This invention relates to pyrazole compounds that inhibit or modulate the activity of Cyclin Dependent Kinases (CDK) and Glycogen Synthase Kinases (GSK) kinases, to the use of the compounds in the treatment or prophylaxis of disease states or conditions mediated by the kinases, and to novel compounds having kinase inhibitory or modulating activity. Also provided are pharmaceutical compositions containing the compounds and novel chemical intermediates.
Protein kinases constitute a large family of structurally related enzymes that are responsible for the control of a wide variety of signal transduction processes within the cell (Hardie, G. and Hanks, S. (1995) The Protein Kinase Facts Book. I and II, Academic Press, San Diego, Calif.). The kinases may be categorized into families by the substrates they phosphorylate (e.g., protein-tyrosine, protein-serine/threonine, lipids, etc.). Sequence motifs have been identified that generally correspond to each of these kinase families (e.g., Hanks, S. K., Hunter, T., FASEB J., 9:576-596 (1995); Knighton, et al., Science, 253:407-414 (1991); Hiles, et al., Cell, 70:419-429 (1992); Kunz, et al., Cell, 73:585-596 (1993); Garcia-Bustos, et al., EMBO J., 13:2352-2361 (1994)).
Protein kinases may be characterized by their regulation mechanisms. These mechanisms include, for example, autophosphorylation, transphosphorylation by other kinases, protein-protein interactions, protein-lipid interactions, and protein-polynucleotide interactions. An individual protein kinase may be regulated by more than one mechanism.
Kinases regulate many different cell processes including, but not limited to, proliferation, differentiation, apoptosis, motility, transcription, translation and other signalling processes, by adding phosphate groups to target proteins. These phosphorylation events act as molecular on/off switches that can modulate or regulate the target protein biological function. Phosphorylation of target proteins occurs in response to a variety of extracellular signals (hormones, neurotransmitters, growth and differentiation factors, etc.), cell cycle events, environmental or nutritional stresses, etc. The appropriate protein kinase functions in signalling pathways to activate or inactivate (either directly or indirectly), for example, a metabolic enzyme, regulatory protein, receptor, cytoskeletal protein, ion channel or pump, or transcription factor. Uncontrolled signalling due to defective control of protein phosphorylation has been implicated in a number of diseases, including, for example, inflammation, cancer, allergy/asthma, disease and conditions of the immune system, disease and conditions of the central nervous system, and angiogenesis.
The process of eukaryotic cell division may be broadly divided into a series of sequential phases termed G1, S, G2 and M. Correct progression through the various phases of the cell cycle has been shown to be critically dependent upon the spatial and temporal regulation of a family of proteins known as cyclin dependent kinases (cdks) and a diverse set of their cognate protein partners termed cyclins. Cdks are homologous serine-threonine kinase proteins that are able to utilise ATP as a substrate in the phosphorylation of diverse polypeptides in a sequence dependent context. Cyclins are a family of proteins characterised by a homology region, containing approximately 100 amino acids, termed the “cyclin box” which is used in binding to, and defining selectivity for, specific cdk partner proteins.
Modulation of the expression levels, degradation rates, and activation levels of various cdks and cyclins throughout the cell cycle leads to the cyclical formation of a series of cdk/cyclin complexes, in which the cdks are enzymatically active. The formation of these complexes controls passage through discrete cell cycle checkpoints and thereby enables the process of cell division to continue. Failure to satisfy the pre-requisite biochemical criteria at a given cell cycle checkpoint, i.e. failure to form a required cdk/cyclin complex, can lead to cell cycle arrest and/or cellular apoptosis. Aberrant cellular proliferation, as manifested in cancer, can often be attributed to loss of correct cell cycle control. Inhibition of cdk enzymatic activity therefore provides a means by which abnormally dividing cells can have their division arrested and/or be killed. The diversity of cdks, and cdk complexes, and their critical roles in mediating the cell cycle, provides a broad spectrum of potential therapeutic targets selected on the basis of a defined biochemical rationale.
Progression from the G1 phase to the S phase of the cell cycle is primarily regulated by cdk2, cdk3, cdk4 and cdk6 via association with members of the D and E type cyclins. The D-type cyclins in complex with CDK4 and 6 appear instrumental in enabling passage beyond the G1 restriction point, where as the cdk2/cyclin E complex is key to the transition from the G1 to S phase. Subsequent progression through S phase and entry into G2 is thought to require the cdk2/cyclin A complex. Both mitosis, and the G2 to M phase transition which triggers it, are regulated by complexes of cdk1 (also known as cdc2) and the A and B type cyclins.
During G1 phase Retinoblastoma protein (Rb), and related pocket proteins such as p130, are substrates for cdk(2, 4, & 6)/cyclin complexes. Progression through G1 is in part facilitated by hyperphosphorylation, and thus inactivation, of Rb and p130 by the cdk(4/6)/cyclin-D and CDK2/cyclin E complexes. Hyperphosphorylation of Rb and p130 causes the release of transcription factors, such as E2F, and thus the expression of genes necessary for progression through G1 and for entry into S-phase, such as the gene for cyclin E. Expression of cyclin E facilitates formation of the cdk2/cyclin E complex which amplifies, or maintains, E2F levels via further phosphorylation of Rb. The cdk2/cyclin E complex also phosphorylates other proteins necessary for DNA replication, such as NPAT, which has been implicated in histone biosynthesis. G1 progression and the G1/S transition are also regulated via the mitogen stimulated Myc pathway, which feeds into the cdk2/cyclin E pathway. Cdk2 is also connected to the p53 mediated DNA damage response pathway via p53 regulation of p21 levels. p21 is a protein inhibitor of cdk2/cyclin E and is thus capable of blocking, or delaying, the G1/S transition. The cdk2/cyclin E complex may thus represent a point at which biochemical stimuli from the Rb, Myc and p53 pathways are to some degree integrated. Cdk2 and/or the cdk2/cyclin E complex therefore represent good targets for therapeutics designed at arresting, or recovering control of, the cell cycle in aberrantly dividing cells.
The exact role of cdk3 in the cell cycle is not clear. As yet no cognate cyclin partner has been identified, but a dominant negative form of cdk3 delayed cells in G1, thereby suggesting that cdk3 has a role in regulating the G1/S transition.
Progression through the G1-S phase of the cell cycle requires phosphorylation of the retinoblastoma (Rb) protein by CDK4 or the highly homologous CDK6 in complex with their activating subunits, the D-type cyclins, D1, D2 and D3. Hyperphosphorylation of Rb diminishes its ability to repress gene transcription through the E2F family of transcription factors and consequently allows synthesis of several genes, the protein products of which are necessary for DNA replication. Thus, the catalytic activities for CDK4 or CDK6 regulates a critical checkpoint for the G1-S transition and the commitment to cell division.
Although most cdks have been implicated in regulation of the cell cycle there is evidence that certain members of the cdk family are involved in other biochemical processes. This is exemplified by cdk5 which is necessary for correct neuronal development and which has also been implicated in the phosphorylation of several neuronal proteins such as Tau, NUDE-1, synapsin1, DARPP32 and the Munc18/Syntaxin1A complex. Neuronal cdk5 is conventionally activated by binding to the p35/p39 proteins. Cdk5 activity can, however, be deregulated by the binding of p25, a truncated version of p35. Conversion of p35 to p25, and subsequent deregulation of cdk5 activity, can be induced by ischemia, excitotoxicity, and β-amyloid peptide. Consequently p25 has been implicated in the pathogenesis of neurodegenerative diseases, such as Alzheimer's, and is therefore of interest as a target for therapeutics directed against these diseases.
Cdk7 is a nuclear protein that has cdc2 CAK activity and binds to cyclin H. Cdk7 has been identified as component of the TFIIH transcriptional complex which has RNA polymerase II C-terminal domain (CTD) activity. This has been associated with the regulation of HIV-1 transcription via a Tat-mediated biochemical pathway. Cdk8 binds cyclin C and has been implicated in the phosphorylation of the CTD of RNA polymerase II. Similarly the cdk9/cyclin-T1 complex (P-TEFb complex) has been implicated in elongation control of RNA polymerase II. PTEF-b is also required for activation of transcription of the HIV-1 genome by the viral transactivator Tat through its interaction with cyclin T1. Cdk7, cdk8, cdk9 and the P-TEFb complex are therefore potential targets for anti-viral therapeutics.
At a molecular level mediation of cdk/cyclin complex activity requires a series of stimulatory and inhibitory phosphorylation, or dephosphorylation, events. Cdk phosphorylation is performed by a group of cdk activating kinases (CAKs) and/or kinases such as wee1, Myt1 and Mik1. Dephosphorylation is performed by phosphatases such as cdc25(a & c), pp2a, or KAP.
Cdk/cyclin complex activity may be further regulated by two families of endogenous cellular proteinaceous inhibitors: the Kip/Cip family, or the INK family. The INK proteins specifically bind cdk4 and cdk6. p16ink4 (also known as MTS1) is a potential tumour suppressor gene that is mutated, or deleted, in a large number of primary cancers. The Kip/Cip family contains proteins such as p21Cip1,Waf1, p27Kip1 and p57kip2. As discussed previously p21 is induced by p53 and is able to inactivate the cdk2/cyclin(E/A) and cdk4/cyclin(D1/D2/D3) complexes. Atypically low levels of p27 expression have been observed in breast, colon and prostate cancers. Conversely over expression of cyclin E in solid tumours has been shown to correlate with poor patient prognosis. Over expression of cyclin D1 has been associated with oesophageal, breast, squamous, and non-small cell lung carcinomas.
The pivotal roles of cdks, and their associated proteins, in co-ordinating and driving the cell cycle in proliferating cells have been outlined above. Some of the biochemical pathways in which cdks play a key role have also been described. The development of monotherapies for the treatment of proliferative disorders, such as cancers, using therapeutics targeted generically at cdks, or at specific cdks, is therefore potentially highly desirable. Cdk inhibitors could conceivably also be used to treat other conditions such as viral infections, autoimmune diseases and neuro-degenerative diseases, amongst others. Cdk targeted therapeutics may also provide clinical benefits in the treatment of the previously described diseases when used in combination therapy with either existing, or new, therapeutic agents. Cdk targeted anticancer therapies could potentially have advantages over many current antitumour agents as they would not directly interact with DNA and should therefore reduce the risk of secondary tumour development.
There is evidence that particular components of the CDK4/cyclin D-INK4 proteins-Rb family regulatory machinery act as tumour suppressors or protooncogenes, whose mutations occur so frequently (>90%) as to suggest that perturbing “the RB pathway” may be involved in the formation of cancer cells. RB loss and mutations inactivating p16INK4a function occurs in many tumour types. Mutually exclusive events resulting in RB or p16INK4a inactivation through mutation, deletion, or epigenetic silencing, or in the overexpression of cyclin D1 or Cdk4, provide genetic evidence for operation of this signaling pathway in tumour surveillance.
Cancers that experience INK4a and RB loss of function, and cyclin D1 or Cdk4 overexpression, include retinoblastomas, small cell lung carcinomas, non-small lung carcinomas, sarcomas, gliomas, pancreatic cancers, head, neck and breast cancers and mantle cell lymphomas in particular small cell lung cancer, non-small cell lung cancer, pancreatic cancer, breast cancer, glioblastoma multiforme, T cell ALL and mantle cell lymphoma.
Therefore one subset of cancers is retinoblastomas, small cell lung carcinomas, non-small lung carcinomas, sarcomas, gliomas, pancreatic cancers, head, neck and breast cancers and mantle cell lymphomas.
Another subset of cancers are small cell lung cancer, non-small cell lung cancer, pancreatic cancer, breast cancer, glioblastoma multiforme, T cell ALL and mantle cell lymphoma.
Amplification or translocation of cdk4 or cdk6 has been demonstrated in several sarcomas and leukemias (Am J Pathol. 2002 August; 161(2): 405-411). In addition, cdk4 amplification and overexpression have been implicated in glioma development, in this case, mutually exclusive mutations of p16INK4a or cdk4 were observed. Also, a mutation in cdk4 has been described in patients with familial melanoma and it has recently been reported that cdk4 knockout mice harbouring this point mutation (R24C) are highly susceptible to melanoma development after chemical treatment.
Glycogen Synthase Kinase-3 (GSK3) is a serine-threonine kinase that occurs as two ubiquitously expressed isoforms in humans (GSK3α & beta GSK3β). GSK3 has been implicated as having roles in embryonic development, protein synthesis, cell proliferation, cell differentiation, microtubule dynamics, cell motility and cellular apoptosis. As such GSK3 has been implicated in the progression of disease states such as diabetes, cancer, Alzheimer's disease, stroke, epilepsy, motor neuron disease and/or head trauma. Phylogenetically GSK3 is most closely related to the cyclin dependent kinases (CDKs).
The consensus peptide substrate sequence recognised by GSK3 is (Ser/Thr)-X-X-X-(pSer/pThr), where X is any amino acid (at positions (n+1), (n+2), (n+3)) and pSer and pThr are phospho-serine and phospho-threonine respectively (n+4). GSK3 phosphorylates the first serine, or threonine, at position (n). Phospho-serine, or phospho-threonine, at the (n+4) position appear necessary for priming GSK3 to give maximal substrate turnover. Phosphorylation of GSK3α at Ser21, or GSK3β at Ser9, leads to inhibition of GSK3. Mutagenesis and peptide competition studies have led to the model that the phosphorylated N-terminus of GSK3 is able to compete with phospho-peptide substrate (S/TXXXpS/pT) via an autoinhibitory mechanism. There are also data suggesting that GSK3α and GSKβ may be subtly regulated by phosphorylation of tyrosines 279 and 216 respectively. Mutation of these residues to a Phe caused a reduction in in vivo kinase activity. The X-ray crystallographic structure of GSK3β has helped to shed light on all aspects of GSK3 activation and regulation.
GSK3 forms part of the mammalian insulin response pathway and is able to phosphorylate, and thereby inactivate, glycogen synthase. Upregulation of glycogen synthase activity, and thereby glycogen synthesis, through inhibition of GSK3, has thus been considered a potential means of combating type II, or non-insulin-dependent diabetes mellitus (NIDDM): a condition in which body tissues become resistant to insulin stimulation. The cellular insulin response in liver, adipose, or muscle tissues, is triggered by insulin binding to an extracellular insulin receptor. This causes the phosphorylation, and subsequent recruitment to the plasma membrane, of the insulin receptor substrate (IRS) proteins. Further phosphorylation of the IRS proteins initiates recruitment of phosphoinositide-3 kinase (PI3K) to the plasma membrane where it is able to liberate the second messenger phosphatidylinosityl 3,4,5-trisphosphate (PIP3). This facilitates co-localisation of 3-phosphoinositide-dependent protein kinase 1 (PDK1) and protein kinase B (PKB or Akt) to the membrane, where PDK1 activates PKB. PKB is able to phosphorylate, and thereby inhibit, GSK3α and/or GSKβ through phosphorylation of Ser9, or ser21, respectively. The inhibition of GSK3 then triggers upregulation of glycogen synthase activity. Therapeutic agents able to inhibit GSK3 may thus be able to induce cellular responses akin to those seen on insulin stimulation. A further in vivo substrate of GSK3 is the eukaryotic protein synthesis initiation factor 2B (eIF2B). eIF2B is inactivated via phosphorylation and is thus able to suppress protein biosynthesis. Inhibition of GSK3, e.g. by inactivation of the “mammalian target of rapamycin” protein (mTOR), can thus upregulate protein biosynthesis. Finally there is some evidence for regulation of GSK3 activity via the mitogen activated protein kinase (MAPK) pathway through phosphorylation of GSK3 by kinases such as mitogen activated protein kinase activated protein kinase 1 (MAPKAP-K1 or RSK). These data suggest that GSK3 activity may be modulated by mitogenic, insulin and/or amino acid stimulii.
It has also been shown that GSK3β is a key component in the vertebrate Wnt signalling pathway. This biochemical pathway has been shown to be critical for normal embryonic development and regulates cell proliferation in normal tissues. GSK3 becomes inhibited in response to Wnt stimulii. This can lead to the de-phosphorylation of GSK3 substrates such as Axin, the adenomatous polyposis coli (APC) gene product and β-catenin. Aberrant regulation of the Wnt pathway has been associated with many cancers. Mutations in APC, and/or β-catenin, are common in colorectal cancer and other tumours. β-catenin has also been shown to be of importance in cell adhesion. Thus GSK3 may also modulate cellular adhesion processes to some degree. Apart from the biochemical pathways already described there are also data implicating GSK3 in the regulation of cell division via phosphorylation of cyclin-D1, in the phosphorylation of transcription factors such as c-Jun, CCAAT/enhancer binding protein α (C/EBPα), c-Myc and/or other substrates such as Nuclear Factor of Activated T-cells (NFATc), Heat Shock Factor-1 (HSF-1) and the c-AMP response element binding protein (CREB). GSK3 also appears to play a role, albeit tissue specific, in regulating cellular apoptosis. The role of GSK3 in modulating cellular apoptosis, via a pro-apoptotic mechanism, may be of particular relevance to medical conditions in which neuronal apoptosis can occur. Examples of these are head trauma, stroke, epilepsy, Alzheimer's and motor neuron diseases, progressive supranuclear palsy, corticobasal degeneration, and Pick's disease. In vitro it has been shown that GSK3 is able to hyper-phosphorylate the microtubule associated protein Tau. Hyperphosphorylation of Tau disrupts its normal binding to microtubules and may also lead to the formation of intra-cellular Tau filaments. It is believed that the progressive accumulation of these filaments leads to eventual neuronal dysfunction and degeneration. Inhibition of Tau phosphorylation, through inhibition of GSK3, may thus provide a means of limiting and/or preventing neurodegenerative effects.
Cell cycle progression is regulated by the combined action of cyclins, cyclin-dependent kinases (CDKs), and CDK-inhibitors (CDKi), which are negative cell cycle regulators. p27KIP1 is a CDKi key in cell cycle regulation, whose degradation is required for G1/S transition. In spite of the absence of p27KIP1 expression in proliferating lymphocytes, some aggressive B-cell lymphomas have been reported to show an anomalous p27KIP1 staining. An abnormally high expression of p27KIP1 was found in lymphomas of this type. Analysis of the clinical relevance of these findings showed that a high level of p27KIP1 expression in this type of tumour is an adverse prognostic marker, in both univariate and multivariate analysis. These results show that there is abnormal p27KIP1 expression in Diffuse Large B-cell Lymphomas (DLBCL), with adverse clinical significance, suggesting that this anomalous p27KIP1 protein may be rendered non-functional through interaction with other cell cycle regulator proteins. (Br. J. Cancer. 1999 July; 80(9):1427-34. p27KIP1 is abnormally expressed in Diffuse Large B-cell Lymphomas and is associated with an adverse clinical outcome. Saez A, Sanchez E, Sanchez-Beato M, Cruz M A, Chacon I, Munoz E, Camacho F I, Martinez-Montero J C, Mollejo M, Garcia J F, Piris M A. Department of Pathology, Virgen de la Salud Hospital, Toledo, Spain.)
B-Cell chronic lymphocytic leukaemia (CLL) is the most common leukaemia in the Western hemisphere, with approximately 10,000 new cases diagnosed each year (Parker S L, Tong T, Bolden S, Wingo P A: Cancer statistics, 1997. Ca. Cancer. J. Clin. 47:5, (1997)). Relative to other forms of leukaemia, the overall prognosis of CLL is good, with even the most advanced stage patients having a median survival of 3 years.
