 (1H, dd,






J = 15.0, 8.8 Hz), 7.90 (1H, d, J =






7.6 Hz), 8.10 (1H, d, J = 3.2 Hz),






9.37 (1H, d, J = 4.9 Hz), 9.69






(1H, s).




1274

1H-NMR (CDCl3) δ: 1.61 (3H,
327





s), 1.84-1.93 (1H, m), 2.30 (1H,
[M + 1]





t, J = 13.1 Hz), 2.77-2.86 (2H,






m), 6.64 (1H, dd, J = 20.6, 8.6






Hz), 7.13 (1H, d, J = 7.9 Hz),






7.38-7.43 (1H, m), 7.93 (1H, d,






J = 8.1 Hz), 8.13 (1H, s), 9.40






(1H, d, J = 4.9 Hz), 9.72 (1H, s).




1275

1H-NMR (DMSO-d6) δ: 1.40






(3H, s), 1.70-1.72 (1H, m), 2.01-






2.04 (1H, m), 2.18 (6H, s), 2.44






(2H, t, J = 6.3 Hz), 2.56-2.59






(1H, m), 2.86-2.92 (1H, m), 7.06






(1H, d, J = 7.6 Hz), 7.25 (1H, t,






J = 7.7 Hz), 7.71-7.73 (3H, m),






8.02 (1H, s), 8.64 (1H, s), 9.95






(1H, s).




1276

1H-NMR (DMSO-d6) δ: 1.70-






1.73 (1H, m), 1.99-2.02 (1H, m),






2.57-2.60 (1H, m), 2.88-2.91






(1H, m), 3.04 (3H, s), 3.43 (3H,






t, J = 6.3 Hz), 3.79-3.81 (2H,






m), 5.75 (3H, br s), 7.08 (1H, d,






J = 7.3 Hz), 7.26 (1H, t, J = 7.8






Hz), 7.72 (1H, d, J = 7.8 Hz),






7.76 (1H, s), 8.04 (1H, s), 8.09






(1H, br s), 8.70 (1H, s), 10.01






(1H, s).




1279

1H-NMR (CDCl3) δ: 1.73 (3H,
328





s), 2.04 (1H, dt, J = 18.2, 6.5
[M + 1]





Hz), 2.45 (1H, d, J = 13.6 Hz),






2.78 (2H, t, J = 11.8 Hz), 2.89






(2H, t, J = 11.5 Hz), 6.60 (1H, s),






6.99 (1H, d, J = 8.2 Hz), 7.34






(1H, t, J = 8.0 Hz), 7.48 (1H, s),






7.70 (1H, d, J = 8.2 Hz).




1280

1H-NMR (δ in d6-DMSO): 1.42
426





(3H, s), 1.68-1.82 (1H, m), 2.02-
[M + 1]





2.09 (1H, m), 2.23 (3H, s), 2.43






(4H, t, J = 5.1 Hz), 2.53-2.61






(1H, m), 2.87-2.95 (1H, m), 3.73






(4H, t, J = 5.1 Hz), 6.01 (2H, bs),






7.07 (1H, d, J = 7.8 Hz), 7.26






(1H, t, J = 7.8 Hz), 7.73 (1H, d,






J = 7.8 Hz), 7.73-7.78 (1H, m),






8.33 (1H, d, J = 1.2 Hz), 8.72






(1H, d, J = 1.2 Hz), 10.06 (1H, s).




1281

1H-NMR (δ in d6-DMSO): 1.40
427





(3H, s), 1.30-1.50 (2H, m), 1.69-
[M + 1]





1.76 (1H, m), 1.82-1.88 (2H, m),






2.01-2.07 (1H, m), 2.52-2.61






(1H, m), 2.86-2.94 (1H, m), 3.76-






3.83 (1H, m), 4.10-4.18 (2H, m),






4.82 (1H, d, J = 4.2 Hz), 5.91






(2H, bs), 7.07 (1H, d, J = 7.8 Hz),






7.26 (1H, t, J = 7.8 Hz), 7.70-






7.77 (2H, m), 8.33 (1H, d, J = 1.2






Hz), 8.70 (1H, d, J = 1.2 Hz),






10.02 (1H, s).

















TABLE 161






custom-character

MS(m/z)
















2
336[M + 1]


7
394[M + 1]


10
431[M + 3]



429[M + 1]


11
356[M + 1]


12
354[M + 1]


13
363[M + 3]



361[M + 1]


14
394[M + 1]


15
409[M + 1]


16
425[M + 1]


17
374[M + 1]


19
362[M + 3]



360[M + 1]


20
438[M + 1]


21
380[M + 3]



378[M + 1]


22
380[M + 3]



378[M + 1]


25
354[M + 1]


27
338[M + 1]


28
356[M + 1]


29
372[M + 1]


31
378[M + 1]


32
417[M + 1]


34
358[M + 1]


35
398[M + 3]



396[M + 1]


36
370[M + 1]


40
416[M + 1]



340


41
414[M + 1]


44
362[M + 3]



360[M + 1]


45
365[M + 1]


46
362[M + 1]


47
416[M + 3]



414[M + 1]


49
394[M + 3]



392[M + 1]


50
292[M + 1]


51
388[M + 1]


52
360[M + 1]



284


53
380[M + 1]


54
332[M + 1]


55
412[M + 3]



410[M + 1]


56
397[M + 1]



395[M + 1]


59
412[M + 1]


60
422[M + 1]



420[M + 1]


61
394[M + 1]


63
366[M + 1]


64
441[M + 1]



365


65
384[M + 1]


66
398[M + 1]


67
386[M + 1]



310


68
376[M + 1]


70
372[M + 1]


72
330[M + 1]


74
322[M + 1]


75
412[M + 1]


76
363[M + 3]



361[M + 1]


79
310[M + 1]


81
386[M + 1]


82
306[M + 1]


83
336[M + 1]


84
380[M + 1]


87
415[M + 1]


88
426[M + 1]


89
370[M + 1]


90
354[M + 1]


92
417[M + 1]


93
407[M + 1]


94
350[M + 1]


95
406[M + 3]



404[M + 1]


98
398[M + 3]



396[M + 1]


100
332[M + 1]


102
424[M + 3]



422[M + 1]


103
444[M + 1]


105
424[M + 1]



348


106
490[M + 1]



414


107
414[M + 3]



412[M + 1]


108
332[M + 1]


109
412[M + 1]


110
404[M + 1]


111
469[M + 1]



393


112
377[M + 1]


116
408[M + 1]


117
413[M + 1]


118
372[M + 1]


119
424[M + 1]


122
338[M + 1]


124
471[M + 1]


131
412[M + 3]



140[M + 1]


133
404[M + 1]


135
416[M + 1]


136
380[M + 1]


137
327[M + 1]


138
394[M + 1]


140
456[M + 1]


142
446[M + 1]


143
399[M + 1]


144
432[M + 1]


145
394[M + 3]



392[M + 1]


146
433[M + 3]



431[M + 1]


147
324[M + 1]


150
418[M + 1]


151
458[M + 3]



456[M + 1]


152
371[M + 1]


153
398[M + 1]


154
401[M + 1]


155
322[M + 1]


156
332[M + 3]



330[M + 1]


158
394[M + 1]



















TABLE 162









160
427[M + 1]



162
416[M + 3]




414[M + 1]



167
392[M + 3]




390[M + 1]



168
380[M + 3]




378[M + 1]



169
346[M + 1]



170
356[M + 1]



171
334[M + 1]



172
376[M + 3]




374[M + 1]



173
424[M + 3]




422[M + 1]



174
369[M + 1]



175
410[M + 1]



177
357[M + 1]



179
334[M + 1]



180
426[M + 1]



182
396[M + 3]




394[M + 1]



183
372[M + 1]



184
346[M + 1]



185
330[M + 1]



186
393[M + 3]




391[M + 1]



187
374[M + 1]



188
423[M + 1]



190
278[M + 1]



191
448[M + 1]



192
436[M + 3]




434[M + 1]



194
384[M + 1]



195
369[M + 1]



197
382[M + 1]



198
355[M + 1]



199
361[M + 1]



200
356[M + 1]




280



201
452[M + 1]



203
397[M + 1]



205
427[M + 1]



206
386[M + 1]




310



207
384[M + 1]



208
386[M + 3]




384[M + 1]



209
371[M + 1]



210
366[M + 1]



211
442[M + 1]




366



212
345[M + 1]



215
425[M + 3]




423[M + 1]



217
362[M + 1]



218
322[M + 1]



219
347[M + 1]



221
444[M + 1]



222
329[M + 1]



223
413[M + 1]



225
402[M + 1]



226
390[M + 1]



228
383[M + 1]



229
366[M + 1]



230
368[M + 1]



231
336[M + 1]



234
376[M + 1]



236
392[M + 1]



237
348[M + 1]



239
384[M + 1]



240
341[M + 1]



242
446[M + 1]



245
374[M + 1]



246
390[M + 1]




314



247
374[M + 1]



248
370[M + 1]



249
336[M + 1]



250
366[M + 1]



252
401[M + 1]



253
397[M + 1]



254
434[M + 1]



257
321[M + 1]



258
398[M + 1]



260
440[M + 1]



261
308[M + 1]



262
466[M + 3]




464[M + 1]



264
336[M + 1]



265
435[M + 1]



266
432[M + 3]




430[M + 1]



269
372[M + 1]




296



270
338[M + 1]



272
349[M + 1]



273
406[M + 3]




404[M + 1]



274
380[M + 1]



276
398[M + 3]




396[M + 1]



278
404[M + 1]



280
433[M + 3]




431[M + 1]



283
322[M + 1]



285
340[M + 1]



286
433[M + 3]




431[M + 1]



287
440[M + 1]



288
354[M + 1]



289
341[M + 1]



290
363[M + 3]




361[M + 1]



291
317[M + 1]



292
426[M + 1]



294
424[M + 3]




422[M + 1]



295
394[M + 3]




392[M + 1]



296
389[M + 1]



297
448[M + 3]




446[M + 1]



298
363[M + 3]




361[M + 1]



300
356[M + 1]



303
366[M + 1]



304
402[M + 1]



305
407[M + 3]




405[M + 1]



310
411[M + 1]




















TABLE 163









311
388[M + 1]



312
428[M + 1]



313
453[M + 1]



314
368[M + 1]



315
322[M + 1]



316
386[M + 1]



317
328[M + 1]



318
362[M + 1]



320
327[M + 1]



321
392[M + 1]



322
404[M + 1]




328



323
394[M + 1]



324
384[M + 1]



325
399[M + 1]



326
440[M + 1]




364



327
314[M + 1]



328
384[M + 1]



331
360[M + 1]



334
412[M + 1]



335
316[M + 1]



336
356[M + 1]



337
428[M + 1]



338
466[M + 3]




464[M + 1]



340
344[M + 1]



343
399[M + 1]



345
412[M + 1]



346
384[M + 1]



347
430[M + 1]



348
341[M + 1]



349
335[M + 1]



350
412[M + 1]



351
322[M + 1]



352
327[M + 1]



355
397[M + 1]



362
366[M + 1]



363
376[M + 3]




374[M + 1]



365
366[M + 1]



366
409[M + 1]



368
384[M + 1]



369
396[M + 3]




394[M + 1]



371
398[M + 3]




396[M + 1]



372
348[M + 1]



373
358[M + 1]



374
364[M + 1]



376
412[M + 1]



377
425[M + 1]



378
380[M + 3]




378[M + 1]



379
377[M + 1]



381
409[M + 1]



382
340[M + 1]



384
388[M + 1]



385
384[M + 1]



386
352[M + 1]



387
376[M + 1]



388
440[M + 1]



390
407[M + 1]




331[M + 1]



391
362[M + 1]



392
390[M + 1]



394
363[M + 3]




361[M + 1]



397
460[M + 3]




458[M + 1]



398
408[M + 1]



399
372[M + 1]



400
374[M + 1]



402
372[M + 1]




296



403
436[M + 1]



404
376[M + 3]




374[M + 1]



407
449[M + 3]




447[M + 1]



412
410[M + 1]



414
331[M + 1]



416
282[M + 1]



418
322[M + 1]



419
420[M + 3]




418[M + 1]



420
332[M + 1]



421
388[M + 3]




386[M + 1]



423
412[M + 3]




410[M + 1]



424
370[M + 1]



425
380[M + 3]




378[M + 1]



428
350[M + 1]



431
391[M + 1]



433
454[M + 3]




452[M + 1]



434
448[M + 3]




446[M + 1]



435
431[M + 3]




429[M + 1]



437
382[M + 1]



438
400[M + 1]




324



439
380[M + 1]



440
358[M + 1]



442
394[M + 1]




318



447
370[M + 1]



449
336[M + 1]



450
455[M + 1]



451
390[M + 3]




388[M + 1]



453
358[M + 1]



454
407[M + 1]




331



455
296[M + 1]



458
382[M + 1]



459
392[M + 1]



460
431[M + 1]



461
369[M + 1]



462
381[M + 3]




379[M + 1]



463
440[M + 3]




438[M + 1]



464
338[M + 1]




262



467
387[M + 1]



468
439[M + 1]




363



469
360[M + 1]



471
363[M + 3]




361[M + 1]




















TABLE 164









472
376[M + 1]



473
414[M + 1]



474
334[M + 1]



475
317[M + 1]



476
324[M + 1]



477
437[M + 1]



478
379[M + 1]



479
394[M + 1]



480
370[M + 1]



481
431[M + 1]



484
314[M + 3]




312[M + 1]



485
448[M + 1]



486
350[M + 1]



487
338[M + 1]



488
306[M + 1]



489
335[M + 1]



492
380[M + 1]



495
334[M + 1]



499
370[M + 1]



503
412[M + 1]



505
363[M + 3]




361[M + 1]



506
386[M + 1]



507
400[M + 1]



508
372[M + 1]



509
414[M + 1]




338



510
374[M + 1]



512
320[M + 1]



513
420[M + 3]




418[M + 1]



514
372[M + 1]



517
369[M + 1]



518
376[M + 1]



519
411[M + 1]



520
395[M + 1]



521
372[M + 1]



522
390[M + 1]



523
414[M + 1]



524
341[M + 1]



526
426[M + 1]



527
381[M + 3]




379[M + 1]



529
320[M + 1]



530
390[M + 3]




388[M + 1]



531
410[M + 1]



535
356[M + 1]



536
372[M + 1]



537
377[M + 1]



538
406[M + 1]



539
411[M + 1]



540
354[M + 1]



541
342[M + 1]



542
361[M + 1]



543
344[M + 1]



544
412[M + 1]



545
366[M + 1]



546
383[M + 1]



547
430[M + 1]




428[M + 1]



548
427[M + 1]



550
340[M + 1]



552
400[M + 1]



553
304[M + 1]



555
383[M + 1]



557
304[M + 1]



562
374[M + 1]



563
366[M + 1]



564
395[M + 1]



565
336[M + 1]



566
427[M + 1]




351



568
362[M + 3]




360[M + 1]



569
356[M + 1]



571
356[M + 1]



572
473[M + 3]




471[M + 1]



574
381[M + 3]




379[M + 1]



575
360[M + 1]



576
384[M + 1]



578
344[M + 1]



579
370[M + 1]



580
347[M + 1]



581
409[M + 1]



582
334[M + 1]



583
392[M + 1]



585
358[M + 1]



587
348[M + 1]



589
407[M + 3]




405[M + 1]



590
410[M + 3]




408[M + 1]



591
460[M + 1]




384



592
380[M + 3]




378[M + 1]



594
390[M + 1]



598
394[M + 1]



599
377[M + 1]



603
398[M + 3]




396[M + 1]



604
395[M + 1]



606
358[M + 1]



607
362[M + 1]



609
413[M + 1]



610
409[M + 1]



612
385[M + 1]



614
322[M + 1]



615
441[M + 1]



616
346[M + 3]




344[M + 1]




270




268



617
406[M + 3]




404[M + 1]



619
404[M + 1]



621
366[M + 1]



623
422[M + 1]




346



624
370[M + 1]



626
402[M + 1]



627
398[M + 3]




396[M + 1]



628
413[M + 1]



631
370[M + 1]



632
414[M + 3]




412[M + 1]




















TABLE 165









633
322[M + 1]



635
420[M + 1]



638
408[M + 1]



639
386[M + 1]




310



640
370[M + 1]



641
437[M + 1]



642
380[M + 1]



646
395[M + 1]



647
334[M + 1]



648
403[M + 1]



650
370[M + 1]



655
362[M + 1]



656
308[M + 1]



658
430[M + 1]



659
340[M + 3]




388[M + 1]



662
330[M + 1]



663
334[M + 1]



665
316[M + 1]



666
345[M + 1]



668
430[M + 1]



669
377[M + 1]



670
368[M + 3]




366[M + 1]



671
334[M + 1]



672
442[M + 1]



674
340[M + 1]



675
306[M + 1]



676
392[M + 1]



678
386[M + 1]



679
426[M + 1]



682
414[M + 3]




412[M + 1]



684
384[M + 1]



685
389[M + 1]



686
446[M + 1]



688
414[M + 1]



689
306[M + 1]



690
348[M + 1]



691
452[M + 1]



693
371[M + 1]



694
448[M + 1]



695
364[M + 1]



696
392[M + 3]




390[M + 1]



697
358[M + 1]



699
426[M + 1]



703
451[M + 3]




449[M + 1]



704
342[M + 1]



705
372[M + 1]



706
368[M + 1]



708
383[M + 1]



710
396[M + 3]




394[M + 1]



711
351[M + 1]



712
376[M + 1]



713
398[M + 3]




396[M + 1]



714
366[M + 1]



715
454[M + 1]



716
381[M + 3]




379[M + 1]



718
386[M + 1]



721
322[M + 1]



722
377[M + 1]



723
440[M + 1]




364



724
457[M + 3]




455[M + 1]



726
362[M + 1]



727
366[M + 1]



734
370[M + 1]



736
338[M + 1]



741
404[M + 1]



742
351[M + 1]



745
386[M + 1]



746
370[M + 1]




294



747
336[M + 1]



748
381[M + 3]




379[M + 1]



749
416[M + 1]




340



750
437[M + 1]



751
362[M + 1]



752
352[M + 3]




350[M + 1]



754
366[M + 1]



755
354[M + 1]



757
425[M + 1]



759
346[M + 1]



760
344[M + 1]



761
402[M + 1]



762
251[M + 1]



763
355[M + 1]



764
362[M + 3]




360[M + 1]



765
392[M + 3]




390[M + 1]



769
366[M + 1]



770
372[M + 1]



772
292[M + 1]



773
424[M + 1]



775
396[M + 3]




394[M + 1]



776
388[M + 1]



777
383[M + 1]



778
404[M + 1]



779
398[M + 1]



780
368[M + 1]



782
368[M + 1]



784
369[M + 1]



785
431[M + 3]




429[M + 1]



787
473[M + 1]




397



788
375[M + 1]



789
467[M + 1]



794
327[M + 1]



795
384[M + 1]



796
370[M + 1]



798
370[M + 1]



801
404[M + 3]




402[M + 1]



805
376[M + 1]



806
411[M + 1]



807
356[M + 1]




















TABLE 166









808
354[M + 1]



809
400[M + 1]




324



812
425[M + 1]



815
386[M + 1]



817
377[M + 1]



818
398[M + 1]



819
352[M + 1]



821
336[M + 1]



823
362[M + 1]



824
363[M + 1]




287



825
420[M + 1]



826
430[M + 1]



828
377[M + 1]



829
437[M + 1]



830
370[M + 1]



831
327[M + 1]



837
324[M + 1]




248



838
377[M + 1]



839
376[M + 3]




374[M + 1]



841
363[M + 3]




361[M + 1]



842
386[M + 1]



843
466[M + 3]




464[M + 1]



844
381[M + 1]



845
324[M + 1]




248



846
358[M + 1]



847
373[M + 1]



852
489[M + 1]



853
376[M + 1]



854
448[M + 1]



856
420[M + 1]




344



857
341[M + 1]



858
383[M + 1]



860
370[M + 1]



861
334[M + 3]




332[M + 1]



862
358[M + 1]



864
392[M + 1]



865
398[M + 3]




396[M + 1]



867
399[M + 1]



868
430[M + 1]



870
362[M + 3]




360[M + 1]



872
428[M + 1]



873
351[M + 1]



874
341[M + 1]



877
399[M + 1]




323



879
332[M + 1]



880
363[M + 3]




361[M + 1]



882
426[M + 1]



883
360[M + 1]



884
320[M + 1]



885
361[M + 1]



886
380[M + 1]



888
292[M + 1]



889
451[M + 1]




449[M + 1]



890
400[M + 1]



891
292[M + 1]



894
347[M + 1]



898
412[M + 3]




410[M + 1]



899
397[M + 1]



901
411[M + 1]



902
377[M + 1]



903
370[M + 1]



904
422[M + 1]



905
392[M + 1]



907
308[M + 1]



909
393[M + 1]



911
415[M + 1]



912
383[M + 1]



913
413[M + 1]



914
400[M + 1]



915
389[M + 1]




313



917
358[M + 1]



918
433[M + 3]




431[M + 1]



919
354[M + 1]



920
381[M + 3]




379[M + 1]



921
389[M + 1]



922
413[M + 1]




337



923
437[M + 1]



924
376[M + 1]



925
390[M + 1]



927
355[M + 1]



929
370[M + 1]



932
380[M + 3]




378[M + 1]



934
507[M + 1]



937
388[M + 1]



938
366[M + 1]



940
388[M + 1]



942
378[M + 1]



943
413[M + 1]



945
372[M + 1]



948
462[M + 1]



949
363[M + 1]



950
368[M + 1]



951
412[M + 1]



952
378[M + 1]



953
318[M + 1]



954
363[M + 3]




361[M + 1]



955
406[M + 3]




404[M + 1]



956
292[M + 1]



957
398[M + 3]




396[M + 1]



958
310[M + 1]



959
406[M + 3]




404[M + 1]



961
362[M + 3]




360[M + 1]



962
327[M + 1]



963
392[M + 1]


















TABLE 167







965
438[M + 3]



436[M + 1]


967
425[M + 3]



423[M + 1]


969
413[M + 1]


973
386[M + 1]


975
407[M + 3]



405[M + 1]


976
358[M + 1]


977
369[M + 1]


979
395[M + 1]


980
402[M + 1]


981
392[M + 3]



390[M + 1]


982
366[M + 1]


983
379[M + 1]


985
408[M + 1]


986
440[M + 3]



438[M + 1]


987
358[M + 1]


988
294[M + 1]


989
332[M + 1]


991
356[M + 1]


992
477[M + 1]


993
416[M + 3]



414[M + 1]


995
425[M + 3]



423[M + 1]


996
416[M + 3]



414[M + 1]


997
363[M + 3]



361[M + 1]


999
336[M + 1]


1000
388[M + 1]



312


1001
374[M + 1]


1002
400[M + 1]


1003
394[M + 1]


1004
397[M + 1]


1007
448[M + 1]



372


1009
366[M + 1]


1011
419[M + 1]


1012
316[M + 1]


1013
431[M + 1]


1015
372[M + 1]


1016
470[M + 1]


1017
413[M + 1]


1018
386[M + 1]


1019
433[M + 3]



431[M + 1]


1021
464[M + 1]


1022
384[M + 1]


1023
407[M + 3]



405[M + 1]


1024
346[M + 1]


1025
455[M + 3]



453[M + 1]


1026
425[M + 1]


1027
444[M + 1]


1029
410[M + 1]


1030
413[M + 1]


1031
404[M + 1]


1032
472[M + 1]



396


1033
377[M + 1]


1036
350[M + 1]


1038
364[M + 1]


1040
317[M + 1]


1041
407[M + 1]


1042
382[M + 1]


1045
425[M + 3]



423[M + 1]


1046
366[M + 1]


1047
390[M + 1]


1048
440[M + 1]


1049
396[M + 1]


1050
400[M + 1]


1051
315[M + 1]


1053
363[M + 3]



361[M + 1]


1054
360[M + 1]


1057
427[M + 1]


1058
360[M + 1]


1060
381[M + 3]



379[M + 1]


1063
395[M + 1]


1065
451[M + 1]



449[M + 1]


1066
485[M + 1]


1070
380[M + 3]



378[M + 1]


1071
345[M + 1]


1072
381[M + 3]



379[M + 1]


1073
397[M + 1]


1075
342[M + 1]


1077
344[M + 1]


1078
370[M + 1]


1079
387[M + 1]


1080
370[M + 1]



294


1081
355[M + 1]


1082
398[M + 3]



396[M + 1]


1083
318[M + 1]


1085
439[M + 3]



437[M + 1]


1086
428[M + 1]


1089
399[M + 1]


1090
398[M + 1]


1091
434[M + 3]



432[M + 1]


1092
398[M + 3]



396[M + 1]


1093
401[M + 1]


1095
400[M + 1]


1096
409[M + 1]


1097
384[M + 1]


1098
395[M + 1]


1099
511[M + 4]



510[M + 3]



509[M + 2]



508[M + 1]


1101
350[M + 1]


1102
442[M + 1]


1103
397[M + 1]


1105
372[M + 1]


1106
346[M + 1]


1108
383[M + 1]


1112
445[M + 1]



















TABLE 168









1113
358[M + 1]



1117
394[M + 1]



1118
336[M + 1]




260



1121
392[M + 3]




390[M + 1]



1122
322[M + 1]



1123
316[M + 1]



1126
386[M + 1]



1127
368[M + 1]



1128
416[M + 3]




414[M + 1]



1129
341[M + 1]



1130
432[M + 1]



1134
396[M + 1]



1136
396[M + 3]




394[M + 1]



1137
292[M + 1]



1138
413[M + 1]



1141
344[M + 1]



1143
384[M + 1]



1144
446[M + 1]



1145
390[M + 1]




314



1146
405[M + 1]



1148
380[M + 1]




304



1149
364[M + 1]



1151
442[M + 1]



1152
365[M + 1]



1154
318[M + 1]



1155
427[M + 1]



1156
368[M + 1]



1157
366[M + 1]



1158
415[M + 3]




413[M + 1]



1159
414[M + 3]




412[M + 1]



1162
370[M + 1]




294



1163
416[M + 3]




414[M + 1]



1164
396[M + 1]




320



1165
361[M + 1]



1167
424[M + 1]




348



1168
428[M + 1]



1169
422[M + 1]



1170
411[M + 1]



1171
390[M + 3]




388[M + 1]



1173
361[M + 1]



1174
342[M + 1]



1175
430[M + 1]



1176
345[M + 1]



1177
376[M + 3]




374[M + 1]



1178
351[M + 1]



1179
344[M + 1]



1180
398[M + 3]




396[M + 1]



1182
426[M + 1]



1183
376[M + 3]




374[M + 1]



1186
374[M + 1]




298



1187
427[M + 1]



1188
350[M + 1]



1189
408[M + 3]




406[M + 1]



1190
386[M + 1]



1191
377[M + 1]



1192
335[M + 1]



1195
412[M + 3]




410[M + 1]



1196
380[M + 1]



1198
398[M + 1]




322



1200
352[M + 1]



1201
424[M + 3]




422[M + 1]



1202
369[M + 1]



1203
420[M + 1]



1204
398[M + 3]




396[M + 1]



1206
416[M + 1]



1208
344[M + 1]



1209
422[M + 1]



1210
408[M + 1]



1212
391[M + 1]



1214
360[M + 1]



1218
372[M + 1]



1219
470[M + 1]



1220
264[M + 1]



1222
362[M + 3]




360[M + 1]



1225
413[M + 1]



1226
474[M + 1]



1227
425[M + 1]



1229
455[M + 3]




453[M + 1]



1231
413[M + 1]



1232
340[M + 1]



1233
394[M + 1]



1234
416[M + 3]




414[M + 1]



1235
427[M + 1]



1236
348[M + 1]




272



1237
353[M + 1]



1238
419[M + 1]



1239
416[M + 3]




414[M + 1]



1246
474[M + 1]



1248
414[M + 1]



1249
336[M + 1]



1250
352[M + 1]



1251
393[M + 1]



1252
357[M + 1]



1253
430[M + 1]



1254
412[M + 1]



1256
333[M + 1]



1259
356[M + 1]



1260
348[M + 1]



1270
374[M + 1]



1282
362[M + 1]












embedded image


embedded image


In above structural formula (Ia) to (Ih), the combination of NR2aR2b, R3c, R3d, R5 and G (NR2aR2b, R3c, R3d, R5, G) are the following compounds.