The addition of fludarabine as initial therapy for symptomatic CLL patients has led to a higher rate of complete responses (27% v 3%) and duration of progression-free survival (33 v 17 months) as compared with previously used alkylator-based therapies. Although attaining a complete clinical response after therapy is the initial step toward improving survival in CLL, the majority of patients either do not attain complete remission or fail to respond to fludarabine. Furthermore, all patients with CLL treated with fludarabine eventually relapse, making its role as a single agent purely palliative (Rai K R, Peterson B, Elias L, Shepherd L, Hines J, Nelson D, Cheson B, Kolitz J, Schiffer C A: A randomized comparison of fludarabine and chlorambucil for patients with previously untreated chronic lymphocytic leukemia. A CALGB SWOG, CTG/NCI-C and ECOG Inter-Group Study. Blood 88:141a, 1996 (abstr 552, suppl 1). Therefore, identifying new agents with novel mechanisms of action that complement fludarabine's cytotoxicity and abrogate the resistance induced by intrinsic CLL drug-resistance factors will be necessary if further advances in the therapy of this disease are to be realized.
The most extensively studied, uniformly predictive factor for poor response to therapy and inferior survival in CLL patients is aberrant p53 function, as characterized by point mutations or chromosome 17p13 deletions. Indeed, virtually no responses to either alkylator or purine analog therapy have been documented in multiple single institution case series for those CLL patients with abnormal p53 function. Introduction of a therapeutic agent that has the ability to overcome the drug resistance associated with p53 mutation in CLL would potentially be a major advance for the treatment of the disease.
Flavopiridol and CYC 202, inhibitors of cyclin-dependent kinases induce in vitro apoptosis of malignant cells from B-cell chronic lymphocytic leukemia (B-CLL).
Flavopiridol exposure results in the stimulation of caspase 3 activity and in caspase-dependent cleavage of p27(kip1), a negative regulator of the cell cycle, which is overexpressed in B-CLL (Blood. 1998 Nov. 15; 92(10):3804-16 Flavopiridol induces apoptosis in chronic lymphocytic leukemia cells via activation of caspase-3 without evidence of bcl-2 modulation or dependence on functional p53. Byrd J C, Shinn C, Waselenko J K, Fuchs E J, Lehman T A, Nguyen P L, Flinn I W, Diehl L F, Sausville E, Grever M R).
WO 02/34721 from Du Pont discloses a class of indeno[1,2-c]pyrazol-4-ones as inhibitors of cyclin dependent kinases.
WO 01/81348 from Bristol Myers Squibb describes the use of 5-thio-, sulphinyl- and sulphonylpyrazolo[3,4-b]-pyridines as cyclin dependent kinase inhibitors.
WO 00/62778 also from Bristol Myers Squibb discloses a class of protein tyrosine kinase inhibitors.
WO 01/72745A1 from Cyclacel describes 2-substituted 4-heteroaryl-pyrimidines and their preparation, pharmaceutical compositions containing them and their use as inhibitors of cyclin-dependant kinases (CDKs) and hence their use in the treatment of proliferative disorders such as cancer, leukaemia, psoriasis and the like.
WO 99/21845 from Agouron describes 4-aminothiazole derivatives for inhibiting cyclin-dependent kinases (CDKs), such as CDK1, CDK2, CDK4, and CDK6. The invention is also directed to the therapeutic or prophylactic use of pharmaceutical compositions containing such compounds and to methods of treating malignancies and other disorders by administering effective amounts of such compounds.
WO 01/53274 from Agouron discloses as CDK kinase inhibitors a class of compounds which can comprise an amide-substituted benzene ring linked to an N-containing heterocyclic group.
WO 01/98290 (Pharmacia & Upjohn) discloses a class of 3-aminocarbonyl-2-carboxamido thiophene derivatives as protein kinase inhibitors.
WO 01/53268 and WO 01/02369 from Agouron disclose compounds that mediate or inhibit cell proliferation through the inhibition of protein kinases such as cyclin dependent kinase or tyrosine kinase. The Agouron compounds have an aryl or heteroaryl ring attached directly or though a CH═CH or CH═N group to the 3-position of an indazole ring.
WO 00/39108 and WO 02/00651 (both to Du Pont Pharmaceuticals) describe heterocyclic compounds that are inhibitors of trypsin-like serine protease enzymes, especially factor Xa and thrombin. The compounds are stated to be useful as anticoagulants or for the prevention of thromboembolic disorders.
US 2002/0091116 (Zhu et al.), WO 01/19798 and WO 01/64642 each disclose diverse groups of heterocyclic compounds as inhibitors of Factor Xa. Some 1-substituted pyrazole carboxamides are disclosed and exemplified.
U.S. Pat. No. 6,127,382, WO 01/70668, WO 00/68191, WO 97/48672, WO 97/19052 and WO 97/19062 (all to Allergan) each describe compounds having retinoid-like activity for use in the treatment of various hyperproliferative diseases including cancers.
WO 02/070510 (Bayer) describes a class of amino-dicarboxylic acid compounds for use in the treatment of cardiovascular diseases. Although pyrazoles are mentioned generically, there are no specific examples of pyrazoles in this document.
WO 97/03071 (Knoll A G) discloses a class of heterocyclyl-carboxamide derivatives for use in the treatment of central nervous system disorders. Pyrazoles are mentioned generally as examples of heterocyclic groups but no specific pyrazole compounds are disclosed or exemplified.
WO 97/40017 (Novo Nordisk) describes compounds that are modulators of protein tyrosine phosphatases.
WO 03/020217 (Univ. Connecticut) discloses a class of pyrazole 3-carboxamides as cannabinoid receptor modulators for treating neurological conditions. It is stated (page 15) that the compounds can be used in cancer chemotherapy but it is not made clear whether the compounds are active as anti-cancer agents or whether they are administered for other purposes.
WO 01/58869 (Bristol Myers Squibb) discloses cannabinoid receptor modulators that can be used inter alia to treat a variety of diseases. The main use envisaged is the treatment of respiratory diseases, although reference is made to the treatment of cancer.
WO 01/02385 (Aventis Crop Science) discloses 1-(quinoline-4-yl)-1H-pyrazole derivatives as fungicides. 1-Unsubstituted pyrazoles are disclosed as synthetic intermediates.
WO 2004/039795 (Fujisawa) discloses amides containing a 1-substituted pyrazole group as inhibitors of apolipoprotein B secretion. The compounds are stated to be useful in treating such conditions as hyperlipidemia.
WO 2004/000318 (Cellular Genomics) discloses various amino-substituted monocycles as kinase modulators. None of the exemplified compounds are pyrazoles.
WO 2005/012256 (Astex Technology Limited) discloses various compounds of formula (0) having activity as inhibitors of various kinases for use in the treatment of disease states and conditions such as cancer.
The invention provides compounds that have cyclin dependent kinase inhibiting or modulating activity and glycogen synthase kinase-3 (GSK3) inhibiting or modulating activity, and which it is envisaged will be useful in preventing or treating disease states or conditions mediated by the kinases.
Thus, for example, it is envisaged that the compounds of the invention will be useful in alleviating or reducing the incidence of cancer.
In a first aspect, the invention provides a compound of the formula (I):
or a salt, tautomer, solvate or N-oxide thereof;
wherein:
R1 is an optionally substituted monocyclic or bicyclic aryl or heteroaryl group containing 0-2 heteroatoms selected from O, N and S wherein the optional substituents are selected from halogen, C1-4 alkyl, C1-4 alkoxy, C3-4 cycloalkyl and cyano, and wherein the C1-4 alkyl and C1-4 alkoxy groups are each optionally further substituted by C1-2 alkoxy or one or more halogen atoms; and
E is a group E1, E2, E3 or E4:
and wherein:
in group E1:
n is 0 or 1;
W is N, CH or C-A-R2 provided that when n is 0, W is C-A-R2 and that when n is 1,
W is CH or N; and provided also that W is not N when V is CH;
A is a bond, O, CO, X1C(X2), C(X2)X1, X1C(X2)X1, S, SO, SO2, NRc, SO2NRc or NRcSO2;
Rc is hydrogen or saturated C1-4 hydrocarbyl;
R2 is hydrogen, saturated C1-4-hydrocarbyl, hydroxy-C2-4-alkyl, a group Alk-R3, a group Alk-O-Alk-R3, a group Alk-NRc-Alk-R3, or a group (CH2)p—R4 where p is 0, 1, 2 or 3;
Alk is a C1-6 straight or branched chain alkylene group which is optionally substituted by hydroxy or halogen and wherein one or two of the carbon atoms of the alkylene group may optionally be replaced by O, S, SO, SO2 or NRc;
R3 is hydroxy, C1-2-alkoxy, amino, mono- or di-C1-4-alkylamino, carboxy, C1-4-alkoxycarbonyl, carbamoyl, mono- or di-C1-4-alkylcarbamoyl, cyano, or a saturated monocyclic ring containing 1 or 2 heteroatom ring members selected from O, N and S, wherein the saturated monocyclic ring is optionally substituted by C1-4 alkyl; and wherein each C1-4 alkyl or C1-4 alkoxy group of the mono- or di-C1-4-alkylamino, C1-4-alkoxycarbonyl, or mono- or di-C1-4-alkylcarbamoyl group is optionally substituted by hydroxy, amino, mono- or di-C1-2-alkylamino or C1-2-alkoxy;
R4 is an imidazole group or a saturated monocylic ring containing 1 or 2 heteroatom ring members selected from O, N and S, wherein the saturated monocyclic ring is optionally substituted by C1-4 alkyl, hydroxy-C1-4-alkyl, C1-4 alkylsulphonyl, C(O)C1-4-saturated hydrocarbyl or a group R3;
provided that when A is a bond, O, CO, X1C(X2), S, SO, SO2 or NRcSO2, then R2 is other than hydrogen; and that when A is a bond, then R2 is other than hydrogen or C1-4-alkyl;
but excluding compounds wherein E is a group E1 in which V and W are both CH and A-R2 is a para-substituent selected from methylsulphonyl, morpholinylmethyl, morpholinyl, thiomorpholinyl, pyrrolidinyl, piperidinyl, N-alkoxycarbonyl-4-piperidinyl, piperazinyl or N-alkylpiperazinyl, or a meta-morpholinylmethyl substituent; and.
in group E2:
A and R2 are as defined in respect of E1;
q is 0 or 1;
U is a 5 or 6 membered aromatic ring containing 0, 1 or 2 nitrogen ring members;
B is a bond or a benzyl or pyridylmethyl group wherein the moiety A-R2 is attached to the aromatic ring of the benzyl or pyridylmethyl group; and
in group E3:
when Z is N, R5 is absent and when Z is C, R5 is hydrogen, C1-4 alkyl, halogen, or a group A-R2 as defined in respect of group E1;
R6 is hydrogen, C1-4 alkyl, halogen, or a group A-R2 as defined in respect of group E1 provided that only one of R5 and R6 can be a group A-R2;
or R5 and R6 together with the carbon atoms to which they are attached form a six membered non-aromatic heterocyclic ring containing a heteroatom selected from O and N, the heterocyclic ring being optionally substituted by C1-4 alkyl; and
in group E4
R7 is a C1-4 alkyl group.
The invention also provides inter alia:
In this section, as in all other sections of this application, unless the context indicates otherwise, references to a compound of formula (I) includes all subgroups of formula (I) as defined herein and the term ‘subgroups’ includes all preferences, embodiments, examples and particular compounds defined herein.
Moreover, a reference to a compound of formula (I) and sub-groups thereof includes ionic forms, salts, solvates, isomers, tautomers, N-oxides, esters, prodrugs, isotopes and protected forms thereof, as discussed below: —preferably, the salts or tautomers or isomers or N-oxides or solvates thereof: —and more preferably, the salts or tautomers or N-oxides or solvates thereof.
The following general preferences and definitions shall apply to each of E, E1, E2, E3, E4, A, B, T, U, V, W, Z and R1 to R7, and their various sub-groups, sub-definitions, examples and embodiments unless the context indicates otherwise.
Any references to formula (I) herein shall also be taken to refer to and any sub-group of compounds within formula (I) and any preferences and examples thereof unless the context requires otherwise.
References to “carbocyclic” and “heterocyclic” groups as used herein shall, unless the context indicates otherwise, include both aromatic and non-aromatic ring systems. Thus, for example, the term “carbocyclic and heterocyclic groups” includes within its scope aromatic, non-aromatic, unsaturated, partially saturated and fully saturated carbocyclic and heterocyclic ring systems. In general, such groups may be monocyclic or bicyclic and may contain, for example, 3 to 12 ring members, more usually 5 to 10 ring members. Examples of monocyclic groups are groups containing 3, 4, 5, 6, 7, and 8 ring members, more usually 3 to 7, and preferably 5 or 6 ring members. Examples of bicyclic groups are those containing 8, 9, 10, 11 and 12 ring members, and more usually 9 or 10 ring members.
The carbocyclic or heterocyclic groups can be aryl or heteroaryl groups having from 5 to 12 ring members, more usually from 5 to 10 ring members. The term “aryl” as used herein refers to a carbocyclic group having aromatic character and the term “heteroaryl” is used herein to denote a heterocyclic group having aromatic character. The terms “aryl” and “heteroaryl” embrace polycyclic (e.g. bicyclic) ring systems wherein one or more rings are non-aromatic, provided that at least one ring is aromatic. In such polycyclic systems, the group may be attached by the aromatic ring, or by a non-aromatic ring. The aryl or heteroaryl groups can be monocyclic or bicyclic groups and can be unsubstituted or substituted with one or more substituents, for example one or more groups R15 as defined herein.
The term “non-aromatic group” embraces unsaturated ring systems without aromatic character, partially saturated and fully saturated carbocyclic and heterocyclic ring systems. The terms “unsaturated” and “partially saturated” refer to rings wherein the ring structure(s) contains atoms sharing more than one valence bond i.e. the ring contains at least one multiple bond e.g. a C═C, C≡C or N═C bond. The terms “fully saturated” and “saturated” refer to rings where there are no multiple bonds between ring atoms. Saturated carbocyclic groups include cycloalkyl groups as defined below. Partially saturated carbocyclic groups include cycloalkenyl groups as defined below, for example cyclopentenyl, cycloheptenyl and cyclooctenyl. A further example of a cycloalkenyl group is cyclohexenyl.
Examples of heteroaryl groups are monocyclic and bicyclic groups containing from five to twelve ring members, and more usually from five to ten ring members. The heteroaryl group can be, for example, a five membered or six membered monocyclic ring or a bicyclic structure formed from fused five and six membered rings or two fused six membered rings or, by way of a further example, two fused five membered rings. Each ring may contain up to about four heteroatoms typically selected from nitrogen, sulphur and oxygen. Typically the heteroaryl ring will contain up to 4 heteroatoms, more typically up to 3 heteroatoms, more usually up to 2, for example a single heteroatom. In one embodiment, the heteroaryl ring contains at least one ring nitrogen atom. The nitrogen atoms in the heteroaryl rings can be basic, as in the case of an imidazole or pyridine, or essentially non-basic as in the case of an indole or pyrrole nitrogen. In general the number of basic nitrogen atoms present in the heteroaryl group, including any amino group substituents of the ring, will be less than five.
Examples of five membered heteroaryl groups include but are not limited to pyrrole, furan, thiophene, imidazole, furazan, oxazole, oxadiazole, oxatriazole, isoxazole, thiazole, isothiazole, pyrazole, triazole and tetrazole groups.
Examples of six membered heteroaryl groups include but are not limited to pyridine, pyrazine, pyridazine, pyrimidine and triazine.
A bicyclic heteroaryl group may be, for example, a group selected from:
One sub-group of bicyclic heteroaryl groups consists of groups (a) to (e) and (g) to (o) above.
Particular examples of bicyclic heteroaryl groups containing a five membered ring fused to another five membered ring include but are not limited to imidazothiazole (e.g. imidazo[2,1-b]thiazole) and imidazoimidazole (e.g. imidazo[1,2-a]imidazole).
Particular examples of bicyclic heteroaryl groups containing a six membered ring fused to a five membered ring include but are not limited to benzofuran, benzothiophene, benzimidazole, benzoxazole, isobenzoxazole, benzisoxazole, benzthiazole, benzisothiazole, isobenzofuran, indole, isoindole, indolizine, indoline, isoindoline, purine (e.g., adenine, guanine), indazole, pyrazolopyrimidine (e.g. pyrazolo[1,5-a]pyrimidine), triazolopyrimidine (e.g. [1,2,4]triazolo[1,5-a]pyrimidine), benzodioxole and pyrazolopyridine (e.g. pyrazolo[1,5-a]pyridine) groups.
Particular examples of bicyclic heteroaryl groups containing two fused six membered rings include but are not limited to quinoline, isoquinoline, chroman, thiochroman, chromene, isochromene, isochroman, benzodioxan, quinolizine, benzoxazine, benzodiazine, pyridopyridine, quinoxaline, quinazoline, cinnoline, phthalazine, naphthyridine and pteridine groups.
One sub-group of heteroaryl groups comprises pyridyl, pyrrolyl, furanyl, thienyl, imidazolyl, oxazolyl, oxadiazolyl, oxatriazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, pyrazinyl, pyridazinyl, pyrimidinyl, triazinyl, triazolyl, tetrazolyl, quinolinyl, isoquinolinyl, benzfuranyl, benzthienyl, chromanyl, thiochromanyl, benzimidazolyl, benzoxazolyl, benzisoxazole, benzthiazolyl and benzisothiazole, isobenzofuranyl, indolyl, isoindolyl, indolizinyl, indolinyl, isoindolinyl, purinyl (e.g., adenine, guanine), indazolyl, benzodioxolyl, chromenyl, isochromenyl, isochromanyl, benzodioxanyl, quinolizinyl, benzoxazinyl, benzodiazinyl, pyridopyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, phthalazinyl, naphthyridinyl and pteridinyl groups.
Examples of polycyclic aryl and heteroaryl groups containing an aromatic ring and a non-aromatic ring include tetrahydronaphthalene, tetrahydroisoquinoline, tetrahydroquinoline, dihydrobenzthiene, dihydrobenzfuran, 2,3-dihydrobenzo[1,4]dioxine, benzo[1,3]dioxole, 4,5,6,7-tetrahydrobenzofuran, indoline and indane groups.
Examples of carbocyclic aryl groups include phenyl, naphthyl, indenyl, and tetrahydronaphthyl groups.
Examples of non-aromatic heterocyclic groups include unsubstituted or substituted (by one or more groups R10) heterocyclic groups having from 3 to 12 ring members, typically 4 to 12 ring members, and more usually from 5 to 10 ring members. Such groups can be monocyclic or bicyclic, for example, and typically have from 1 to 5 heteroatom ring members (more usually 1, 2, 3 or 4 heteroatom ring members) typically selected from nitrogen, oxygen and sulphur.
When sulphur is present, it may, where the nature of the adjacent atoms and groups permits, exist as —S—, —S(O)— or —S(O)2—.
The heterocylic groups can contain, for example, cyclic ether moieties (e.g. as in tetrahydrofuran and dioxane), cyclic thioether moieties (e.g. as in tetrahydrothiophene and dithiane), cyclic amine moieties (e.g. as in pyrrolidine), cyclic amide moieties (e.g. as in pyrrolidone), cyclic thioamides, cyclic thioesters, cyclic ester moieties (e.g. as in butyrolactone), cyclic sulphones (e.g. as in sulpholane and sulpholene), cyclic sulphoxides, cyclic sulphonamides and combinations thereof (e.g. morpholine and thiomorpholine and its S-oxide and S,S-dioxide). Further examples of heterocyclic groups are those containing a cyclic urea moiety (e.g. as in imidazolidin-2-one),
In one sub-set of heterocyclic groups, the heterocyclic groups contain cyclic ether moieties (e.g as in tetrahydrofuran and dioxane), cyclic thioether moieties (e.g. as in tetrahydrothiophene and dithiane), cyclic amine moieties (e.g. as in pyrrolidine), cyclic sulphones (e.g. as in sulpholane and sulpholene), cyclic sulphoxides, cyclic sulphonamides and combinations thereof (e.g. thiomorpholine).
Examples of monocyclic non-aromatic heterocyclic groups include 5-, 6- and 7-membered monocyclic heterocyclic groups. Particular examples include morpholine, piperidine (e.g. 1-piperidinyl, 2-piperidinyl, 3-piperidinyl and 4-piperidinyl), pyrrolidine (e.g. 1-pyrrolidinyl, 2-pyrrolidinyl and 3-pyrrolidinyl), pyrrolidone, pyran (2H-pyran or 4H-pyran), dihydrothiophene, dihydropyran, dihydrofuran, dihydrothiazole, tetrahydrofuran, tetrahydrothiophene, dioxane, tetrahydropyran (e.g. 4-tetrahydro pyranyl), imidazoline, imidazolidinone, oxazoline, thiazoline, 2-pyrazoline, pyrazolidine, piperazine, and N-alkyl piperazines such as N-methyl piperazine. Further examples include thiomorpholine and its S-oxide and S,S-dioxide particularly thiomorpholine). Still further examples include azetidine, piperidone, piperazone, and N-alkyl piperidines such as N-methyl piperidine.
One preferred sub-set of non-aromatic heterocyclic groups consists of saturated groups such as azetidine, pyrrolidine, piperidine, morpholine, thiomorpholine, thiomorpholine S,S-dioxide, piperazine, N-alkyl piperazines, and N-alkyl piperidines.
Another sub-set of non-aromatic heterocyclic groups consists of pyrrolidine, piperidine, morpholine, thiomorpholine, thiomorpholine S,S-dioxide, piperazine and N-alkyl piperazines such as N-methyl piperazine.
One particular sub-set of heterocyclic groups consists of pyrrolidine, piperidine, morpholine and N-alkyl piperazines (e.g. N-methyl piperazine), and optionally thiomorpholine.
Examples of non-aromatic carbocyclic groups include cycloalkane groups such as cyclohexyl and cyclopentyl, cycloalkenyl groups such as cyclopentenyl, cyclohexenyl, cycloheptenyl and cyclooctenyl, as well as cyclohexadienyl, cyclooctatetraene, tetrahydronaphthenyl and decalinyl.
Preferred non-aromatic carbocyclic groups are monocyclic rings and most preferably saturated monocyclic rings.
Typical examples are three, four, five and six membered saturated carbocyclic rings, e.g. optionally substituted cyclopentyl and cyclohexyl rings.
One sub-set of non-aromatic carboyclic groups includes unsubstituted or substituted (by one or more groups R10) monocyclic groups and particularly saturated monocyclic groups, e.g. cycloalkyl groups. Examples of such cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl; more typically cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, particularly cyclohexyl.
Further examples of non-aromatic cyclic groups include bridged ring systems such as bicycloalkanes and azabicycloalkanes although such bridged ring systems are generally less preferred. By “bridged ring systems” is meant ring systems in which two rings share more than two atoms, see for example Advanced Organic Chemistry, by Jerry March, 4th Edition, Wiley Interscience, pages 131-133, 1992. Examples of bridged ring systems include bicyclo[2.2.1]heptane, aza-bicyclo[2.2.1]heptane, bicyclo[2.2.2]octane, aza-bicyclo[2.2.2]octane, bicyclo[3.2.1]octane and aza-bicyclo[3.2.1]octane. A particular example of a bridged ring system is the 1-aza-bicyclo[2.2.2]octan-3-yl group.
Where reference is made herein to carbocyclic and heterocyclic groups, the carbocyclic or heterocyclic ring can, unless the context indicates otherwise, be unsubstituted or substituted by one or more substituent groups R10 selected from halogen, hydroxy, trifluoromethyl, cyano, nitro, carboxy, amino, mono- or di-C1-4 hydrocarbylamino, carbocyclic and heterocyclic groups having from 3 to 12 ring members; a group Ra-Rb wherein Ra is a bond, O, CO, X1C(X2), C(X2)X1, X1C(X2)X1, S, SO, SO2, NRc, SO2NRc or NRcSO2; and Rb is selected from hydrogen, carbocyclic and heterocyclic groups having from 3 to 12 ring members, and a C1-8 hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, cyano, nitro, carboxy, amino, mono- or di-C1-4 hydrocarbylamino, carbocyclic and heterocyclic groups having from 3 to 12 ring members and wherein one or more carbon atoms of the C1-8 hydrocarbyl group may optionally be replaced by O, S, SO, SO2, NRc, X1C(X2), C(X2)X1 or X1C(X2)X1;
Where the substituent group R10 comprises or includes a carbocyclic or heterocyclic group, the said carbocyclic or heterocyclic group may be unsubstituted or may itself be substituted with one or more further substituent groups R10. In one sub-group of compounds of the formula (I), such further substituent groups R10 may include carbocyclic or heterocyclic groups, which are typically not themselves further substituted. In another sub-group of compounds of the formula (I), the said further substituents do not include carbocyclic or heterocyclic groups but are otherwise selected from the groups listed above in the definition of R10.
The substituents R10 may be selected such that they contain no more than 20 non-hydrogen atoms, for example, no more than 15 non-hydrogen atoms, e.g. no more than 12, or 11, or 10, or 9, or 8, or 7, or 6, or 5 non-hydrogen atoms.
Where the carbocyclic and heterocyclic groups have a pair of substituents on the same or adjacent ring atoms, the two substituents may be linked so as to form a cyclic group. Thus, two adjacent groups R15, together with the carbon atoms or heteroatoms to which they are attached may form a 5-membered heteroaryl ring or a 5- or 6-membered non-aromatic carbocyclic or heterocyclic ring, wherein the said heteroaryl and heterocyclic groups contain up to 3 heteroatom ring members selected from N, O and S. For example, an adjacent pair of substituents on adjacent carbon atoms of a ring may be linked via one or more heteroatoms and optionally substituted alkylene groups to form a fused oxa-, dioxa-, aza-, diaza- or oxa-aza-cycloalkyl group.
Examples of such linked substituent groups include:
Examples of halogen substituents include fluorine, chlorine, bromine and iodine. Fluorine and chlorine are particularly preferred.
In the definition of the compounds of the formula (I) above and as used hereinafter, the term “hydrocarbyl” is a generic term encompassing aliphatic, alicyclic and aromatic groups having an all-carbon backbone and consisting of carbon and hydrogen atoms, except where otherwise stated.
In certain cases, as defined herein, one or more of the carbon atoms making up the carbon backbone may be replaced by a specified atom or group of atoms.
Examples of hydrocarbyl groups include alkyl, cycloalkyl, cycloalkenyl, carbocyclic aryl, alkenyl, alkynyl, cycloalkylalkyl, cycloalkenylalkyl, and carbocyclic aralkyl, aralkenyl and aralkynyl groups. Such groups can be unsubstituted or, where stated, substituted by one or more substituents as defined herein. The examples and preferences expressed below apply to each of the hydrocarbyl substituent groups or hydrocarbyl-containing substituent groups referred to in the various definitions of substituents for compounds of the formula (I) unless the context indicates otherwise.
The prefix “Cx-y” (where x and y are integers) as used herein refers to the number of carbon atoms in a given group. Thus, a C1-4 hydrocarbyl group contains from 1 to 4 carbon atoms, and a C3-6 cycloalkyl group contains from 3 to 6 carbon atoms, and so on.
Preferred non-aromatic hydrocarbyl groups are saturated groups such as alkyl and cycloalkyl groups.
Generally by way of example, the hydrocarbyl groups can have up to eight carbon atoms, unless the context requires otherwise. Within the sub-set of hydrocarbyl groups having 1 to 8 carbon atoms, particular examples are C1-6 hydrocarbyl groups, such as C1-4 hydrocarbyl groups (e.g. C1-3 hydrocarbyl groups or C1-2 hydrocarbyl groups or C2-3 hydrocarbyl groups or C2-4 hydrocarbyl groups), specific examples being any individual value or combination of values selected from C1, C2, C3, C4, C5, C6, C7 and C8 hydrocarbyl groups.
The term “alkyl” covers both straight chain and branched chain alkyl groups. Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, 2-pentyl, 3-pentyl, 2-methyl butyl, 3-methyl butyl, and n-hexyl and its isomers. Within the sub-set of alkyl groups having 1 to 8 carbon atoms, particular examples are C1-6 alkyl groups, such as C1-4 alkyl groups (e.g. C1-3 alkyl groups or C1-2 alkyl groups or C2-3 alkyl groups or C2-4 alkyl groups).
Examples of cycloalkyl groups are those derived from cyclopropane, cyclobutane, cyclopentane, cyclohexane and cycloheptane. Within the sub-set of cycloalkyl groups the cycloalkyl group will have from 3 to 8 carbon atoms, particular examples being C3-6 cycloalkyl groups.
Examples of alkenyl groups include, but are not limited to, ethenyl (vinyl), 1-propenyl, 2-propenyl (allyl), isopropenyl, butenyl, buta-1,4-dienyl, pentenyl, and hexenyl. Within the sub-set of alkenyl groups the alkenyl group will have 2 to 8 carbon atoms, particular examples being C2-6 alkenyl groups, such as C2-4 alkenyl groups.
Examples of cycloalkenyl groups include, but are not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl and cyclohexenyl. Within the sub-set of cycloalkenyl groups the cycloalkenyl groups have from 3 to 8 carbon atoms, and particular examples are C3-6 cycloalkenyl groups.
Examples of alkynyl groups include, but are not limited to, ethynyl and 2-propynyl (propargyl) groups. Within the sub-set of alkynyl groups having 2 to 8 carbon atoms, particular examples are C2-6 alkynyl groups, such as C2-4 alkynyl groups.
Examples of carbocyclic aryl groups include substituted and unsubstituted phenyl groups.
Examples of cycloalkylalkyl, cycloalkenylalkyl, carbocyclic aralkyl, aralkenyl and aralkynyl groups include phenethyl, benzyl, styryl, phenylethynyl, cyclohexylmethyl, cyclopentylmethyl, cyclobutylmethyl, cyclopropylmethyl and cyclopentenylmethyl groups.
The term C1-4 saturated hydrocarbyl as used herein encompasses alkyl and cycloalkyl groups having 1 to 4 carbon atoms. Within this definition, particular C1-4 saturated hydrocarbyl groups are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, cyclopropyl, cyclopropylmethyl and cyclobutyl.
When present, and where stated, a hydrocarbyl group can be optionally substituted by one or more substituents selected from hydroxy, oxo, alkoxy, carboxy, halogen, cyano, nitro, amino, mono- or di-C1-4 hydrocarbylamino, and monocyclic or bicyclic carbocyclic and heterocyclic groups having from 3 to 12 (typically 3 to 10 and more usually 5 to 10) ring members. Preferred substituents include halogen such as fluorine. Thus, for example, the substituted hydrocarbyl group can be a partially fluorinated or perfluorinated group such as difluoromethyl or trifluoromethyl. In one embodiment preferred substituents include monocyclic carbocyclic and heterocyclic groups having 3-7 ring members, more usually 3, 4, 5 or 6 ring members.
Where stated, one or more carbon atoms of a hydrocarbyl group may optionally be replaced by O, S, SO, SO2, NRc, X1C(X2), C(X2)X1 or X1C(X2)X1 (or a sub-group thereof) wherein X1 and X2 are as hereinbefore defined, provided that at least one carbon atom of the hydrocarbyl group remains. For example, 1, 2, 3 or 4 carbon atoms of the hydrocarbyl group may be replaced by one of the atoms or groups listed, and the replacing atoms or groups may be the same or different. In general, the number of linear or backbone carbon atoms replaced will correspond to the number of linear or backbone atoms in the group replacing them. Examples of groups in which one or more carbon atom of the hydrocarbyl group have been replaced by a replacement atom or group as defined above include ethers and thioethers (C replaced by Q or S), amides, esters, thioamides and thioesters (C—C replaced by X1C(X2) or C(X2)X1), sulphones and sulphoxides (C replaced by SO or SO2), amines (C replaced by NRc). Further examples include ureas, carbonates and carbamates (C—C—C replaced by X1C(X2)X1).
Where an amino group has two hydrocarbyl substituents, they may, together with the nitrogen atom to which they are attached, and optionally with another heteroatom such as nitrogen, sulphur, or oxygen, link to form a ring structure of 4 to 7 ring members, more usually 5 to 6 ring members.
The term “aza-cycloalkyl” as used herein refers to a cycloalkyl group in which one of the carbon ring members has been replaced by a nitrogen atom. Thus examples of aza-cycloalkyl groups include piperidine and pyrrolidine. The term “oxa-cycloalkyl” as used herein refers to a cycloalkyl group in which one of the carbon ring members has been replaced by an oxygen atom. Thus examples of oxa-cycloalkyl groups include tetrahydrofuran and tetrahydropyran. In an analogous manner, the terms “diaza-cycloalkyl”, “dioxa-cycloalkyl” and “aza-oxa-cycloalkyl” refer respectively to cycloalkyl groups in which two carbon ring members have been replaced by two nitrogen atoms, or by two oxygen atoms, or by one nitrogen atom and one oxygen atom. Thus, in an oxa-C4-6 cycloalkyl group, there will be from 3 to 5 carbon ring members and an oxygen ring member. For example, an oxa-cyclohexyl group is a tetrahydropyranyl group.
The definition “Ra-Rb” as used herein, either with regard to substituents present on a carbocyclic or heterocyclic moiety, or with regard to other substituents present at other locations on the compounds of the formula (I), includes inter alia compounds wherein Ra is selected from a bond, O, CO, OC(O), SC(O), NRcC(O), OC(S), SC(S), NRcC(S), OC(NRc), SC(NRc), NRcC(NRc), C(O)O, C(O)S, C(O)NRc, C(S)O, C(S)S, C(S)NRc, C(NRc)O, C(NRc)S, C(NRc)NRc, OC(O)O, SC(O)O, NRcC(O)O, OC(S)O, SC(S)O, NRcC(S)O, OC(NRc)O, SC(NRc)O, NRcCRC)O, OC(O)S, SC(O)S, NRcC(O)S, OC(S)S, SC(S)S, NRcC(S)S, OC(NRc)S, SC(NRc)S, NRcC(NRc)S, OC(O)NRc, SC(O)NRc, NRcC(O)NRc, OC(S)NRc, SC(S)NRc, NRcC(S)NRc, OC(NRc)NRc, SC(NRc)NRc, NRcC(NRcNRc, S, SO, SO2, NRc, SO2NRc and NRcSO2 wherein RcC is as hereinbefore defined.
The moiety Rb can be hydrogen or it can be a group selected from carbocyclic and heterocyclic groups having from 3 to 12 ring members (typically 3 to 10 and more usually from 5 to 10), and a C1-8 hydrocarbyl group optionally substituted as hereinbefore defined. Examples of hydrocarbyl, carbocyclic and heterocyclic groups are as set out above.
When Ra is O and Rb is a C1-8 hydrocarbyl group, Ra and Rb together form a hydrocarbyloxy group. Preferred hydrocarbyloxy groups include saturated hydrocarbyloxy such as alkoxy (e.g. C1-6 alkoxy, more usually C1-4 alkoxy such as ethoxy and methoxy, particularly methoxy), cycloalkoxy (e.g. C3-6 cycloalkoxy such as cyclopropyloxy, cyclobutyloxy, cyclopentyloxy and cyclohexyloxy) and cycloalkylalkoxy (e.g. C3-6 cycloalkyl-C1-2 alkoxy such as cyclopropylmethoxy).
The hydrocarbyloxy groups can be substituted by various substituents as defined herein. For example, the alkoxy groups can be substituted by halogen (e.g. as in difluoromethoxy and trifluoromethoxy), hydroxy (e.g. as in hydroxyethoxy), C1-2 alkoxy (e.g. as in methoxyethoxy), hydroxy-C1-2 alkyl (as in hydroxyethoxyethoxy) or a cyclic group (e.g. a cycloalkyl group or non-aromatic heterocyclic group as hereinbefore defined). Examples of alkoxy groups bearing a non-aromatic heterocyclic group as a substituent are those in which the heterocyclic group is a saturated cyclic amine such as morpholine, piperidine, pyrrolidine, piperazine, C1-4-alkyl-piperazines, C3-7-cycloalkyl-piperazines, tetrahydropyran or tetrahydrofuran and the alkoxy group is a C1-4 alkoxy group, more typically a C1-3 alkoxy group such as methoxy, ethoxy or n-propoxy.
Alkoxy groups may be substituted by a monocyclic group such as pyrrolidine, piperidine, morpholine and piperazine and N-substituted derivatives thereof such as N-benzyl, N—C1-4 acyl and N—C1-4 alkoxycarbonyl. Particular examples include pyrrolidinoethoxy, piperidinoethoxy and piperazinoethoxy.
When Ra is a bond and Rb is a C1-8 hydrocarbyl group, examples of hydrocarbyl groups Ra-Rb are as hereinbefore defined. The hydrocarbyl groups may be saturated groups such as cycloalkyl and alkyl and particular examples of such groups include methyl, ethyl and cyclopropyl. The hydrocarbyl (e.g. alkyl) groups can be substituted by various groups and atoms as defined herein. Examples of substituted alkyl groups include alkyl groups substituted by one or more halogen atoms such as fluorine and chlorine (particular examples including bromoethyl, chloroethyl and trifluoromethyl), or hydroxy (e.g. hydroxymethyl and hydroxyethyl), C1-8 acyloxy (e.g. acetoxymethyl and benzyloxymethyl), amino and mono- and dialkylamino (e.g. aminoethyl, methylaminoethyl, dimethylaminomethyl, dimethylaminoethyl and tert-butylaminomethyl), alkoxy (e.g. C1-2 alkoxy such as methoxy—as in methoxyethyl), and cyclic groups such as cycloalkyl groups, aryl groups, heteroaryl groups and non-aromatic heterocyclic groups as hereinbefore defined).
Particular examples of alkyl groups substituted by a cyclic group are those wherein the cyclic group is a saturated cyclic amine such as morpholine, piperidine, pyrrolidine, piperazine, C1-4-alkyl-piperazines, C3-7-cycloalkyl-piperazines, tetrahydropyran or tetrahydrofuran and the alkyl group is a C1-4 alkyl group, more typically a C1-3 alkyl group such as methyl, ethyl or n-propyl. Specific examples of alkyl groups substituted by a cyclic group include pyrrolidinomethyl, pyrrolidinopropyl, morpholinomethyl, morpholinoethyl, morpholinopropyl, piperidinylmethyl, piperazinomethyl and N-substituted forms thereof as defined herein.
Particular examples of alkyl groups substituted by aryl groups and heteroaryl groups include benzyl and pyridylmethyl groups.
When Ra is SO2NRc, Rb can be, for example, hydrogen or an optionally substituted C1-8 hydrocarbyl group, or a carbocyclic or heterocyclic group. Examples of Ra-Rb where Ra is SO2NRc include aminosulphonyl, C1-4 alkylaminosulphonyl and di-C1-4 alkylaminosulphonyl groups, and sulphonamides formed from a cyclic amino group such as piperidine, morpholine, pyrrolidine, or an optionally N-substituted piperazine such as N-methyl piperazine.
Examples of groups Ra-Rb where Ra is SO2 include alkylsulphonyl, heteroarylsulphonyl and arylsulphonyl groups, particularly monocyclic aryl and heteroaryl sulphonyl groups. Particular examples include methylsulphonyl, phenylsulphonyl and toluenesulphonyl.
When Ra is NRc, Rb can be, for example, hydrogen or an optionally substituted C1-8 hydrocarbyl group, or a carbocyclic or heterocyclic group. Examples of Ra-Rb where Ra is NRc include amino, C1-4 alkylamino (e.g. methylamino, ethylamino, propylamino, isopropylamino, tert-butylamino), di-C1-4 alkylamino (e.g. dimethylamino and diethylamino) and cycloalkylamino (e.g. cyclopropylamino, cyclopentylamino and cyclohexylamino).