(NHMe,H,H,Me,CONHPh),(NHMe,H,H,Me,CONH-3-pyridyl),(NHMe,H,H,Me,NHC OPh),(NHMe,H,H,Me,NHCO-2-furyl),(NHMe,H, H,Me,NHCONHPh),(NHMe,H,H, Me,NHCOCONHPh),(NHMe,H,H,Et,CONHPh),(NHMe,H,H,Et,CONH-3-pyridyl),( NHMe,H,H,Et,NHCOPh), (NHMe,H,H,Et,NHCO-2-furyl),(NHMe,H,H,Et,NHCON HPh),(NHMe,H,H,Et,NHCOCONHPh),(NHMe,H,H,CH2OH,CONHPh), (NHMe,H, H,CH2OH,CONH-3-pyridyl),(NHMe,H.H,CH2OH,NHCOPh),(NHMe,H, H,CH2OH, NHCO-2-furyl),(NHMe,H,H,CH2OH,NHCONHPh),(NHMe,H,H,CH2OH,NHCOCO NHPh),(NHMe,H,Me,Me,CONHPh),(NHMe,H,Me,Me,CONH-3-pyridyl),(NHMe,H, Me,Me,NHCOPh),(NHMe,H,Me,Me,NHCO-2-furyl),(NHMe,H,Me,Me,NHCONHPh) ,(NHMe,H,Me,Me,NHCOCONHPh),(NHMe,H,Me,Et,CONHP),(NHTMe,H,Me,Et,C ONH-3-pyridy),(NHMe,H,Me,Et,NHCOPh),(NHMe,H,Me,Et,NHCO-2-furyl),(NHM e,H,Me,Et,NHCONHPh),(NHMe, H,Me,Et,NHCOCONHPh),(NHMe,H,Me,CH2OH, CONHPh),(NHMe,H,Me,CH2OH,CONH-3-pyridyl),(NHMe,H,Me,CH2OH,NHCOP h), (NHMe,H,Me,CH2OH,NHCO-2-furyl),(NHMe,H,Me,CH2OH,NHCONHPh),(NH Me,H,Me,CH2OH,NHCOCONHPh),(NHMe,H,Ph,Me,CONHPh),(NHMe,H,Ph,Me, CONH-3-pyridyl),(NHMe,H,Ph,Me,NHCOPh),(NHMe,H,Ph,Me,NHCO-2-furyl),(N HMe,H,Ph,Me,NHCONHPh),(NHMe,H,Ph,Me,NHCOCONHPh),(NHMe,H,Ph,Et,C ONHPh),(NHMe,H,Ph,Et,CONH-3-pyridyl),(NHMe,H,Ph,Et,NHCOPh),(NHMe,H,P h,Et,NHCO-2-furyl),(NHMe,H,Ph,Et,NHCONHPh),(NHMe,H,Ph,Et,NHCOCONH Ph),(NHMe,H,Ph,CH2OH,CONHPh),(NHMe,H,Ph,CH2OH,CONH-3-pyridyl), (NH Me,H,Ph,CH2OH,NHCOPh),(NHMe,H,Ph,CH2OH,NHCO-2-furyl),(NHMe,H,Ph,C H2OH,NHCONHPh),(NHMe,H,Ph,CH2OH,NHCOCONHP),(NHMe,H,OH,Me,CO NHPh),(NHMe,H,OH,Me,CONH-3-pyridyl),(NHMe,H,OH,Me,NHCOPh),(NHMe,H, OH,Me,NHCO-2-furyl),(NHMe,H,OH,Me,NHCONHPh),(NHMe,H,OH,Me,NHCOC ONHPh),(NHMe,H,OH,Et,CONHPh),(NHMe,H,OH,Et,CONH-3-pyridyl),(NHMe,H, OH,Et, NHCOPh),(NHTMe,H,OH,Et,NHCO-2-furyl),(NHMe,H,OH,Et,NHCONHPh), (NHMe,H,OH,Et,NHCOCONHPh),(NHMe,H,OH,CH2OH,CONHPh),(NHMe,H,OH ,CH2OH,CONH-3-pyridyl),(NHMe,H,OH,CH2OH,NHCOPh),(NHMe,H,OH,CH2O H,NHCO-2-furyl),(NHMe,H,OH,CH2OH,NHCONHPh),(NHMe,H,OH,CH2OH,NH COCONHPh),(NHMe,Me,H,Me,CONHPh),(NHMe,Me,H,Me,CONH-3-pyridyl),(NH Me,Me,H,Me,NHCOPh),(NHMe,Me,H,Me,NHCO-2-furyl),(NHMe,Me,H,Me,NHCO NHPh),(NHMe,Me,H,Me,NHCOCONHPh),(NHMe,Me,H,Et,CONHPh),(NHMe,Me, H,Et,CONH-3-pyridyl),(NHMe,Me,H,Et,NHCOPh),(NHMe,Me,H,Et,NHCO-2-furyl) ,(NHMe,Me,H,Et,NHCONHPh),(NHMe,Me,H,Et,NHCOCONHPh),(NHMe,Me,H,C H2OH,CONHPh),(NHMe,Me,H,CH2OH,CONH-3-pyridyl),(NHMe,Me,H,CH2OH,N HCOPh),(NHMe,Me,H,CH2OH,NHCO-2-furyl),(NHMe,Me,H,CH2OH,NHCONHPh ),(NHMe,Me,H,CH2OH,NHCOCONHPh),(NHMe,Me,Me,Me, CONHPh),(NHMe,Me ,Me,Me,CONH-3-pyridyl),(NHMe,Me,Me,Me,NHCOPh),(NHMe,Me,Me,Me,NHCO-2-furyl),(NHMe,Me,Me,Me,NHCONHPh),(NHMe,Me,Me,Me,NHCOCONHPh),(NH Me,Me,Me,Et,CONHPh),(NHMe,Me,Me,Et,CONH-3-pyridyl),(NHMe,Me,Me,Et,NH COPh),(NHMe,Me,Me,Et,NHCO-2-furyl),(NHMe,Me,Me,Et,NHCONHPh),(NHMe, Me,Me,Et, NHCOCONHPh),(NHMe,Me,Me,CH2OH,CONHPh),(NHMe,Me,Me,CH2OH,CONH-3-pyridyl),(NHMe,Me,Me,CH2OH,NHCOPh),(NHMe,Me,Me,CH2OH,N HCO-2-furyl),(NHMe,Me,Me,CH2OH,NHCONHPh),(NHMe,Me,Me,CH2OH,NHCO CONHPh),(NHMe,Me,Ph,Me,CONHPh),(NHMe,Me,Ph,Me,CONH-3-pyridyl), (NH Me,Me,Ph,Me,NHCOPh),(NHMe,Me,Ph,Me,NHCO-2-furyl),(NHMe,Me,Ph,Me,NH CONHPh),(NHMe,Me,Ph,Me,NHCOCONHPh),(NHMe,Me,Ph,Et,CONHPh),(NHM e,Me,Ph,Et,CONH-3-pyridyl),(NHMe,Me,Ph,Et,NHCOPh),(NHMe,Me,Ph,Et,NHCO -2-furyl),(NHMe,Me,Ph,Et,NHCONHPh),(NHMe,Me,Ph,Et,NHCOCONHPh),(NHM e,Me,Ph,CH2OH,CONHPh),(NHMe,Me,Ph,CH2OH,CONH-3-pyridyl),(NHMe,Me,P h,CH2OH,NHCOPh),(NHMe,Me,Ph,CH2OH,NHCO-2-furyl),(NHMe,Me,Ph,CH2O H,NHCONHPh),(NHMe,Me,Ph,CH2OH,NHCOCONHP),(NHMe,Me,OH,Me,CON HPh),(NHMe,Me,OH,Me,CONH-3-pyridyl),(NHMe,Me,OH,Me,NHCOPh),(NHMe, Me,OH,Me,NHCO-2-furyl),(NHMe,Me,OH,Me,NHCONHPh),(NHMe,Me,OH,Me,N HCOCONHPh),(NHMe,Me,OH,Et,CONHPh),(NHMe,Me,OH,Et,CONH-3-pyridyl),( NHMe,Me,OH,Et,NHCOPh),(NHMe,Me,OH,Et,NHCO-2-furyl),(NHMe,Me,OH,Et, NHCONHPh),(NHMe,Me,OH,Et,NHCOCONHPh),(NHMe,Me,OH,CH2OH,CONH Ph),(NHMe,Me,OH,CH2OH,CONH-3-pyridyl),(NHMe,Me,OH,CH2OH,NHCOPh),( NHMe,Me,OH,CH2OH,NHCO-2-furyl),(NHMe,Me,OH,CH2OH,NHCONHPh),(NH Me,Me,OH,CH2OH,NHCOCONHPh),(NHMe,Ph,H,Me,CONHPh),(NHMe,Ph,H,Me ,CONH-3-pyridyl),(NHMe,Ph,H,Me,NHCOPh),(NHMe,Ph,H,Me,NHCO-2-furyl),(N HMe,Ph,H,Me,NHCONHPh),(NHMe,Ph,H,Me,NHCOCONHPh),(NHMe,Ph,H,Et,C ONHPh),(NHMe,Ph,H,Et,CONH-3-pyridyl),(NHMe,Ph,H,Et,NHCOPh),(NHMe,Ph, H,Et,NHCO-2-furyl),(NHMe,Ph,H,Et,NHCONHPh),(NHMe,Ph,H,Et,NHCOCONH Ph),(NHMe,Ph,H,CH2OH,CONHPh),(NHMe,Ph,H,CH2OH,CONH-3-pyridyl),(NH Me,Ph,H,CH2OH,NHCOPh),(NHMe,Ph,H,CH2OH,NHCO-2-furyl),(NHMe,Ph,H,C H2OH,NH ONHPh),(NHMe,Ph,H,CH2OH,NHCOCONHPh),(NHMe,Ph,Me,Me,C ONHPh),(NHMe,Ph,Me,Me,CONH-3-pyridyl),(NHMe,Ph,Me,Me,NHCOPh),(NHMe ,Ph,Me,Me,NHCO-2-furyl),(NHMe,Ph,Me,Me,NHCONHPh),(NHMe,Ph,Me,Me,NH COCONHPh),(NHMe,Ph,Me,Et,CONHPh),(NHMe,Ph,Me,Et,CONH-3-pyridyl),(NH Me,Ph,Me,Et,NHCOPh),(NHMe,Ph,Me,Et,NHCO-2-furyl),(NHMe,Ph,Me,Et,NHCO NHPh),(NHMe,Ph,Me,Et,NHCOCONHPh),(NHMe,Ph,Me,CH2OH,CONHPh),(NH Me,Ph,Me,CH2OH,CONH-3-pyridyl),(NHMe,Ph,Me,CH2OH,NHCOPh),(NHMe,Ph, Me,CH2OH,NHCO-2-furyl),(NHMe,Ph,Me,CH2OH,NHCONHPh),(NHMe,Ph,Me,C H2OH,NHCOCONHPh),(NHMe,Ph,Ph,Me,CONHPh),(NHMe,Ph,Ph,Me,CONH-3-p yridyl),(NHMe,Ph,Ph,Me,NHCOPh),(NHMe,Ph,Ph,Me,NHCO-2-furyl),(NHMe,Ph,P h,Me,NHCONHPh),(NHMe,Ph,Ph,Me,NHCOCONHPh),(NHMe,Ph,Ph,Et,CONHPh ),(NHMe,Ph,Ph,Et,CONH-3-pyridy),(NHMe,Ph,Ph,Et,NHCOPh),(NHMe,Ph,Ph,Et, NHCO-2-furyl),(NHMe,Ph,Ph,Et,NHCONHPh),(NHMe,Ph,Ph,Et,NHCOCONHPh), (NHMe,Ph,Ph,CH2OH,CONHPh),(NHMe,P,Ph,CH2OH,CONH-3-pyridyl),(NHMe, Ph,Ph,CH2OH,NHCOPh),(NHMe,Ph,Ph,CH2OH,NHCO-2-furyl),(NHMe,Ph,Ph,CH 2OH,NHCONHPh),(NHMe,Ph,Ph,CH2OH,NHCOCONHPh),(NHMe,Ph,OH,M,CO NHPh),(NHMe,Ph,OH,Me,CONH-3-pyridyl),(NHMe,Ph,OH,Me,NHCOPh),(NHMe, Ph,OH,Me,NHCO-2-furyl),(NHMe,Ph,OH,Me,NHCONHPh),(NHMe,Ph,OH,Me,NH COCONHPh),(NHMe,Ph,OH,Et,CONHPh),(NHMe,Ph,OH,Et,CONH-3-pyridyl),(N HMe,Ph,OH,Et,NHCOPh),(NHMe,Ph,OH,Et,NHCO-2-furyl),(NHMe,Ph,OH,Et,NH CONHPh),(NHMe,Ph,OH,Et,NHCOCONHPh),(NHMe,Ph,OH,CH2OH,CONHPh), ( NHMe,Ph,OH,CH2OH,CONH-3-pyridyl),(NHMe,Ph,OH,CH2OH,NHCOPh),(NHM e,Ph,OH,CH2OH,NHCO-2-furyl),(NHMe,Ph,OH,CH2OH,NHCONHPh),(NHMe,Ph, OH,CH2OH,NHCOCONHPh),


(NHCH2CH2OH,H,H,Me,CONHPh),(NHCH2CH2OH,H,H,Me,CONH-3-pyridyl),(N HCH2CH2OH,H,H,Me,NHCOPh),(NHCH2CH2OH,H,H,Me,NHCO-2-furyl), (NHC H2CH2OH,H,H,Me,NHCONHPh),(NHCH2CH2OH, H,H,Me,NHCOCONHPh),(NH CH2CH2OH,H,H,Et,CONHPh),(NHCH2CH2OH, H,H,Et,CONH-3-pyridyl),(NHCH 2CH2OH,H,H,Et,NHCOPh),(NHCH2CH2OH,H,H,Et,NHCO-2-furyl),(NHCH2CH2OH,H,H,Et,NHCONHPh),(NHCH2CH2OH,H,H,Et,NHCOCONHPh),(NHCH2CH2OH,H,H,CH2OH,CONHPh),(NHCH2CH2OH,H,H,CH2OH,CONH-3-pyridyl),(NHC H2CH2OH,H,H,CH2OH,NHCOPh),(NHCH2CH2OH,H,H,CH2OH,NHCO-2-furyl),( NHCH2CH2OH,H,H,CH2OH,NHCONHPh), (NHCH2CH2OH,H,H,CH2OH,NHCO CONHPh),(NHCH2CH2OH,H,Me,Me,CONHPh),(NHCH2CH2OH,H,Me,Me,CONH -3-pyridyl),(NHCH2CH2OH,H,Me,Me,NHCOPh),(NHCH2CH2OH,H,Me,Me,NHCO -2-furyl),(NHCH2CH2OH,H,Me,Me,NHCONHPh),(NHCH2CH2OH,H,Me,Me,NHC OCONHPh),(NHCH2CH2OH,H,Me,Et,CONHPh),(NHCH2CH2OH,H,Me,Et,CONH -3-pyridyl),(NHCH2CH2OH,H,Me,Et,NHCOPh),(NHCH2CH2OH,H,Me,Et,NHCO-2-furyl),(NHCH2CH2OH,H,Me,Et,NHCONHPh),(NHCH2CH2OH,H,Me,Et,NHCO CONHPh),(NHCH2CH2OH,H,Me,CH2OH,CONHPh),(NHCH2CH2OH,H,Me,CH2OH,CONH-3-pyridyl),(NHCH2CH2OH,H,Me,CH2OH,NHCOPh),(NHCH2CH2OH, H,Me,CH2OH,NHCO-2-furyl),(NHCH2CH2OH,H,Me,CH2OH,NHCONHPh),(NHC H2CH2OH,H,Me,CH2OH,NHCOCONHPh),(NHCH2CH2OH,H,Ph,Me,CONHPh),( NHCH2CH2OH,H,Ph,Me,CONH-3-pyridyl),(NHCH2CH2OH,H, Ph,Me,NHCOPh),( NHCH2CH2OH,H,Ph,Me,NHCO-2-furyl),(NHCH2CH2OH,H,Ph,Me,NHCONHPh), (NHCH2CH2OH,H,Ph,Me,NHCOCONHPh),(NHCH2CH2OH,H,Ph,Et,CONHPh),( NHCH2CH2OH,H,Ph,Et,CONH-3-pyridyl),(NHCH2CH2OH,H,Ph,Et,NHCOPh),(N HCH2CH2OH,H,Ph,Et,NHCO-2-furyl),(NHCH2CH2OH,H,Ph,Et,NHCONHPh),(N HCH2CH2OH,H,Ph,Et,NHCOCONHPh),(NHCH2CH2OH,H,Ph,CH2OH,CONHPh ), (NHCH2CH2OH,H,Ph,CH2OH,CONH-3-pyridyl),(NHCH2CH2OH,H,Ph,CH2OH, NHCOPh),(NHCH2CH2OH,H,Ph,CH2OH,NHCO-2-furyl),(NHCH2CH2OH,H,Ph,C H2OH,NHCONHPh),(NHCH2CH2OH,H,Ph,CH2OH,NHCONHPh),(NHCH2CH 2OH,H, OH,Me,CONHPh), (NHCH2CH2OH,H,OH,Me,CONH-3-pyridyl),(NHCH2C H2OH,H,OH,Me,NHCOPh),(NHCH2CH2OH,H,OH,Me,NHCO-2-furyl),(NHCH2C H2OH,H,OH,Me,NHCONHPh),(NHCH2CH2OH,H,OH,Me,NHCOCONHPh),(NHC H2CH2OH,H,OH,Et,CONHPh),(NHCH2CH2OH,H,OH,Et,CONH-3-pyridyl),(NHC H2CH2OH,H,OH,Et,NHCOPh),(NHCH2CH2OH,H,OH,Et,NHC-2-furyl),(NHCH2CH2OH,H,OH,Et,NHCONHPh),(NHCH2CH2OH,H,OH,Et,NHCOCONHPh), (NHC H2CH2OH,H,OH,CH2OH,CONHPh),(NHCH2CH2OH,H,OH,CH2OH,CONH-3-pyr idyl),(NHCH2CH2OH,H,OH,CH2OH,NHCOPh),(NHCH2CH2OH,H,OH,CH2OH,N HCO-2-furyl),(NHCH2CH2OH,H,OH,CH2OH,NHCONHPh),(NHCH2CH2OH,H,O H,CH2OH,NHCOCONHPh),(NHCH2CH2OH,Me,H,Me,CONHPh),(NHCH2CH2O H,Me,H,Me,CONH-3-pyridyl),(NHCH2CH2OH,Me,H,Me,NHCOPh),(NHCH2CH2O H,Me,H,Me,NHCO-2-furyl),(NHCH2CH2OH,Me,H,Me,NHCONHPh),(NHCH2CH2OH,Me,H,Me,NHCOCONHPh),(NHCH2CH2OH,Me,H,Et,CONHPh),(NHCH2CH2OH,Me,H,Et,CONH-3-pyridyl),(NHCH2CH2OH,Me,H,Et,NHCOPh),(NHCH2CH2OH,Me,H,Et,NHCO-2-furyl),(NHCH2CH2OH,Me,H,Et,NHCONHPh),(NHCH2CH2OH,Me, H,Et, NHCOCONHPh),(NHCH2CH2OH,Me,H,CH2OH,CONHPh),(NHCH2CH2OH,Me,H,CH2OH,CONH-3-pyridyl),(NHCH2CH2OH,Me,H,CH2OH,NHCOPh ),(NHCH2CH2OH,Me,H,CH2OH,NHCO-2-furyl),(NHCH2CH2OH,Me,H,CH2OH,N HCONHPh),(NHCH2CH2OH,Me,H,CH2OH,NHCOCONHPh),(NHCH2CH2OH,Me ,Me,Me,CONHPh),(NHCH2CH2OH,Me,Me,Me,CONH-3-pyridyl),(NHCH2CH2OH, Me,Me,Me,NHCOPh),(NHCH2CH2OH,Me,Me,Me,NHCO-2-furyl),(NHCH2CH2OH, Me,Me,Me,NHCONHPh),(NHCH2CH2OH,Me,Me,Me,NHCOCONHPh),(NHCH2C H2OH,Me,Me,Et,CONHPh),(NHCH2CH2OH,Me,Me,Et,CONH-3-pyridyl),(NHCH2CH2OH,Me,Me,Et,NHCOPh),(NHCH2CH2OH,Me,Me,Et,NHCO-2-furyl),(NHCH2CH2OH,Me,Me,Et,NHCONHPh),(NHCH2CH2OH,Me,Me,Et,NHCOCONHPh),(NH CH2CH2OH,Me,Me,CH2OH,CONHPh),(NHCH2CH2OH,Me,Me,CH2OH,CONH-3-pyridyl),(NHCH2CH2OH,Me,Me,CH2OH,NHCOPh),(NHCH2CH2OH,Me,Me,CH2OH,NHCO-2-furyl),(NHCH2CH2OH,Me,Me,CH2OH,NHCONHPh),(NHCH2CH2O H,Me,Me,CH2OH,NHCOCONHPh),(NHCH2CH2OH,Me,Ph,Me,CONHPh),(NHCH 2CH2OH,Me,Ph,Me,CONH-3-pyridyl),(NHCH2CH2OH,Me,Ph,Me,NHCOPh),(NH CH2CH2OH,Me,Ph,Me,NHCO-2-furyl),(NHCH2CH2OH,Me,Ph,Me,NHCONHPh), ( NHCH2CH2OH,Me,Ph,Me,NHCOCONHPh),(NHCH2CH2OH,Me,Ph,Et,CONHPh) ,(NHCH2CH2OH,Me,Ph,Et,CONH-3-pyridyl),(NHCH2CH2OH,Me,Ph,Et,NHCOPh ),(NHCH2CH2OH,Me,Ph,Et,NHCO-2-furyl),(NHCH2CH2OH,Me,Ph,Et,NHCONH Ph),(NHCH2CH2OH,Me,Ph,Et,NHCOCONHPh),(NHCH2CH2OH,Me,Ph,CH2OH, CONHPh),(NHCH2CH2OH,Me,Ph,CH2OH,CONH-3-pyridyl),(NHCH2CH2OH,Me, Ph,CH2OH,NHCOPh),(NHCH2CH2OH,Me,Ph,CH2OH,NHCO-2-furyl),(NHCH2C H2OH,Me,Ph,CH2OH,NHCONHPh),(NHCH2CH2OH,Me,Ph,CH2OH,NHCOCON HPh),(NHCH2CH2OH,Me,OH,Me,CONHPh),(NHCH2CH2OH,Me,OH,Me,CONH-3-pyridyl),(NHCH2CH2OH,Me,OH,Me,NHCOPh),(NHCH2CH2OH,Me,OH,Me,NHC O-2-furyl),(NHCH2CH2OH,Me,OH,Me,NHCONHPh),(NHCH2CH2OH,Me,OH,Me, NHCOCONHPh),(NHCH2CH2OH,Me,OH,Et,CONHPh),(NHCH2CH2OH,Me,OH, Et,CONH-3-pyridyl),(NHCH2CH2OH,Me,OH,Et,NHCOPh),(NHCH2CH2OH,Me,O H,Et,NHCO-2-furyl), (NHCH2CH2OH,Me,OH,Et,NHCONHPh),(NHCH2CH2OH,M e,OH,Et,NHCOCONHPh),(NHCH2CH2OH,Me,OH,CH2OH,CONHPh),(NHCH2CH 2OH,Me,OH,CH2OH,CONH-3-pyridyl),(NHCH2CH 2OH,Me,OH,CH2OH,NHCOPh ),(NHCH2CH2OH,Me,OH,CH2OH,NHCO-2-furyl),(NHCH2CH2OH,Me,OH,COH2O H,NHCONHPh),(NHCH2CH2OH,Me,OH,CH2OH,NHCOCONHPh),(NHCH2CH2OH,Ph,H,Me,CONHPh),(NHCH2CH2OH,Ph,H,Me,CONH-3-pyridyl),(NHCH2CH2OH,Ph,H,Me,NHCOPh),(NHCH2CH2OH,Ph,H,Me,NHCO-2-furyl),(NHCH2CH2O H,Ph,H,Me,NHCONHPh),(NHCH2CH2OH,Ph,H,Me,NHCOCONHPh),(NHCH2CH 2OH,Ph,H,Et,CONHPh),(NHCH2CH2OH,Ph,H,Et,CONH-3-pyridyl),(NHCH2CH2OH,Ph,H,Et,NHCOPh),(NHCH 2CH2OH,Ph,H,Et,NHCO-2-furyl),(NHCH2CH2OH, Ph,H,Et,NHCONHPh), (NHCH2CH2OH,Ph,H,Et, NHCOCONHPh),(NHCH2CH2O H,Ph,H,CH2OH,CONHPh),(NHCH2CH2OH,Ph,H,CH2OH,CONH-3-pyridyl),(NHC H2CH2OH,Ph,H,CH2OH,NHCOPh),(NHCH2CH2OH,Ph,H,CH2OH,NHCO-2-furyl ),(NHCH2CH2OH,Ph,H,CH2OH,NHCONHPh),(NHCH2CH2OH,Ph,H,CH2OH,NH COCONHPh),(NHCH2CH2OH,Ph,Me,Me,CONHPh),(NHCH2CH2OH,Ph,Me,Me,C ONH-3-pyridyl),(NHCH2CH2OH,Ph,Me,Me,NHCOPh),(NHCH2CH2OH,Ph,Me,Me, ,NHCO-2-furyl),(NHCH2CH2OH,Ph,Me,Me,NHCONHPh),(NHCH2CH2OH,Ph,Me, Me,NHCOCONHPh),(NHCH2CH2OH,Ph,Me,Et,CONHPh),(NHCH2CH2OH,Ph,M e,Et,CONH-3-pyridyl),(NHCH2CH2OH,Ph,Me,Et,NHCOPh),(NHCH2CH2OH,Ph, Me,Et,NHCO-2-furyl),(NHCH2CH2OH,Ph,Me,Et,NHCONHPh),(NHCH2CH2OH,P h,Me,Et,NHCOCONHPh), (NHCH2CH2OH,Ph,Me,CH2OH, CONHPh), (NHCH2CH 2OH,Ph,Me,CH2OH,CONH-3-pyridyl),(NHCH2CH 2OH,Ph,Me,CH2OH,NHCOPh), (NHCH2CH2OH,Ph,Me,CH2OH,NHCO-2-furyl),(NHCH2CH2OH,Ph,Me,CH2OH, NHCONHPh),(NHCH2CH2OH,Ph,Me,CH2OH,NHCOCONHPh),(NHCH2CH2OH, Ph,Ph,Me,CONHPh),(NHCH2CH2OH,Ph,Ph,Me,CONH-3-pyridyl),(NHCH2CH2O H,Ph,Ph,Me,NHCOPh),(NHCH2CH2OH,Ph,Ph,Me,NHCO-2-furyl),(NHCH2CH2O H,Ph,Ph,Me,NHCONHPh),(NHCH2CH2OH,Ph,Ph,Me,NHCOCONHPh),(NHCH2C H2OH,Ph,Ph,Et,CONHPh),(NHCH2CH2OH,Ph,Ph, Et,CONH-3-pyridyl),(NHCH2C H2OH,Ph,Ph,Et,NHCOPh),(NHCH2CH2OH,Ph,Ph,Et,NHCO-2-furyl),(NHCH2CH 2OH,Ph,Ph,Et,NHCONHPh),(NHCH2CH2OH,Ph,Ph,Et,NHCOCONHPh),(NHCH2CH2OH,Ph,Ph,CH2OH,CONHPh),(NHCH2CH2OH,Ph,Ph,CH2OH,CONH-3-pyrid yl),(NHCH2CH2OH,Ph,Ph,CH2OH,NHCOPh),(NHCH2CH2OH,Ph,Ph,CH2OH,NH CO-2-furyl),(NHCH2CH2OH,Ph,Ph,CH2OH,NHCONHPh),(NHCH2CH2OH,Ph,Ph ,CH2OH,NHCOCONHPh),(NHCH2CH2OH,Ph,OH,Me,CONHPh),(NHCH2CH2OH ,Ph,OH,Me,CONH-3-pyridyl),(NHCH2CH2OH,Ph,OH,Me,NHCOPh),(NHCH2CH2OH,Ph,OH,Me,NHCO-2-furyl),(NHCH2CH2OH,Ph,OH,Me,NHCONHPh),(NHCH2CH2OH,Ph,OH,Me,NHCOCONHPh),(NHCH2CH2OH,Ph,OH,Et,CONHPh),(NHC H2CH2OH,Ph,OH,Et,CONH-3-pyridyl),(NHCH2CH2OH,Ph,OH,Et,NHCOPh),(NH CH2CH2OH,Ph,OH,Et,NHCO-2-furyl),(NHCH2CH2OH,Ph,OH,Et,NHCONHPh),( NHCH2CH2OH,Ph,OH,Et,NHCOCONHPh),(NHCH2CH2OH,Ph,OH,CH2OH,CON HPh),(NHCH2CH2OH,Ph,OH,CH2OH,CONH-3-pyridyl),(NHCH2CH2OH,Ph,OH, CH2OH,NHCOPh),(NHCH2CH2OH,Ph,OH,CH2OH,NHCO-2-furyl),(NHCH2CH2OH,Ph,OH,CH2OH,NHCONHPh),(NHCH2CH2OH,Ph,OH,CH2OH,NHCOCONHP h),