R1 is an optionally substituted monocyclic or bicyclic aryl or heteroaryl group containing 0-2 heteroatoms selected from O, N and S.
The monocyclic or bicyclic aryl or heteroaryl group typically has from 5 to 10 ring members and examples of such groups are set out in the General Preferences section above.
The monocyclic aryl and heteroaryl groups are 5 and 6 membered rings whilst the bicyclic aryl and heteroaryl groups typically have 9 or 10 ring members.
Preferred aryl and heteroaryl groups are phenyl, pyridyl (e.g. 4-pyridyl) and pyrazolopyrimidine (e.g. pyrazolo[1,5-a]pyrimidine) groups.
The optional substituents for the aryl and heteroaryl groups are selected from halogen, C1-4 alkyl, C1-4 alkoxy, C3-4 cycloalkyl and cyano, and wherein the C1-4 alkyl and C1-4 alkoxy groups are each optionally further substituted by C1-2 alkoxy or one or more halogen atoms.
Where the carbocyclic and heterocyclic groups have a pair of alkoxy substituents on the ring atoms, the two substituents may be linked so as to form a cyclic group. Thus, for example, the two alkoxy groups may be linked so as to constitute an ethylenedioxy group or a methylene dioxy group.
More particularly, the substituents for the aryl and heteroaryl groups may be selected from fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, tert-butyl, cyclopropyl, cyano, trifluoromethyl, methoxy, ethoxy, isopropoxy, difluoromethoxy, and trifluoromethoxy.
When R1 is a monocyclic aryl (i.e. phenyl) group, the aryl group is typically unsubstituted or substituted by 1, 2 or 3 substituents. The substituents may be located at the 2-, 3-, 4- or 6-positions around the ring. By way of example, a phenyl group R1 may be 2-monosubstituted, 3-monosubstituted, 4-monosubstituted, 2,6-disubstituted, 2,3-disubstituted, 2,4-disubstituted, 2,5-disubstituted, 2,3,5-trisubstituted, 2,3,6-trisubstituted or 2,4,6-trisubstituted. More particularly, a phenyl group R1 may be monosubstituted at the 2-position or disubstituted at positions 2- and 6- with substituents selected from fluorine and chlorine.
In one embodiment, R1 is selected from unsubstituted phenyl, 2-fluorophenyl, 2-hydroxyphenyl, 2-methoxyphenyl, 2-methylphenyl, 3-fluorophenyl, 3-methoxyphenyl, 2,6-difluorophenyl, 2-fluoro-6-hydroxyphenyl, 2-fluoro-3-methoxyphenyl, 2-fluoro-5-methoxyphenyl, 2-chloro-6-methoxyphenyl, 2-fluoro-6-methoxyphenyl, 2,6-dichlorophenyl, 2-chloro-6-fluorophenyl.
Particular groups R1 are 2,6-difluorophenyl and 2,6-dichlorophenyl.
Examples of groups R1, in the context of the moiety R1CO, are shown in Table 1 below.
In one embodiment, E is a group E1.
In another embodiment, E is a group E2.
In a further embodiment, E is a group E3.
In another embodiment, E is a group E4.
In a further embodiment, E is selected from a group E1, E2 and E3.
In group E1:
n is 0 or 1;
W is N, CH or C-A-R2 provided that when n is 0, W is C-A-R2 and that when n is 1,
W is CH or N; and provided also that W is not N when V is CH.
In one embodiment, V is N, W is CH, C-A-R2 or N. Within this embodiment, a particular sub-group of compounds is the group in which W is CH or C-A-R2.
In one particularly embodiment, V is N, W is CH and n is 1.
In another embodiment, V is CH, W is CH and n is 1. In this embodiment, the compounds wherein E is a group E1 in which V and W are both CH and A-R2 is a para-substituent selected from morpholinylmethyl, morpholinyl, thiomorpholinyl, pyrrolidinyl, piperidinyl, N-alkoxycarbonyl-4-piperidinyl, piperazinyl or N-alkylpiperazinyl, or a meta-morpholinylmethyl substituent are excluded.
A is a bond, O, CO, X1C(X2), C(X2)X1, X1(X2)X1, S, SO, SO2, NRc, SO2NRc or NRcSO2, where Rc is hydrogen or saturated C1-4 hydrocarbyl and X1 is O, S or NRc and X2 is ═O, ═S or ═NRc.
More preferably A is a bond, O or NRc.
In one group of compounds, A is a bond.
In another group of compounds, A is O.
R2 is hydrogen, saturated C1-4-hydrocarbyl, hydroxy-C2-4-alkyl, a group Alk-R3, a group Alk-O-Alk-R3, a group Alk-NRc-Alk-R3, or a group (CH2)p—R4 where p is 0, 1, 2 or 3.
Compounds wherein E is E1 are subject to the provisos that when A is a bond, O, CO, X1C(X2), S, SO, SO2 or NRcSO2, then R2 is other than hydrogen; and that when A is a bond, then R2 is other than hydrogen or C1-4-alkyl.
In one particular group of compounds, R2 is a group (CH2)p—R4 where p is 0, 1, 2 or 3. Preferably p is 0, 1 or 2. In one embodiment, p is 0. In another embodiment, p is 1. In a further embodiment p is 2.
In another group of compounds, R2 is hydrogen, unsubstituted saturated C1-4-hydrocarbyl (in particular unsubstituted C1-14-alkyl), hydroxy-C2-4-alkyl, a group Alk-R3, a group Alk-O-Alk-R3, a group Alk-NRc-Alk-R3, or a group (CH2)p—R4 where p is 0, 1, 2 or 3.
Alk is a C1-6 straight or branched chain alkylene group which is optionally substituted by hydroxy or halogen and wherein one or two of the carbon atoms of the alkylene group may optionally be replaced by O, S, SO, SO2 or NRc.
More typically, when the alkylene chain Alk has an all carbon backbone, i.e. none of the carbon atoms have been replaced by O, S, SO, SO2 or NRc, the alkylene chain is typically 1, 2 or 3 carbon atoms in length, for example 2 or 3 carbon atoms in length.
R3 is hydroxy, C1-2-alkoxy, amino, mono- or di-C1-4-alkylamino, carboxy, C1-4-alkoxycarbonyl, carbamoyl, mono- or di-C1-4-alkylcarbamoyl, cyano, or a saturated monocyclic ring containing 1 or 2 heteroatom ring members selected from O, N and S, wherein the saturated monocyclic ring is optionally substituted by C1-4 alkyl; and wherein each C1-4 alkyl or C1-4 alkoxy group of the mono- or di-C1-4-alkylamino, C1-4-alkoxycarbonyl, or mono- or di-C1-4-alkylcarbamoyl group is optionally substituted by hydroxy, amino, mono- or di-C1-2-alkylamino or C1-2-alkoxy.
Particular examples of R3 are hydroxy, C1-2-alkoxy, amino, and mono- or di-C1-4-alkylamino.
R4 is an imidazole group or a saturated monocyclic ring containing 1 or 2 heteroatom ring members selected from O, N and S, wherein the saturated monocyclic ring is optionally substituted by C1-4 alkyl, hydroxy-C1-4-alkyl, C1-4 alkylsulphonyl, C(O)C1-4-saturated hydrocarbyl or a group R3; provided that when A is a bond, O, CO, X1C(X2), S, SO, SO2 or NRcSO2, then R2 is other than hydrogen; and that when A is a bond, then R2 is other than hydrogen or C1-4-alkyl.
In one embodiment R4 is a saturated monocyclic ring containing 1 or 2 heteroatom ring members selected from O, N and S, wherein the saturated monocyclic ring is optionally substituted by C1-4 alkyl, hydroxy-C1-4-alkyl, C1-4 alkylsulphonyl, C(O)C1-4-alkyl or a group R3.
Particular saturated monocylic rings are piperidine, piperazine, morpholine and pyrrolidine, each optionally substituted as defined herein.
In one embodiment R4 is a piperidine, piperazine, and morpholine optionally substituted by C1-4 alkyl, hydroxy-C1-4-alkyl, C1-4 alkylsulphonyl, C(O)C1-4-alkyl, amino, or mono- or di-C1-4-alkylamino. The moiety A-R2 can be located at either the meta- or para-positions on the aromatic ring containing V and W. Preferably, the moiety A-R2 is located at the para-position, i.e. E1 takes the form:
Particular examples of groups A-R2 are where A is a bond and R2 a group (CH2)p—R4 where p is 0 and R4 is as defined above.
More particular examples of groups A-R2 are the groups [sol], CH2[sol], C(O)[sol], OCH2CH2[sol] or OCH2CH2CH2[sol] where [sol] is selected from the following groups:
wherein X4 is NH or O, m is 0 or 1, n is 1, 2 or 3, R11 is hydrogen, COR12, C(O)OR12 or R12; R12 is C1-6 alkyl, C3-6 cycloalkyl, or CH2R15; and R15 is selected from hydrogen, C1-6 alkyl, C3-6 cycloalkyl, hydroxy-C1-6 alkyl, piperidine, N—C1-6 alkylpiperazine, piperazine, morpholine, COR13 or C(O)OR13; and R13 is C1-6 alkyl.
Further particular examples of the groups [sol] are selected from the following groups:
In one embodiment R11 and R12 are methyl. In another embodiment n is 2 or 3.
In a further embodiment, E1 takes the form:
wherein:
A′ is a bond, O or NH; and
R2a is a group Alk-R3, a group Alk-O-Alk-R3, a group Alk-NRc-Alk-R3, or a group (CH2)p—R4 where p is 0, 1, 2 or 3;
wherein Alk, R3 and R4 are as hereinbefore defined.
Within this embodiment, particular sub-groups of compounds are those wherein:
(i) A′ is a bond and R2a is selected from a group Alk-R3a, a group Alk-NH-Alk-R3a, and a group (CH2)p—R4; p is 0, 1, 2 or 3; R3a is hydroxy, amino, mono- or di-C1-4-alkylamino wherein each C1-4 alkyl group of the mono- or di-C1-4-alkylamino is optionally substituted by hydroxy, methoxy, ethoxy, amino, methylamino, ethylamino, dimethylamino or diethylamino; and R4 is as hereinbefore defined; and
(ii) A′ is O or NH and R2a is selected from a group Alk′-R3a, and a group (CH2)p′—R4a; p′ is 2 or 3; Alk′ is a straight chain or branched C2-6 alkylene group (more typically a C2-4 alkylene group); R3a is hydroxy, amino, mono- or di-C1-4-alkylamino wherein each C1-4 alkyl group of the mono- or di-C1-4-alkylamino is optionally substituted by hydroxy, methoxy, ethoxy, amino, methylamino, ethylamino, dimethylamino or diethylamino; and R4a is a pyrrolidine, piperidine, piperazine or morpholine ring, each of which pyrroline, piperidine, piperazine and morpholine rings are optionally substituted by C1-4 alkyl, hydroxy-C1-4-alkyl, C(O)C1-4-alkyl, C(O)OC1-4-alkyl, amino, or mono- or di-C1-4-alkylamino.
Within sub-group (i) above, one subset of preferred compounds consists of compounds wherein R2a is selected from a group Alk-R3a, a group Alk-NH-Alk-R3a, and a group (CH2)p″—R4a; p″ is 0 or 1; R3a is hydroxy, amino, mono- or di-C1-4-alkylamino wherein each C1-4 alkyl group of the mono- or di-C1-4-alkylamino is optionally substituted by hydroxy, methoxy, ethoxy, amino, methylamino, ethylamino, dimethylamino or diethylamino; and R4a is a pyrrolidine, piperidine, piperazine or morpholine ring, each of which pyrroline, piperidine, piperazine and morpholine rings are optionally substituted by C1-4 alkyl, hydroxy-C1-4-alkyl, C(O)C1-4-alkyl, C(O)OC1-4-alkyl, amino, or mono- or di-C1-4-alkylamino.
Within this subset, more preferred compounds include compounds wherein R2a is selected from a group Alk-R3aa, a group Alk-NH-Alk-R3aa, and a group (CH2)p″—R4aa; p″ is 0 or 1; R3aa is hydroxy, amino, mono- or di-C1-2-alkylamino wherein each C1-2 alkyl group of the mono- or di-C1-2-alkylamino is optionally substituted by hydroxy; and R4aa is a pyrrolidine, piperidine, piperazine or morpholine ring, each of which pyrroline, piperidine, piperazine and morpholine rings are optionally substituted by C1-4 alkyl, hydroxy-C2-3-alkyl, C(O)C1-2-alkyl, C(O)OC1-4-alkyl, amino, or mono- or di-C1-2-alkylamino.
Within sub-group (ii) above, one subset of preferred compounds consists of compounds wherein A′ is O or NH and R2a is a group Alk′-R3a. Within this sub-set, preferred groups R3a are hydroxy, amino, methylamino and dimethylamino and preferred groups Alk′ are ethylene and propylene.
Particular examples of the group E1 are set out in Table 2 below. The asterisk indicates the point of attachment to the NH—CO-pyrazole moiety.
In E2, A and R2 and the examples and sub-groups thereof are as defined in respect of E1.
The integer q is 0 or 1. In one embodiment, q is 1. In another embodiment q is 0.
In the six-membered ring containing the moiety T, T can be N or CH. In one embodiment T is N. In another embodiment, T is CH.
The ring U is a 5 or 6 membered aromatic ring containing 0, 1 or 2 nitrogen ring members, and more preferably 1 nitrogen ring member. The ring U may thus be a pyridine, pyrazine, pyridazine, pyrimidine, pyrrole, imidazole or pyrazole group.
In one particular set of compounds, the ring U and the attached ring containing T together form an indole or azaindole group.
In group E2, B is a bond or a benzyl or pyridylmethyl group wherein the moiety A-R2 is attached to the aromatic ring of the benzyl or pyridylmethyl group. When the ring U and the attached ring containing T together form an indole or azaindole group, the moiety B is typically attached to the nitrogen atom in the 5-membered ring of the indole or azaindole.
In formula E2, q is 0 or 1, i.e. the benzyl or pyridylmethyl group is either unsubstituted or monosubstituted with a group A-R2. Particular sub-groups, examples and preferences for the group A-R2 may be as defined above in respect of E1.
In group E3, Z is C or N;
when Z is N, R5 is absent and when Z is C, R5 is hydrogen, C1-4 alkyl, halogen, or a group A-R2 as defined in respect of group E1;
R6 is hydrogen, C1-4 alkyl, halogen, or a group A-R2 as defined in respect of group E1 provided that only one of R5 and R6 can be a group A-R2;
or R5 and R6 together with the carbon atoms to which they are attached form a six membered non-aromatic heterocyclic ring containing a heteroatom selected from O and N, the heterocyclic ring being optionally substituted by C1-4 alkyl.
In one sub-set of compounds, Z is C, R5 is hydrogen and R6 is a group A-R2.
In another subset of compounds, Z is C, R6 is hydrogen and R5 is a group A-R2.
In a further subset of compounds, Z is N, R5 is absent and R6 is a group A-R2.
In another subset of compounds, Z is C, R5 is H and R6 is H.
In each of the foregoing three subsets of compounds, particular sub-groups, examples and preferences for the group A-R2 may be as defined above in respect of E1. In one preferred embodiment, R2 is a group (CH2)p—R4 where p is 0, 1, 2 or 3. Preferably p is 0, 1 or 2. In one embodiment, p is 0. In another embodiment, p is 1. In a further embodiment p is 2. Particular examples of groups R4 are piperidine and morpholine groups.
In a further subset of compounds, R5 and R6 together with the carbon atoms to which they are attached form a six membered non-aromatic heterocyclic ring containing a heteroatom selected from O and N, the heterocyclic ring being optionally substituted by C1-4 alkyl.
The six membered non-aromatic heterocyclic ring preferably contains a nitrogen ring member and one example of such a ring is a piperidine ring.
An example of a group E3 is the ring system G1 below:
where “Alkyl” is a C1-4 alkyl group such as a methyl group.
In E4, R7 is a C1-4 alkyl group and examples of such groups are methyl, ethyl, n-propyl, isopropyl and tert-butyl groups, with methyl being a particular example.
In a further embodiment, R7 is an unsubstituted C1-4 alkyl group and examples of such groups are unsubstituted methyl, unsubstituted ethyl, unsubstituted n-propyl, unsubstituted isopropyl and unsubstituted tert-butyl groups, with unsubstituted methyl being a particular example.
One sub-group of preferred compounds may be represented by the formula (II):
in which R1, V, W, A, R2 and n and their preferences and examples are as set out above.
One particular group of compounds within formula (II) may be represented by formula (III):
In formula (III), the moiety A-R2 may be attached to any one of the 4-, 5- or 6-positions of the pyridine ring and hydrogen atoms (not shown) are attached to the other two positions.
Within formula (III), particular compounds are those of the formula (IV):
wherein Y is N or CH or a carbon atom to which is attached one of the groups R3, R4 and R5; R3, R4 and R5 are the same or different and each is hydrogen, halogen, C1-4 alkyl, C1-4 alkoxy, C3-4 cycloalkyl or cyano, wherein the C1-4 alkyl and C1-4 alkoxy groups are each optionally further substituted by C1-2 alkoxy or one or more halogen atoms.
In one group of compounds, Y is a carbon atom which has attached thereof either a hydrogen atom or one or R3, R4 and R5. Preferred compounds are compounds in which Y is CH, R4 is hydrogen and R3 and R5 are attached to the 2- and 6-positions of the phenyl ring. Particularly preferred compounds are those in which the phenyl ring is 2,6-difluorophenyl or 2,6-dichlorophenyl.
In one sub-set of preferred compounds within formula (IV), the group A-R2 is an optionally substituted (e.g. unsubstituted) piperazinyl, optionally substituted piperidinyl (e.g. 4-dimethylaminopiperidinyl), or morpholinyl group. Particular examples of the group A-R2 are the groups illustrated in Table 2.
Another sub-group of compounds within formula (I) can be represented by formula (V):
Within formula (V), one particular sub-group of compounds can be represented by the formula (VI):
wherein T, B, A, and R2 are as defined herein, Y is N or CH or a carbon atom to which is attached one of the groups R3, R4 and R5; R3, R4 and R5 are the same or different and each is hydrogen, halogen, C1-4 alkyl, C1-4 alkoxy, C3-4 cycloalkyl or cyano, wherein the C1-4 alkyl and C1-4 alkoxy groups are each optionally further substituted by C1-2 alkoxy or one or more halogen atoms.
Preferably the moiety B-A-R2 is a benzyl or pyridylmethyl group bearing A-R2 at the para position thereof. Preferences for and examples of groups A-R2 are as set out above in relation to E1.
The various functional groups and substituents making up the compounds of the formula (I) are typically chosen such that the molecular weight of the compound of the formula (I) does not exceed 1000. More usually, the molecular weight of the compound will be less than 750, for example less than 700, or less than 650, or less than 600, or less than 550. More preferably, the molecular weight is less than 525 and, for example, is 500 or less.
Particular compounds of the invention are as illustrated in the examples below.
A reference to a compound of the formulae (I) and sub-groups thereof also includes ionic forms, salts, solvates, isomers, tautomers, N-oxides, esters, prodrugs, isotopes and protected forms thereof, for example, as discussed below; preferably, the salts or tautomers or isomers or N-oxides or solvates thereof; and more preferably, the salts or tautomers or N-oxides or solvates thereof.
Many compounds of the formula (I) can exist in the form of salts, for example acid addition salts or, in certain cases salts of organic and inorganic bases such as carboxylate, sulphonate and phosphate salts. All such salts are within the scope of this invention, and references to compounds of the formula (I) include the salt forms of the compounds.
The salts of the present invention can be synthesized from the parent compound that contains a basic or acidic moiety by conventional chemical methods such as methods described in Pharmaceutical Salts: Properties, Selection, and Use, P. Heinrich Stahl (Editor), Camille G. Wermuth (Editor), ISBN: 3-90639-026-8, Hardcover, 388 pages, August 2002. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media such as ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are used.