(NHCH2CONH2,H,H,Me,CONHPh),(NHCH2CONH2,H,H,Me,CONH-3-pyridyl), (N HCH2CONH2,H,H,Me,NHCOPh),(NHCH2CONH2,H,H,Me,NHCO-2-furyl),(NHC H2CONH2,H,H,Me,NHCONHPh),(NHCH2CONH2,H,H,Me,NHCOCONHPh), (NH CH2CONH2,H,H,Et,CONHPh),(NHCH2CONH2,H,H,Et,CONH-3-pyridyl),(NHCH 2CONH2,H,H,Et,NHCOPh),(NHCH2CONH2,H,H,Et,NHCO-2-furyl),(NHCH2CON H2,H,H,Et,NHCONHPh),(NHCH2CONH2,H,H,Et,NHCOCONHPh),(NHCH2CON H2,H,H,CH2OH,CONHPh),(NHCH2CONH2,H,H,CH2OH,CONH-3-pyridyl),(NHC H2CONH2,H,H,CH2OH,NHCOPh),(NHCH2CONH2,H,H,CH2OH,NHCO-2-furyl),( NHCH2CONH2,H,H,CH2OH,NHCONHPh),(NHCH2CONH2,H,H,CH2OH,NHCO CONHPh),(NHCH2CONH2,H,Me,Me,CONHPh),(NHCH2CONH2,H,Me,Me,CONH -3-pyridyl),(NHCH2CONH2,H,Me,Me,NHCOPh),(NHCH2CONH2,H,Me,Me,NHCO -2-furyl),(NHCH2CONH2,H,Me,Me,NHCONHPh),(NHCH2CONH2,H,Me,Me,NHC OCONHPh),(NHCH2CONH2,H,Me,Et,CONHPh),(NHCH2CONH2,H,Me,Et,CONH -3-pyridyl),(NHCH2CONH2,H,Me,Et,NHCOPh),(NHCH2CONH2, H,Me,Et,NHCO-2-furyl), (NHCH2CONH2,H,Me,Et,NHCONHPh),(NHCH2CONH2,H,Me,Et,NHCO CONHPh),(NHCH2CONH2,H,Me,CH2OH,CONHPh),(NHCH2CONH2,H,Me,CH2OH,CONH-3-pyridyl),(NHCH2CONH2,H,Me,CH2OH,NHCOPh),(NHCH2CONH2, H,Me,CH2OH,NHCO-2-furyl),(NHCH2CONH2,H,Me,CH2OH,NHCONHPh),(NHC H2CONH2,H,Me,CH2OH,NHCOCONHPh),(NHCH2CONH2,H, Ph,Me,CONHPh),( NHCH2CONH2,H,Ph,Me,CONH-3-pyridyl),(NHCH2CONH2,H,Ph,Me,NHCOPh),( NHCH2CONH2,H,Ph,Me,NHCO-2-furyl),(NHCH2CONH2,H,Ph,Me,NHCONHPh), (NHCH2CONH2,H,Ph,Me,NHCOCONHPh),(NHCH2CONH2,H,Ph, Et,CONHPh),( NHCH2CONH2,H,Ph,Et,CONH-3-pyridyl),(NHCH2CONH2,H,Ph,Et,NHCOPh),(N HCH2CONH2,H,Ph,Et,NHCO-2-furyl),(NHCH2CONH2,H,Ph,Et,NHCONHPh),(N HCH2CONH2,H,Ph,Et,NHCOCONHPh),(NHCH2CONH2,H,Ph,CH2OH,CONHPh ),(NHCH2CONH2,H,Ph,CH2OH,CONH-3-pyridyl),(NHCH2CONH2,H,Ph,CH2OH, NHCOPh),(NHCH2CONH2,H,Ph,CH2OH,NHCO-2-furyl),(NHCH2CONH2,H,Ph,C H2OH,NHCONHPh),(NHCH2CONH2,H,Ph,CH2OH,NHCOCONHPh),(NHCH2CO NH2,H,OH,Me,CONHPh),(NHCH2CONH2,H,OH,Me,CONH-3-pyridyl),(NHCH2C ONH2,H,OH,Me,NHCOPh),(NHCH2CONH2,H,OH,Me,NHCO-2-furyl),(NHCH2CO NH2,H,OH,Me,NHCONHPh),(NHCH2CONH2,H,OH,Me,NHCOCONHPh),(NHCH 2CONH2,H,OH,Et,CONHPh),(NHCH2CONH2,H,OH,Et,CONH-3-pyridyl),(NHCH 2CONH2,H,OH,Et,NHCOPh),(NHCH2CONH2,H,OH,Et,NHCO-2-furyl),(NHCH2C ONH2,H,OH,Et,NHCONHPh),(NHCH2CONH2,H,OH,Et,NHCOCONHPh),(NHCH 2CONH2,H,OH,CH2OH,CONHPh),(NHCH2CONH2,H,OH,CH2OH,CONH-3-pyrid yl),(NHCH2CONH2,H,OH,CH2OH,NHCOPh),(NHCH2CONH2,H,OH,CH2OH,NH CO-2-furyl),(NHCH2CONH2,H,OH,CH2OH,NHCONHPh),(NHCH2CONH2,H,OH, CH2OH,NHCOCONHPh),(NHCH2CONH2,Me,H,Me,CONHPh),(NHCH2CONH2, Me,H,Me,CONH-3-pyridyl),(NHCH2CONH2,Me,H,Me,NHCOPh),(NHCH2CONH2, Me,H,Me,NHCO-2-furyl),(NHCH2CONH2,Me,H,Me,NHCONHPh),(NHCH2CONH 2,Me,H,Me,NHCOCONHPh),(NHCH2CONH2,Me,H,Et,CONHPh),(NHCH2CONH 2,Me,H,Et,CONH-3-pyridyl),(NHCH2CONH2,Me,H,Et, NHCOPh),(NHCH2CONH2,Me,H,Et,NHCO-2-furyl),(NHCH2CONH2,Me,H,Et,NHCONHPh),(NHCH2CONH2,Me,H,Et,NHCOCONHPh),(NHCH2CONH2,Me,H,CH2OH,CONHPh),(NHCH2CO NH2,Me,H,CH2OH,CONH-3-pyridyl),(NHCH2CONH2,Me,H,CH2OH,NHCOPh), ( NHCH2CONH2,Me,H,CH2OH,NHCO-2-furyl),(NHCH2CONH2,Me,H,CH2OH,NH CONHPh),(NHCH2CONH2,Me,H,CH2OH,NHCOCONHPh),(NHCH2CONH2,Me, Me,Me,CONHPh),(NHCH2CONH2,Me,Me,Me,CONH-3-pyridyl),(NHCH2CONH2, Me,Me,Me,NHCOPh),(NHCH2CONH2,Me,Me,Me,NHCO-2-furyl),(NHCH2CONH2,Me,Me,Me,NHCONHPh),(NHCH2CONH2,Me,Me,Me,NHCOCONHPh),(NHCH2C ONH2,Me,Me,Et,CONHPh),(NHCH2CONH2,Me,Me,Et,CONH-3-pyridyl),(NHCH2CONH2,Me,Me,Et,NHCOPh),(NHCH2CONH2,Me,Me,Et, NHCO-2-furyl),(NHCH2CONH2,Me,Me,Et,NHCONHPh),(NHCH2CONH2,Me,Me,Et,NHCOCONHPh),(NH CH2CONH2,Me,Me,CH2OH,CONHPh),(NHCH2CONH2,Me,Me,CH2OH,CONH-3-pyridyl),(NHCH2CONH2,Me,Me,CH2OH,NHCOPh),(NHCH2CONH2,Me,Me,CH2OH,NHCO-2-furyl),(NHCH2CONH2,Me,Me,CH2OH, NHCONHPh),(NHCH2CONH 2,Me,Me,CH2OH,NHCOCONHPh),(NHCH2CONH2,Me,Ph,Me,CONHPh),(NHCH 2CONH2,Me,Ph,Me,CONH-3-pyridyl),(NHCH2CONH2,Me,Ph,Me,NHCOP),(NHC H2CONH2,Me,Ph,Me,NHCO-2-furyl),(NHCH2CONH2,Me,Ph,Me,NHCONHPh), (N HCH2CONH2,Me,Ph,Me,NHCOCONHPh),(NHCH2CONH2,Me,Ph,Et,CONHPh),( NHCH2CONH2,Me,Ph,Et,CONH-3-pyridyl),(NHCH2CONH2,Me,Ph,Et, NHCOPh), (NHCH2CONH2,Me,Ph,Et,NHCO-2-furyl),(NHCH2CONH2,Me,Ph,Et,NHCONHP h), (NHCH2CONH2,Me,Ph,Et,NHCOCONHPh),(NHCH2CONH2,Me,Ph,CH2OH,C ONHPh),(NHCH2CONH2,Me,Ph,CH2OH,CONH-3-pyridyl),(NHCH2CONH2,Me,P h,CH2OH,NHCOPh),(NHCH2CONH2,Me,Ph,CH2OH,NHCO-2-furyl),(NHCH2CO NH2,Me,Pb,CH2OH,NHCONHPh),(NHCH2CONH2,Me,Ph,CH2OH,NHCOCONH Ph),(NHCH2CONH2,Me,OH,Me,CONHPh),(NHCH2CONH2,Me,OH,Me,CONH-3-pyridyl),(NHCH2CONH2,Me,OH,Me,NHCOPh),(NHCH2CONH2,Me,OH,Me,NHC O-2-furyl),(NHCH2CONH2,Me,OH,Me,NHCONHPh),(NHCH2CONH2,Me,OH,Me, NHCOCONHPh),(NHCH2CONH2,Me,OH,Et,CONHPh),(NHCH2CONH2,Me,OH, Et,CONH-3-pyridyl),(NHCH2CONH2,Me,OH,Et,NHCOPh),(NHCH2CONH2,Me,O H,Et,NHCO-2-furyl),(NHCH2CONH2,Me,OH,Et,NHCONHPh),(NHCH2CONH2,M e,OH,Et,NHCOCONHPh),(NHCH2CONH2,Me,OH,CH2OH,CONHPh),(NHCH2CO NH2,Me,OH,CH2OH,CONH-3-pyridyl),(NHCH2CONH2,Me,OH,CH2OH,NHCOPh ),(NHCH2CONH2,Me,OH,CH2OH,NHCO-2-furyl),(NHCH2CONH2,Me,OH,CH2O H, NHCONHPh),(NHCH2CONH2,Me,OH,CH2OH,NHCOCONHPh),(NHCH2CON H2,Ph,H,Me,CONHPh),(NHCH2CONH2,Ph,H,Me,CONH-3-pyridyl),(NHCH2CON H2,Ph,H,Me,NHCOPb),(NHCH2CONH2,Ph,H,Me,NHCO-2-furyl),(NHCH2CONH2,Ph,H,Me,NHCONHPh),(NHCH2CONH2,Ph,H,Me,NHCOCONHPh),(NHCH2CON H2,Ph,H,Et,CONHPh),(NHCH2CONH2,Ph,H,Et,CONH-3-pyridyl),(NHCH2CONH 2,Ph,H,Et,NHCOPh),(NHCH200NH2,Ph,H,Et,NHCO-2-furyl),(NHCH200NH2,Ph ,H,Et,NHCONHPh),(NHCH2CONH2,Ph,H,Et,NHCOCONHPh),(NHCH2CONH2,P h,H,CH2OH,CONHPh),(NHCH2CONH2,Ph,H,CH2OH,CONH-3-pyridyl),(NHCH2CONH2,Ph,H,CH2OH,NHCOPh),(NHCH2CONH2,Ph,H,CH2OH,NHCO-2-furyl),( NHCH2CONH2,Ph,H,CH2OH,NHCONHPh),(NHCH2CONH2,Ph,H,CH2OH,NHC OCONHPh),(NHCH2CONH2,Ph,Me,Me,CONHPh),(NHCH2CONH2,Ph,Me,Me,CO NH-3-pyridyl),(NHCH2CONH2,Ph,Me,Me,NHCOPh), (NHCH2CONH2,Ph,Me,Me, NHCO-2-furyl),(NHCH2CONH2,Ph,Me,Me,NHCONHPh),(NHCH2CONH2,Ph,Me, Me,NHCOCONHPh),(NHCH2CONH2,Ph,Me,Et,CONHPh),(NHCH2CONH2,Ph,M e,Et,CONH-3-pyridyl),(NHCH2CONH2,Ph,Me,Et,NHCOPh),(NHCH2CONH2,Ph, Me,Et,NHCO-2-furyl),(NHCH2CONH2,Ph,Me,Et,NHCONHPb),(NHCH2CONH2,P h,Me,Et,NHCOCONHPh),(NHCH2CONH2,Ph,Me,CH2OH,CONHPh),(NHCH2CO NH2,Ph,Me,CH2OH,CONH-3-pyridyl),(NHCH2CONH2,Ph,Me,CH2OH,NHCOPh), (NHCH2CONH2,Ph,Me,CH2OH,NHCO-2-furyl),(NHCH2CONH2,Ph,Me,CH2OH, NHCONHPh),(NHCH2CONH2,Ph,Me,CH2OH,NHCOCONHPh),(NHCH2CONH2, Ph,Ph,Me,CONHPh),(NHCH2CONH2,Ph,Ph,Me,CONH-3-pyridyl),(NHCH2CONH 2,Ph,Ph,Me,NHCOPh),(NHCH2CONH2,Ph,Ph,Me,NHCO-2-furyl),(NHCH2CONH2,Ph,Ph,Me,NHCONHPh),(NHCH2CONH2,Ph,Ph,Me,NHCOCONHPh),(NHCH2CO NH2,Ph,Ph,Et,CONHPh),(NHCH2CONH2,Ph,Ph,Et,CONH-3-pyridyl),(NHCH2CO NH2,Ph,Ph,Et,NHCOPh),(NHCH2CONH2,Ph,Ph,E,NHCO-2-furyl),(NHCH2CON H2,Ph,Ph,Et,NHCONHPh),(NHCH2CONH2,Ph,Ph,Et,NHCOCONHPh),(NHCH2C ONH2,Ph,Ph,CH2OH,CONHPh),(NHCH2CONH2,Ph,Ph,CH2OH,CONH-3-pyridyl) ,(NHCH2CONH2,Ph,Ph,CH2OH,NHCOPh),(NHCH2CONH2,Ph,Ph,CH2OH,NHC O-2-furyl),(NHCH2CONH2,Ph,Ph,CH2OH,NHCONHPh),(NHCH2CONH2,Ph,Ph,C H2OH,NHCOCONHPh),(NHCH2CONH2,Ph,OH,Me,CONHPh),(NHCH2CONH2,P h,OH,Me,CONH-3-pyridyl),(NHCH2CONH2,Ph,OH,Me,NHCOPh),(NHCH2CONH 2,Ph,OH,Me,NHCO-2-furyl),(NHCH2CONH2,Ph,OH,Me,NHCONHPh), (NHCH2C ONH2,Ph,OH,Me,NHCOCONHPh),(NHCH2CONH2,Ph,OH,Et,CONHPh),(NHCH2CONH2,Ph,OH,Et,CONH-3-pyridyl),(NHCH2CONH2,Ph,OH,Et,NHCOPh),(NHCH 2CONH2,Ph,OH,Et,NHCO-2-furyl),(NHCH2CONH2,Ph,OH,Et,NHCONHPh),(NH CH2CONH2,Ph,OH,Et,NHCOCONHPh),(NHCH2CONH2,Ph,OH,CH2OH,CONHP h) (NHCH2CONH2,Ph,OH,CH2OH,CONH-3-pyridyl),(NHCH2CONH2,Ph,OH,CH2OH,NHCOPh),(NHCH2CONH2,Ph,OH,CH2OH,NHCO-2-furyl),(NHCH2CONH2,P h,OH,CH2OH,NHCONHPh),(NHCH2CONH2,Ph,OH,CH2OH,NHCOCONHPh),