Acid addition salts may be formed with a wide variety of acids, both inorganic and organic. Examples of acid addition salts include salts formed with an acid selected from the group consisting of acetic, 2,2-dichloroacetic, adipic, alginic, ascorbic (e.g. L-ascorbic), L-aspartic, benzenesulphonic, benzoic, 4-acetamidobenzoic, butanoic, (+) camphoric, camphor-sulphonic, (+)-(1S)-camphor-10-sulphonic, capric, caproic, caprylic, cinnamic, citric, cyclamic, dodecylsulphuric, ethane-1,2-disulphonic, ethanesulphonic, 2-hydroxyethanesulphonic, formic, fumaric, galactaric, gentisic, glucoheptonic, D-gluconic, glucuronic (e.g. D-glucuronic), glutamic (e.g. L-glutamic), α-oxoglutaric, glycolic, hippuric, hydrobromic, hydrochloric, hydriodic, isethionic, (+)-L-lactic, (±)-DL-lactic, lactobionic, maleic, malic, (−)-L-malic, malonic, (±)-DL-mandelic, methanesulphonic, naphthalene-2-sulphonic, naphthalene-1,5-disulphonic, 1-hydroxy-2-naphthoic, nicotinic, nitric, oleic, orotic, oxalic, palmitic, pamoic, phosphoric, propionic, L-pyroglutamic, salicylic, 4-amino-salicylic, sebacic, stearic, succinic, sulphuric, tannic, (+)-L-tartaric, thiocyanic, p-toluenesulphonic, undecylenic and valeric acids, as well as acylated amino acids and cation exchange resins.
One particular group of salts consists of salts formed from acetic, hydrochloric, hydriodic, phosphoric, nitric, sulphuric, citric, lactic, succinic, maleic, malic, isethionic, fumaric, benzenesulphonic, toluenesulphonic, methanesulphonic (mesylate), ethanesulphonic, naphthalenesulphonic, valeric, acetic, propanoic, butanoic, malonic, glucuronic and lactobionic acids.
One sub-group of salts consists of salts formed from hydrochloric, acetic, methanesulphonic, adipic, L-aspartic and DL-lactic acids.
Another sub-group of salts consists of the acetate, mesylate, ethanesulphonate, DL-lactate, adipate, D-glucuronate, D-gluconate and hydrochloride salts.
Preferred salts for use in the preparation of liquid (e.g. aqueous) compositions of the compounds of formulae (I) and sub-groups and examples thereof as described herein are salts having a solubility in a given liquid carrier (e.g. water) of greater than 10 mg/ml of the liquid carrier (e.g. water), more typically greater than 15 mg/ml and preferably greater than 20 mg/ml.
In one embodiment of the invention, there is provided a pharmaceutical composition comprising an aqueous solution containing a compound of the formula (I) and sub-groups and examples thereof as described herein in the form of a salt in a concentration of greater than 10 mg/ml, typically greater than 15 mg/ml and preferably greater than 20 mg/ml.
If the compound is anionic, or has a functional group which may be anionic (e.g., —COOH may be —COO−), then a salt may be formed with a suitable cation. Examples of suitable inorganic cations include, but are not limited to, alkali metal ions such as Na+ and K+, alkaline earth metal cations such as Ca2+ and Mg2+, and other cations such as Al3+. Examples of suitable organic cations include, but are not limited to, ammonium ion (i.e., NH4+) and substituted ammonium ions (e.g., NH3R+, NH2R2+, NHR3+, NR4+). Examples of some suitable substituted ammonium ions are those derived from: ethylamine, diethylamine, dicyclohexylamine, triethylamine, butylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine, benzylamine, phenylbenzylamine, choline, meglumine, and tromethamine, as well as amino acids, such as lysine and arginine. An example of a common quaternary ammonium ion is N(CH3)4+.
Where the compounds of the formula (I) contain an amine function, these may form quaternary ammonium salts, for example by reaction with an alkylating agent according to methods well known to the skilled person. Such quaternary ammonium compounds are within the scope of formula (I).
The salt forms of the compounds of the invention are typically pharmaceutically acceptable salts, and examples of pharmaceutically acceptable salts are discussed in Berge et al., 1977, “Pharmaceutically Acceptable Salts,” J. Pharm. Sci., Vol. 66, pp. 1-19. However, salts that are not pharmaceutically acceptable may also be prepared as intermediate forms which may then be converted into pharmaceutically acceptable salts. Such non-pharmaceutically acceptable salts forms, which may be useful, for example, in the purification or separation of the compounds of the invention, also form part of the invention.
Compounds of the formula (I) containing an amine function may also form N-oxides. A reference herein to a compound of the formula (I) that contains an amine function also includes the N-oxide.
Where a compound contains several amine functions, one or more than one nitrogen atom may be oxidised to form an N-oxide. Particular examples of N-oxides are the N-oxides of a tertiary amine or a nitrogen atom of a nitrogen-containing heterocycle.
N-Oxides can be formed by treatment of the corresponding amine with an oxidizing agent such as hydrogen peroxide or a per-acid (e.g. a peroxycarboxylic acid), see for example Advanced Organic Chemistry, by Jerry March, 4th Edition, Wiley Interscience, pages. More particularly, N-oxides can be made by the procedure of L. W. Deady (Syn. Comm. 1977, 7, 509-514) in which the amine compound is reacted with m-chloroperoxybenzoic acid (MCPBA), for example, in an inert solvent such as dichloromethane.
Compounds of the formula (I) may exist in a number of different geometric isomeric, and tautomeric forms and references to compounds of the formula (I) include all such forms. For the avoidance of doubt, where a compound can exist in one of several geometric isomeric or tautomeric forms and only one is specifically described or shown, all others are nevertheless embraced by formula (I).
For example, in compounds of the formula (I) the pyrazole ring can exist in the two tautomeric forms A and B below. For simplicity, the general formula (I) illustrates form A but the formula is to be taken as embracing both tautomeric forms.
Other examples of tautomeric forms include, for example, keto-, enol-, and enolate-forms, as in, for example, the following tautomeric pairs: keto/enol (illustrated below), imine/enamine, amide/imino alcohol, amidine/amidine, nitroso/oxime, thioketone/enethiol, and nitro/aci-nitro.
Where compounds of the formula (I) contain one or more chiral centres, and can exist in the form of two or more optical isomers, references to compounds of the formula (I) include all optical isomeric forms thereof (e.g. enantiomers, epimers and diastereoisomers), either as individual optical isomers, or mixtures (e.g. racemic mixtures) or two or more optical isomers, unless the context requires otherwise.
The optical isomers may be characterised and identified by their optical activity (i.e. as + and − isomers, or d and l isomers) or they may be characterised in terms of their absolute stereochemistry using the “R and S” nomenclature developed by Cahn, Ingold and Prelog, see Advanced Organic Chemistry by Jerry March, 4th Edition, John Wiley & Sons, New York, 1992, pages 109-114, and see also Cahn, Ingold & Prelog, Angew. Chem. Int. Ed. Engl., 1966, 5, 385-415.
Optical isomers can be separated by a number of techniques including chiral chromatography (chromatography on a chiral support) and such techniques are well known to the person skilled in the art.
As an alternative to chiral chromatography, optical isomers can be separated by forming diastereoisomeric salts with chiral acids such as (+)-tartaric acid, (−)-pyroglutamic acid, (−)-di-toluoyl-L-tartaric acid, (+)-mandelic acid, (−)-malic acid, and (−)-camphorsulphonic, separating the diastereoisomers by preferential crystallisation, and then dissociating the salts to give the individual enantiomer of the free base.
Where compounds of the formula (I) exist as two or more optical isomeric forms, one enantiomer in a pair of enantiomers may exhibit advantages over the other enantiomer, for example, in terms of biological activity. Thus, in certain circumstances, it may be desirable to use as a therapeutic agent only one of a pair of enantiomers, or only one of a plurality of diastereoisomers. Accordingly, the invention provides compositions containing a compound of the formula (I) having one or more chiral centres, wherein at least 55% (e.g. at least 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95%) of the compound of the formula (I) is present as a single optical isomer (e.g. enantiomer or diastereoisomer). In one general embodiment, 99% or more (e.g. substantially all) of the total amount of the compound of the formula (I) may be present as a single optical isomer (e.g. enantiomer or diastereoisomer).
The compounds of the invention include compounds with one or more isotopic substitutions, and a reference to a particular element includes within its scope all isotopes of the element. For example, a reference to hydrogen includes within its scope 1H, 2H (D), and 3H (T). Similarly, references to carbon and oxygen include within their scope respectively 12C, 13C and 14C and 16O and 18O.
The isotopes may be radioactive or non-radioactive. In one embodiment of the invention, the compounds contain no radioactive isotopes. Such compounds are preferred for therapeutic use. In another embodiment, however, the compound may contain one or more radioisotopes. Compounds containing such radioisotopes may be useful in a diagnostic context.
Esters such as carboxylic acid esters and acyloxy esters of the compounds of formula (I) bearing a carboxylic acid group or a hydroxyl group are also embraced by Formula (I). Examples of esters are compounds containing the group —C(═O)OR, wherein R is an ester substituent, for example, a C1-7 alkyl group, a C3-20 heterocyclyl group, or a C5-20 aryl group, preferably a C1-7 alkyl group. Particular examples of ester groups include, but are not limited to, —C(═O)OCH3, —C(═O)OCH2CH3, —C(═O)OC(CH3)3, and —C(—O)OPh. Examples of acyloxy (reverse ester) groups are represented by —OC(═O)R, wherein R is an acyloxy substituent, for example, a C1-7 alkyl group, a C3-20 heterocyclyl group, or a C5-20 aryl group, preferably a C1-7 alkyl group. Particular examples of acyloxy groups include, but are not limited to, —OC(—O)CH3 (acetoxy), —OC(═O)CH2CH3, —OC(═O)C(CH3)3, —OC(—O)Ph, and —OC(═O)CH2Ph.
Also encompassed by formula (I) are any polymorphic forms of the compounds, solvates (e.g. hydrates), complexes (e.g. inclusion complexes or clathrates with compounds such as cyclodextrins, or complexes with metals) of the compounds, and pro-drugs of the compounds. By “prodrugs” is meant for example any compound that is converted in vivo into a biologically active compound of the formula (I).
For example, some prodrugs are esters of the active compound (e.g., a physiologically acceptable metabolically labile ester). During metabolism, the ester group (—C(═O)OR) is cleaved to yield the active drug. Such esters may be formed by esterification, for example, of any of the carboxylic acid groups (—C(═O)OH) in the parent compound, with, where appropriate, prior protection of any other reactive groups present in the parent compound, followed by deprotection if required.
Examples of such metabolically labile esters include those of the formula —C(═O)OR wherein R is:
C1-7alkyl
(e.g., -Me, -Et, -nPr, -iPr, -nBu, -sBu, -iBu, -tBu); C1-7aminoalkyl
(e.g., aminoethyl; 2-(N,N-diethylamino)ethyl; 2-(4-morpholino)ethyl); and
acyloxy-C1-7alkyl
(e.g., acyloxymethyl;
acyloxyethyl;
pivaloyloxymethyl;
acetoxymethyl;
1-acetoxyethyl;
1-(1-methoxy-1-methyl)ethyl-carbonxyloxyethyl;
1-(benzoyloxy)ethyl; isopropoxy-carbonyloxymethyl;
1-isopropoxy-carbonyloxyethyl; cyclohexyl-carbonyloxymethyl;
1-cyclohexyl-carbonyloxyethyl;
cyclohexyloxy-carbonyloxymethyl;
1-cyclohexyloxy-carbonyloxyethyl;
(4-tetrahydropyranyloxy)carbonyloxymethyl;
1-(4-tetrahydropyranyloxy)carbonyloxyethyl;
(4-tetrahydropyranyl)carbonyloxymethyl; and
1-(4-tetrahydropyranyl)carbonyloxyethyl).
Also, some prodrugs are activated enzymatically to yield the active compound, or a compound which, upon further chemical reaction, yields the active compound (for example, as in ADEPT, GDEPT, LIDEPT, etc.). For example, the prodrug may be a sugar derivative or other glycoside conjugate, or may be an amino acid ester derivative.
The compounds of the formulae (I) and sub-groups thereof are inhibitors of cyclin dependent kinases. For example, compounds of the invention are inhibitors of cyclin dependent kinases, and in particular cyclin dependent kinases selected from CDK1, CDK2, CDK3, CDK4, CDK5, CDK6 and CDK9, and more particularly selected from CDK1, CDK2, CDK3, CDK4, CDK5 and CDK9.
Preferred compounds are compounds that inhibit one or more CDK kinases selected from CDK1, CDK2, CDK4 and CDK9, for example CDK1 and/or CDK2.
Compounds of the invention also have activity against glycogen synthase kinase-3 (GSK-3).
As a consequence of their activity in modulating or inhibiting CDK and glycogen synthase kinase, they are expected to be useful in providing a means of arresting, or recovering control of, the cell cycle in abnormally dividing cells. It is therefore anticipated that the compounds will prove useful in treating or preventing proliferative disorders such as cancers. It is also envisaged that the compounds of the invention will be useful in treating conditions such as viral infections, type II or non-insulin dependent diabetes mellitus, autoimmune diseases, head trauma, stroke, epilepsy, neurodegenerative diseases such as Alzheimer's, motor neurone disease, progressive supranuclear palsy, corticobasal degeneration and Pick's disease for example autoimmune diseases and neurodegenerative diseases.
One sub-group of disease states and conditions where it is envisaged that the compounds of the invention will be useful consists of viral infections, autoimmune diseases and neurodegenerative diseases.
CDKs play a role in the regulation of the cell cycle, apoptosis, transcription, differentiation and CNS function. Therefore, CDK inhibitors could be useful in the treatment of diseases in which there is a disorder of proliferation, apoptosis or differentiation such as cancer. In particular RB+ve tumours may be particularly sensitive to CDK inhibitors. RB−ve tumours may also be sensitive to CDK inhibitors.
Examples of cancers which may be inhibited include, but are not limited to, a carcinoma, for example a carcinoma of the bladder, breast, colon (e.g. colorectal carcinomas such as colon adenocarcinoma and colon adenoma), kidney, epidermis, liver, lung, for example adenocarcinoma, small cell lung cancer and non-small cell lung carcinomas, oesophagus, gall bladder, ovary, pancreas e.g. exocrine pancreatic carcinoma, stomach, cervix, thyroid, prostate, or skin, for example squamous cell carcinoma; a hematopoietic tumour of lymphoid lineage, for example leukemia, acute lymphocytic leukemia, chronic lymphocytic leukaemia, B-cell lymphoma (such as diffuse large B cell lymphoma), T-cell lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hairy cell lymphoma, or Burkett's lymphoma; a hematopoietic tumour of myeloid lineage, for example acute and chronic myelogenous leukemias, myelodysplastic syndrome, or promyelocytic leukemia; thyroid follicular cancer; a tumour of mesenchymal origin, for example fibrosarcoma or habdomyosarcoma; a tumour of the central or peripheral nervous system, for example astrocytoma, neuroblastoma, glioma or schwannoma; melanoma; seminoma; teratocarcinoma; osteosarcoma; xeroderma pigmentosum; keratoctanthoma; thyroid follicular cancer; or Kaposi's sarcoma.
The cancers may be cancers which are sensitive to inhibition of any one or more cyclin dependent kinases selected from CDK1, CDK2, CDK3, CDK4, CDK5 and CDK6, for example, one or more CDK kinases selected from CDK1, CDK2, CDK4 and CDK5, e.g. CDK1 and/or CDK2.
Whether or not a particular cancer is one which is sensitive to inhibition by a cyclin dependent kinase inhibitor may be determined by means of a cell growth assay as set out in the examples below or by a method as set out in the section headed “Methods of Diagnosis”.
CDKs are also known to play a role in apoptosis, proliferation, differentiation and transcription and therefore CDK inhibitors could also be useful in the treatment of the following diseases other than cancer; viral infections, for example herpes virus, pox virus, Epstein-Barr virus, Sindbis virus, adenovirus, HIV, HPV, HCV and HCMV; prevention of AIDS development in HIV-infected individuals; chronic inflammatory diseases, for example systemic lupus erythematosus, autoimmune mediated glomerulonephritis, rheumatoid arthritis, psoriasis, inflammatory bowel disease, and autoimmune diabetes mellitus; cardiovascular diseases for example cardiac hypertrophy, restenosis, atherosclerosis; neurodegenerative disorders, for example Alzheimer's disease, AIDS-related dementia, Parkinson's disease, amyotropic lateral sclerosis, retinitis pigmentosa, spinal muscular atropy and cerebellar degeneration; glomerulonephritis; myelodysplastic syndromes, ischemic injury associated myocardial infarctions, stroke and reperfusion injury, arrhythmia, atherosclerosis, toxin-induced or alcohol related liver diseases, haematological diseases, for example, chronic anemia and aplastic anemia; degenerative diseases of the musculoskeletal system, for example, osteoporosis and arthritis, aspirin-sensitive rhinosinusitis, cystic fibrosis, multiple sclerosis, kidney diseases and cancer pain.
It has also been discovered that some cyclin-dependent kinase inhibitors can be used in combination with other anticancer agents. For example, the cyclin-dependent kinase inhibitor flavopiridol has been used with other anticancer agents in combination therapy.
Thus, in the pharmaceutical compositions, uses or methods of this invention for treating a disease or condition comprising abnormal cell growth, the disease or condition comprising abnormal cell growth in one embodiment is a cancer.
One group of cancers includes human breast cancers (e.g. primary breast tumours, node-negative breast cancer, invasive duct adenocarcinomas of the breast, non-endometrioid breast cancers); and mantle cell lymphomas. In addition, other cancers are colorectal and endometrial cancers.
Another sub-set of cancers includes hematopoietic tumours of lymphoid lineage, for example leukemia, chronic lymphocytic leukaemia, mantle cell lymphoma and B-cell lymphoma (such as diffuse large B cell lymphoma).
One particular cancer is chronic lymphocytic leukaemia.
Another particular cancer is mantle cell lymphoma.
Another particular cancer is diffuse large B cell lymphoma
Another sub-set of cancers includes breast cancer, ovarian cancer, colon cancer, prostate cancer, oesophageal cancer, squamous cancer and non-small cell lung carcinomas.
Another sub-set of cancers includes breast cancer, pancreatic cancer, colorectal cancer, lung cancer, and melanoma.
A further sub-set of cancers, namely cancers wherein compounds having CDK4 inhibitory activity may be of particular therapeutic benefit, comprises retinoblastomas, small cell lung carcinomas, non-small lung carcinomas, sarcomas, gliomas, pancreatic cancers, head, neck and breast cancers and mantle cell lymphomas.
Another sub-set of cancers wherein compounds having CDK4 inhibitory activity may be of particular therapeutic benefit comprises small cell lung cancer, non-small cell lung cancer, pancreatic cancer, breast cancer, glioblastoma multiforme, T cell ALL and mantle cell lymphoma.
A further subset of cancers which the compounds of the invention may be useful in the treatment of includes sarcomas, leukemias, glioma, familial melanoma and melanoma.
The activity of the compounds of the invention as inhibitors of cyclin dependent kinases and glycogen synthase kinase-3 can be measured using the assays set forth in the examples below and the level of activity exhibited by a given compound can be defined in terms of the IC50 value. Preferred compounds of the present invention are compounds having an IC50 value of less than 1 micromolar, more preferably less than 0.1 micromolar.
Compounds of the formulae (I) and sub-groups thereof as defined herein have advantages over prior art compounds. In particular preferred compounds of the invention are selective for CDK4 or CDK6 over CDK2. Preferred compounds have a 10-30 fold selectivity for CDK4 over CDK2.