(NHCH(Bn)CONH2,H,H,Me,CONHPh),(NHCH(Bn)CONH2,H,H,Me,CONH-3-pyri dyl),(NHCH(Bn)CONH2,H,H,Me,NHCOPh),(NHCH(Bn)CONH2,H,H,Me,NHCO-2-furyl),(NHCH(Bn)CONH2,H,H,Me,NHCONHPh),(NHCH(Bn)CONH2,H,H,Me.NH COCONHPh),(NHCH(Bn)CONH2,H,H,Et,CONHPh),(NHCH(Bn)CONH2,H,H,Et,C ONH-3-pyridyl),(NHCH(Bn)CONH2,H,H,Et,NHCOPh),(NHCH(Bn)CONH2,H,H,Et ,NHCO-2-furyl),(NHCH(Bn)CONH2,H,H,Et,NHCONHPh),(NHCH(Bn)CONH2,H, H,Et,NCOCNHPh),(NHCH(Bn)CONH2,H,H,CH2OH,CONHPh),(NHCH(Bn)CO NH2,H,H,CH2OH,CONH-3-pyridyl),(NHCH(Bn)CONH2,H,H,CH2OH,NHCOPh),( NHCH(Bn)CONH2,H,H,CH2OH,NHCO-2-furyl),(NHCH(Bn)CONH2,H,H,CH2OH, NHCONHPh),(NHCH(Bn)CONH2,H,H,CH2OH,NHCOCONHPh),(NHCH(Bn)CON H2,H,Me,Me,CONHPh),(NHCH(Bn)CONH2,H,Me,Me,CONH-3-pyridyl),(NHCH(B n)CONH2,H,Me,Me,NHCOPh),(NHCH(Bn)CONH2,H,Me,Me,NHCO-2-furyl),(NHC H(Bn)CONH2,H,Me,Me,NHCONHPh),(NHCH(Bn)CONH2,H,Me,Me,NHCOCONH Ph),(NHCH(Bn)CONH2,H,Me,Et,CONHPh),(NHCH(Bn)CONH2,H,Me,Et,CONH-3-pyridyl),(NHCH(Bn)CONH2,H,Me,Et,NHCOPh),(NHCH(Bn)CONH2,H,Me,Et,NH CO-2-furyl),(NHCH(Bn)CONH2,H,Me,Et,NHCONHPh),(NHCH(Bn)CONH2,H,Me, Et,NHCOCONHPh),(NHCH(Bn)CONH2,H,Me,CH2OH,CONHPh),(NHCH(Bn)CO NH2,H,Me,CH2OH,CONH-3-pyridyl),(NHCH(Bn)CONH2,H,Me,CH2OH,NHCOPh ),(NHCH(Bn)CONH2,H,Me,CH2OH,NHCO-2-furyl),(NHCH(Bn)CONH2,H,Me,CH2OH,NHCONHPh),(NHCH(Bn)CONH2,H,Me,CH2OH,NHCOCONHPh),(NHCH(Bn) CONH2,H, Ph,Me,CONHPh),(NHCH(Bn)CONH2,H,Ph,Me,CONH-3-pyridyl),(NHC H(Bn)CONH2,H,Ph,Me,NHCOPh),(NHCH(Bn)CONH2,H,Ph,Me,NHCO-2-furyl),(N HCH(Bn)CONH2,H,Ph,Me,NHCONHPh),(NHCH(Bn)CONH2,H,Ph,Me,NHCOCO NHPh),(NHCH(Bn)CONH2,H,Ph,Et,CONHPh),(NHCH(Bn)CONH2,H,Ph,Et,CON H-3-pyridyl),(NHCH(Bn)CONH2,H,Ph,Et,NHCOPh), (NHCH(Bn)CONH2,H,Ph,Et, NHCO-2-furyl),(NHCH(Bn)CONH2,H,Ph,Et,NHCONHPh),(NHCH(Bn)CONH2,H, Ph,Et,NHCOCONHPh),(NHCH(Bn)CONH2,H, Ph,CH2OH,CONHPh),(NHCH(Bn)C ONH2,H,Ph,CH2OH,CONH-3-pyridyl),(NHCH(Bn)CONH2,H,Ph,CH2OH,NHCOP h),(NHCH(Bn)CONH2,H,Ph,CH2OH,NHCO-2-furyl),(NHCH(Bn)CONH2,H,Ph,CH 2OH,NHCONHPh),(NHCH(Bn)CONH2,H,Ph,CH2OH,NHCOCONHPh),(NHCH(B n)CONH2,H,OH,Me,CONHPh),(NHCH(Bn) CONH2,H,OH,Me,CONH-3-pyridyl), (N HCH(Bn)CONH2,H,OH,Me,NHCOPh),(NHCH(Bn)CONH2,H,OH,Me,NHCO-2-fur yl),(NHCH(Bn)CONH2,H,OH,Me,NHCONHPh),(NHCH(Bn)CONH2,H,OH,Me,NH COCONHPh),(NHCH(Bn)CONH2,H,OH,Et,CONHPh),(NHCH(Bn)CONH2,H,OH, Et,CONH-3-pyridyl),(NHCH(Bn)CONH2,H,OH,Et,NHCOPh),(NHCH(Bn)CONH2, H,OH,Et,NHCO-2-furyl),(NHCH(Bn)CONH2,H,OH,Et,NHCONHPh),(NHCH(Bn)C ONH2,H,OH,Et,NHCOCONHPh),(NHCH(Bn)CONH2,H,OH,CH2OH,CONHPh),(N HCH(Bn)CONH2,H,OH,CH2OH,CONH-3-pyridyl),(NHCH(Bn)CONH2,H,OH,CH2OH,NHCOPh),(NHCH(Bn)CONH2,H,OH,CH2OH,NHCO-2-furyl),(NHCH(Bn)CON H2,H,OH,CH2OH,NHCONHPh),(NHCH(Bn)CONH2,H,OH,CH2OH,NHCOCONH Ph),(NHCH(Bn)CONH2,Me,H,Me,CONHPh),(NHCH(Bn)CONH2,Me,H,Me,CONH-3-pyridyl),(NHCH(Bn)CONH2,Me,H,Me,NHCOPh),(NHCH(Bn)CONH2,Me,H,Me, NHCO-2-furyl),(NHCH(Bn)CONH2,Me,H,Me,NHCONHPh),(NHCH(Bn)CONH2,M e,H,Me,NHCOCONHPh),(NHCH(Bn)CONH2,Me,H,Et,CONHPh),(NHCH(Bn) CON H2,Me,H,Et,CONH-3-pyridyl),(NHCH(Bn)CONH2,Me,H,Et,NHCOPh),(NHCH(Bn) CONH2,Me,H,Et,NHCO-2-furyl),(NHCH(Bn)CONH2,Me,H,Et,NHCONHPh),(NHC H(Bn)CONH2,Me,H,Et,NHCOCONHPh),(NHCH(Bn)CONH2,Me,H,CH2OH,CON HPh),(NHCH(Bn)CONH2,Me,H,CH2OH,CONH-3-pyridyl),(NHCH(Bn)CONH2,Me, H,CH2OH,NHCOPh),(NHCH(Bn)CONH2,Me,H,CH2OH,NHCO-2-furyl),(NHCH(B n)CONH2,Me,H,CH2OH,NHCONHPh),(NHCH(Bn)CONH2,Me,H,CH2OH, NHCO CONHPh),(NHCH(Bn)CONH2,Me,Me,Me,CONHPh),(NHCH(Bn)CONH2,Me,Me, Me,CONH-3-pyridyl),(NHCH(Bn)CONH2,Me,Me,Me,NHCOPh),(NHCH(Bn)CONH 2,Me,Me,Me,NHCO-2-furyl),(NHCH(Bn)CONH2,Me,Me,Me,NHCONHPh), (NHCH( Bn)CONH2,Me,Me,Me,NHCOCONHPh),(NHCH(Bn)CONH2,Me,Me,Et,CONHPh), (NHCH(Bn)CONH2,Me,Me,Et,CONH-3-pyridyl),(NHCH(Bn)CONH2,Me,Me,Et,NH COPh),(NHCH(Bn)CONH-2,Me,Me,Et,NHCO-2-furyl),(NHCH(Bn)CONH2,Me,Me,E t,NHCONHPh),(NHCH(Bn)CONH2,Me,Me,Et,NHCOCONHPh),(NHCH(Bn)CONH 2,Me,Me,CH2OH,CONHPh),(NHCH(Bn)CONH2,Me,Me,CH2OH,CONH-3-pyridyl), (NHCH(Bn)CONH2,Me,Me,CH2OH,NHCOPh),(NHCH(Bn)CONH2,Me,Me,CH2O H,NHCO-2-furyl),(NHCH(Bn)CONH2,Me,Me,CH2OH,NHCONHPh),(NHCH(Bn)C ONH2,Me,Me,CH2OH,NHCOCONHPh),(NHCH(Bn)CONH2,Me,Ph,Me,CONHPh), (NHCH(Bn)CONH2,Me,Ph,Me,CONH-3-pyridyl),(NHCH(Bn)CONH2,Me,Ph,Me,N HCOPh),(NHCH(Bn)CONH2,Me,Ph,Me,NHCO-2-furyl),(NHCH(Bn)CONH2,Me,Ph ,Me,NHCONHPh),(NHCH(Bn)CONH2,Me,Ph,Me,NHCOCONHPh),(NHCH(Bn)CO NH2,Me,Ph,Et,CONHPh),(NHCH(Bn)CONH2,Me,Ph,Et,CONH-3-pyridyl), (NHCH( Bn)CONH2,Me,Ph,Et,NHCOPh),(NHCH(Bn)CONH2,Me,Ph,Et,NHCO-2-furyl),(N HCH(Bn)CONH2,Me,Ph,Et,NHCONHPh),(NHCH(Bn)CONH2,Me,Ph,Et,NHCOCO NHPh), (NHCH(Bn)CONH2,Me,Ph,CH2OH,CONHPh),(NHCH(Bn)CONH2,Me,Ph, CH2OH,CONH-3-pyridyl),(NHCH(Bn)CONH2,Me,Ph,CH2OH,NHCOPh),(NHCH( Bn)CONH2,Me,Ph,CH2OH,NHCO-2-furyl),(NHCH(Bn)CONH2,Me,Ph,CH2OH,NH CONHPh),(NHCH(Bn)CONH2,Me,Ph,CH2OH,NHCOCONHPh),(NHCH(Bn)CON H2,Me,OH,Me,CONHTPh),(NHCH(Bn)CONH2,Me,OH,Me,CONH-3-pyridyl),(NHC H(Bn)CONH2,Me,OH,Me,NHCOPh),(NHCH(Bn)CONH2,Me,OH,Me,NHCO-2-furyl ),(NHCH(Bn)CONH2,Me,OH,Me,NHCONHPh),(NHCH(Bn)CONH2,Me,OH,Me,NH COCONHPh),(NHCH(Bn)CONH2,Me,OH,Et,CONHPh),(NHCH(Bn)CONH2,Me,O H,Et,CONH-3-pyridyl),(NHCH(Bn)CONH2,Me,OH,Et,NHCOPh), (NHCH(Bn)CON H2,Me,OH,Et,NHCO-2-furyl),(NHCH(Bn)CONH2,Me,OH,Et,NHCONHPh),(NHCH (Bn)CONH2,Me,OH,Et,NHCOCONHPh),(NHCH(Bn)CONH2,Me,OH,CH2OH,CON HPh),(NHCH(Bn)CONH2,Me,OH,CH2OH, CONH-3-pyridyl),(NHCH(Bn)CONH2,M e,OH,CH2OH,NHCOPh),(NHCH(Bn)CONH2,Me,OH,CH2OH,NHCO-2-furyl),(NH CH(Bn)CONH2,Me,OH,CH2OH,NHCONHPh),(NHCH(Bn)CONH2,Me,OH,CH2O H,NHCOCONHPh), (NHCH(Bn)CONH2,Ph,H,Me,CONHPh),(NHCH(Bn)CONH2,P h,H,Me,CONH-3-pyridyl),(NHCH(Bn)CONH2,Ph,H,Me,NHCOPh),(NHCH(Bn)CO NH2,Ph,H,Me,NHCO-2-furyl),(NHCH(Bn)CONH2, Ph,H,Me,NHCONHPh), (NHCH( Bn)CONH2,Ph,H,Me,NHCOCONHPh),(NHCH(Bn)CONH2,Ph,H,Et,CONHPh),(N HCH(Bn)CONH2,Ph,H,Et,CONH-3-pyridyl), (NHCH(Bn)CONH2,Ph,H,Et,NHCOP h) (NHCH(Bn)CONH2,Ph,H,Et,NHCO-2-furyl),(NHCH(Bn)CONH2,Ph,H,Et,NHC ONHPh),(NHCH(Bn)CONH2, Ph,H,Et,NHCOCONHPh), (NHCH(Bn)CONH2,Ph,H, CH2OH,CONHPh),(NHCH(Bn)CONH2,Ph,H,CH2OH,CONH-3-pyridy),(NHCH(B n)CONH2,Ph,H,CH2OH,NHCOPh),(NHCH(Bn)CONH2,Ph,H,CH2OH,NHCO-2-fur yl),(NHCH(Bn)CONH2,Ph,H,CH2OH,NHCONHPh),(NHCH(Bn)CONH2, Ph,H,CH2OH,NHCOCONHPh),(NHCH(Bn)CONH2,Ph,Me,Me,CONHPh),(NHCH(Bn)CONH 2,Ph,Me,Me,CONH-3-pyridyl),(NHCH-(Bn)CONH2,Ph,Me,Me,NHCOPh),(NHCH(B n)CONH2,Ph,Me,Me,NHCO-2-furyl),(NHCH(Bn)CONH2,Ph,Me,Me,NHCONHPh), (NHCH(Bn)CONH2,Ph,Me,Me,NHCOCONHPh),(NHCH(Bn)CONH2,Ph,Me,Et,CO NHPh),(NHCH(Bn)CONH2,Ph,Me,Et,CONH-3-pyridyl),(NHCH(Bn)CONH2,Ph,Me ,Et,NHCOPh),(NHCH(Bn)CONH2,Ph,Me,Et,NHCO-2-furyl),(NHCH(Bn)CONH2,P h,Me,Et,NHCONHPh),(NHCH(Bn)CONH2,Ph,Me,Et,NHCOCONHPh),(NHC H(Bn) CONH2,Ph,Me,CH2OH,CONHPh),(NHCH(Bn)CONH2,Ph,Me,CH2OH,CONH-3-py ridyl),(NHCH(Bn)CONH2,Ph,Me,CH2OH,NHCOPh),(NHCH(Bn)CONH2,Ph,Me,C H2OH,NHCO-2-furyl),(NHCH(Bn)CONH2,Ph,Me,CH2OH,NHCONHPh),(NHCH(B n)CONH2,Ph,Me,CH2OH,NHCOCONHPh),(NHCH(Bn)CONH2,Ph,Ph,Me,CONHP h),(NHCH(Bn)CONH2,Ph,Ph,Me,CONH-3-pyridyl),(NHCH(Bn)CONH2,Ph,Ph,Me, NHCOPh),(NHCH(Bn)CONH2,Ph,Ph,Me,NHCO-2-furyl),(NHCH(Bn)CONH 2,Ph,P h,Me,NHCONHPh),(NHCH(Bn)CONH2,Ph,Ph,Me,NHCOCONHPh),(NHCH(Bn)C ONH2,Ph,Ph,Et,CONHPh),(NHCH(Bn)CONH2,Ph,Ph,Et,CONH-3-pyridyl),(NHCH (Bn)CONH2,Ph,Ph,Et,NHCOPh),(NHCH(Bn)CONH2,Ph,Ph,Et,NHCO-2-furyl),(N HCH(Bn)CONH2,Ph,Ph,Et,NHCONHP),(NHCH(Bn)CONH-2,Ph,Ph,Et,NHCOCO NHPh),(NHCH(Bn)CONH2,Ph,Ph,CH2OH,CONHPh),(NHCH(Bn)CONH2,Ph,Ph,C H2OH,CONH-3-pyridyl),(NHCH(Bn)CONH2,Ph,Ph,CH2OH,NHCOPh),(NHCH(Bn )CONH2,Ph,Ph,CH2OH,NHCO-2-furyl),(NHCH(Bn)CONH2,Ph,Ph,CH2OH,NHCO NHPh),(NHCH(Bn)CONH2,Ph,Ph,CH2OH,NHCOCONHPh),(NHCH(Bn) CONH2,P h,OH,Me,CONHPh),(NHCH(Bn)CONH2,Ph,OH,Me,CONH-3-pyridyl),(NHCH(Bn) CONH2,Ph,OH,Me,NHCOPh),(NHCH(Bn)CONH2,Ph,OH,Me,NHCO-2-furyl),(NH CH(Bn) CONH2,Ph,OH,Me,NHCONHPh),(NHCH(Bn)CONH2,Ph,OH,Me,NHCOC ONHPh),(NHCH(Bn)CONH2,Ph,OH,Et,CONHPh),(NHCH(Bn)CONH2,Ph,OH,Et, CONH-3-pyridyl),(NHCH(Bn)CONH2,Ph,OH,Et,NHCOPh),(NHCH(Bn)CONH2,Ph ,OH,Et,NHCO-2-furyl),(NHCH(Bn)CONH2,Ph,OH,Et,NHCONHPh),(NHCH(Bn)C ONH2,Ph,OH,Et,NHCOCONHPh),(NHCH(Bn)CONH2,Ph,OH,CH2OH,CONHPh),( NHCH(Bn)CONH2, Ph,OH,CH2OH, CONH-3-pyridyl),(NHCH(Bn)CONH2,Ph,OH,C H2OH,NHCOPh),(NHCH(Bn)CONH2,Ph,OH,CH2OH, NHCO-2-furyl),(NHCH(Bn) CONH2,Ph,OH,CH2OH,NHCONHPh),(NHCH(Bn)CONH2,Ph,OH,CH2OH,NHCO CONHPh),


(NHCH(Me)CH2OH,H,H,Me,CONHPh),(NHCH(Me)CH2OH,H,H,Me,CONH-3-pyri dyl),(NHCH(Me)CH2OH,H,H,Me,NHCOPh),(NHCH(Me)CH2OH,H,H,Me,NHCO-2-furyl),(NHCH(Me)CH2OH, H,H,Me,NHCONHPh),(NHCH(Me)CH2OH,H,H,Me,NH COCONHPh),(NHCH(Me)CH2OH,H,H,Et,CONHPh),(NHCH(Me)CH2OH, H,H,Et, CONH-3-pyridyl),(NHCH(Me)CH2OH,H,H,Et,NHCOPh),(NHCH(Me)CH2OH,H,H, Et,NHCO-2-furyl),(NHCH(Me)CH2OH,H,H,Et,NHCONHPh),(NHCH(Me)CH2OH, H,H,Et,NHCOCONHPh),(NHCH(Me)CH2OH,H,H,CH2OH,CONHPh),(NHCH(Me) CH2OH,H,H,CH2OH,CONH-3-pyridyl),(NHCH(Me)CH2OH,H,H,CH2OH,NHCOP h),(NHCH(Me)CH2OH,H,H, CH2OH,NHCO-2-furyl),(NHCH(Me)CH2OH,H,H,CH2OH,NHCONHPh),(NHCH(Me)CH2OH,H,H,CH2OH,NHCOCONHPh),(NHCH(Me) CH2OH,H,Me,Me,CONHPh),(NHCH(Me)CH2OH,H,Me,Me,CONH-3-pyridyl),(NH CH(Me)CH2OH,H,Me,Me,NHCOPh),(NHCH(Me)CH2OH,H,Me,Me,NHCO-2-furyl) ,(NHCH(Me)CH 2OH,H,Me,Me,NHCONHPh),(NHCH(Me)CH2OH,H,Me,Me,NHCO CONHPh)A(NHCH(Me)CH2OH,H,Me,Et,CONHPh),(NHCH(Me)CH2OH,H,Me,Et,C ONH-3-pyridyl),(NHCH(Me)CH2OH,H,Me,Et,NHCOPh),(NHCH(Me)CH2OH,H,M e,Et,NHCO-2-furyl),(NHCH(Me)CH2OH,H,Me,Et,NHCONHPh),(NHCH(Me)CH2O H,H,Me,Et,NHCOCONHPh),(NHCH(Me)CH2OH,H,Me,CH2OH,CONHPh),(NHCH (Me)CH2OH,H,Me,CH2OH,CONH-3-pyridyl), (NHCH(Me)CH2OH,H,Me,CH2OH,N HCOPh),(NHCH(Me)CH2OH,H,Me,CH2OH,NHCO-2-furyl),(NHCH(Me)CH2OH,H ,Me,CH2OH,NHCONHPh),(NHCH(Me)CH2OH,H,Me,CH2OH,NHCOCONHPh),(N HCH(Me)CH2OH,H,Ph,Me,CONHPh),(NHCH(Me)CH2OH,H,Ph,Me,CONH-3-pyri dyl),(NHCH(Me)CH2OH,H,Ph,Me,NHCOPh),(NHCH(Me)CH2OH,H,Ph,Me,NHCO-2-furyl),(NHCH(Me)CH2OH,H,Ph,Me,NHCONHPh),(NHCH(Me)CH2OH, H,Ph,Me, NHCOCONHPh),(NHCH(Me)CH2OH,H,Ph,Et,CONHPh),(NHCH(Me)CH2OH,H,P h,Et,CONH-3-pyridyl),(NHCH(Me)CH2OH,H,Ph,Et,NHCOPh),(NHCH(Me)CH2O H,H,Ph,Et,NHCO-2-furyl),(NHCH(Me)CH2OH,H,Ph,E,NHCONHPh),(NHCH(Me) CH2OH,H,Ph,Et,NHCOCONHPh),(NHCH(Me)CH2OH,H,Ph,CH2OH,CONHPh),( NHCH(Me)CH2OH,H,Ph,CH2OH,CONH-3-pyridyl),(NHCH(Me)CH2OH,H,Ph,OH 2OH,NHCOPh),(NHCH(Me)CH2OH,H,Ph,CH2OH,NHCO-2-furyl),(NHCH(Me)CH 2OH,H,Ph,CH2OH,NHCONHPh),(NHCH(Me)CH2OH,H,Ph,CH2OH,NHCOCONH Ph),(NHCH(Me)CH2OH,H,OH,Me,CONHPh), (NHCH(Me)CH2OH,H,OH,Me,CON H-3-pyridyl),(NHCH(Me)CH2OH,H,OH,Me,NHCOPh),(NHCH(Me)CH2OH,H,OH, Me,NHCO-2-furyl),(NHCH(Me)CH2OH,H,OH,Me,NHCONHPh),(NHCH(Me)CH2O H,H,OH,Me,NHCOCONHPh),(NHCH(Me)CH2OH,H,OH,Et,CONHPh),(NHCH(Me )CH2OH,H,OH,Et,CONH-3-pyridyl),(NHCH(Me)CH2OH,H,OH,Et,NHCOPh),(NH CH(Me)CH2OH,H,OH,Et,NHCO-2-furyl),(NHCH(Me)CH2OH,H,OH,Et, NHCONH Ph),(NHCH(Me)CH2OH,H,OH,Et,NHCOCONHPh),(NHCH(Me)CH2OH,H,OH,CH 2OH,CONHPh),(NHCH(Me)CH2OH,H,OH,CH2OH,CONH-3-pyridyl),(NHCH(Me) CH2OH,H,OH,CH2OH,NHCOPh),(NHCH(Me)CH2OH,H,OH,CH2OH,NHCO-2-fur yl),(NHCH(Me)CH2OH,H,OH,CH2OH,NHCONHPh),(NHCH(Me)CH2OH,H,OH,C H2OH,NHCOCONHPh),(NHCH(Me)CH2OH,Me,H,Me,CONHPh),(NHCH(Me)CH2OH,Me,H,Me,CONH-3-pyridyl),(NHCH(Me)CH2OH,Me,H,Me,NHCOPh),(NHCH( Me)CH2OH,Me,H,Me,NHCO-2-furyl),(NHCH(Me)CH2OH,Me,H,Me,NHCONHPh), (NHCH(Me)CH2OH,Me,H,Me,NHCOCONHPh),(NHCH(Me)CH2OH,Me,H,Et,CON HPh),(NHCH(Me)CH2OH,Me,H,Et,CONH-3-pyridyl),(NHCH(Me)CH2OH,Me,H,Et ,NHCOPh),(NHCH(Me)CH2OH,Me,H,Et,NHCO-2-furyl),(NHCH(Me)CH2OH,Me,H ,Et,NHCONHPh),(NHCH(Me)CH2OH,Me,H,Et,NHCOCONH Ph),(NHCH(Me)CH2OH,Me,H,CH2OH,CONHPh),(NHCH(Me)CH2OH,Me,H,CH2OH,CONH-3-pyridyl), (NHCH(Me)CH2OH,Me,H,CH2OH,NHCOPh),(NHCH(Me)CH2OH,Me,H, CH2OH, NHCO-2-furyl),(NHCH(Me)CH2OH,Me,H,CH2OH,NHCONHPh),(NHCH(Me)CH2OH,Me,H,CH2OH,NHCOCONHPh),(NHCH(Me)CH2OH,Me,Me,Me,CONHPh),(N HCH(Me)CH2OH,Me,Me,Me,CONH-3-pyridyl),(NHCH(Me)CH2OH,Me,Me,Me,NH COPh),(NHCH(Me)CH2OH,Me,Me,Me,NHCO-2-furyl),(NHCH(Me)CH2OH,Me,Me, Me,NHCONHPh),(NHCH(Me)CH2OH,Me,Me,Me,NHCONHPh),(NHCH(Me)CH 2OH,Me,Me,Et,CONHPh), (NHCH(Me)CH2OH,Me,Me,Et,CONH-3-pyridyl),(NHCH (Me)CH2OH,Me,Me,Et,NHCOPh),(NHCH(Me)CH2OH,Me,Me,Et,NHCO-2 furyl),( NHCH(Me)CH2OH,Me,Me,Et,NHCONHPh),(NHCH(Me)CH2OH,Me,Me,Et,NHCO CONHPh),(NHCH(Me)CH2OH,Me,Me,CH2OH,CONHPh),(NHCH(Me)CH2OH,Me, Me,CH2OH,CONH-3-pyridyl),(NHCH(Me)CH 2OH,Me,Me,CH2OH,NHCOPh),(NH CH(Me)CH2OH,Me,Me,CH2OH,NHCO-2-furyl),(NHCH(Me)CH2OH,Me,Me,CH2O H,NHCONHPh),(NHCH(Me)CH2OH,Me,Me,CH2OH,NHCOCONHPh),(NHCHMe )CH2OH,Me,Ph,Me,CONHPh),(NHCH(Me)CH2OH,Me,Ph,Me,CONH-3-pyridyl),(N HCH(Me)CH2OH,Me,Ph,Me,NHCOPh),(NHCH(Me)CH2OH,Me,Ph,Me,NHCO-2-fu ryl),(NHCH(Me)CH2OH,Me,Ph,Me,NHCONHPh),(NHCH(Me)CH2OH,Me,Ph,Me, NHCOCONHPh),(NHCH(Me) CH2OH,Me,Ph,Et,CONHPh),(NHCH(Me)CH2OH,Me ,Ph,Et,CONH-3-pyridyl), (NHCH(Me)CH2OH,Me,Ph,Et,NHCOPh),(NHCH(Me)CH2OH,Me,Ph,Et,NHCO-2-furyl),(NHCH(Me)CH2OH,Me,Ph,Et,NHCONHPh),(NHCH( Me)CH2OH,Me,Ph,Et,NHCOCONHPh),(NHCH(Me) CH2OH,Me,Ph,CH 2OH,CON HPh),(NHCH(Me)CH2OH,Me,Ph,CH2OH,CONH-3-pyridyl),(NHCH(Me)CH2OH,M e,Ph,CH2OH,NHCOPh),(NHCH(Me)CH2OH,Me,Ph,CH2OH,NHCO-2-furyl),(NHC H(Me)CH2OH,Me,Ph,CH2OH,NHCONHPh),(NHCH(Me)CH2OH,Me,Ph,CH2OH,N HCOCONHPh),(NHCH(Me)CH2OH,Me,OH,Me,CONHPh),(NHCH(Me)CH2OH,Me ,OH,Me,CONH-3-pyridyl),(NHCH(Me)CH2OH,Me,OH,Me,NHCOPh),(NHCH(Me)C H2OH,Me,OH,Me,NHCO-2-furyl),(NHCH(Me)CH2OH,Me,OH,Me,NHCONHPh),(N HCH(Me)CH2OH,Me,OH,Me,NHCOCONHTPh),(NHCH(Me)CH2OH,Me,OH,Et,CO NHPh),(NHCH(Me)CH2OH,Me,OH,Et,CONH-3-pyridyl),(NHCH(Me)CH2OH,Me,O H,Et,NHCOPh),(NHCH(Me)CH2OH,Me,OH,Et,NHCO-2-furyl),(NHCH(Me)CH2O H,Me,OH,Et,NHCONHPh),(NHCH(Me)CH2OH,Me,OH,Et,NHCOCONHPh),(NHC H(Me)CH2OH,Me,OH,CH2OH,CONHPh),(NHCH(Me)CH2OH,Me,OH,CH2OH,CO NH-3-pyridyl),(NHCH(Me)CH2OH,Me,OH,CH2OH,NHCOPh),(NHCH(Me)CH2OH ,Me,OH,CH2OH, NHCO-2-furyl),(NHCH(Me)CH2OH,Me,OH,CH2OH,NHCONHPh ),(NHCH(Me)CH2OH,Me,OH,CH2OH,NHCOCONHPh),(NHCH(Me)CH2OH,Ph,H, Me,CONHPh),(NHCH(Me)CH2OH,Ph,H,Me,CONH-3-pyridyl),(NHCH(Me)CH2OH ,Ph,H,Me,NHCOPh),(NHCH(Me)CH2OH,Ph,H,Me,NHCO-2-furyl),(NHCH(Me)CH 2OH,Ph,H,Me,NHCONHPh),(NHCH(Me)CH2OH,Ph,H,Me,NHCOCONHPh), (NHC H(Me)CH2OH,Ph,H,Et,CONHPh),(NHCH(Me)CH 2OH,Ph,H,Et,CONH-3-pyridyl),( NHCH(Me)CH2OH,Ph,H,Et,NHCOPh),(NHCH(Me)CH2OH,Ph,H,Et,NHCO-2-fury l),(NHCH(Me)CH2OH,Ph,H,Et,NHCONHPh),(NHCH(Me)CH2OH,Ph,H,Et,NHCO CONHPh),(NHCH(Me)CH2OH,Ph,H,CH2OH,CONHPh),(NHCH(Me)CH2OH,Ph,H ,CH2OH, CONH-3-pyridyl),(NHCH(Me)CH2OH,Ph,H,CH2OH,NHCOPh),(NHCH( Me)CH2OH,Ph,H,CH2OH,NHCO-2-furyl),(NHCH(Me)CH2OH,Ph,H,CH2OH,NHC ONHPh),(NHCH(Me)CH2OH,Ph,H,CH2OH,NHCOCONHPh),(NHCH(Me)CH2OH, Ph,Me,Me,CONHPh),(NHCH(Me)CH2OH,Ph,Me,Me, CONH-3-pyridyl),(NHCH(Me) CH2OH,Ph,Me,Me,NHCOPh),(NHCH(Me)CH2OH,Ph,Me,Me,NHCO-2-furyl),(NHC H(Me)CH2OH,Ph,Me,Me,NHCONHPh),(NHCH(Me)CH2OH,Ph,Me,Me,NHCOCO NHPh),(NHCH(Me)CH2OH,Ph,Me,Et,CONHPh),(NHCH(Me)CH2OH,Ph,Me,Et,C ONH-3-pyridyl),(NHCH(Me)CH2OH,Ph,Me,Et,NHCOPh),(NHCH(Me)CH2OH,Ph, Me,Et,NHCO-2-furyl), (NHCH(Me) CH2OH,Ph,Me,Et,NHCONHPh),(NHCH(Me)CH 2OH,Ph,Me,Et,NHCOCONHPh),(NHCH(Me)CH2OH,Ph,Me,CH2OH,CONHPh),(N HCH(Me)CH2OH,Ph,Me,CH2OH,CONH-3-pyridyl),(NHCH(Me)CH2OH,Ph,Me,CH 2OH,NHCOPh),(NHCH(Me)CH2OH,Ph,Me,CH2OH,NHCO-2-furyl),(NHCH(Me)C H2OH,Ph,Me,CH2OH,NHCONHPh),(NHCH(Me)CH2OH,Ph,Me,CH2OH,NHCOC ONHPh),(NHCH(Me)CH2OH,Ph,Ph,Me,CONHPh),(NHCH(Me)CH2OH,Ph,Ph,Me, CONH-3-pyridyl),(NHCH(Me)CH2OH,Ph,Ph,Me,NHCOPh),(NHCH(Me)CH2OH,P h,Ph,Me,NHCO-2-furyl),(NHCH(Me)CH2OH,Ph,Ph,Me,NHCONHPh),(NHCH(Me) CH2OH,Ph,Ph,Me,NHCOCONHPh),(NHCH(Me)CH2OH,Ph,Ph,Et,CONHPh),(NH CH(Me)CH2OH,Ph,Ph,Et,CONH-3-pyridyl),(NHCH(Me)CH2OH,Ph,Ph,Et,NHCOP h),(NHCH(Me)CH2OH,Ph,Ph,Et,NHCO-2-furyl),(NHCH(Me)CH2OH,Ph,Ph,Et,NH CONHPh),(NHCH(Me)CH2OH,Ph,Ph,Et,NHCOCONHPh),(NHCH(Me)CH2OH,Ph, Ph,CH2OH,CONHPh),(NHCH(Me)CH2OH,Ph,Ph,CH2OH,CONH-3-pyridyl),(NHC H(Me)CH2OH,Ph,Ph,CH2OH,NHCOPh),(NHCH(Me)CH2OH,Ph,Ph,CH2OH,NHC O-2-furyl),(NHCH(Me)CH2OH,Ph,Ph,CH2OH,NHCONHPh),(NHCH(Me)CH2OH,P h,Ph,CH2OH,NHCOCONHPh),(NHCH(Me)CH2OH,Ph,OH,Me,CONHPh),(NHCH( Me)CH2OH,Ph,OH,Me,CONH-3-pyridyl),(NHCH(Me)CH2OH,Ph,OH,Me,NHCOPh ),(NHCH(Me)CH2OH,Ph,OH,Me,NHCO-2-furyl),(NHCH(Me)CH2OH,Ph,OH,Me,N HCONHPh),(NHCH(Me)CH2OH,Ph,OH,Me,NHCOCONHPh),(NHCH(Me)CH2OH, Ph,OH,Et,CONHPh), (NHCH(Me)CH2OH,Ph,OH,Et,CONH-3-pyridyl),(NHCH(Me) CH2OH,Ph,OH,Et,NHCOPh),(NHCH(Me)CH2OH,Ph,OH,Et,NHCO-2-furyl),(NHC H(Me)CH2OH,Ph,OH,Et,NHCONHPh),(NHCH(Me)CH2OH,Ph,OH,Et,NHCOCON HPh),(NHCH(Me)CH2OH,Ph,OH,CH2OH, CONHPh),(NHCH(Me)CH2OH,Ph,OH, CH2OH,CONH-3-pyridyl),(NHCH(Me)CH2OH,Ph,OH,CH2OH,NHCOPh),(NHCH( Me)CH2OH,Ph,OH,CH2OH,NHCO-2-furyl),(NHCH(Me)CH2OH,Ph,OH,CH2OH,N HCONHPh),(NHCH(Me)CH2OH,Ph,OH,CH2OH,NHCOCONHPh),


(NHCH(Me)CONHMe,H,H,Me,CONHPh),(NHCH(Me)CONHMe,H,H,Me,CONH-3-pyridyl),(NHCH(Me)CONHMe,H,H,Me,NHCOPh),(NHCH(Me)CONHMe,H,H,Me, NHCO-2-furyl),(NHCH(Me)CONHMe,H,H,Me,NHCONHPh),(NHCH(Me)CONHMe ,H,H,Me,NHCOCONHPh),(NHCH(Me)CONHMe,H,H,Et,CONHPh),(NHCH(Me)C ONHMe,H,H,Et,CONH-3-pyridyl),(NHCH(Me)CONHMe,H,H,Et,NHCOPh),(NHC H(Me)CONHMe,H,H,Et,NHCO-2-furyl),(NHCH(Me)CONHMe,H,H,Et,NHCONHP h),(NHCH(Me)CONHMe,H,H,Et,NHCOCONHPh),(NHCH(Me)CONHMe,H,H,CH2OH,CONHPh),(NHCH(Me)CONHMe,H,H,CH2OH,CONH-3-pyridyl),(NHCH(Me)C ONHMe, H,H,CH2OH,NHCOPh),(NHCH(Me)CONHMe,H,H,CH2OH,NHCO-2-fury l),(NHCH(Me)CONHMe,H,H,CH2OH,NHCONHPh),(NHCH(Me)CONHMe,H,H,CH 2OH,NHCOCONHP),(NHCH(Me)CONHMe,H,Me,Me,CONHPh),(NHCH(Me)CO NHMe,H,Me,Me,CONH-3-pyridyl),(NHCH(Me)CONHMe,H,Me,Me,NHCOPh),(NH CH(Me)CONHMe,H,Me,Me,NHCO-2-furyl),(NHCH(Me)CONHMe,H,Me,Me,NHCO NHPh),(NHCH(Me)CONHMe,H,Me,Me,NHCOCONHPh),(NHCH(Me)CONHMe,H, Me,Et,CONHPh),(NHCH(Me)CONHMe,H,Me,Et,CONH-3-pyridyl),(NHCH(Me)CO NHMe,H,Me,Et,NHCOPh),(NHCH(Me)CONHMe,H,Me,Et,NHCO-2-furyl),(NHCH( Me)CONHMe,H,Me,Et,NHCONHPh),(NHCH(Me)CONHMe,H,Me,Et,NHCOCONH Ph),(NHCH(Me)CONHMe,H,Me,CH2OH,CONHPh),(NHCH(Me)CONHMe,H,Me,C H2OH,CONH-3-pyridyl),(NHCH(Me)CONHMe,H,Me,CH2OH,NHCOPh),(NHCH( Me)CONHMe,H,Me,CH2OH,NHCO-2-furyl),(NHCH(Me)CONHMe,H,Me,CH2OH, NHCONHPh),(NHCH(Me)CONHMe,H,Me,CH2OH,NHCOCONHPh),(NHCH(Me)C ONHMe,H,Ph,Me,CONHPh),(NHCH(Me)CONHMe,H,Ph,Me,CONH-3-pyridyl),(N HCH(Me)CONHMe,H,Ph,Me,NHCOPh),(NHCH(Me)CONHMe,H,Ph,Me,NHCO-2-f uryl),(NHCH(Me)CONHMe,H,Ph,Me,NHCONHPh),(NHCH(Me)CONHMe,H,Ph,M e,NHCOCONHPh),(NHCH(Me)CONHMe,H,Ph,Et,CONHPh),(NHCH(Me)CONHM e,H,Ph,Et,CONH-3-pyridyl),(NHCH(Me)CONHMe,H,Ph,Et,NHCOPh),(NHCH(Me) CONHMe,H,Ph,Et,NHCO-2-furyl),(NHCH(Me)CONHMe,H,Ph,Et,NHCONHPh),(N HCH(Me)CONHMe,H,Ph,Et,NHCOCONHPh),(NHCH(Me)CONHMe,H,Ph,CH2OH ,CONHPh),(NHCH(Me)CONHMe,H,Ph,CH2OH,CONH-3-pyridyl),(NHCH(Me)CO NHMe,H,Ph,CH2OH,NHCOPh),(NHCH(Me)CONHMe,H,Ph,CH2OH,NHCO-2-fury l),(NHCH(Me)CONHMe,H,Ph,CH2OH,NHCONHPh),(NHCH(Me)CONHMe,H,Ph, CH2OH,NHCOCONHPh),(NHCH(Me)CONHMe,H,OH,Me,CONHPh),(NHCH(Me) CONHMe,H,OH,Me,CONH-3-pyridyl), (NHCH(Me)CONHMe,H,OH,Me,NHCOPh),( NHCH(Me)CONHMe,H,OH,Me,NHCO-2-furyl),(NHCH(Me)CONHMe,H,OH,Me,N HCONHPh),(NHCH(Me)CONHMe,H,OH,Me,NHCOCONHPh),(NHCH(Me)CONH Me,H,OH,Et,CONHPh),(NHCH(Me)CONHMe,H,OH,Et,CONH-3-pyridyl),(NHCH( Me)CONHMe,H,OH,Et,NHCOPh),(NHCH(Me)CONHMe,H,OH,Et,NHCO-2-fury,( NHCH(Me)CONHMe,H,OH,Et,NHCONHPh),(NHCH(Me)CONHMe,H,OH,Et,NHC OCONHPh),(NHCH(Me)CONHMe,H,OH,CH2OH,CONHPh),(NHCH(Me)CONHMe ,H,OH,CH2OH,CONH-3-pyridyl),(NHCH(Me)CONHMe,H,OH,CH2OH,NHCOPh),( NHCH(Me)CONHMe,H,OH,CH2OH,NHCO-2-furyl),(NHCH(Me)CONHMe,H,OH,C H2OH,NHCONHPh),(NHCH(Me)CONHMe,H,OH,CH2OH,NHCOCONHPh),(NHC H(Me)CONHMe,Me,H,Me,CONHPh),(NHCH(Me)CONHMe,Me,H,Me,CONH-3-pyr idyl),(NHCH(Me)CONHMe,Me,H,Me,NHCOPh),(NHCH(Me)CONHMe,Me,H,Me,N HCO-2-furyl),(NHCH(Me)CONHMe,Me,H,Me,NHCONHPh),(NHCH(Me)CONHMe ,Me,H,Me,NHCOCONHPh),(NHCH(Me)CONHMe,Me,H,Et,CONHPh),(NHCH(Me) CONHMe,Me,H,Et,CONH-3-pyridyl),(NHCH(Me)CONHMe,Me,H,Et,NHCOPh),(N HCH(Me)CONHMe,Me,H,Et,NHCO-2-furyl),(NHCH(Me)CONHMe,Me,H,Et,NHC ONHPh),(NHCH(Me)CONHMe,Me,H,Et,NHCOCONHPh),(NHCH(Me)CONHMe, Me,H,CH2OH,CONHPh),(NHCH(Me)CONHMe,Me,H,CH2OH,CONH-3-pyridyl),(N HCH(Me)CONHMe,Me,H,CH2OH,NHCOPh),(NHCH(Me)CONHMe,Me,H,CH2OH, NHCO-2-furyl),(NHCH(Me)CONHMe,Me,H,CH2OH,NHCONHPh),(NHCH(Me)CO NHMe,Me,H,CH2OH, NHCOCONHPh),(NHCH(Me)CONHMe,Me,Me,Me,CONHPh ),(NHCH(Me)CONHMe,Me,Me,Me,CONH-3-pyridyl),(NHCH(Me)CONHMe,Me,Me, Me,NHCOPh),(NHCH(Me)CONHMe,Me,Me,Me,NHCO-2-furyl), (NHCH(Me)CONH Me,Me,Me,Me,NHCONHPh),(NHCH(Me)CONHMe,Me,Me,Me,NHCOCONHPh),(N HCH(Me)CONHMe,Me,Me,Et,CONHPh),(NHCH(Me)CONHMe,Me,Me,Et,CONH-3-pyridyl),(NHCH(Me)CONHMe,Me,Me,Et,NHCOPh),(NHCH(Me)CONHMe,Me,Me, Et,NHCO-2-furyl),(NHCH(Me)CONHMe,Me,Me,Et,NHCONHPh),(NHCH(Me)CON HMe,Me,Me,Et,NHCOCONHPh),(NHCH(Me)CONHMe,Me,Me,CH2OH,CONHPh), (NHCH(Me)CONHMe,Me,Me,CH2OH,CONH-3-pyridyl),(NHCH(Me)CONHMe,Me, Me,CH2OH,NHCOPh),(NHCH(Me)CONHMe,Me,Me,CH2OH,NHCO-2-furyl),(NHC H(Me)CONHMe,Me,Me,CH2OH,NHCONHPh),(NHCH(Me)CONHMe,Me,Me,CH2OH,NHCOCONHPh),(NHCH(Me)CONHMe,Me,Ph,Me,CONHPh),(NHCH(Me)CON HMe,Me,Ph,Me,CONH-3-pyridyO,(NHCH(Me)CONHMe,Me,Ph,Me,NHCOPh),(NH CH(Me)CONHMe,Me,Ph,Me,NHCO-2-furyl),(NHCH(Me)CONHMe,Me,Ph,Me,NHC ONHPh),(NHCH(Me)CONHMe,Me,Ph,Me,NHCOCONHPh),(NHCH(Me)CONHMe, Me,Ph,Et,CONHPh),(NHCH(Me)CONHMe,Me,Ph, Et,CONH-3-pyridyl),(NHCH(Me )CONHMe,Me,Ph,Et,NHCOPh),(NHCH(Me)CONHMe,Me,Ph,Et, NHCO-2-furyl),(N HCH(Me)CONHMe,Me,Ph,Et,NHCONHPh),(NHCH(Me)CONHMe,Me,Ph,Et,NHC OCONHPh),(NHCH(Me)CONHMe,Me,Ph,CH2OH,CONHPh),(NHCH(Me)CONHM e,Me,Ph,CH2OH,CONH-3-pyridyl),(NHCH(Me)CONHTMe,Me,Ph,CH2OH,NHCOPh ),(NHCH(Me)CONH Me,Me,Ph,CH2OH,NHCO-2-furyl),(NHCH(Me)CONHMe,Me,P h, CH2OH,NHCONHPh),(NHCH(Me)CONHMe,Me,Ph,CH2OH,NHCOCONHPh),( NHCH(Me)CONHMe,Me,OH,Me,CONHPh),(NHCH(Me)CONHMe,Me,OH,Me,CO NH-3-pyridyl),(NHCH(Me)CONHM,Me,OH,Me,NHCOPh),(NHCH(Me)CONHMe, Me,OH,Me,NHCO-2-furyl),(NHCH(Me)CONHMe,Me,OH,Me,NHCONHPh),(NHCH (Me)CONHMe,Me,OH,Me,NHCOCONHPh),(NHCH(Me)CONHMe,Me,OH,E,CON HPh),(NHCH(Me)CONHMe,Me,OH,Et,CONH-3-pyridyl),(NHCH(Me)CONHMe,Me ,OH,Et,NHCOPh),(NHCH(Me)CONHMe,Me,OH,Et,NHCO-2-furyl),(NHCH(Me)CO NHMe,Me,OH,Et,NHCONHPh),(NHCH(Me)CONHMe,Me,OH,Et,NHCOCONHPh) ,(NHCH(Me)CONHMe,Me,OH,CH2OH,CONHPh),(NHCH(Me)CONHMe,Me,OH,C H2OH,CONH-3-pyridyl),(NHCH(Me)CONHMe,Me,OH,CH2OH,NHCOPh),(NHCH( Me)CONHMe,Me,OH,CH2OH,NHCO-2-furyl),(NHCH(Me)CONHMe,Me,OH,CH2O H,NHCONHPh),(NHCH(Me)CONHMe,Me,OH,CH2OH,NHCOCONHPh),(NHCH( Me)CONHMe,Ph,H,Me,CONHPh),(NHCH(Me)CONHMe,Ph,H,Me,CONH-3-pyridyl ),(NHCH(Me)CONHMe,Ph,H,Me,NHCOPh),(NHCH(Me)CONHMe,Ph,H,Me,NHCO -2-furyl),(NHCH(Me)CONHMe,Ph,H,Me,NHCONHPh),(NHCH(Me)CONHMe,Ph,H ,Me,NHCOCONHPh),(NHCH(Me)CONHMe,Ph,H,Et,CONHPh),(NHCH(Me)CONH Me,Ph,H,Et,CONH-3-pyridyl),(NHCH(Me)CONHMe,Ph,H,Et,NHCOPh), (NHCH(M e)CONHMe,Ph,H,Et,NHCO-2-furyl),(NHCH(Me)CONHMe,Ph,H,Et,NHCONHPh),( NHCH(Me)CONHMe,Ph,H,Et,NHCOCONHPh),(NHCH(Me)CONHMe,Ph,H,CH2O H,CONHPh),(NHCH(Me)CONHMe,Ph,H,CH2OH,CONH-3-pyridyl),(NHCH(Me)C ONHMe,Ph,H,CH2OH,NHCOPh),(NHCH(Me)CONHMe,Ph,H,CH2OH, NHCO-2-fu ryl),(NHCH(Me)CONHMe,Ph,H,CH2OH,NHCONHPh),(NHCH(Me)CONHMe,Ph, H,CH2OH,NHCOCONHPh),(NHCH(Me)CONHMe,Ph,Me,Me,CONHPh),(NHCH( Me)CONHMe,Ph,Me,Me,CONH-3-pyridyl), (NHCH(Me)CONHMe,Ph,Me,Me,NHCO Ph),(NHCH(Me)CONHMe,Ph,Me,Me,NHCO-2-furyl),(NHCH(Me)CONHMe,Ph,Me, Me,NHCONHPh),(NHCH(Me)CONHMe,Ph,Me,Me,NHCOCONHPh),(NHCH(Me)C ONHMe,Ph,Me,Et,CONHPh),(NHCH(Me)CONHMe,Ph,Me,Et,CONH-3-pyridyl),(N HCH(Me)CONHMe,Ph,Me,Et,NHCOPh),(NHCH(Me)CONHMe,Ph,Me,Et,NHCO-2-furyl),(NHCH(Me)CONHMe,Ph,Me,Et,NHCONHPh),(NHCH(Me)CONHMe,Ph,Me, Et,NHCOCONHPh),(NHCH(Me)CONHMe,Ph,Me,CH2OH,CONHPh),(NHCH(Me) CONHMe,Ph,Me,CH2OH,CONH-3-pyridyl),(NHCH(Me)CONHMe,Ph,Me,CH2OH, NHCOPh),(NHCH(Me)CONHMe,Ph,Me,CH2OH,NHCO-2-furyl),(NHCH(Me)CON HMe,Ph,Me,CH2OH,NHCONHPh),(NHCH(Me)CONHMe,Ph,Me,CH2OH,NHCOC ONH Ph),(NHCH(Me)CONHMe,Ph,Ph,Me,CONH Ph),(NHCH(Me)CONHMe.Ph,Ph, Me,CONH-3-pyridyl),(NHCH(Me)CONHMe,Ph,Ph,Me,NHCOPh),(NHCH(Me)CON HMe,Ph,Ph,Me,NHCO-2-furyl),(NHCH(Me)CONHMe,Ph,Ph,Me,NHCONHPh),(NH CH(Me)CONHMe,Ph,Ph,Me,NHCOCONHPh),(NHCH(Me)CONHMe,Ph,Ph,Et,CO NHPh),(NHCH(Me)CONHMe,Ph,Ph,Et,CONH-3-pyridyl),(NHCH(Me)CONHMe,Ph ,Ph,Et,NHCOPh),(NHCH(Me)CONHMe,Ph,Ph,Et,NHC-2-furyl),(NHCH(Me)CON HMe,Ph,Ph,Et,NHCONHPh),(NHCH(Me)CONHMe,Ph,Ph,Et,NHCOCONHPh),(N HCH(Me)CONHMe,Ph,Ph,CH2OH,CONHPh),(NHCH(Me)CONHMe,Ph,Ph,CH2O H,CONH-3-pyridyl),(NHCH(Me)CONHMe,Ph,Ph,CH2OH,NHCOPh),(NHCH(Me)C ONHMe,Ph,Ph,CH2OH,NHCO-2-furyl),(NHCH(Me)CONHMe,Ph,Ph,CH2OH,NHC ONHPh),(NHCH(Me)CONHMe,Ph,Ph,CH2OH,NHCOCONHPh),(NHCH(Me)CON HMe,Ph,OH,Me,CONHPh),(NHCH(Me)CONHMe,Ph,OH,Me,CONH-3-pyridyl),(N HCH(Me)CONHMe,Ph,OH,Me,NHCOPh),(NHCH(Me)CONHMe,Ph,OH,Me,NHCO -2-furyl),(NHCH(Me)CONHMe,Ph,OH,Me,NHCONHPh),(NHCH(Me)CONHMe,Ph, OH,Me,NHCOCONHPh),(NHCH(Me)CONHMe,Ph,OH,Et,CONHPh),(NHCH(Me)C ONHMe,Ph,OH,Et,CONH-3-pyridyl),(NHCH(Me)CONHMe,Ph,OH,Et,NHCOPh),( NHCH(Me)CONHMe,Ph,OH,Et,NHCO-2-furyl),(NHCH(Me)CONHMe,Ph,OH,Et,N HCONHPh),(NHCH(Me)CONHMe,Ph,OH,Et,NHCOCONHPh),(NHCH(Me)CONH Me,Ph,OH,CH2OH,CONHPh),(NHCH(Me)CONHMe,Ph,OH,CH2OH,CONH-3-pyri dyl),(NHCH(Me)CONHMe,Ph,OH,CH2OH,NHCOPh),(NHCH(Me)CONHMe,Ph,O H,CH2OH,NHCO-2-furyl),(NHCH(Me)CONHMe,Ph,OH,CH2OH,NHCONHPh),(N HCH(Me)CONHMe,Ph,OH,CH2OH,NHCOCONHPh),