Considerable evidence implicates misregulation of the D-Cyclin-CDK4/6-INK4-Rb pathway in diseases of uncontrolled cell growth. Although Rb loss occurs in some human tumours, the majority of cancers retain wild-type Rb. Up-regulation of this pathway including overexpression of cyclin D1, mutation of CDK4, mutation or depletion of pRb or deletion of p16-INK4, is associated with more than 90% of all human tumours.
In addition, activating events upstream of the CDK4/6 kinase e.g. Ras mutations or Raf mutations or hyperactive or over-expressed receptors such as Her-2/Neu in breast cancer can also lead to a cancer cell growth advantage.
Analysis of cancer genetics has highlighted a number of specific aberrations in the D-Cyclin-CDK4/6-INK4-Rb pathway leading to uncontrolled cell proliferation and tumour formation. These include; p16 tumour suppressor protein mutations e.g. in melanomas; p16 tumour suppressor protein deletion e.g. in a range of lung cancers; p16 methylation e.g. epigenetic modification of p16 tumour suppressor protein leading to lung cancers, ras mutant cell lines lung cancers, pancreatic cancers and colorectal cancers; cyclin D over-expression e.g. breast cancers, lung cancers and multiple myeloma. The advantage of a selective CDK4 inhibitor would be to target these specific cancers caused by aberrations in the D-Cyclin-CDK4/6-INK4-Rb pathway.
Further advantages of the compounds of the invention include reduced P450 affinity, and reduced toxicity in particular due to its reduced effect on healthy cells.
In this section, as in all other sections of this application unless the context indicates otherwise, references to Formula (I) also include all sub-groups and examples thereof as defined herein.
Compounds of the formula (I) can be prepared in accordance with synthetic methods well known to the skilled person, and by methods set out below and as described in our application PCT/GB2004/003179, the contents of which are incorporated herein by reference.
For example, compounds of the formula (I) can be prepared by the sequence of reactions shown in Scheme 1.
The starting material for the synthetic route shown in Scheme 1 is the 4-nitro-pyrazole-3-carboxylic acid (X) which can either be obtained commercially or can be prepared by nitration of the corresponding 4-unsubstituted pyrazole carboxy compound.
The nitro-pyrazole carboxylic acid (X) is converted to the corresponding ester (XI), for example the methyl or ethyl ester (of which the ethyl ester is shown), by reaction with the appropriate alcohol such as ethanol in the presence of an acid catalyst or thionyl chloride. The reaction may be carried out at ambient temperature using the esterifying alcohol as the solvent.
The nitro-ester (XI) can be reduced to the corresponding amine (XII) by standard methods for converting a nitro group to an amino group. Thus, for example, the nitro group can be reduced to the amine by hydrogenation over a palladium on charcoal catalyst. The hydrogenation reaction can be carried out in a solvent such as ethanol at ambient temperature.
The resulting amine (XII) can be converted to the amide (XIII) by reaction with an acid chloride of the formula R1COCl in the presence of a non-interfering base such as triethylamine. The reaction may be carried out at around room temperature in a polar solvent such as dioxan. The acid chloride can be prepared by treatment of the carboxylic acid R1CO2H with thionyl chloride, or by reaction with oxalyl chloride in the presence of a catalytic amount of dimethyl formamide, or by reaction of a potassium salt of the acid with oxalyl chloride.
As an alternative to using the acid chloride method described above, the amine (XII) can be converted to the amide (XIII) by reaction with the carboxylic acid R1CO2H in the presence of amide coupling reagents of the type commonly used in the formation of peptide linkages. Examples of such reagents include 1,3-dicyclohexylcarbodiimide (DCC) (Sheehan et al, J. Amer. Chem Soc. 1955, 77, 1067), 1-ethyl-3-(3′-dimethylaminopropyl)-carbodiimide (referred to herein either as EDC or EDAC but also known in the art as EDCI and WSCDI) (Sheehan et al, J. Org. Chem., 1961, 26, 2525), uronium-based coupling agents such as O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU) and phosphonium-based coupling agents such as 1-benzo-triazolyloxytris-(pyrrolidino)phosphonium hexafluorophosphate (PyBOP) (Castro et al, Tetrahedron Letters, 1990, 31, 205). Carbodiimide-based coupling agents are advantageously used in combination with 1-hydroxy-7-azabenzotriazole (HOAt) (L. A. Carpino, J. Amer. Chem. Soc., 1993, 115, 4397) or 1-hydroxybenzotriazole (HOBt) (Konig et al, Chem. Ber., 103, 708, 2024-2034). Preferred coupling reagents include EDC (EDAC) and DCC in combination with HOAt or HOBt.
The coupling reaction is typically carried out in a non-aqueous, non-protic solvent such as acetonitrile, dioxan, dimethylsulphoxide, dichloromethane, dimethylformamide or N-methylpyrrolidine, or in an aqueous solvent optionally together with one or more miscible co-solvents. The reaction can be carried out at room temperature or, where the reactants are less reactive (for example in the case of electron-poor anilines bearing electron withdrawing groups such as sulphonamide groups) at an appropriately elevated temperature. The reaction may be carried out in the presence of a non-interfering base, for example a tertiary amine such as triethylamine or N,N-diisopropylethylamine.
The amide (XIII) is subsequently hydrolysed to the carboxylic acid (XIV) by treatment with an aqueous alkali metal hydroxide such sodium hydroxide. The saponification reaction may be carried out using an organic co-solvent such as an alcohol (e.g. methanol) and the reaction mixture is typically heated to a non-extreme temperature, for example up to about 50-60° C.
The carboxylic acid (XIV) can then be converted to a compound of the formula (I) by reaction with an amine E-NH2 using the amide forming conditions described above. Thus, for example, the amide coupling reaction may be carried out in the presence of EDC and HOBt in a polar solvent such as DMF.
An alternative general route to compounds of the formula (I) is shown in Scheme 2.
In Scheme 2, the nitro-pyrazole-carboxylic acid (X), or an activated derivative thereof such as an acid chloride, is reacted with amine E-NH2 using the amide forming conditions described above to give the nitro-pyrazole-amide (XV) which is then reduced to the corresponding amino compound (XVI) using a standard method of reducing nitro groups, for example the method involving hydrogenation over a Pd/C catalyst as described above.
The amine (XVI) is then coupled with a carboxylic acid of the formula R1—CO2H or an activated derivative thereof such as an acid chloride or anhydride under the amide-forming conditions described above in relation to Scheme 1. Thus, for example, as an alternative to using an acid chloride, the coupling reaction can be carried out in the presence of EDAC (EDC) and HOBt in a solvent such as DMF to give a compound of the formula (I).
Intermediate compounds of the formula E-NH2 can be prepared by methods well known to those skilled in the art or methods as described in the examples herein and methods analogous thereto.
For example, compounds of the formula E-NH2 in which E is a group E1, A is a bond and R2 is a nitrogen-containing saturated heterocyclic group located at the para position on the ring can be prepared by the sequence of reactions shown in Scheme 3.
In Scheme 3, a para-nitro compound (XVII), in which LG is a leaving group or atom such as fluorine or bromine, is reacted with cyclic amine (XVIII) to give the nitro-compound (XIX). The reaction is typically carried out with prolonged heating, for example at reflux temperature, in a polar solvent such as acetonitrile, I the presence of a base such as Hünig's base. The leaving group LG could also be displaced with an appropriately protected amine, diamine, amino-alcohol or alcohol e.g. dimethyl-propane-1,3-diamine or 2-dimethylamino-ethanol.
The nitro-compound (XIX) can be reduced to the corresponding amine (XX) by hydrogenation over palladium on charcoal.
Compounds of the formula E-NH2 in which E is a group E1, the ring is a pyridine ring, A is a bond and R2 is a group Alk-R3 where Alk is ethylene and R3 is a monoalkylamino or dialkylamino group can be prepared by the sequence of reactions shown in Scheme 4.
Compounds of the formula E-NH2 in which E is a group E1, the ring is a pyridine ring, A is a bond and R2 is a 4-piperidinyl group can be prepared by the sequence of reactions shown in Scheme 5.
In Scheme 5, the 2,5-dibromopyridine is subjected to regiospecific metallation following the method of Trecourt et al (Tetrahedron, 2000, 56, 1349-1360) using isopropylmagnesium chloride in THF to give the Grignard reagent followed by reaction with the boc-protected piperidone to form a piperidinyl tertiary alcohol. Buchwald type amination of the piperidinyl tertiary alcohol using benzophenone imine in toluene in the presence of Pd2(dba)3, sodium tertiary butoxide and BINAP gives an imine. The imine group is cleaved by reaction with aqueous hydroxylamine in methanol to yield the corresponding amine. The hydroxy group of the tertiary alcohol is then removed by hydrogenation using palladium on charcoal in methanol to give an amino pyridine which can be coupled with a carboxylic acid of the formula (XIV) using the amide coupling conditions described above to provide a compound of the formula (I).
Compounds of the formula (I) where E is E1, A is a bond and R2 is a group CH2—OH or CH2-amine where the amine is a cyclic amine such as a piperidine, piperazine or morpholine group or an acyclic amine such as methylamine, dimethylamine or hydroxypropylamine can be prepared by the sequence of reactions shown in Scheme 6.
In Scheme 6, the protected O-protected aminopyridine (XXIV) can be prepared by a method analogous to the method described in J. Med. Chem. 2004, 47(25), 6368, which relates to the synthesis of an analogous regioisomer. Thus, hydroxymethyl-chloropyridine (XXI) is converted to the O-protected form (XXII) where PG is an O-protecting group such as tert-butyldimethylsilyl (TBDMS) by reaction with TBDMS-Cl in a polar solvent such as THF in the presence of imidazole.
The O-protected compound (XXII) is then subjected to a Buchwald type amination using benzophenone imine in toluene in the presence of Pd2(dba)3, sodium tertiary butoxide and BINAP to give the imine (XXIII). The imine group is then cleaved by treatment with aqueous hydroxylamine in methanol to give the amine (XXIV).
Coupling of the amine (XXIV) with a carboxylic acid of the formula (XIV) using the amide coupling conditions described above gives the amide (XXV). The TBDMS protecting group on the oxygen atom is then removed using tetrabutylammonium fluoride (TBAF) to give the primary alcohol (XXVI).
The alcohol (XXVI) can then be oxidized with manganese dioxide in dichloromethane to give the aldehyde (XXVII).
The aldehyde (XXVII) may be subjected to reductive amination using any of a variety of amines in the presence of NaB(OAc)3H in methanol and acetic acid to give compounds of the formula (I) in which E is E1, A is a bond and R2 is a group CH2-amine.
In many of the reactions described above, it may be necessary to protect one or more groups to prevent reaction from taking place at an undesirable location on the molecule. Examples of protecting groups, and methods of protecting and deprotecting functional groups, can be found in Protective Groups in Organic Synthesis (T. Green and P. Wuts; 3rd Edition; John Wiley and Sons, 1999).
A hydroxy group may be protected, for example, as an ether (—OR) or an ester (—OC(═O)R), for example, as: a t-butyl ether; a benzyl, benzhydryl (diphenylmethyl), or trityl (triphenylmethyl)ether; a trimethylsilyl or t-butyldimethylsilyl ether; or an acetyl ester (—OC(═O)CH3, —OAc). An aldehyde or ketone group may be protected, for example, as an acetal (R—CH(OR)2) or ketal (R2C(OR)2), respectively, in which the carbonyl group (>C═O) is converted to a diether (>C(OR)2), by reaction with, for example, a primary alcohol. The aldehyde or ketone group is readily regenerated by hydrolysis using a large excess of water in the presence of acid. An amine group may be protected, for example, as an amide (—NRCO—R) or a urethane (—NRCO—OR), for example, as: a methyl amide (—NHCO—CH3); a benzyloxy amide (—NHCO—OCH2C6H5, —NH-Cbz); as a t-butoxy amide (—NHCO—OC(CH3)3, —NH-Boc); a 2-biphenyl-2-propoxy amide (—NHCO—OC(CH3)2C6H4C6H5, —NH-Bpoc), as a 9-fluorenylmethoxy amide (—NH-Fmoc), as a 6-nitroveratryloxy amide (—NH-Nvoc), as a 2-trimethylsilylethyloxy amide (—NH-Teoc), as a 2,2,2-trichloroethyloxy amide (—NH-Troc), as an allyloxy amide (—NH-Alloc), or as a 2(-phenylsulphonyl)ethyloxy amide (—NH-Psec). Other protecting groups for amines, such as cyclic amines and heterocyclic N—H groups, include toluenesulphonyl (tosyl) and methanesulphonyl (mesyl) groups and benzyl groups such as a para-methoxybenzyl (PMB) group. A carboxylic acid group may be protected as an ester for example, as: an C1-7 alkyl ester (e.g., a methyl ester; a t-butyl ester); a C1-7 haloalkyl ester (e.g., a C1-7 trihaloalkyl ester); a triC1-7 alkylsilyl-C1-7alkyl ester; or a C5-20 aryl-C1-7 alkyl ester (e.g., a benzyl ester; a nitrobenzyl ester); or as an amide, for example, as a methyl amide. A thiol group may be protected, for example, as a thioether (—SR), for example, as: a benzyl thioether; an acetamidomethyl ether (—S—CH2NHC(═O)CH3).
Many of the intermediate compounds described above are novel. Accordingly, in a further aspect, the invention provides novel chemical intermediates, for example a novel compound of the formula (XIII), (XIV), (XV), (XVI) or (XVII) wherein R1 and R3 are as defined herein.
The compounds may be isolated and purified by a number of methods well known to those skilled in the art and examples of such methods include chromatographic techniques such as column chromatography (e.g. flash chromatography) and HPLC. Preparative LC-MS is a standard and effective method used for the purification of small organic molecules such as the compounds described herein. The methods for the liquid chromatography (LC) and mass spectrometry (MS) can be varied to provide better separation of the crude materials and improved detection of the samples by MS. Optimisation of the preparative gradient LC method will involve varying columns, volatile eluents and modifiers, and gradients. Methods are well known in the art for optimising preparative LC-MS methods and then using them to purify compounds. Such methods are described in Rosentreter U, Huber U.; Optimal fraction collecting in preparative LC/MS; J Comb Chem.; 2004; 6(2), 159-64 and Leister W, Strauss K, Wisnoski D, Zhao Z, Lindsley C., Development of a custom high-throughput preparative liquid chromatography/mass spectrometer platform for the preparative purification and analytical analysis of compound libraries; J Comb Chem.; 2003; 5(3); 322-9.
One such system for purifying compounds via preparative LC-MS is described in the experimental section below although a person skilled in the art will appreciate that alternative systems and methods to those described could be used. In particular, normal phase preparative LC based methods might be used in place of the reverse phase methods described here. Most preparative LC-MS systems utilise reverse phase LC and volatile acidic modifiers, since the approach is very effective for the purification of small molecules and because the eluents are compatible with positive ion electrospray mass spectrometry. Employing other chromatographic solutions e.g. normal phase LC, alternatively buffered mobile phase, basic modifiers etc as outlined in the analytical methods described above could alternatively be used to purify the compounds.
While it is possible for the active compound to be administered alone, it is preferable to present it as a pharmaceutical composition (e.g. formulation) comprising at least one active compound of the invention together with one or more pharmaceutically acceptable carriers, adjuvants, excipients, diluents, fillers, buffers, stabilisers, preservatives, lubricants, or other materials well known to those skilled in the art and optionally other therapeutic or prophylactic agents; for example agents that reduce or alleviate some of the side effects associated with chemotherapy. Particular examples of such agents include anti-emetic agents and agents that prevent or decrease the duration of chemotherapy-associated neutropenia and prevent complications that arise from reduced levels of red blood cells or white blood cells, for example erythropoietin (EPO), granulocyte macrophage-colony stimulating factor (GM-CSF), and granulocyte-colony stimulating factor (G-CSF).
Thus, the present invention further provides pharmaceutical compositions, as defined above, and methods of making a pharmaceutical composition comprising admixing at least one active compound, as defined above, together with one or more pharmaceutically acceptable carriers, excipients, buffers, adjuvants, stabilizers, or other materials, as described herein.
The term “pharmaceutically acceptable” as used herein pertains to compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of a subject (e.g. human) without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio. Each carrier, excipient, etc. must also be “acceptable” in the sense of being compatible with the other ingredients of the formulation.
Accordingly, in a further aspect, the invention provides compounds of the formula (I) and sub-groups thereof as defined herein in the form of pharmaceutical compositions.
The pharmaceutical compositions can be in any form suitable for oral, parenteral, topical, intranasal, ophthalmic, otic, rectal, intra-vaginal, or transdermal administration. Where the compositions are intended for parenteral administration, they can be formulated for intravenous, intramuscular, intraperitoneal, subcutaneous administration or for direct delivery into a target organ or tissue by injection, infusion or other means of delivery. The delivery can be by bolus injection, short term infusion or longer term infusion and can be via passive delivery or through the utilisation of a suitable infusion pump.
Pharmaceutical formulations adapted for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats, co-solvents, organic solvent mixtures, cyclodextrin complexation agents, emulsifying agents (for forming and stabilizing emulsion formulations), liposome components for forming liposomes, gellable polymers for forming polymeric gels, lyophilisation protectants and combinations of agents for, inter alia, stabilising the active ingredient in a soluble form and rendering the formulation isotonic with the blood of the intended recipient. Pharmaceutical formulations for parenteral administration may also take the form of aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents (R. G. Strickly, Solubilizing Excipients in oral and injectable formulations, Pharmaceutical Research, Vol 21(2) 2004, p 201-230).
A drug molecule that is ionizable can be solubilized to the desired concentration by pH adjustment if the drug's pKa is sufficiently away from the formulation pH value. The acceptable range is pH 2-12 for intravenous and intramuscular administration, but subcutaneously the range is pH 2.7-9.0. The solution pH is controlled by either the salt form of the drug, strong acids/bases such as hydrochloric acid or sodium hydroxide, or by solutions of buffers which include but are not limited to buffering solutions formed from glycine, citrate, acetate, maleate, succinate, histidine, phosphate, tris(hydroxymethyl)aminomethane (TRIS), or carbonate.
The combination of an aqueous solution and a water-soluble organic solvent/surfactant (i.e., a cosolvent) is often used in injectable formulations. The water-soluble organic solvents and surfactants used in injectable formulations include but are not limited to propylene glycol, ethanol, polyethylene glycol 300, polyethylene glycol 400, glycerin, dimethylacetamide (DMA), N-methyl-2-pyrrolidone (NMP; Pharmasolve), dimethylsulphoxide (DMSO), Solutol HS 15, Cremophor EL, Cremophor RH 60, and polysorbate 80. Such formulations can usually be, but are not always, diluted prior to injection.
Propylene glycol, PEG 300, ethanol, Cremophor EL, Cremophor RH 60, and polysorbate 80 are the entirely organic water-miscible solvents and surfactants used in commercially available injectable formulations and can be used in combinations with each other. The resulting organic formulations are usually diluted at least 2-fold prior to IV bolus or IV infusion.
Alternatively increased water solubility can be achieved through molecular complexation with cyclodextrins
Liposomes are closed spherical vesicles composed of outer lipid bilayer membranes and an inner aqueous core and with an overall diameter of <100 μm. Depending on the level of hydrophobicity, moderately hydrophobic drugs can be solubilized by liposomes if the drug becomes encapsulated or intercalated within the liposome. Hydrophobic drugs can also be solubilized by liposomes if the drug molecule becomes an integral part of the lipid bilayer membrane, and in this case, the hydrophobic drug is dissolved in the lipid portion of the lipid bilayer. A typical liposome formulation contains water with phospholipid at −5-20 mg/ml, an isotonicifier, a pH 5-8 buffer, and optionally cholesterol.
The formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use.
The pharmaceutical formulation can be prepared by lyophilising a compound of Formula (I) or acid addition salt thereof. Lyophilisation refers to the procedure of freeze-drying a composition. Freeze-drying and lyophilisation are therefore used herein as synonyms. A typical process is to solubilise the compound and the resulting formulation is clarified, sterile filtered and aseptically transferred to containers appropriate for lyophilisation (e.g. vials). In the case of vials, they are partially stoppered with lyo-stoppers. The formulation can be cooled to freezing and subjected to lyophilisation under standard conditions and then hermetically capped forming a stable, dry lyophile formulation. The composition will typically have a low residual water content, e.g. less than 5% e.g. less than 1% by weight based on weight of the lyophile.
The lyophilisation formulation may contain other excipients for example, thickening agents, dispersing agents, buffers, antioxidants, preservatives, and tonicity adjusters. Typical buffers include phosphate, acetate, citrate and glycine. Examples of antioxidants include ascorbic acid, sodium bisulphite, sodium metabisulphite, monothioglycerol, thiourea, butylated hydroxytoluene, butylated hydroxyl anisole, and ethylenediamietetraacetic acid salts. Preservatives may include benzoic acid and its salts, sorbic acid and its salts, alkyl esters of para-hydroxybenzoic acid, phenol, chlorobutanol, benzyl alcohol, thimerosal, benzalkonium chloride and cetylpyridinium chloride. The buffers mentioned previously, as well as dextrose and sodium chloride, can be used for tonicity adjustment if necessary.
Bulking agents are generally used in lyophilisation technology for facilitating the process and/or providing bulk and/or mechanical integrity to the lyophilized cake. Bulking agent means a freely water soluble, solid particulate diluent that when co-lyophilised with the compound or salt thereof, provides a physically stable lyophilized cake, a more optimal freeze-drying process and rapid and complete reconstitution. The bulking agent may also be utilised to make the solution isotonic.
The water-soluble bulking agent can be any of the pharmaceutically acceptable inert solid materials typically used for lyophilisation. Such bulking agents include, for example, sugars such as glucose, maltose, sucrose, and lactose; polyalcohols such as sorbitol or mannitol; amino acids such as glycine; polymers such as polyvinylpyrrolidine; and polysaccharides such as dextran.
The ratio of the weight of the bulking agent to the weight of active compound is typically within the range from about 1 to about 5, for example of about 1 to about 3, e.g. in the range of about 1 to 2.
Alternatively they can be provided in a solution form which may be concentrated and sealed in a suitable vial. Sterilisation of dosage forms may be via filtration or by autoclaving of the vials and their contents at appropriate stages of the formulation process. The supplied formulation may require further dilution or preparation before delivery for example dilution into suitable sterile infusion packs.
Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets.
In one preferred embodiment of the invention, the pharmaceutical composition is in a form suitable for i.v. administration, for example by injection or infusion.
Pharmaceutical compositions of the present invention for parenteral injection can also comprise pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions as well as sterile powders for reconstitution into sterile injectable solutions or dispersions just prior to use. Examples of suitable aqueous and nonaqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), carboxymethylcellulose and suitable mixtures thereof, vegetable oils (such as olive oil), and injectable organic esters such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
The compositions of the present invention may also contain adjuvants such as preservatives, wetting agents, emulsifying agents, and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents such as sugars, sodium chloride, and the like. Prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
If a compound is not stable in aqueous media or has low solubility in aqueous media, it can be formulated as a concentrate in organic solvents. The concentrate can then be diluted to a lower concentration in an aqueous system, and can be sufficiently stable for the short period of time during dosing. Therefore in another aspect, there is provided a pharmaceutical composition comprising a non aqueous solution composed entirely of one or more organic solvents, which can be dosed as is or more commonly diluted with a suitable IV excipient (saline, dextrose; buffered or not buffered) before administration (Solubilizing excipients in oral and injectable formulations, Pharmaceutical Research, 21(2), 2004, p 201-230). Examples of solvents and surfactants are propylene glycol, PEG300, PEG400, ethanol, dimethylacetamide (DMA), N-methyl-2-pyrrolidone (NMP, Pharmasolve), Glycerin, Cremophor EL, Cremophor RH 60 and polysorbate. Particular non aqueous solutions are composed of 70-80% propylene glycol, and 20-30% ethanol. One particular non aqueous solution is composed of 70% propylene glycol, and 30% ethanol. Another is 80% propylene glycol and 20% ethanol. Normally these solvents are used in combination and usually diluted at least 2-fold before IV bolus or IV infusion. The typical amounts for bolus IV formulations are ˜50% for Glycerin, propylene glycol, PEG300, PEG400, and ˜20% for ethanol. The typical amounts for IV infusion formulations are ˜15% for Glycerin, 3% for DMA, and ˜10% for propylene glycol, PEG300, PEG400 and ethanol.
In one preferred embodiment of the invention, the pharmaceutical composition is in a form suitable for i.v. administration, for example by injection or infusion. For intravenous administration, the solution can be dosed as is, or can be injected into an infusion bag (containing a pharmaceutically acceptable excipient, such as 0.9% saline or 5% dextrose), before administration.
In another preferred embodiment, the pharmaceutical composition is in a form suitable for sub-cutaneous (s.c.) administration.
Pharmaceutical dosage forms suitable for oral administration include tablets, capsules, caplets, pills, lozenges, syrups, solutions, powders, granules, elixirs and suspensions, sublingual tablets, wafers or patches and buccal patches.
Pharmaceutical compositions containing compounds of the formula (I) can be formulated in accordance with known techniques, see for example, Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., USA.
Thus, tablet compositions can contain a unit dosage of active compound together with an inert diluent or carrier such as a sugar or sugar alcohol, eg; lactose, sucrose, sorbitol or mannitol; and/or a non-sugar derived diluent such as sodium carbonate, calcium phosphate, calcium carbonate, or a cellulose or derivative thereof such as methyl cellulose, ethyl cellulose, hydroxypropyl methyl cellulose, and starches such as corn starch. Tablets may also contain such standard ingredients as binding and granulating agents such as polyvinylpyrrolidone, disintegrants (e.g. swellable crosslinked polymers such as crosslinked carboxymethylcellulose), lubricating agents (e.g. stearates), preservatives (e.g. parabens), antioxidants (e.g. BHT), buffering agents (for example phosphate or citrate buffers), and effervescent agents such as citrate/bicarbonate mixtures. Such excipients are well known and do not need to be discussed in detail here.
Capsule formulations may be of the hard gelatin or soft gelatin variety and can contain the active component in solid, semi-solid, or liquid form. Gelatin capsules can be formed from animal gelatin or synthetic or plant derived equivalents thereof.
The solid dosage forms (eg; tablets, capsules etc.) can be coated or un-coated, but typically have a coating, for example a protective film coating (e.g. a wax or varnish) or a release controlling coating. The coating (e.g. a Eudragit™ type polymer) can be designed to release the active component at a desired location within the gastro-intestinal tract. Thus, the coating can be selected so as to degrade under certain pH conditions within the gastrointestinal tract, thereby selectively release the compound in the stomach or in the ileum or duodenum.
Instead of, or in addition to, a coating, the drug can be presented in a solid matrix comprising a release controlling agent, for example a release delaying agent which may be adapted to selectively release the compound under conditions of varying acidity or alkalinity in the gastrointestinal tract. Alternatively, the matrix material or release retarding coating can take the form of an erodible polymer (e.g. a maleic anhydride polymer) which is substantially continuously eroded as the dosage form passes through the gastrointestinal tract. As a further alternative, the active compound can be formulated in a delivery system that provides osmotic control of the release of the compound. Osmotic release and other delayed release or sustained release formulations may be prepared in accordance with methods well known to those skilled in the art.
The pharmaceutical compositions comprise from approximately 1% to approximately 95%, preferably from approximately 20% to approximately 90%, active ingredient. Pharmaceutical compositions according to the invention may be, for example, in unit dose form, such as in the form of ampoules, vials, suppositories, dragées, tablets or capsules.
Pharmaceutical compositions for oral administration can be obtained by combining the active ingredient with solid carriers, if desired granulating a resulting mixture, and processing the mixture, if desired or necessary, after the addition of appropriate excipients, into tablets, dragee cores or capsules. It is also possible for them to be incorporated into plastics carriers that allow the active ingredients to diffuse or be released in measured amounts.
The compounds of the invention can also be formulated as solid dispersions. Solid dispersions are homogeneous extremely fine disperse phases of two or more solids. Solid solutions (molecularly disperse systems), one type of solid dispersion, are well known for use in pharmaceutical technology (see (Chiou and Riegelman, J. Pharm. Sci., 60, 1281-1300 (1971)) and are useful in increasing dissolution rates and increasing the bioavailability of poorly water-soluble drugs.
Solid dispersions of drugs are generally produced by melt or solvent evaporation methods. For melt processing, the materials (excipients) which are usually semisolid and waxy in nature, are heated to cause melting and dissolution of the drug substance, followed by hardening by cooling to very low temperatures. The solid dispersion can then be pulverized, sieved, mixed with excipients, and encapsulated into hard gelatin capsules or compressed into tablets. Alternatively the use of surface-active and self-emulsifying carriers allows the encapsulation of solid dispersions directly into hard gelatin capsules as melts. Solid plugs are formed inside the capsules when the melts are cooled to room temperature.
Solid solutions can also be manufactured by dissolving the drug and the required excipient in either an aqueous solution or a pharmaceutically acceptable organic solvent, followed by removal of the solvent, using a pharmaceutically acceptable method, such as spray drying. The resulting solid can be particle sized if required, optionally mixed with excipients and either made into tablets or filled into capsules.
A particularly suitable polymeric auxiliary for producing such solid dispersions or solid solutions is polyvinylpyrrolidone (PVP).
The present invention provides a pharmaceutical composition comprising a substantially amorphous solid solution, said solid solution comprising
(a) a compound of the formula (I), for example the compound of Example 1; and
(b) a polymer selected from the group consisting of:
polyvinylpyrrolidone (povidone), crosslinked polyvinylpyrrolidone (crospovidone), hydroxypropyl methylcellulose, hydroxypropylcellulose, polyethylene oxide, gelatin, crosslinked polyacrylic acid (carbomer), carboxymethylcellulose, crosslinked carboxymethylcellulose (croscarmellose), methylcellulose, methacrylic acid copolymer, methacrylate copolymer, and water soluble salts such as sodium and ammonium salts of methacrylic acid and methacrylate copolymers, cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate and propylene glycol alginate;
wherein the ratio of said compound to said polymer is about 1:1 to about 1:6, for example a 1:3 ratio, spray dried from a mixture of one of chloroform or dichloromethane and one of methanol or ethanol, preferably dichloromethane/ethanol in a 1:1 ratio.
This invention also provides solid dosage forms comprising the solid solution described above. Solid dosage forms include tablets, capsules and chewable tablets. Known excipients can be blended with the solid solution to provide the desired dosage form. For example, a capsule can contain the solid solution blended with (a) a disintegrant and a lubricant, or (b) a disintegrant, a lubricant and a surfactant. A tablet can contain the solid solution blended with at least one disintegrant, a lubricant, a surfactant, and a glidant. The chewable tablet can contain the solid solution blended with a bulking agent, a lubricant, and if desired an additional sweetening agent (such as an artificial sweetener), and suitable flavours.
The pharmaceutical formulations may be presented to a patient in “patient packs” containing an entire course of treatment in a single package, usually a blister pack. Patient packs have an advantage over traditional prescriptions, where a pharmacist divides a patient's supply of a pharmaceutical from a bulk supply, in that the patient always has access to the package insert contained in the patient pack, normally missing in patient prescriptions. The inclusion of a package insert has been shown to improve patient compliance with the physician's instructions.
Compositions for topical use include ointments, creams, sprays, patches, gels, liquid drops and inserts (for example intraocular inserts). Such compositions can be formulated in accordance with known methods.
Compositions for parenteral administration are typically presented as sterile aqueous or oily solutions or fine suspensions, or may be provided in finely divided sterile powder form for making up extemporaneously with sterile water for injection.
Examples of formulations for rectal or intra-vaginal administration include pessaries and suppositories which may be, for example, formed from a shaped moldable or waxy material containing the active compound.
Compositions for administration by inhalation may take the form of inhalable powder compositions or liquid or powder sprays, and can be administrated in standard form using powder inhaler devices or aerosol dispensing devices. Such devices are well known. For administration by inhalation, the powdered formulations typically comprise the active compound together with an inert solid powdered diluent such as lactose.
The compounds of the formula (I) will generally be presented in unit dosage form and, as such, will typically contain sufficient compound to provide a desired level of biological activity. For example, a formulation may contain from 1 nanogram to 2 grams of active ingredient, e.g. from 1 nanogram to 2 milligrams of active ingredient. Within this range, particular sub-ranges of compound are 0.1 milligrams to 2 grams of active ingredient (more usually from 10 milligrams to 1 gram, e.g. 50 milligrams to 500 milligrams), or 1 microgram to 20 milligrams (for example 1 microgram to 10 milligrams, e.g. 0.1 milligrams to 2 milligrams of active ingredient).
For oral compositions, a unit dosage form may contain from 1 milligram to 2 grams, more typically 10 milligrams to 1 gram, for example 50 milligrams to 1 gram, e.g. 100 miligrams to 1 gram, of active compound.
The active compound will be administered to a patient in need thereof (for example a human or animal patient) in an amount sufficient to achieve the desired therapeutic effect.
It is envisaged that the compounds of the formula (I) and sub-groups as defined herein will be useful in the prophylaxis or treatment of a range of disease states or conditions mediated by cyclin dependent kinases and glycogen synthase kinase-3. Examples of such disease states and conditions are set out above.
The compounds are generally administered to a subject in need of such administration, for example a human or animal patient, preferably a human.
The compounds will typically be administered in amounts that are therapeutically or prophylactically useful and which generally are non-toxic. However, in certain situations (for example in the case of life threatening diseases), the benefits of administering a compound of the formula (I) may outweigh the disadvantages of any toxic effects or side effects, in which case it may be considered desirable to administer compounds in amounts that are associated with a degree of toxicity.
The compounds may be administered over a prolonged term to maintain beneficial therapeutic effects or may be administered for a short period only. Alternatively they may be administered in a pulsatile or continuous manner.
A typical daily dose of the compound of formula (I) can be in the range from 100 picograms to 100 milligrams per kilogram of body weight, more typically 5 nanograms to 25 milligrams per kilogram of bodyweight, and more usually 10 nanograms to 15 milligrams per kilogram (e.g. 10 nanograms to 10 milligrams, and more typically 1 microgram per kilogram to 20 milligrams per kilogram, for example 1 microgram to 10 milligrams per kilogram) per kilogram of bodyweight although higher or lower doses may be administered where required. The compound of the formula (I) can be administered on a daily basis or on a repeat basis every 2, or 3, or 4, or 5, or 6, or 7, or 10 or 14, or 21, or 28 days for example.
The compounds of the invention may be administered orally in a range of doses, for example 1 to 1500 mg, 2 to 800 mg, or 5 to 500 mg, e.g. 2 to 200 mg or 10 to 1000 mg, particular examples of doses including 10, 20, 50 and 80 mg. The compound may be administered once or more than once each day. The compound can be administered continuously (i.e. taken every day without a break for the duration of the treatment regimen). Alternatively, the compound can be administered intermittently (i.e. taken continuously for a given period such as a week, then discontinued for a period such as a week and then taken continuously for another period such as a week and so on throughout the duration of the treatment regimen. Examples of treatment regimens involving intermittent administration include regimens wherein administration is in cycles of one week on, one week off; or two weeks on, one week off; or three weeks on, one week off; or two weeks on, two weeks off; or four weeks on two weeks off; or one week on three weeks off—for one or more cycles, e.g. 2, 3, 4, 5, 6, 7, 8, 9 or 10 or more cycles.
An example of a dosage for a 60 kilogram person comprises administering a compound of the formula (I) as defined herein at a starting dosage of 4.5-10.8 mg/60 kg/day (equivalent to 75-180 μg/kg/day) and subsequently by an efficacious dose of 44-97 mg/60 kg/day (equivalent to 0.7-1.6 mg/kg/day) or an efficacious dose of 72-274 mg/60 kg/day (equivalent to 1.2-4.6 mg/kg/day) although higher or lower doses may be administered where required. The mg/kg dose would scale pro-rata for any given body weight.
In one particular dosing schedule, a patient will be given an infusion of a compound of the formula (I) for periods of one hour daily for up to ten days in particular up to five days for one week, and the treatment repeated at a desired interval such as two to four weeks, in particular every three weeks.
More particularly, a patient may be given an infusion of a compound of the formula (I) for periods of one hour daily for 5 days and the treatment repeated every three weeks.
In another particular dosing schedule, a patient is given an infusion over 30 minutes to 1 hour followed by maintenance infusions of variable duration, for example 1 to 5 hours, e.g. 3 hours.
In a further particular dosing schedule, a patient is given a continuous infusion for a period of 12 hours to 5 days, an in particular a continuous infusion of 24 hours to 72 hours.
Ultimately, however, the quantity of compound administered and the type of composition used will be commensurate with the nature of the disease or physiological condition being treated and will be at the discretion of the physician.
The compounds as defined herein can be administered as the sole therapeutic agent or they can be administered in combination therapy with one of more other compounds for treatment of a particular disease state, for example a neoplastic disease such as a cancer as hereinbefore defined. Examples of other therapeutic agents or treatments that may be administered together (whether concurrently or at different time intervals) with the compounds of the formula (I) include but are not limited to:
Each of the compounds present in the combinations of the invention may be given in individually varying dose schedules and via different routes.
Where the compound of the formula (I) is administered in combination therapy with one, two, three, four or more other therapeutic agents (preferably one or two, more preferably one), the compounds can be administered simultaneously or sequentially. When administered sequentially, they can be administered at closely spaced intervals (for example over a period of 5-10 minutes) or at longer intervals (for example 1, 2, 3, 4 or more hours apart, or even longer periods apart where required), the precise dosage regimen being commensurate with the properties of the therapeutic agent(s).
The compounds of the invention may also be administered in conjunction with non-chemotherapeutic treatments such as radiotherapy, photodynamic therapy, gene therapy; surgery and controlled diets.
For use in combination therapy with another chemotherapeutic agent, the compound of the formula (I) and one, two, three, four or more other therapeutic agents can be, for example, formulated together in a dosage form containing two, three, four or more therapeutic agents. In an alternative, the individual therapeutic agents may be formulated separately and presented together in the form of a kit, optionally with instructions for their use.
A person skilled in the art would know through his or her common general knowledge the dosing regimes and combination therapies to use.
Prior to administration of a compound of the formula (I), a patient may be screened to determine whether a disease or condition from which the patient is or may be suffering is one which would be susceptible to treatment with a compound having activity against cyclin dependent kinases.
For example, a biological sample taken from a patient may be analysed to determine whether a condition or disease, such as cancer, that the patient is or may be suffering from is one which is characterised by a genetic abnormality or abnormal protein expression which leads to over-activation of CDKs or to sensitisation of a pathway to normal CDK activity. Examples of such abnormalities that result in activation or sensitisation of the CDK2 signal include up-regulation of cyclin E, (Harwell R M, Mull B B, Porter D C, Keyomarsi K.; J Biol Chem. 2004 Mar. 26; 279(13):12695-705) or loss of p21 or p27, or presence of CDC4 variants (Rajagopalan H, Jallepalli P V, Rago C, Velculescu V E, Kinzler K W, Vogelstein B, Lengauer C.; Nature. 2004 Mar. 4; 428(6978):77-81). Tumours with mutants of CDC4 or up-regulation, in particular over-expression, of cyclin E or loss of p21 or p27 may be particularly sensitive to CDK inhibitors. The term up-regulation includes elevated expression or over-expression, including gene amplification (i.e. multiple gene copies) and increased expression by a transcriptional effect, and hyperactivity and activation, including activation by mutations.