(NHCOCH(iPr)OH,H,H,Me,CONHPh),(NHCOCH(iPr)OH,H,H,Me,CONH-3-pyridyl ),(NHCOCH(iPr)OH,H,H,Me,NHCOPh),(NHCOCH(iPr)OH,H,H,Me,NHCO-2-furyl) ,(NHCOCH(iPr)OH,H,H,Me,NHCONHPh),(NHCOCH(iPr)OH,H,H,Me,NHCOCON HPh),(NHCOCH(iPr)OH,H,H,Et,CONHPh),(NHCOCH(iPr)OH,H,H,Et,CONH-3-py ridyl),(NHCOCH(iPr)OH,H,H,Et,NHCOPh),(NHCOCH(iPr)OH,H,H,Et,NHCO-2-fu ryl),(NHCOCH(iPr)OH,H,H,Et,NHCONHPh),(NHCOCH(iPr)OH,H,H,Et,NHCOCO NHPh),(NHCOCH(iPr)OH,H,H,CH2OH,CONHPh),(NHCOCH(iPr)OH,H,H,OCH2O H, CONH-3-pyridyl),(NHCOCH(iPr)OH,H,H,CH2OH,NHCOPh),(NHCOCH(iPr)OH ,H,H,CH2OH,NHCO-2-furyl),(NHCOCH(iPr)OH,H,H,CH2OH,NHCONHPh),(NHC OCH(iPr)OH,H,H,CH2OH,NHCOCONHPh),(NHCOCH(iPr)OH,H,Me,Me,CONHP h)(NHCOCH(iPr)OH,H,Me,Me,CONH-3-pyridyl),(NHCOCH(iPr)OH,H,Me,Me,NH COPh),(NHCOCH(iPr)OH,H,Me,Me,NHCO-2-furyl),(NHCOCH(iPr)OH,H,Me,Me,N HCONHPh),(NHCOCH(iPr)OH,H,Me,Me,NHCOCONHPh),(NHCOCH(iPr)OH,H, Me,Et,CONHPh),(NHCOCH(iPr)OH,H,Me,Et,CONH-3-pyridyl),(NHCOCH(iPr)OH ,H,Me,Et,NHCOPh),(NHCOCH(iPr)OH,H,Me,Et,NHCO-2-furyl),(NHCOCH(iPr)O H,H,Me,Et,NHCONHPh),(NHCOCH(iPr)OH,H,Me,Et,NHCOCONHPh),(NHCOCH (iPr)OH,H,Me,CH2OH,CONHPh),(NHCOCH(iPr)OH,H,Me,CH2OH,CONH-3-pyrid yl),(NHCOCH(iPr)OH,H,Me,CH2OH,NHCOPh),(NHCOCH(iPr)OH,H,Me,CH2OH, NHCO-2-furyl),(NHCOCH(iPr)OH,H,Me,CH2OH,NHCONHPh),(NHCOCH(iPr)OH ,H,Me,CH2OH,NHCOCONHPh),(NHCOCH(iPr)OH,H, Ph,Me,CONHPh),(NHCOC H(iPr)OH,H,Ph,Me,CONH-3-pyridyl),(NHCOCH(iPr)OH,H,Ph,Me,NHCOPh),(NHC OCH(iPr)OH,H,Ph,Me,NHCO-2-furyl),(NHCOCH(iPr)OH,H, Ph,Me,NHCONHPh),( NHCOCH(iPr)OH,H,Ph,Me,NHCOCONHPh),(NHCOCH(iPr)OH,H, Ph,Et,CONHP h), (NHCOCH(iPr)OH,H,Ph,Et,CONH-3-pyridyl),(NHCOCH(iPr)OH,H,Ph,Et,NHC OPh),(NHCOCH(iPr)OH,H,Ph,Et,NHCO-2-furyl),(NHCOCH(iPr)OH,H,Ph,Et,NHC ONHPh),(NHCOCH(iPr)OH,H,Ph,Et,NHCOCONHPh),(NHCOCH(iPr)OH,H,Ph,C H2OH,CONHPh),(NHCOCH(iPr)OH,H,Ph,CH2OH,CONH-3-pyridyl),(NHCOCH(iP r)OH,H,Ph,CH2OH,NHCOPh),(NHCOCH(iPr)OH,H,Ph,CH2OH,NHCO-2-furyl),(N HCOCH(iPr)OH,H,Ph,CH2OH,NHCONHPh),(NHCOCH(iPr)OH,H,Ph,CH2OH,NH COCONHPh),(NHCOCH(iPr)OH,H,OH,Me,CONHPh),(NHCOCH(iPr)OH,H,OH,M e,CONH-3-pyridyl),(NHCOCH(iPr)OH,H,OH,Me,NHCOPh),(NHCOCH(iPr)OH,H, OH,Me,NHCO-2-furyl),(NHCOCH(iPr)OH,H,OH,Me,NHCONHPh),(NHCOOCH(iPr) OH,H,OH,Me,NICOCONHPh),(NHCOCH(iPr)OH,H,OH,Et,CONHPh),(NHCOCH( iPr)OH,H,OH,Et,CONH-3-pyridyl),(NHCOCH(iPr)OH,H,OH,Et,NHCOPh),(NHCO CH(iPr)OH,H,OH,Et,NHCO-2-furyl),(NHCOCH(iPr)OH,H,OH,Et,NHCONHPb),(N HCOCH(iPr)OH,H,OH,Et,NHCOCONHPh),(NHCOCH(iPr)OH,H,OH,CH2OH,CO NHPh),(NHCOCOH(iPr)OH,H,OH,CH2OH,CONH-3-pyridyl),(NHCOCH(iPr)OH,H, OH,CH2OH,NHCOPh),(NHCOCH(iPr)OH,H,OH,CH2OH,NHCO-2-furyl),(NHCOC H(iPr)OH,H,OH,CH2OH,NHCONHPh),(NHCOCH(iPr)OH,H,OH,CH2OH,NHCOC ONHPh),(NHCOCH(iPr)OH,Me,H,Me,CONHPh),(NHCOCH(iPr)OH,Me,H,Me, CO NH-3-pyridyl),(NHCOCH(iPr)OH,Me,H,Me,NHCOPh),(NHCOCH(iPr)OH,Me,H,M e, NHCO-2-furyl),(NHCOCH(iPr)OH,Me,H,Me,NHCONHPh),(NHCOCH(iPr)OH,M e,H,Me,NHCOCONHPh),(NHCOCH(iPr)OH,Me,H,Et,CONHPh),(NHCOCH(iPr)O H,Me,H,Et,CONH-3-pyridyl),(NHCOCH(iPr)OH,Me,H,Et,NHCOPh),(NHCOCH(iP r)OH,Me,H,Et,NHCO-2-furyl),(NHCOCH(iPr)OH,Me,H,Et,NHCONHPh),(NHCOC H(iPr)OH,Me,H,Et,NHCOCONHPh),(NHCOCH(iPr)OH,Me,H,CH2OH,CONHPh),( NHCOCH(iPr)OH,Me,H,CH2OH,CONH-3-pyridyl),(NHCOCH(iPr)OH,Me,H,CH2O H,NHCOPh),(NHCOCH(iPr)OH,Me,H,CH2OH,NHCO-2-furyl),(NHCOCH(iPr)OH, Me,H,CH2OH, NHCONHPh),(NHCOCH(iPr)OH,Me,H,CH2OH,NHCOCONHPh),( NHCOCH(iPr)OH,Me,Me,Me,CONHPh),(NHCOCH(iPr)OH,Me,Me,Me,CONH-3-py ridyl),(NHCOCH(iPr)OH,Me,Me,Me,NHCOPh),(NHCOCH(iPr)OH,Me,Me,Me,NHC O-2-furyl),(NHCOCH(iPr)OH,Me,Me,Me,NHCONHPh),(NHCOCH(iPr)OH,Me,Me, Me,NHCOCONHPh),(NHCOCH(iPr)OH,Me,Me,Et,CONHPh),(NHCOCH(iPr)OH, Me,Me,Et,CONH-3-pyridyl),(NHCOCH(iPr)OH,Me,Me,Et,NHCOPh),(NHCOCH(iP r)OH,Me,Me,Et,NHCO-2-furyl),(NHCOCH(iPr)OH,Me,Me,Et,NHCONHPh),(NHC OCH(iPr)OH,Me,Me,Et,NHCOCONHPh),(NHCOCH(iPr)OH,Me,Me,CH2OH,CON HPh),(NHCOCH(iPr)OH,Me,Me,CH2OH,CONH-3-pyridyl), (NHCOCH(iPr)OH,Me, Me,CH2OH,NHCOPh),(NHCOCH(iPr)OH,Me,Me,CH2OH,NHCO-2-furyl),(NHCOC H(iPr)OH,Me,Me,CH2OH,NHCONHPh),(NHCOCH(iPr)OH,Me,Me,CH2OH,NHCO CONHPh),(NHCOCH(iPr)OH,Me,Ph,Me,CONHPh),(NHCOCH(iPr)OH,Me,Ph,Me, CONH-3-pyridyl),(NHCOCH(iPr)OH,Me,Ph,Me,NHCOPh),(NHCOCH(iPr)OH,Me, Ph,Me,NHCO-2-furyl),(NHCOCH(iPr)OH,Me,Ph,Me,NHCONHPh),(NHCOCH(iPr) OH,Me,Ph,Me,NHCOCONHPh),(NHCOCH(iPr)OH,Me,Ph,Et,CONHPh),(NHCOC H(iPr)OH,Me,Ph,Et,CONH-3-pyridyl),(NHCOCH(iPr)OH,Me,Ph,Et,NHCOPh),(NH COCH(iPr)OH,Me,Ph,Et,NHCO-2-furyl),(NHCOCH(iPr)OH,Me,Ph,Et,NHCONHP h),(NHCOCH(iPr)OH,Me,Ph,Et,NHCOCONHPh),(NHCOCH(iPr)OH,Me,Ph,CH2O H,CONHPh),(NHCOCH(iPr)OH,Me,Ph,CH2OH,CONH-3-pyridyl),(NHCOCH(iPr)O H,Me,Ph,CH2OH,NHCOPh),(NHCOCH(iPr)OH,Me,Ph,CH2OH,NHCO-2-furyl),(N HCOCH(iPr)OH,Me,Ph,CH2OH,NHCONHPh),(NHCOCH(iPr)OH,Me,Ph,CH2OH, NHCOCONHPh),(NHCOCH(iPr)OH,Me,OH,Me,CONHPh),(NHCOCH(iPr)OH,Me, OH,Me,CONH-3-pyridyl),(NHCOCH(iPr)OH,Me,OH,Me,NHCOPh),(NHCOCH(iPr) OH,Me,OH,Me,NHCO-2-furyl),(NHCOCH(iPr)OH,Me,OH,Me,NHCONHPh),(NHC OCH(iPr)OH,Me,OH,Me,NHCOCONHPh),(NHCOCH(iPr)OH,Me,OH,Et,CONHPh) ,(NHCOCH(iPr)OH,Me,OH,Et,CONH-3-pyridyl),(NHCCH(iPr)OH,MeOH,Et,NH COPh),(NHCOCH(iPr)OH,Me,OH,Et, NHCO-2-furyl),(NHCOCH(iPr)OH,Me,OH,Et, NHCONHPh),(NHCOCH(iPr)OH,Me,OH,Et,NHCOCONHPh),(NHCOCH(iPr)OH, Me,OH,CH2OH,CONHPh),(NHCOCH(iPr)OH,Me,OH,CH2OH,CONH-3-pyridyl),( NHCOCH(iPr)OH,Me,OH,CH 2OH,NHCOPh),(NHCOCH(iPr)OH,Me,OH,CH2OH, NHCO-2-furyl),(NHCOCH(iPr)OH,Me,OH,CH2OH,NHCONHPh),(NHCOCH(iPr)O H,Me,OH,CH2OH,NHCOCONHPh),(NHCOCH(iPr)OH,Ph,H,Me,CONHPh),(NHC OCH(iPr)OH,Ph,H,Me,CONH-3-pyridyl),(NHCOCH(iPr)OH,Ph,H,Me,NHCOPh),(N HCOCH(iPr)OH,Ph,H,Me,NHCO-2-furyl),(NHCOCH(iPr)OH,Ph,H,Me,NHCONHP h)(NHCOCH(iPr)OH,Ph,H,Me,NHCOCONHPh),(NHCOCH(iPr)OH,Ph,H,Et,CON HPh),(NHCOCH(iPr)OH,Ph,H,Et,CONH-3-pyridyl),(NHCOCH(iPr)OH,Ph,H,Et,N HCOPh),(NHCOCH(iPr)OH,Ph,H,Et,NHCO-2-furyl),(NHCOCH(iPr)OH,Ph, H,Et,N HCONHPh),(NHCOCH(iPr)OH,Ph,H,Et,NHCOCONHPh),(NHCOCH(iPr)OH,Ph,H ,CH2OH,CONHPh),(NHCOCH(iPr)OH,Ph,H,CH2OH,CONH-3-pyridyl),(NHCOCH( iPr)OH,Ph,H,CH2OH,NHCOPh),(NHCOCH(iPr)OH,Ph,H,CH2OH,NHCO-2-furyl),( NHCOCH(iPr)OH,Ph,H,CH2OH,NHCONHPh),(NHCOCH(iPr)OH,Ph,H,CH2OH,N HCOCONHPh),(NHCOCH(iPr)OH,Ph,Me,Me,CONHPh),(NHCOCH(iPr)OH,Ph,Me ,Me,CONH-3-pyridyl),(NHCOCH(iPr)OH,Ph,Me,Me,NHCOPh),(NHCOCH(iPr)OH, Ph,Me,Me,NHCO-2-furyl),(NHCOCH(iPr)OH,Ph,Me,Me,NHCONHPh),(NHCOCH(i Pr)OH,Ph,Me,Me,NHCOCONHPh),(NHCOCH(iPr)OH,Ph,Me,Et,CONHPh),(NHC OCH(iPr)OH,Ph,Me,Et,CONH-3-pyridyl),(NHCOCH(iPr)OH,Ph,Me,Et,NHCOPh),( NHCOCH(iPr)OH,Ph,Me,Et,NHCO-2-furyl),(NHCOCH(iPr)OH,Ph,Me,Et,NHCON HPh),(NHCOCH(iPr)OH,Ph,Me,Et,NHCOCONHPh),(NHCOCH(iPr)OH,Ph,Me,COH 2OH,CONHPh),(NHCOCH(iPr)OH,Ph,Me,CH2OH,CONH-3-pyridyl),(NHCOCH(iP r)OH,Ph,Me,CH2OH,NHCOPh),(NHCOCH(iPr)OH,Ph,Me,CH2OH,NHCO-2-furyl), (NHCOCH(iPr)OH,Ph,Me,CH2OH,NHCONHPh),(NHCOCH(iPr)OH,Ph,Me,CH2O H,NHCOCONHPh),(NHCOCH(iPr)OH,Ph,Ph,Me,CONHPh),(NHCOCH(iPr)OH,Ph ,Ph,Me,CONH-3-pyridyl),(NHCOCH(iPr)OH,Ph,Ph,Me,NHCOPh),(NHCOCH(iPr)O H,Ph,Ph,Me,NHCO-2-furyl),(NHCOCH(iPr)OH,Ph,Ph,Me,NHCONHPh),(NHCOC H(iPr)OH,Ph,Ph,Me,NHCOCONHPh),(NHCOCH(iPr)OH,Ph,Ph,Et,CONHPh),(NH COCH(iPr)OH,Ph,Ph,Et,CONH-3-pyridyl),(NHCOCH(iPr)OH,Ph,Ph,Et,NHCOPh), (NHCOCH(iPr)OH,Ph,Ph,Et,NHCO-2-furyl),(NHCOCH(iPr)OH,Ph,Ph,Et,NHCON HPh),(NHCOCH(iPr)OH,Ph,Ph,Et,NHCOCONHPh),(NHCOCH(iPr)OH,Ph,Ph,OH 2OH,CONHPh),(NHCOCH(iPr)OH,Ph,Ph,CH2OH,CONH-3-pyridyl),(NHCOCH(iP r)OH,Ph,Ph,CH2OH,NHCOPh),(NHCOCH(iPr)OH,Ph,Ph,CH2OH,NHCO-2-furyl),( NHCOCH(iPr)OH,Ph,Ph,CH2OH, NHCONHPh),(NHCOCH(iPr)OH,Ph,Ph,CH2OH, NHCOCONHPh),(NHCOCH(iPr)OH,Ph,OH,Me,CONHPh),(NHCOCH(iPr)OH,Ph, OH,Me,CONH-3-pyridyl),(NHCOCH(iPr)OH,Ph,OH,Me,NHCOPh),(NHCOCH(iPr) OH,Ph,OH,Me,NHCO-2-furyl),(NHCOCH(iPr)OH,Ph,OH,Me,NHCONHPh),(NHCO CH(iPr)OH,Ph,OH,Me,NHCOCONHPh),(NHCOCH(iPr)OH,Ph,OH,Et,CONHPh),( NHCOCH(iPr)OH,Ph,OH,Et,CONH-3-pyridyl),(NHCOCH(iPr)OH,Ph,OH,Et,NHC OPh),(NHCOCH(iPr)OH,Ph,OH,Et,NHCO-2-furyl),(NHCOCH(iPr)OH,Ph,OH,Et,N HCONHPh),(NHCOCH(iPr)OH,Ph,OH,Et,NHCOCONHP),(NHCOCH(iPr)OH,Ph, OH,CH2OH,CONHPh),(NHCOCH(iPr)OH,Ph,OH,CH2OH,CONH-3-pyridyl),(NHC OCH(iPr)OH,Ph,OH,CH2OH,NHCOPh),(NHCOCH(iPr)OH,Ph,OH,CH2OH,NHCO -2-furyl),(NHCOCH(iPr)OH,Ph,OH,CH2OH,NHCONHPh),(NHCOCH(iPr)OH,Ph,O H,CH2OH,NHCOCONHPh),


(NHSO2Me,H,H,Me,CONHPh),(NHSO2Me,H,H,Me,CONH-3-pyridyl),(NHSO2Me, H,H,Me,NHCOPh),(NHSO2Me,H,H,Me,NHCO-2-furyl),(NHSO2Me,H,H,Me,NHCO NHPh),(NHSO2Me,H,H,Me,NHCOCONHPh),(NHSO2Me,H,H,Et,CONHPh),(NHS O2Me,H,H,Et,CONH-3-pyridyl),(NHSO2Me,H,H,Et,NHCOPh),(NHSO2Me,H,H,Et, NHCO-2-furyl),(NHSO2Me,H,H,Et,NHCONHPh),(NHSO2Me,H,H,Et,NHCOCON HPh),(NHSO2Me,H,H,CH2OH,CONHPh),(NHSO2Me,H,H,CH2OH,CONH-3-pyrid yl),(NHSO2Me,H,H,CH2OH,NHCOPh),(NHSO2Me,H,H,CH2OH,NHCO-2-furyl),(N HSO2Me,H,H,CH2OH,NHCONHPh),(NHSO2Me,H,H,CH2OH,NHCOCONHPh),(N HSO2Me,H,Me,Me,CONHPh),(NHSO2Me,H,Me,Me,CONH-3-pyridyl),(NHSO2Me, H,Me,Me,NHCOPh),(NHSO2Me,H,Me,Me,NHCO-2-furyl),(NHSO2Me,H,Me,Me,N HCONHPh),(NHSO2Me,H,Me,Me,NHCOCONHPh),(NHSO2Me,H,Me,Et,CONHPh ),(NHSO 2Me,H,Me,Et,CONH-3-pyridyl),(NHSO2Me,H,Me,Et,NHCOPh),(NHSO2M e,H,Me,Et,NHCO-2-furyl),(NHSO2Me,H,Me,Et,NHCONHPh),(NHSO2Me,H,Me,Et ,NHCOCONHPh),(NHSO2Me,H,Me,CH2OH,CONHPh),(NHSO2Me,H,Me,CH2OH, CONH-3-pyridy),(NHSO2Me,H,Me,CH2OH,NHCOPh),(NHSO2Me, H,Me,CH 2OH, NHCO-2-furyl),(NHSO2Me,H,Me,CH2OH,NHCONHPh),(NHSO2Me,H,Me,CH2OH ,NHCOCONHPh),(NHSO2Me,H,Ph,Me,CONHPh),(NHSO2Me,H,Ph,Me,CONH-3-p yridyl),(NHSO2Me,H,Ph,Me,NHCOPh),(NHSO2Me,H,Ph,Me,NHCO-2-furyl),(NHS O2Me,H,Ph,Me,NHCONHPh),(NHSO2Me,H,Ph,Me,NHCOCONHPh),(NHSO2Me, H,Ph,Et,CONHPh),(NHSO2Me,H,Ph,Et,CONH-3-pyridyl),(NHSO2Me,H,Ph,Et,NH COPh),(NHSO2Me,H,Ph,Et,NHCO-2-furyl),(NHSO2Me,H,Ph,Et,NHCONHPh),(N HSO2Me,H,Ph,Et,NHCOCONHPh),(NHSO2Me,H,Ph,CH2OH,CONHPh),(NHSO2 Me,H,Ph,CH2OH,CONH-3-pyridyl),(NHSO2Me,H,Ph,CH2OH,NHCOPh),(NHSO2Me,H,Ph,CH2OH,NHCO-2-furyl),(NHSO2Me,H,Ph,CH2OH,NHCONHPh),(NHSO2Me,H,Ph,CH2OH,NHCOCONHPh),(NHSO2Me,H,OH,Me,CONHPh),(NHSO2Me,H ,OH,Me,CONH-3-pyridyl),(NHSO2Me,H,OH,Me,NHCOPh),(NHSO2Me,H,OH,Me, NHCO-2-furyl),(NHSO2Me,H,OH,Me,NHCONHPh),(NHSO2Me,H,OH,Me,NHCOC ONHPh),(NHSO2Me,H,OH,Et,CONHPh),(NHSO2Me,H,OH,Et,CONH-3-pyridyl),( NHSO2Me,H,OH,Et,NHCOPh),(NHSO2Me,H,OH,Et,NHCO-2-furyl),(NHSO2Me,H ,OH,Et,NHCONHPh),(NHSO2Me,H,OH,Et,NHCOCONHPh),(NHSO2Me,H,OH,C H2OH,CONHPh),(NHSO2Me,H,OH,CH2OH,CONH-3-pyridyl),(NHSO2Me,H,OH,C H2OH,NHCOPh),(NHSO2Me,H,OH,CH2OH,NHCO-2-furyl),(NHSO2Me,H,OH,CH 2OH,NHCONHPh),(NHSO2Me,H,OH,CH2OH,NHCOCONHPh),(NHSO2Me,Me,H, Me,CONHPh),(NHSO2Me,Me,H,Me,CONH-3-pyridyl),(NHSO2Me,Me,H,Me,NHCO Ph),(NHSO2Me,Me,H,Me,NHCO-2-furyl),(NHSO2Me,Me,H,Me,NHCONHPh),(NH SO2Me,Me,H,Me,NHCOCONHPh),(NHSO2Me,Me,H,Et,CONHPh),(NHSO2Me,Me ,H,Et,CONH-3-pyridyl),(NHSO2Me,Me,H,Et,NHCOPh),(NHSO2Me,Me,H,Et,NHC O-2-furyl,(NHSO2Me,Me,H,Et,NHCONHPh),(NHSO2Me,Me,H,Et,NHC(OCONHP h),(NHSO2Me,Me,H,CH2OH,CONHPh),(NHSO2Me,Me,H,CH2OH,CONH-3-pyridy l),(NHSO2Me,Me,H,CH2OH,NHCOPh),(NHSO2Me,Me,H,CH2OH, NHCO-2-furyl), ( NHSO2Me,Me,H,CH2OH,NHCONHPh),(NHSO2Me,Me,H,CH2OH,NHCOCONHP h),(NHSO2Me,Me,Me,Me,CONHPh),(NHSO2Me,Me,Me,Me,CONH-3-pyridyl),(NH SO2Me,Me,Me,Me,NHCOPh),(NHSO2Me,Me,Me,Me,NHCO-2-furyl),(NHSO2Me,M e,Me,Me,NHCONHPh),(NHSO2Me,Me,Me,Me,NHCOCONHPh),(NHSO2Me,Me,M e,Et,CONHPh),(NHSO2Me,Me,Me,Et,CONH-3-pyridyl), (NHSO2Me,Me,Me,Et,NH COPh), (NHSO2Me,Me,Me,Et,NHCO-2-furyl),(NHSO2Me,Me,Me,Et,NHCONHPh),( NHSO2Me,Me,Me,Et,NHCOCONHPh),(NHSO2Me,Me,Me,CH2OH,CONHPh),(NH SO2Me,Me,Me,CH2OH,CONH-3-pyridyl),(NHSO2Me,Me,Me,CH2OH,NHCOPh),( NHSO2Me,Me,Me,CH2OH,NHCO-2-furyl),(NHSO2Me,Me,Me,CH2OH,NHCONHP h),(NHSO2Me,Me,Me,CH2H,NHCOCONHPh),(NHSO2Me,Me,Ph,Me,CONHPh),( NHSO2Me,Me,Ph,Me,CONH-3-pyridyl),(NHSO2Me,Me,Ph,Me,NHCOPh),(NHSO2Me,Me,Ph,Me,NHCO-2-furyl),(NHSO2Me,Me,Ph,Me,NHCONHPh),(NHSO2Me,Me ,Ph,Me,NHCOCONHPh),(NHSO2Me,Me,Ph,Et,CONHPh),(NHSO2Me,Me,Ph,Et,C ONH-3-pyridyl),(NHSO2Me,Me,Ph,Et,NHCOPh),(NHSO2Me,Me,Ph,Et,NHCO-2-fu ryl),(NHSO2Me,Me,Ph,Et, NHCONHPh),(NHSO2Me,Me,Ph,Et, NHCOCONHPh), (N HSO2Me,Me,Ph,CH2OH,CONHPh),(NHSO2Me,Me,Ph,CH2OH,CONH-3-pyridyl,( NHSO2Me,Me,Ph,CH2OH,NHCOPh),(NHSO2Me,Me,Ph,CH2OH,NHCO-2-furyl),( NHSO2Me,Me,Ph,CH2OH,NHCONHPh),(NHSO2Me,Me,Ph,CH2OH,NHCOCONH Ph),(NHSO2Me,Me,OH,Me,CONHPh),(NHSO2Me,Me,OH,Me,CONH-3-pyridyl),(N HSO2Me,Me,OH,Me,NHCOPh),(NHSO2Me,Me,OH,Me,NHCO-2-furyl),(NHSO2Me ,Me,OH,Me,NHCONHPh),(NHSO2Me,Me,OH,Me,NHCOCONHPh),(NHSO2Me,Me ,OH,Et,CONHPh),(NHSO2Me,Me,OH,Et,CONH-3-pyridyl),(NHSO2Me,Me,OH,Et, NHCOPh),(NHSO2Me,Me,OH,Et,NHCO-2-furyl),(NHSO2Me,Me,OH,Et,NHCONH Ph),(NHSO2Me,Me,OH,Et,NHCOCONHPh),(NHSO2Me,Me,OH,CH2OH,CONHPh ),(NHSO2Me,Me,OH,CH2OH,CONH-3-pyridyl),(NHSO2Me,Me,OH,CH2OH,NHCO Ph),(NHSO2Me,Me,OH,CH2OH,NHCO-2-furyl),(NHSO2Me,Me,OH,CH2OH,NHC ONHPh),(NHSO2Me,Me,OH,CH2OH,NHCOCONHPh),(NHSO2Me,Ph,H,Me,CON HPh),(NHSO2Me,Ph,H,Me,CONH-3-pyridyl),(NHSO2Me,Ph,H,Me,NHCOPh),(NH SO2Me,Ph,H,Me,NHCO-2-furyl),(NHSO2Me,Ph,H,Me,NHCONHPh),(NHSO2Me,P h,H,Me,NHCOCONHPh),(NHSO2Me,Ph,H,Et,CONHPh),(NHSO2Me,Ph,H,Et,CO NH-3-pyridyl),(NHSO2Me,Ph,H,Et,NHCOPh),(NHSO2Me,Ph,H,Et,NHCO-2-furyl), (NHSO2Me,Ph,H,Et,NHCONHPh),(NHSO2Me,Ph,H,Et,NHCOCONHPh),(NHSO2Me,Ph,H,CH2OH,CONHPh),(NHSO2Me,Ph,H,CH2OH,CONH-3-pyridyl),(NHSO2Me,Ph,H,CH2OH,NHCOPh),(NHSO2Me,Ph,H,CH2OH,NHCO-2-furyl),(NHSO2Me, Ph,H,CH2OH,NHCONHPh),(NHSO2Me,Ph,H,CH2OH,NHCOCONHPh),(NHSO2Me,Ph,Me,Me,CONHPh),(NHSO2Me,Ph,Me,Me,CONH-3-pyridyl),(NHSO2Me,Ph, Me,Me,NHCOPh),(NHSO2Me,Ph,Me,Me,NHCO-2-furyl),(NHSO2Me,Ph,Me,Me,N HCONHPh),(NHSO2Me,Ph,Me,Me,NHCOCONHPh),(NHSO2Me,Ph,Me,Et,CONH Ph),(NHSO2Me,Ph,Me,Et,CONH-3-pyridyl),(NHSO2Me,Ph,Me,Et,NHCOPh),(NHS O2Me,Ph,Me,Et,NHCO-2-furyl),(NHSO2Me,Ph,Me,Et,NHCONHPh),(NHSO2Me,P h,Me,Et,NHCOCONHPh),(NHSO2Me,Ph,Me,CH2OH,CONHPh),(NHSO2Me,Ph,M e,CH2OH,CONH-3-pyridyl),(NHSO2Me,Ph,Me,CH2OH, NHCOPh),(NHSO2Me,Ph, Me,CH2OH,NHCO-2-furyl),(NHSO2Me,Ph,Me,CH2OH, NHCONHPh),(NHSO2Me, Ph,Me,CH2OH,NHCOCONHPh),(NHSO2Me,Ph,Ph,Me,CONHPh),(NHSO2Me,Ph, Ph,Me,CONH-3-pyridyl),(NHSO2Me,Ph,Ph,Me,NHCOPh),(NHSO2Me,Ph,Ph,Me,N HCO-2-furyl),(NHSO2Me,Ph,Ph,Me,NHCONHPh),(NHSO2Me,Ph,Ph,Me,NHCOC ONHPh),(NHSO2Me,Ph,Ph,Et,CONHPh),(NHSO2Me,Ph,Ph,Et,CONH-3-pyridyl),( NHSO2Me,Ph,Ph,Et,NHCOPh), (NHSO2Me,Ph,Ph,Et, NHCO-2-furyl),(NHSO2Me,P h,Ph,Et,NHCONH Ph),(NHSO2Me,Ph,Ph,Et,NHCOCONHPh),(NHSO2Me,Ph,Ph,C H2OH,CONHPh),(NHSO2Me,Ph,Ph,CH2OH,CONH-3-pyridyl), (NHSO2Me,Ph,Ph, CH2OH,NHCOPh),(NHSO2Me,Ph,Ph,CH2OH,NHCO-2-furyl),(NHSO2Me,Ph,Ph,C H2OH,NHCONHPh),(NHSO2Me,Ph,Ph,CH2OH,NHCOCONHPh),(NHSO2Me,Ph, OH,Me,CONHPh),(NHSO2Me,Ph,OH,Me,CONH-3-pyridyl),(NHSO2Me,Ph,OH,Me, NHCOPh),(NHSO2Me,Ph,OH,Me,NHCO-2-furyl),(NHSO2Me,Ph,OH,Me,NHCON HPh),(NHSO2Me,Ph,OH,Me,NHCOCONHPh),(NHSO2Me,Ph,OH,Et,CONHPh),(N HSO2Me,Ph,OH,Et,CONH-3-pyridyl),(NHSO2Me,Ph,OH,Et,NHCOPh),(NHSO2Me ,Ph,OH,Et,NHCO-2-furyl),(NHSO2Me,Ph,OH,Et,NHCONHPh),(NHSO2Me,Ph,OH, Et,NHCOCONHPh),(NHSO2Me,Ph,OH,CH2OH, CONHPh),(NHSO2Me,Ph,OH,CH 2OH,CONH-3-pyridyl),(NHSO2Me,Ph,OH,CH2OH,NHCOPh),(NHSO2Me,Ph,OH, CH2OH,NHCO-2-furyl),(NHSO2Me,Ph,OH,CH2OH,NHCONHPh),(NHSO2Me,Ph, OH,CH2OH,NHCOCONHPh),


(NH2,H,H,Me,CONHPh),(NH2,H,H,Me,CONH-3-pyridyl), (NH2, H,H,Me,NHCOPh), (NH2,H,H,Me,NHCO-2-furyl),(NH2,H,H,Me,NHCONHPh), (NH2,H,H,Me,NHCOC ONHPh),(NH2,H,H,Et,CONHPh),(NH2,H,H,Et,CONH-3-pyridyl),(NH2,H,H,Et,NH COPh),(NH2,H,H,Et,NHCO-2-furyl),(NH2,H,H,Et,NHCONHPh),(NH2,H,H,Et,NH COCONHPh),(NH2,H,H,CH2OH,CONHPh),(NH2,H,H,CH2OH, CONH-3-pyridyl),( NH2,H,H,CH2OH, NHCONHPh),(NH2, H,H,CH2OH, NHCOCONHPh), (NH2, H,Me, Me,CONHPh), (NH2,H,Me,Me,CONH-3-pyridyl), (NH2,H.Me,Me,NHCONHPh), (NH 2,H,Me,Me,NHC00NHPh),(NH2,H,Me,Et,CONHPh),(NH2,H,Me,Et, CONH-3-pyr idyl),(NH2,H,Me,Et,NHCOPh), (NH2,H,Me,Et,NHCO-2-furyl),(NH2,H,Me,Et,NHC ONHPh), (NH2,H,Me,Et, NHCOCONHPh), (NH2, H,Me,CH 20H, CONHPh),(NH2,H, Me,CH2OH,CONH-3-pyridyl),(NH2,H,Me,CH2OH,NHCONHPh),(NH2,H,Me,CH2OH,NHCOCONHPh),(NH2,H,Ph,Me,CONHPh),(NH2,H,Ph,Me,CONH-3-pyridyl),( NH2,H,Ph,Me,NHCONHPh),(NH2,H,Ph,Me,NHCOCONHPh),(NH2, H,Ph,Et,CON HPh),(NH2,H,Ph,Et,CONH-3-pyridyl),(NH2,H,Ph,Et,NHCOPh),(NH2,H,Ph,Et,NH CO-2-furyl),(NH2,H,Ph,Et,NHCONHPh),(NH2,H,Ph,Et, NHCOCONHPh),(NH2,H, Ph,CH2OH,CONHPh),(NH2,H,Ph,CH2OH,CONH-3-pyridyl),(NH 2,H,Ph,CH2OH,N HCONHPh),(NH2, H, Ph,CH2OH,NHCOCONHPh),(NH2,H,OH,Me,CONHPh),(NH2,H,OH,Me,CONH-3-pyridyl),(NH-2,H,OH,Me,NHCONHPh),(NH2,H,OH,Me,NHCO CONHPh), (NH2,H,OH,Et,CONHPh), (NH2,H,OH,Et,CONH-3-pyridyl),(NH2,H,OH, Et, NHCOPh),(NH2,H,OH,Et,NHCO-2-furyl),(NH2,H,OH,Et,NHCONHPh),(NH2,H ,OH,Et,NHCONHPh),(NH2,H,OH,CH2OH,CONHPh),(NH2,H,OH,CH2OH,CO NH-3-pyridyl),(NH2,H,OH,CH2OH,NHCONHPh),(NH2,H,OH,CH2OH,NHCOCON HPh),(NH2,Me,H,Me,CONHPh),(NH2,Me,H,Me,CONH-3-pyridyl),(NH2,Me,H,Me, NHCONHPh),(NH2,Me,H,Me,NHCOCONHPh),(NH2,Me,H,Et,CONHPh),(NH2,Me ,H,Et,CONH-3-pyridyl),(NH2,Me,H,Et,NHCOPh),(NH2,Me,H,Et,NHCO-2-furyl),(N H2,Me,H,Et,NHCONHPh),(NH2,Me,H,Et,NHCONHPh),(NH2,Me,H,CH2OH,C ONHPh),(NH2,Me,H,CH2OH,CONH-3-pyridyl),(NH2,Me,H,CH2OH,NHCONHPh), (NH2,Me,H,CH2OH,NHCOCONHPh),(NH2,Me,Me,Me,CONHPh),(NH2,Me,Me,Me ,CONH-3-pyridyl),(NH2,Me,Me,Me,NHCONHPh),(NH2,Me,Me,Me,NHCONHP h),(NH2,Me,Me,Et,CONHPh),(NH2,Me,Me,Et,CONH-3-pyridyl),(NH-2,Me,Me,Et,N HCOPh),(NH2,Me,Me,Et,NHCO-2-furyl), (NH2,Me,Me,Et,NHCONHPh), (NH2,Me, Me,Et, NHCOCONHPh),(NH2,Me,Me,CH2OH,CONHPh),(NH2,Me,Me,CH2OH,CO NH-3-pyridyl),(NH2,Me,Me,CH2OH,NHCONHPh),(NH2,Me,Me,CH2OH, NHCOCO NHPh),(NH2,Me,Ph,Me,CONHPh),(NH2,Me,Ph,Me,CONH-3-pyridyl),(NH2,Me,Ph, Me,NHCOPh),(NH2,Me,Ph,Me,NHCO-2-furyl),(NH2,Me,Ph,Me,NHCONHPh),(NH 2,Me,Ph,Me,NHOCONHPh),(NH 2,Me,Ph,Et,CONHPh),(NH2,Me,Ph,Et,CONH-3-pyridyl),(NH2,Me,Ph,Et,NHCOPh),(NH2,Me,Ph,Et,NHCO-2-furyl),(NH2,Me,Ph,Et, NHCONHPh),(NH2,Me,Ph,Et,NHCOCONHPh),(NH2,Me,Ph,CH2OH, CONHiPh),(N H2,Me,Ph,CH2OH,CONH-3-pyridyl),(NH2,Me,Ph,CH2OH,NHCONHPh),(NH2,Me, Ph,CH2OH,NHCOCONHPh),(NH2,Me,OH,Me,CONHPh),(NH2,Me,OH,Me,CONH-3-pyridyl),(NH 2,Me,OH,Me,NHCONHPh),(NH2,Me,OH,Me,NHCOCONHPh),(NH2,Me,OH,Et,CONHPh),(NH2,Me,OH,Et,CONH-3-pyridyl),(NH2,Me,OH,Et,NHCOPh ),(NH2,Me,OH,Et,NHCO-2-furyl),(NH2,Me,OH,Et,NHCONHPh),(NH2,Me,OH,Et, NHCOCONHPh),(NH2,Me,OH,CH2OH,CONHPh),(NH2,Me,OH,CH2OH,CONH-3-pyridyl),(NH2,Me,OH,CH2OH,NHCONHPh),(NH2,Me,OH,CH2OH,NHCOCONH Ph),(NH2,Ph,H,Me,CONHPh),(NH2,Ph,H,Me,CONH-3-pyridyl),(NH2,Ph,H,Me,NH CONHPh),(NH2,Ph,H,Me,NHCOCONHPh),(NH2,Ph,H,Et,CONHPh),(NH2,Ph,H,E t,CONH-3-pyridyl),(NH2,Ph,H,Et,NHCOPh), (NH2,Ph,H,Et,NHCO-2-furyl),(NH2,P h,H,Et,NHCONHPh),(NH2,Ph,H,Et,NHCOCONHPh),(NH12,Ph,H,CH2OH,CONHP h),(NH2,Ph,H,CH2OH,CONH-3-pyridyl),(NH2,Ph,H,CH2OH,NHCONHPh),(NH2,P h,H,CH2OH,NHCOCONHPh),(NH2,Ph,Me,Me,CONHPh),(NH2,Ph,Me,Me,CONH-3-pyridyl),(NH2,Ph,Me,Me,NHCONHPh), (NH2,Ph,Me,Me,NHCOCONHPh),(NH2, Ph,Me,Et,CONHPh),(NH2,Ph,Me,Et,CONH-3-pyridyl),(NH2,Ph,Me,Et,NHCOPh),( NH2,Ph,Me,Et,NHCO-2-furyl),(NH2,Ph,Me,Et,NHCONHPh),(NH2,Ph,Me,Et,NHC OCONHPh),(NH2,Ph,Me,CH2OH,CONHPh),(NH2,Ph,Me,CH2OH,CONH-3-pyridy l),(NH2,Ph,Me,CH2OH,NHCONHPh),(NH2,Ph,Me,CH2OH, NHCoCONHPh),(NH2,Ph,Ph,Me,CONHPh),(NH2,Ph,Ph,Me,CONH-3-pyridyl),(NH2,Ph,Ph,Me,NHCOPh), (NH2,Ph,Ph,Me,NHCO-2-furyl),(NH 2,Ph,Ph,Me,NHCONHPh),(NH2,Ph,Ph,Me,N HCOCONHPh),(NH2,Ph,Ph,Et,CONHPh),(NH2,Ph,Ph,Et,CONH-3-pyridyl),(NH2, Ph,Ph,Et,NHCOPh),(NH2,Ph,Ph,Et,NHCO2-furyl),(NH2,Ph,Ph,Et,NHCONHPh),( NH2,Ph,Ph,Et,NHCOCONHPh),(NH2,Ph,Ph,CH2OH,CONHPh),(NH2,Ph,Ph,CH2OH,CONH-3-pyridyl),(NH2,Ph,Ph,CH2OH,NHCOPh),(NH2,Ph,Ph,CH2OH,NHCO-2-furyl),(NH2,Ph,Ph,CH2OH,NHCONHPh),(NH2,Ph,Ph,CH2OH,NHCOCONHPh), (NH2,Ph,OH,Me,CONHPh),(NH2,Ph,OH,Me,CONH-3-pyridyl),(NH2,Ph,OH,Me,N HCONHPh),(NH2,Ph,OH,Me,NHCOCONHPh),(NH2,Ph,OH,Et,CONHPh),(NH2,P h,OH,Et,CONH-3-pyridyl),(NH2,Ph,OH,Et,NHCOPh),(NH2,Ph,OH,Et,NHCO-2-fur yl),(NH2,Ph,OH,Et,NHCONHPh),(NH2,Ph,OH,Et,NHCCNHPh),(NH2,Ph,OH,C H2OH,CONHPh),(NH2,Ph,OH,CH2OH,CONH-3-pyridyl),(NH2,Ph,OH,CH2OH,N HCOPh),(NH2,Ph,OH,CH2OH,NHCO-2-furyl),(NH2,Ph,OH,CH2OH, NHCONHPh), (NH2,Ph,OH,CH2OH,NHCOCONHPh),


(NHCH2CH(OH)CH2OH,H,H,Me,CONHPh),(NHCH2CH(OH)CH2OH,H,H,Me,CO NH-3-pyridyl),(NHCH2CH(OH)CH2OH,H,H,Me,NHCOPh),(NHCH2CH(OH)CH2O H,H,H,Me,NHCO-2-furyl),(NHCH2CH(OH)CH2OH,H,H,Me,NHCONHPh),(NHCH 2CH(OH)CH2OH,H,H,Me,NHCOCONHPh),(NHCH2CH(OH)CH2OMe,H,H,Me,CO NHPh),(NHCH2CH(OH)CH2OMe,H,H,Me,CONH-3-pyridyl),(NHCH2CH(OH)CH2OMe,H,H,Me,NHCOPh),(NHCH2CH(OH)CH2OMe,H,H,Me,NHCO-2-furyl),(NHC H2CH(OH)CH2OMe,H,H,Me,NHCONHPh),(NHCH2CH(OH)CH2OMe,H,H,Me,NH COCONHPh),(NHCH2CH(OH)CH2NH2,H,H,Me,CONHPh),(NHCH2CH(OH)CH2NH2,H,H,Me,CONH-3-pyridyl),(NHCH2CH(OH)CH2NH2,H,H,Me,NHCOPh),(NH CH2CH(OH)CH2NH2,H,H,Me,NHCO-2-furyl),(NHCH2CH(OH)CH2NH2,H,H,Me, NHCONHPh),(NHCH2CH(OH)CH2NH2,H,H,Me,NHCOCONHPh),(NHCH2CH(O H)CH2NHMe,H,H,Me,CONHPh),(NHCH2CH(OH)CH2NHMe,H,H,Me,CONH-3-py ridyl),(NHCH2CH(OH)CH2NH Me,H,H,Me,NHCOPh),(NHCH2CH(OH)CH2NHMe, H,H,Me,NHCO-2-furyl),(NHCH2CH(OH)CH2NHMe,H,H,Me,NHCONHPh),(NHC H2CH(OH)CH2NHMe,H,H,Me,NHCOCONHPh),(NHCH2CH(OH)CH2NHCOMe,H ,H,Me,CONHPh),(NHCH2CH(OH)CH2NHCOMe,H,H,Me,CONH-3-pyridyl),(NHC H2CH(OH)CH2NHCOMe,H,H,Me,NHCOPh),(NHCH2CH(OH)CH2NHCOMe,H,H, Me,NHCO-2-furyl),(NHCH2CH(OH)CH2NHCOMe,H,H,Me,NHCONHPh),(NHCH2CH(OH)CH2NHCOMe,H,H,Me,NHCOCONHPh),(NHCH2CH(OH)CH2N(Me)Me,H ,H,Me,CONHPh),(NHCH2CH(OH)CH2N(Me)Me,H,H,Me,CONH-3-pyridyl),(NHCH 2CH(OH)CH2N(Me)Me,H,H,Me,NHCOPh),(NHCH2CH(OH)CH2N(Me)Me,H,H,Me ,NHCO-2-furyl),(NHCH2CH(OH)CH 2N(Me)Me,H,H,Me,NHCONHPh),(NHCH2CH (OH)CH2N(Me)Me,H,H,Me,NHCOCONHPh),(NHC(O)C(O)NH2,H,H,Me,CONHPh ),(NHC(O)C(O)NH2, H,H,Me,CONH-3-pyridyl),(NHC(O)C(O)NH2,H,H,Me,NHCOP h),(NHC(O)C(O)NH2,H,H,Me,NHCO-2-furyl),(NHC(O)C(O)NH2,H,H,Me,NHCON HPh),(NHC(O)C(O)NH2,H,H,Me,NHCOCONHPh),(NHC(O)C(O)NHMe,H,H,Me,C ONHPh),(NHC(O)C(O)NHMe,H,H,Me,CONH-3-pyridyl),(NHC(O)C(O)NHMe,H,H, Me,NHCOPh),(NHC(O)C(O)NHMe,H,H,Me,NHCO-2-furyl),(NHC(O)C(O)NHMe,H, H,Me,NHCONHPh),(NHC(O)C(O)NHMe,H,H,Me,NHCOCONHPh),(NHC(O)C(O)N (Me)Me,H,H,Me,CONHPh),(NHC(O)C(O)N(Me)Me,H,H,Me,CONH-3-pyridyl),(NH C(O)C(O)N(Me)Me,H,H,Me,NHCOPh),(NHC(O)C(O)N(Me)Me,H,H,Me,NHCO-2-fur yl),(NHC(O)C(O)N(Me)Me,H,H,Me,NHCONHPh),(NH C(O)C(O)N(Me)Me,H,H,Me, NHCOCONHPh).




embedded image


In above structural formula (Ii) or (Ij), the combination of B, Linker, A, R5 (B, Linker, A, R5) are the following compounds.
















TABLE 169






B

Linker

A

R5







B1
Ph—
L1


embedded image


A1


embedded image


R51
—CN





B2
2-pyridyl-
L2


embedded image


A2


embedded image


R52
—C≡CH





B3
4-Me—Ph
L3


embedded image


A3


embedded image


R53
—C≡CMe





B4
cHex—
L4


embedded image


A4


embedded image


R54
—CF3





B5
cHex-CH2—
L5


embedded image


A5


embedded image


R55
—CH2Cl











R56
CHCl2










(B, Linker, A, R5)=(B1,L1,A1,R51),(B1,L1,A1,R52),(B1,L1,A1,R53),(B1,L1,A1,R54),(B1,L1,A1,R55),(B1,L1,A1,R56),(B1,L1,A2,R51),(B1,L1,A2,R52),(B1,L1,A2,R53),(B1,L1,A2,R54),(B1,L1,A2,R55),(B1,L1,A2,R56),(B1,L1,A3,R51),(B1,L1,A3,R52),(B1,L1,A3,R53),(B1,LL,A3,R54),(B1,L1,A3,R55),(B1,L1,A3,R56),(B1,L1,A4,R51),(B1,L1,A4,R52),(B1,L1,A4,R5 3),(B1,L1,A4,R54),(B1,L1,A4,R55),(B1,L1,A4,R56),(B1,L1,A5,R51),(B1,L1,A5,R52),( B1,L1,A5,R53),(B1,L1,A5,R54),(B1,L1,A5,R55),(B1,L1,A5,R56),(B1,L2,A1,R51),(B1, L2,A1,R52),(B1,L2,A1,R53),(B1,L2,A1,R54),(B1,L2,A1,R55),(B1,L2,A1,R56),(B1,L2, A2,R51),(B1,L2,A2,R52),(B1,L2,A2,R53),(B1,L2,A2,R54),(B1,L2,A2,R55),(B1,L2,A2, R56),(B12,A3,R51),(B1,L2,A3,R52),(B1,L2,A3,R53),(B1,L2,A3,R54),(B1,L2,A3,R5 5),(B1,L2,A3,R56),(B1,L2,A4,R51),(B1,L2,A4,R52),(B1,L2,A4,R53),(B1,L2,A4,R54),( B1,L2,A4,R55),(B1,L2,A4,R56),(B1,L2,A5,R51),(B1,L2,A5,R52),(B1,L2,A5,R53),(B1, L2,A5,R54),(B1,L2,A5,R55),(B1,L2,A5,R56),(B1,L3,A1,R51),(B1,L3,A1,R52),(B1,L3, A 1,R53),(B1,L3,A1,R54),(B1,L3,A1,R55),(B1,L3,A1,R56),(B1,L3,A2,R5),(B1,L3,A2, R52),(B1,L3,A2,R53),(B1,L3,A2,R54),(B1,L3,A2,R55),(B1,L3,A2,R56),(B1,L3,A3,R5 1),(B1,L3,A3,R52),(B1,L3,A3,R53),(B1,L3,A3,R54),(B1,L3,A3,R55),(B1,L3,A3,R56),( B1,L3,A4,R51),(B1,L3,A4,R52),(B1,L3,A4,R53),(B1,L3,A4,R54),(B1,L3,A4,R55),(B1, L3,A4,R56),(B1,L3,A5,R51),(B1,L3,A5,R52),(B1,L3,A5,R53),(B1,L3,A5,R54),(B1,L3, A5,R55),(B1,L3,A5,R56),(B1,L4,A1,R51),(B1,L4,A1,R52),(B1,L4,A1,R53),(B1,L4,A1, R54),(B1,L4,A1,R55),(B1,L4,A1,R56),(B1,L4,A2,R51),(B1,L4,A2,R52),(B1,L4,A2,R5 3),(B1,L4,A2,R54),(B1,L4,A2,R55),(B1,L4,A2,R56),(B1,L4,A3,R51),(B1,L4,A3,R52),( B1,L4,A3,R53),(B1,L4,A3,R54),(B1,A,A3,R55),(B1,L4,A3,R56),(B1,L4,A4,R51),(B1, L4,A4,R52),(B1,L4,A4,R53),(B1,L4,A4,R54),(B1,L4,A4,R55),(B1,A4,A4,R56),(B1,L4, A5,R51),(B1,L4,A5,R52),(B1,L4,A5,R53),(B1,L4,A5,R54),(B1,L4,A5,R55),(B1,L4,A5, R56),(B1,L5,A1,R51),(B1,L5,A1,R52),(B1,L5,A1,R53),(B1,L5,A1,R54),(B1,L5,A1,R5 5),(B1,L5,A1,R56),(B1,L5,A2,R51),(B1,L5,A2,R52),(B1,L5,A2,R53),(B1,L5,A2,R54),( B1,L5,A2,R55),(B1,L5,A2,R56),(B1,L5,A3,R51),(B1,L5,A3,R52),(B1,L5,A3,R53),(B1, L5,A3,R54),(B1,L5,A3,R55),(B1,L5,A3,R56),(B1,L5,A4,R51),(B1,L5,A4,R52),(B l,L5, A4,R53),(B1,L5,A4,R54),(B1,L5,A4,R55),(B1,L5,A4,R56),(B1,L5,A5,R51),(B1,L5,A5, R52),(B1,L5,A5,R53),(B1,L5,A5,R54),(B1,L5,A5,R55),(B1,L5,A5,R56),(B2,L1,A1,R5 1),(B2,L1,A1,R52),(B2,L1,A1,R53),(B2,L1,A1,R54),(B2,L1,A1,R55),(B2,L1,A1,R56),( B2,L1,A2,R51),(B2,L1,A2,R52),(B2,L1,A2,R53),(B2,L1,A2,R54),(B2,L1,A2,R55),(B2, L1,A2,R56),(B2,L1,A3,R51),(B2,L1,A3,R52),(B2,L1,A3,R53),(B2,L,A3,R54),(B2,L1, A3,R55),(B2,L1,A3,R56),(B2,L1,A4,R51),(B2,L1,A4,R52),(B2,L1,A4,R53),(B2,L1,A4, R54),(B2,L1,A4,R55),(B2,L1,A4,R56),(B2,L1,A5,R51),(B2,L1,A5,R52),(B2,L1,A5,R5 3),(B2,L1,A5,R54),(B2,L1,A5,R55),(B2,L1,A5,R56),(B2,L2,A1,R51),(B2,L2,A1,R52),( B2,L2,A1,R53),(B2,L2,A1,R54),(B2,L2,A1,R55),(B2,L2,A1,R56),(B2,L2,A2,R51),(B2, L2,A2,R52),(B2,L2,A2,R53),(B2,L2,A2,R54),(B2,L2,A2,R55),(B2,L2,A2,R56),(B2,L2, A3,R51),(B2,L2,A3,R52),(B2,L2,A3,R53),(B2,L2,A3,R54),(B2,L2,A3,R55),(B2,L2,A3, R56),(B2,L2,A4,R51),(B2,L2,A4,R52),(B2,L2,A4,R53),(B2,L2,A4,R54),(B2,L2,A4,R5 5),(B2,L2,A4,R56),(B2,L2,A5,R51),(B2,L2,A5,R52),(B2,L2,A5,R53),(B2,L2,A5,R54),( B2,L2,A5,R55),(B2,L2,A5,R56),(B2,L3,A1,R51),(B2,L3,A1,R52),(B2,L3,A1,R53),(B2, L3,A1,R54),(B2,L3,A1,R55),(B2,L3,A1,R56),(B2,L3,A2,R51),(B2,L3,A2,R52),(B2,L3, A2,R53),(B2,L3,A2,R54),(B2,L3,A2,R55),(B2,L3,A2,R56),(B2,L3,A3,R51),(B2,L3,A3, R52),(B2,L3,A3,R53),(B2,L3,A3,R54),(B2,L3,A3,R55),(B2,L3,A3,R56),(B2,L3,A4,R5 1),(B2,L3,A4,R52),(B2,L3,A4,R53),(B2,L3,A4,R54),(B2,L3,A4,R55),(B2,L3,A4,R56),( B2,L3,A5,R51),(B2,L3,A5,R52),(B2,L3,A5,R53),(B2,L3,A5,R54),(B2,L3,A5,R55),(B2, L3,A5,R56),(B2,L4,A1,R51),(B2,L4,A1,R52),(B2,L4,A1,R53),(B2,L4,A1,R54),(B2,L4, A 1,R55),(B2,L4,A1,R56),(B2,L4,A2,R51),(B2,L4,A2,R52),(B2,L4,A2,R53),(B2,L4,A2, R54),(B2,L4,A2,R55),(B2,L4,A2,R56),(B2,L4,A3,R51),(B2,L4,A3,R52),(B2,L4,A3,R5 3),(B2,L4,A3,R54),(B2,L4,A3,R55),(B2,L4,A3,R56),(B2,L4,A4,R51),(B2,L4,A4,R52),( B2,L1,A,A4,R53),(B2,L4,A4,R54),(B2,L4,A4,R55),(B2,L4,A4,R56),(B2,L4,A5,R51),(B2, L4,A5,R52),(B2,L4,A5,R53),(B2,A5,R54),(B2,L4,A5,R55),(B2,L4,A5,R56),(B2,L5, A1,R51),(B2,L5,A1,R52),(B2,L5,A1,R53),(B2,L5,A1,R54),(B2,L5,A1,R55),(B2,L5,A1, R56),(B2,L5,A2,R51),(B2,L5,A2,R52),(B2,L5,A2,R53),(B2,L5,A2,R54),(B2,L5,A2,R5 5),(B2,L5,A2,R56),(B2,L5,A3,R51),(B2,L5,A3,R52),(B2,L5,A3,R53),(B2,L5,A3,R54),( B2,L5,A3,R55),(B2,L5,A3,R56),(B2,L5,A4,R51),(B2,L5,A4,R52),(B2,L5,A4,R53),(B2, L5,A4,R54),(B2,L5,A4,R55),(B2,L5,A4,R56),(B2,L5,A5,R51),(B2,L5,A5,R52),(B2,L5, A5,R53),(B2,L5,A5,R54),(B2,L5,A5,R55),(B2,L5,A5,R56),(B3,L1,A1,R51),(B3,L1,A1, R52),(B3,L1,A1,R53),(B3,L1,A,R54),(B3,L,A1,R55),(B3,L1,A1,R56),(B3,L,A2,R5 1),(B3,L1,A2,R52),(B3,L1,A2,R53),(B3,L1,A2,R54),(B3,L1,A2,R55),(B3,L1,A2,R56),( B3,L1,A3,R51),(B3,L1,A3,R52),(B3,L1,A3,R53),(B3,L1,A3,R54),(B3,L1,A3,R55),(B3, L1,A3,R56),(B3,L1,A4,R51),(B3,L1,A4,R52),(B3,L1,A4,R53),(B3,L1,A4,R54),(B3,L1, A4,R55),(B3,L1,A4,R56),(B3,L1,A5,R51),(B3,L1,A5,R52),(B3,L1,A5,R53),(B3,L1,A5, R54),(B3,L1,A5,R55),(B3,L1,A5,R56),(B3,L2,A1,R51),(B3,L2,A1,R52),(B3,L2,A1,R5 3),(B3,L2,A1,R54),(B3,L2, A 1,R55),(B3,L2,A1,R56),(B3,L2,A2,R51),(B3,L2,A2,R52),( B3,L2,A2,R53),(B3,L2,A2,R54),(B3,L2,A2,R55),(B3,L2,A2,R56),(B3,L2,A3,R51),(B3, L2,A3,R52),(B3,L2,A3,R53),(B3,L2,A3,R54),(B3,L2,A3,R55),(B3,L2,A3,R56),(B3,L2, A4,R51),(B3,L2,A4,R52),(B3,L2,A4,R53),(B3,L2,A4,R54),(B3,L2,A4,R55),(B3,L2,A4, R56),(B3,L2,A5,R51),(B3,L2,A5,R52),(B3,L2,A5,R53),(B3,L2,A5,R54),(3,L2,A5,R15 5),(B3,L2,A5,R56),(B3,L3,A1,R51),(B3,L3,A1,R52),(B3,L3,A1,R53),(B3,L3,A1,R54),( B3,L3,A1,R55),(B3,L3,A1,R56),(B3,L3,A2,R51),(B3,L3,A2,R52),(B3,L3,A2,R53),(B3, L3,A2,R54),(B3,L3,A2,R55),(B3,L3,A2,R56),(B3,L3,A3,R51),(B3,L3,A3,R52),(B3,L3, A3,R53),(B3,L3,A3,R54),(B3,L3,A3,R55),(B3,L3,A3,R56),(B3,L3,A4,R51),(B3,L3,A4, R52),(B3,L3,A4,R53),(B3,L3,A4,R54),(B3,L3,A4,R55),(B3,L3,A4,R56),(B3,L3,A5,R5 1),(B3,L3,A5,R52),(B3,L3,A5,R53),(B3,L3,A5,R54),(B3,L3,A5,R55),(B3,L3,A5,R56),( B3,L4,A1,R51),(B3,L4,A1,R52),(B3,L4,A1,R53),(B3,L4,A1,R54),(B3,L4,A1,R55),(B3, L4,A1,R56),(B3,L4,A2,R51),(B3,L4,A2,R52),(B3,L4,A2,R53),(B3,L4,A2,R54),(B3,L4, A2,R55),(B3,L4,A2,R56),(B3,L4,A3,R51),(B3,L4,A3,R52),(B3,L4,A3,R53),(B3,L4,A3, R54),(B3,L4,A3,R55),(B3,L4,A3,R56),(B3,L4,A4,R51),(B3,L4,A4,R52),(B3,L4,A4,R5 3),(B3,L4,A4,R54),(B3,L4,A4,R55),(B3,L4,A4,R56),(B3,L4,A5,R51),(B3,L4,A5,R52),( B3,L4,A5,R53),(B3,L4,A5,R54),(B3,L4,A,R55),(B3,L4,A5,R56),(B3,L5,A1,R51),(B3, L5,A1,R52),(B3,L5,A1,R53),(B3,L5,A1,R54),(B3,L5,A1,R55),(B3,L5,A1,R56),(B3,L5, A2,R51),(B3,L5,A2,R52),(B3,L5,A2,R53),(B3,L5,A2,R54),(B3,L5,A2,R55),(B3,L5,A2, R56),(B3,L5,A3,R51),(B3,L5,A3,R52),(B3,L5,A3,R53),(B3,L5,A3,R54),(B3,L5,A3,R5 5),(B3,L5,A3,R56),(B3,L5,A4,R51),(B3,L5,A4,R52),(B3,L5,A4,R53),(B3,L5,A4,R54),( B3,L5,A4,R55),(B3,L5,A4,R56),(B3,L5,A5,R51),(B3,L5,A5,R52),(B3,L5,A5,R53),(B3, L5,A5,R54),(B3,L5,A5,R55),(B3,L5,A5,R56),(B4,L1,A1,R51),(B4,L1,A1,R52),(B4,L1, A1,R53),(B4,L1,A1,R54),(B4,L1,A1,R55),(B4,L1,A1,R56),(B4,L1,A2,R51),(B4,L1,A2, R52),(B4,L1,A2,R53),(B4,L1,A2,R54),(B4,L1,A2,R55),(B4,L1,A2,R56),(B4,L1,A3,R5 1),(B4,L1,A3,R52),(B4,L1,A3,R53),(B4,L1,A3,R54),(B4,L1,A3,R55),(B4,L1,A3,R56),( B4,L1,A4,R51),(B4,L1,A4,R52),(B4,L1,A4,R53),(B4,L1,A4,R54),(B4,L1,A4,R55),(B4, L1,A4,R56),(B4,L1,A5,R51),(B4,L1,A5,R52),(B4,L1,A5,R53),(B4,L1,A5,R54),(B4,L1, A5,R55),(B4,L1,A5,R56),(B4,L2,A1,R51),(B4,L2,A1,R52),(B4,L2,A1,R53),(B4,L2,A1, R54),(B4,L2,A1,R55),(B4,L2,A1,R56),(B4,L2,A2,R51),(B4,L2,A2, R52),(B4,L2,A2,R5 3),(B4,L2,A2,R54),(B4,L2,A2,R55),(B4,L2,A2,R56),(B4,L2,A3,R51),(B4,L2,A3,R52),( B4,L2,A3,R53),(B4,L2,A3,R54),(B4,L2,A3,R55),(B4,L2,A3,R56),(B4,L2,A4,R51),(B4, L2,A4,R52),(B4,L2,A4,R53),(B4,L2,A4,R54),(B4,L2,A4,R55),(B4,L2,A4,R56),(B4,L2, A5,R51),(B4,L2,A5,R52),(B4,L2,A5,R53),(B4,L2,A5,R54),(B4,L2,A5,R55),(B4,L2,A5, R56),(B4,L3,A1,R51),(B4,L3,A1,R52),(B4,L3,A1,R53),(B4,L3,A1,R54),(B4,L3,A1,R5 5),(B4,L3,A1,R56),(B4,L3,A2,R51),(B4,L3,A2,R52),(B4,L3,A2,R53),(B4,L3,A2,R54),( B4,L3,A2,R55),(B4,L3,A2,R56),(B4,L3,A3,R51),(B4,L3,A3,R52),(B4,L3,A3,R53),(B4, L3,A3,R54),(B4,L3,A3,R55),(B4,L3,A3,R56),(B4,L3,A4,R51),(B4,L3,A4,R52),(B4,L3, A4,R53),(B4,L3,A4,R54),(B4,L3,A4,R55),(B4,L3,A4,R56),(B4,L3,A5,R51),(B4,L3,A5, R52),(B4,L3,A5,R53),(B4,L3,A5,R54),(B4,L3,A5,R55),(B4,L3,A5,R56),(B4,L4,A1,R5 1),(B4,L4,A1,R52),(B4,L4,A1,R53),(B4,L4,A1,R54),(B4,L4,A1,R55),(B4,L4,A1,R56),( B4,L4,A2,R51),(B4,L4,A2,R52),(B4,L4,A2,R53),(B4,L4,A2,R54),(B4,L4,A2,R55),(B4, L4,A2,R56),(B4,L4,A3,R51),(B4,L4,A3,R52),(B4,L4,A3,R53),(B4,L4,A3,R54),(B4,L4, A3,R55),(B4,L4,A3,R5G),(B4,L14,A4,R51),(B4,L4,A4,R52),(B4,L4,A4,R53),(B4,L4,A4, R54),(B4,L4,A4,R55),(B4,L4,A4,R56),(B4,L4,A5,R51),(B4,L4,A5,R52),(B4,L4,A5,R5 3),(B4,L4,A5,R54),(B4,L4,A5,R55),(B4,L4,A5,R56),(B4,L5,A1,R51),(B4,L5,A1,R52),( B4,L5,A1,R53),(B4,L5,A1,R54),(B4,L5,A1,R55),(B4,L5,A1,R56),(B4,L5,A2,R51),(B4, L5,A2,R52),(B4,L5,A2,R53),(B4,L5,A2,R54),(B4,L5,A2,R55),(B4,L5,A2,R56),(B4,L5, A3,R51),(B4,L5,A3,R52),(B4,L5,A3,R53),(B4,L5,A3,R54),(B4,L5,A3,R55),(B4,L5,A3, R56),(B4,L5,A4,R51),(B4,L5,A4,R52),(B4,L5,A4,R53),(B4,L5,A4,R54),(B4,L5,A4,R5 5),(B4,L5,A4,R56),(B4,L5,A5,R51),(B4,L5,A5,R52),(B4,L5,A5,R53),(B4,L5,A5,R54),( B4,L5,A5,R55),(B34,L5,A5,R56),(B5,L1,A1,R51),(B5,L1,A1,R52),(B5,L1,A1,R53),(B5, L1,A1,R54),(B5,L1,A1,R55),(B5,L1,A1,R56),(B5,L1,A2,R51),(B5,L1,A2,R52),(B5,L1, A2,R53),(B5,L1,A2,R54),(B5,L1,A2,R55),(B5,L1,A2,R56),(B5,L1,A3,R51),(B5,L1,A3, R52),(B5,L1,A3,R53),(B5,L1,A3,R54),(B5,L1,A3,R55),(B5,L1,A3,R56),(B5,L1,A4,R5 1),(B5,L1,A4,R52),(B5,L1,A4,R53), B5,L1,A4,R54),(B5,L1,A4,R55),(B5,L1,A4,R56),( B5,L1,A5,R51),(B5,L1,A5,R52),(B5,L1,A5,R53),(B5,L1,A5,R54),(B5,L1,A5,R55),(B5, L1,A5,R56),(B5,L2,A1,R51),(B5,L2,A1,R52),(B5,L2,A1,R53),(B5,L2,A1,R54),(B5,L2, A1,R55),(B5,L2,A1,R56),(B5,L2,A2,R51),(B5,L2,A2,R52),(B5,L2,A2,R53),(B5,L2,A2, R54),(B5,L2,A2,R55),(B5,L2,A2,R56),(B5,L2,A3,R51),(B5,L2,A3,R52),(B5,L2,A3,R5 3),(B5,L2,A3,R54),(B5,L2,A3,R55),(B5,L2,A3,R56),(B5,L2,A4,R51),(B5,L2,A4,R52),( B5,L2,A4,R53),(B5,L2,A4,R54),(B5,L2,A4,R55),(B5,L2,A4,R56),(B5,L2,A5,R151),(B5, L2,A5,R52),(B5,L2,A5,R53),(B5,L2,A5,R54),(B5,L2,A5,R55),(B5,L2,A5,R56),(B5,L3, A1,R51),(B5,L3,A1,R52),(B5,L3,A1,R53),(B5,L3,A1,R54),(B5,L3,A1,R55),(B5,L3,A1, R56),(B5,L3,A2,R51),(B5,L3,A2,R52),(B5,L3,A2,R53),(B5,L3,A2,R54),(B5,L3,A2,R5 5),(B5,L3,A2,R56),(B5,L3,A3,R51),(B5,L3,A3,R52),(B5,L3,A3,R53),(B5,L3,A3,R54),( B5,L3,A3,R55),(B5,L3,A3,R56),(B5,L3,A4,R51),(B5,L3,A4,R52),(B5,L3,A4,R53),(B5, L3,A4,R54),(B5,L3,A4,R55),(B5,L3,A4,R56),(B5,L3,A5,R51),(B5,L3,A5,R52),(B5,L3, A5,R53),(B5,L3,A5,R54),(B5,L3,A5,R55),(B35,L3,A5,R56),(B5,L4,A1,R51),(B5,L4,A1, R52),(B5,L4,A1,R53),(B5,L4,A1,R54),(B5,L4,A1,R55),(B5,L4,A1,R56),(B5,L4,A2,R5 1),(B5,L4,A2,R52),(B5,L4,A2,R53),(B5,L4,A2,R54),(B5,L4,A2,R5),(B5,L4,A2,R56),( B5,L4,A3,R51),(B5,L4,A3,R52),(B5,L4,A3,R53),(B5,L4,A,R54),(B5,L4,A3,R55),(B5, L4,A3,R56),(B5,L4,A4,R51),(B5,L4,A4,R52),(B5,L4,A4,R53),(B5,L4,A4,R54),(B5,L4, A4,R55),(B5,L4,A4,R56),(B5,L4,A5,R51),(B5,L4,A5,R52),(B5,L4,A5,R53),(B5,L4,A5, R54),(B5,L4,A5,R55),(B5,L4,A5,R56),(B5,L5,A1,R51),(B5,L5,A1,R52),(B5,L5,A1,R5 3),(B5,L5,A1,R54),(B5,L5,A1,R55),(B5,L5,A1,R56),(B5,L5,A2,R51),(B5,L5,A2,R52),( B5,L5,A2,R53),(B5,L5,A2,R54),(B5,L5,A2,R5),(B5,L,A2,R56),(B5,L,A3,R51),(B5, L5,A3,R52),(B5,L5,A3,R53),(B5,L5,A3,R54),(B5,L5,A3,R55),(B5,L5,A3,R156),(B5,L5, A4,R51),(B5,L5,A4,R52),(B5,L5,A4,R53),(B5,L5,A4,R54),(B5,L5,A4,R55),(B5,L5,A4, R56),(B5,L5,A5,R51),(B5,L5,A5,R52),(B5,L5,A5,R53),(B5,L5,A5,R54),(B5,L5,A5,R5 5),(B5,L5,A5,R56).


Test Example 1
Lowering Effect on Brain 3 Amyloid in Rats

A test compound was suspended in 0.5% methylcellulose, the final concentration was adjusted to 2 mg/mL, and this was orally administered to male Crg:SD rat (7 to 9 week old) at 10 mg/kg. In a vehicle control group, only 0.5% methylcellulose was administered, and an administration test was performed at 3 to 8 animals per group. A brain was isolated 3 hours after administration, a cerebral hemisphere was isolated, a weight thereof was measured, the hemisphere was rapidly frozen in liquid nitrogen, and stored at −80° C. until the day for extraction. The frozen cerebral hemisphere was transferred to a homogenizer manufactured by Teflon (registered trade mark) under ice cooling, a 5-fold volume of a weight of an extraction buffer (containing 1% CHAPS ({3-[(3-chloroamidopropyl)dimethylammonio]-1-propanesulfonate}), 20 mM Tris-HCl (pH 8.0), 150 mM NaCl, Complete (Roche) protease inhibitor) was added, up and down movement was repeated, and this was homogenized to solubilize for 2 minutes. The suspension was transferred to a centrifugation tube, allowed to stand on an ice for 3 hours or more and, thereafter centrifuged at 100,000×g and 4° C. for 20 minutes. After centrifugation, the supernatant was transferred to an ELISA plate (product No. 27730, Immuno-Biological Laboratories) for measuring 3 amyloid 1-40. ELISA measurement was performed according to the attached instruction. The lowering effect was calculated as a ratio compared to the brain b amyloid 1-40 level of vehicle control group.












TABLE 170







Compound No.
% of vehicle control group









634
21.1



622
50.1










Compound No. 733, 359, 39, 212, 793, 204, 243, 482 and 1282 also lowered the brain β amyloid 1-40 with approximately 60 to 90% reduction compared to those of a vehicle control group.


Therefore, it is shown that Compound (1) lowers the brain 3 amyloid 1-40 in rats.


Test Example 2
Lowering Effect on Brain β Amyloid in Mice

A test compound was suspended in 0.5% methylcellulose, the final concentration was adjusted to 10 mg/mL, and this was subcutaneously administered to back of male Crlj:CD-1(ICR) mouse (7 to 8 week old) at 100 mg/kg. In a vehicle control group, only 0.5% methylcellulose was administered. A test was performed at 4 to 8 animals per group. A brain was isolated 3 hours after administration. The subsequent operations were the same as in the above test in rat.












TABLE 171







Compound No.
% of vehicle control group









1199
14.1



1043
15.0



1100
20.2



 127
25.2



 605
36.5



 396
38.4



1244
50.1



 651*
52.3







(*3 hours after 30 mg/kg of subcutaneous administration)






Compounds 309, 165, 739, 1266, 900, 220, 964, 1262 and 1014 also lowered the brain β amyloid 1-40 with approximately 60 to 90% reduction compared to those of vehicle control group.


Therefore, it is shown that Compound (1) lowers the brain a amyloid 1-40 in mice.


Formulation Example 1

A granule containing the following ingredients is prepared.



















Ingredient
Compound represented by formula (I)
 10 mg




Lactose
700 mg




Corn starch
274 mg




HPC-L
 16 mg





1000 mg 










The compound represented by the formula (I) and lactose are passed through a 60 mesh sieve. Corn starch is passed through a 120 mesh sieve. These are mixed with a V-type mixer. To a mixed powder is added a HPC-L (lower viscosity hydroxypropylcellulose) aqueous solution, the materials are kneaded, granulated (extrusion granulation, pore diameter 0.5 to 1 mm), and dried. The resulting dry granule is passed through a sieve using a vibration sieve (12/60 mesh) to obtain a granule.


Formulation Example 2

A granule for filling into a capsule containing the following ingredients is prepared.



















Ingredient
Compound represented by formula (I)
15 mg




Lactose
90 mg




Corn starch
42 mg




HPC-L
 3 mg





150 mg 










The compound represented by the formula (I) and lactose are passed through a 60 mesh sieve. Corn starch is passed through a 120 mesh sieve. These are mixed, to a mixed powder is added a HPC-L solution, the materials are kneaded, granulated, and dried. The resulting dry granule is size-adjusted, 150 mg of which is filled into a No. 4 hard gelatin capsule.


Formulation Example 3

A tablet containing the following ingredients is prepared.
















Ingredient
Compound represented by the formula (I)
10 mg



Lactose
90 mg



Microcrystalline cellulose
30 mg



CMC-Na
15 mg



Magnesium stearate
 5 mg




150 mg 









The compound represented by the formula (I), lactose, microcrystalline cellulose, CMC-Na (carboxymethylcellulose sodium salt) are passed through a 60 mesh sieve, and mixed. Into a mixed powder is mixed magnesium stearate to obtain a mixed powder for tabletting. The present mixed powder is compressed to obtain 150 mg of a tablet.


Formulation Example 4

The following ingredients are warmed, mixed, and sterilized to obtain an injectable.



















Ingredient
Compound represented by the formula (I)
 3 mg




Nonionic surfactant
15 mg




Purified water for injection
 1 ml










INDUSTRIAL APPLICABILITY

The pharmaceutical composition of the present invention can be a useful medicament for treating disease induced by production, secretion and/or deposition o β amyloid, especially Alzheimer's disease.

Claims
  • 1. A pharmaceutical composition for treating Alzheimer's disease containing a compound represented by the general formula (I):
  • 2-21. (canceled)
Priority Claims (1)
Number Date Country Kind
2007-114764 Apr 2007 JP national
Continuations (1)
Number Date Country
Parent 12597470 Nov 2009 US
Child 14070202 US