Thus, the patient may be subjected to a diagnostic test to detect a marker characteristic of up-regulation of cyclin E, or loss of p21 or p27, or presence of CDC4 variants. The term diagnosis includes screening. By marker we include genetic markers including, for example, the measurement of DNA composition to identify mutations of CDC4. The term marker also includes markers which are characteristic of up regulation of cyclin E, including enzyme activity, enzyme levels, enzyme state (e.g. phosphorylated or not) and mRNA levels of the aforementioned proteins. Tumours with upregulation of cyclin E, or loss of p21 or p27 may be particularly sensitive to CDK inhibitors. Tumours may preferentially be screened for upregulation of cyclin E, or loss of p21 or p27 prior to treatment. Thus, the patient may be subjected to a diagnostic test to detect a marker characteristic of up-regulation of cyclin E, or loss of p21 or p27.
The diagnostic tests are typically conducted on a biological sample selected from tumour biopsy samples, blood samples (isolation and enrichment of shed tumour cells), stool biopsies, sputum, chromosome analysis, pleural fluid, peritoneal fluid, or urine.
It has been found, Rajagopalan et al (Nature. 2004 Mar. 4; 428(6978):77-81), that there were mutations present in CDC4 (also known as Fbw7 or Archipelago) in human colorectal cancers and endometrial cancers (Spruck et al, Cancer Res. 2002 Aug. 15; 62(16):4535-9). Identification of individual carrying a mutation in CDC4 may mean that the patient would be particularly suitable for treatment with a CDK inhibitor. Tumours may preferentially be screened for presence of a CDC4 variant prior to treatment. The screening process will typically involve direct sequencing, oligonucleotide microarray analysis, or a mutant specific antibody.
Methods of identification and analysis of mutations and up-regulation of proteins are well known to a person skilled in the art. Screening methods could include, but are not limited to, standard methods such as reverse-transcriptase polymerase chain reaction (RT-PCR) or in-situ hybridisation.
In screening by RT-PCR, the level of mRNA in the tumour is assessed by creating a cDNA copy of the mRNA followed by amplification of the cDNA by PCR. Methods of PCR amplification, the selection of primers, and conditions for amplification, are known to a person skilled in the art. Nucleic acid manipulations and PCR are carried out by standard methods, as described for example in Ausubel, F. M. et al., eds. Current Protocols in Molecular Biology, 2004, John Wiley & Sons Inc., or Innis, M. A. et-al., eds. PCR Protocols: a guide to methods and applications, 1990, Academic Press, San Diego. Reactions and manipulations involving nucleic acid techniques are also described in Sambrook et al., 2001, 3rd Ed, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press. Alternatively a commercially available kit for RT-PCR (for example Roche Molecular Biochemicals) may be used, or methodology as set forth in U.S. Pat. Nos. 4,666,828; 4,683,202; 4,801,531; 5,192,659, 5,272,057, 5,882,864, and 6,218,529 and incorporated herein by reference.
An example of an in-situ hybridisation technique for assessing mRNA expression would be fluorescence in-situ hybridisation (FISH) (see Angerer, 1987 Meth. Enzymol., 152: 649).
Generally, in situ hybridization comprises the following major steps: (1) fixation of tissue to be analyzed; (2) prehybridization treatment of the sample to increase accessibility of target nucleic acid, and to reduce nonspecific binding; (3) hybridization of the mixture of nucleic acids to the nucleic acid in the biological structure or tissue; (4) post-hybridization washes to remove nucleic acid fragments not bound in the hybridization, and (5) detection of the hybridized nucleic acid fragments. The probes used in such applications are typically labeled, for example, with radioisotopes or fluorescent reporters. Preferred probes are sufficiently long, for example, from about 50, 100, or 200 nucleotides to about 1000 or more nucleotides, to enable specific hybridization with the target nucleic acid(s) under stringent conditions. Standard methods for carrying out FISH are described in Ausubel, F. M. et al., eds. Current Protocols in Molecular Biology, 2004, John Wiley & Sons Inc and Fluorescence In Situ Hybridization: Technical Overview by John M. S. Bartlett in Molecular Diagnosis of Cancer, Methods and Protocols, 2nd ed.; ISBN: 1-59259-760-2; March 2004, pps. 077-088; Series: Methods in Molecular Medicine.
Alternatively, the protein products expressed from the mRNAs may be assayed by immunohistochemistry of tumour samples, solid phase immunoassay with microtiter plates, Western blotting, 2-dimensional SDS-polyacrylamide gel electrophoresis, ELISA, flow cytometry and other methods known in the art for detection of specific proteins. Detection methods would include the use of site specific antibodies. The skilled person will recognize that all such well-known techniques for detection of upregulation of cyclin E, or loss of p21 or p27, or detection of CDC4 variants could be applicable in the present case.
Therefore, all of these techniques could also be used to identify tumours particularly suitable for treatment with the compounds of the invention.
Tumours with mutants of CDC4 or up-regulation, in particular over-expression, of cyclin E or loss of p21 or p27 may be particularly sensitive to CDK inhibitors. Tumours may preferentially be screened for up-regulation, in particular over-expression, of cyclin E (Harwell R M, Mull B B, Porter D C, Keyomarsi K.; J Biol Chem. 2004 Mar. 26; 279(13):12695-705) or loss of p21 or p27 or for CDC4 variants prior to treatment (Rajagopalan H, Jallepalli P V, Rago C, Velculescu V E, Kinzler K W, Vogelstein B, Lengauer C.; Nature. 2004 Mar. 4; 428(6978):77-81).
Patients with mantle cell lymphoma (MCL) could be selected for treatment with a compound of the invention using diagnostic tests outlined herein. MCL is a distinct clinicopathologic entity of non-Hodgkin's lymphoma, characterized by proliferation of small to medium-sized lymphocytes with co-expression of CD5 and CD20, an aggressive and incurable clinical course, and frequent t(11;14)(q13;q32) translocation. Over-expression of cyclin D1 mRNA, found in mantle cell lymphoma (MCL), is a critical diagnostic marker. Yatabe et al (Blood. 2000 Apr. 1; 95(7):2253-61) proposed that cyclin D1-positivity should be included as one of the standard criteria for MCL, and that innovative therapies for this incurable disease should be explored on the basis of the new criteria. Jones et al (J Mol Diagn. 2004 May; 6(2):84-9) developed a real-time, quantitative, reverse transcription PCR assay for cyclin D1 (CCND1) expression to aid in the diagnosis of mantle cell lymphoma (CL). Howe et al (Clin Chem. 2004 January; 50(1):80-7) used real-time quantitative RT-PCR to evaluate cyclin D1 mRNA expression and found that quantitative RT-PCR for cyclin D1 mRNA normalized to CD19 mRNA can be used in the diagnosis of MCL in blood, marrow, and tissue. Alternatively, patients with breast cancer could be selected for treatment with a CDK inhibitor using diagnostic tests outline above. Tumour cells commonly overexpress cyclin E and it has been shown that cyclin E is over-expressed in breast cancer (Harwell et al, Cancer Res, 2000, 60, 481-489). Therefore breast cancer may in particular be treated with a CDK inhibitor as provided herein.
In addition, the cancer may be analysed for INK4a and RB loss of function, and cyclin D1 or CDK4 overexpression or CDK4 mutation. RB loss and mutations inactivating p16INK4a function or hypermethylation of p16INK4a occur in many tumour types. Rb is inactivated in 100% retinoblastomas and in 90% of small cell lung carcinomas. Cyclin D1 is amplified in 40% of head and neck, over-expressed in 50% of breast cancers and 90% of mantle cell lymphomas. p16 is deleted in 60% of non-small lung carcinomas and in 40% of pancreatic cancers. CDK4 is amplified in 20% of sarcomas and in 10% of gliomas. Events resulting in RB or p16INK4a inactivation through mutation, deletion, or epigenetic silencing, or in the overexpression of cyclin D1 or Cdk4 can be identified by the techniques outlined herein. Tumours with up-regulation, in particular over-expression of cyclin D or CDK4 or loss of INK4a or RB may be particularly sensitive to CDK inhibitors. Thus, the patient may be subjected to a diagnostic test to detect a marker characteristic of over-expression of cyclin D or CDK4 or loss of INK4a or RB.
Cancers that experience INK4a and RB loss of function and cyclin D1 or CDK4 overexpression, include small cell lung cancer, non-small cell lung cancer, pancreatic cancer, breast cancer, glioblastoma multiforme, T cell ALL and mantle cell lymphoma. Therefore patients with small cell lung cancer, non-small cell lung cancer, pancreatic cancer, breast cancer, glioblastoma multiforme, T cell ALL or mantle cell lymphoma could be selected for treatment with a CDK inhibitor using diagnostic tests outlined above and may in particular be treated with a CDK inhibitor as provided herein.
Patients with specific cancers caused by aberrations in the D-Cyclin-CDK4/6-INK4-Rb pathway could be identified by using the techniques described herein and then treated with a CDK4 inhibitor as provided. Examples of abnormalities that activate or sensitise tumours to CDK4 signal include, receptor activation e.g. Her-2/Neu in breast cancer, ras mutations for example in pancreatic, colorectal or lung cancer, raf mutations for example in melanoma, p16 mutations for example in melanoma, p16 deletions for example in lung cancer, p16 methylation for example in lung cancer or cyclin D overexpression for example in breast cancer. Thus, a patient could be selected for treatment with a compound of the invention using diagnostic tests as outlined herein to identify up-regulation of the D-Cyclin-CDK4/6-INK4-Rb pathway for example by overexpression of cyclin D, mutation of CDK4, mutation or depletion of pRb, deletion of p16-INK4, mutation, deletion or methylation of p16, or by activating events upstream of the CDK4/6 kinase e.g. Ras mutations or Raf mutations or hyperactive or over-expressed receptors such as Her-2/Neu.
In a further aspect, the invention provides the use of the compounds of the formula (I) and sub-groups thereof as defined herein as antifungal agents.
The compounds of the formula (I) and sub-groups thereof as defined herein may be used in animal medicine (for example in the treatment of mammals such as humans), or in the treatment of plants (e.g. in agriculture and horticulture), or as general antifungal agents, for example as preservatives and disinfectants.
In one embodiment, the invention provides a compound of the formula (I) and sub-groups thereof as defined herein for use in the prophylaxis or treatment of a fungal infection in a mammal such as a human.
Also provided is the use of a compound of the formula (I) and sub-groups thereof as defined herein for the manufacture of a medicament for use in the prophylaxis or treatment of a fungal infection in a mammal such as a human.
For example, compounds of the invention may be administered to human patients suffering from, or at risk of infection by, topical fungal infections caused by among other organisms, species of Candida, Trichophyton, Microsporum or Epidermophyton, or in mucosal infections caused by Candida albicans (e.g. thrush and vaginal candidiasis). The compounds of the invention can also be administered for the treatment or prophylaxis of systemic fungal infections caused by, for example, Candida albicans, Cryptococcus neoformans, Aspergillus flavus, Aspergillus fumigatus, Coccidiodies, Paracoccidioides, Histoplasma or Blastomyces.
In another aspect, the invention provides an antifungal composition for agricultural (including horticultural) use, comprising a compound of the formulae (I) and sub-groups thereof as defined herein together with an agriculturally acceptable diluent or carrier.
The invention further provides a method of treating an animal (including a mammal such as a human), plant or seed having a fungal infection, which comprises treating said animal, plant or seed, or the locus of said plant or seed, with an effective amount of a compound of the formula (I) and sub-groups thereof as defined herein.
The invention also provides a method of treating a fungal infection in a plant or seed which comprises treating the plant or seed with an antifungally effective amount of a fungicidal composition containing a compound of the formula (I) and sub-groups thereof as defined herein.
Differential screening assays may be used to select for those compounds of the present invention with specificity for non-human CDK enzymes. Compounds which act specifically on the CDK enzymes of eukaryotic pathogens can be used as anti-fungal or anti-parasitic agents. Inhibitors of the Candida CDK kinase, CKSI, can be used in the treatment of candidiasis. Antifungal agents can be used against infections of the type hereinbefore defined, or opportunistic infections that commonly occur in debilitated and immunosuppressed patients such as patients with leukemias and lymphomas, people who are receiving immunosuppressive therapy, and patients with predisposing conditions such as diabetes mellitus or AIDS, as well as for non-immunosuppressed patients.
Assays described in the art can be used to screen for agents which may be useful for inhibiting at least one fungus implicated in mycosis such as candidiasis, aspergillosis, mucormycosis, blastomycosis, geotrichosis, cryptococcosis, chromoblastomycosis, coccidiodomycosis, conidiosporosis, histoplasmosis, maduromycosis, rhinosporidosis, nocardiosis, para-actinomycosis, penicilliosis, monoliasis, or sporotrichosis. The differential screening assays can be used to identify anti-fungal agents which may have therapeutic value in the treatment of aspergillosis by making use of the CDK genes cloned from yeast such as Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus nidulans, or Aspergillus terreus, or where the mycotic infection is mucon-nycosis, the CDK assay can be derived from yeast such as Rhizopus arrhizus, Rhizopus oryzae, Absidia corymbifera, Absidia ramosa, or Mucor pusillus. Sources of other CDK enzymes include the pathogen Pneumocystis carinii.
By way of example, in vitro evaluation of the antifungal activity of the compounds can be performed by determining the minimum inhibitory concentration (M.I.C.) which is the concentration of the test compounds, in a suitable medium, at which growth of the particular microorganism fails to occur. In practice, a series of agar plates, each having the test compound incorporated at a particular concentration is inoculated with a standard culture of, for example, Candida albicans and each plate is then incubated for an appropriate period at 37° C. The plates are then examined for the presence or absence of growth of the fungus and the appropriate M.I.C. value is noted. Alternatively, a turbidity assay in liquid cultures can be performed and a protocol outlining an example of this assay can be found in the Examples below.
The in vivo evaluation of the compounds can be carried out at a series of dose levels by intraperitoneal or intravenous injection or by oral administration, to mice that have been inoculated with a fungus, e.g., a strain of Candida albicans or Aspergillus flavus. The activity of the compounds can be assessed by monitoring the growth of the fungal infection in groups of treated and untreated mice (by histology or by retrieving fungi from the infection). The activity may be measured in terms of the dose level at which the compound provides 50% protection against the lethal effect of the infection (PD50).
For human antifungal use, the compounds of the formula (I) and sub-groups thereof as defined herein can be administered alone or in admixture with a pharmaceutical carrier selected in accordance with the intended route of administration and standard pharmaceutical practice. Thus, for example, they may be administered orally, parenterally, intravenously, intramuscularly or subcutaneously by means of the formulations described above in the section headed “Pharmaceutical Formulations”.
For oral and parenteral administration to human patients, the daily dosage level of the antifungal compounds of the invention can be from 0.01 to 10 mg/kg (in divided doses), depending on inter alia the potency of the compounds when administered by either the oral or parenteral route. Tablets or capsules of the compounds may contain, for example, from 5 mg to 0.5 g of active compound for administration singly or two or more at a time as appropriate. The physician in any event will determine the actual dosage (effective amount) which will be most suitable for an individual patient and it will vary with the age, weight and response of the particular patient.
Alternatively, the antifungal compounds can be administered in the form of a suppository or pessary, or they may be applied topically in the form of a lotion, solution, cream, ointment or dusting powder. For example, they can be incorporated into a cream consisting of an aqueous emulsion of polyethylene glycols or liquid paraffin; or they can be incorporated, at a concentration between 1 and 10%, into an ointment consisting of a white wax or white soft paraffin base together with such stabilizers and preservatives as may be required.
In addition to the therapeutic uses described above, anti-fungal agents developed with such differential screening assays can be used, for example, as preservatives in foodstuff, feed supplement for promoting weight gain in livestock, or in disinfectant formulations for treatment of non-living matter, e.g., for decontaminating hospital equipment and rooms. In similar fashion, side by side comparison of inhibition of a mammalian CDK and an insect CDK, such as the Drosophilia CDK5 gene (Hellmich et al. (1994) FEBS Lett 356:317-21), will permit selection amongst the compounds herein of inhibitors which discriminate between the human/mammalian and insect enzymes. Accordingly, the present invention expressly contemplates the use and formulation of the compounds of the invention in insecticides, such as for use in management of insects like the fruit fly.
In yet another embodiment, certain of the subject CDK inhibitors can be selected on the basis of inhibitory specificity for plant CDK's relative to the mammalian enzyme. For example, a plant CDK can be disposed in a differential screen with one or more of the human enzymes to select those compounds of greatest selectivity for inhibiting the plant enzyme. Thus, the present invention specifically contemplates formulations of the subject CDK inhibitors for agricultural applications, such as in the form of a defoliant or the like.
For agricultural and horticultural purposes the compounds of the invention may be used in the form of a composition formulated as appropriate to the particular use and intended purpose. Thus the compounds may be applied in the form of dusting powders, or granules, seed dressings, aqueous solutions, dispersions or emulsions, dips, sprays, aerosols or smokes. Compositions may also be supplied in the form of dispersible powders, granules or grains, or concentrates for dilution prior to use. Such compositions may contain such conventional carriers, diluents or adjuvants as are known and acceptable in agriculture and horticulture and they can be manufactured in accordance with conventional procedures. The compositions may also incorporate other active ingredients, for example, compounds having herbicidal or insecticidal activity or a further fungicide. The compounds and compositions can be applied in a number of ways, for example they can be applied directly to the plant foliage, stems, branches, seeds or roots or to the soil or other growing medium, and they may be used not only to eradicate disease, but also prophylactically to protect the plants or seeds from attack. By way of example, the compositions may contain from 0.01 to 1 wt. % of the active ingredient. For field use, likely application rates of the active ingredient may be from 50 to 5000 g/hectare.
The invention also contemplates the use of the compounds of the formula (I) and sub-groups thereof as defined herein in the control of wood decaying fingi and in the treatment of soil where plants grow, paddy fields for seedlings, or water for perfusion. Also contemplated by the invention is the use of the compounds of the formula (I) and sub-groups thereof as defined herein to protect stored grain and other non-plant loci from fungal infestation.
The invention will now be illustrated, but not limited, by reference to the specific embodiments described in the following examples.
In the examples, the following abbreviations are used.
In the examples, the compounds prepared were characterised by liquid chromatography and mass spectroscopy using the systems and operating conditions set out below. Where atoms with different isotopes are present, and a single mass quoted, the mass quoted for the compound is the monoisotopic mass (i.e. 35Cl; 79Br etc.). Several systems were used, as described below, and these were equipped with, and were set up to run under, closely similar operating conditions. The operating conditions used are also described below.
HPLC System: Waters 2795
Mass Spec Detector: Micromass Platform LC
PDA Detector: Waters 2996 PDA
Eluent A: H2O (0.1% Formic Acid)
Eluent B: CH3CN (0.1% Formic Acid)
Gradient: 5-95% eluent B over 3.5 minutes
Flow: 0.8 ml/min
Column: Phenomenex Synergi 4μ MAX-RP 80A, 2.0×50 mm
Eluent A: H2O (10 mM NH4HCO3 buffer adjusted to pH=9.2 with NH4OH)
Eluent B: CH3CN
Gradient: 05-95% eluent B over 3.5 minutes
Flow: 0.8 ml/min
Column: Phenomenex Luna C18(2) 5 μm 2.0×50 mm
Eluent A: H2O (0.1% Formic Acid)
Eluent B: CH3CN (0.1% Formic Acid)
Gradient: 00-50% eluent B over 3 minutes
Flow: 0.8 ml/min
Column: Phenomenex Synergi 4μ MAX-RP 80A, 2.0×50 mm
Eluent A: H2O (0.1% Formic Acid)
Eluent B: CH3CN (0.1% Formic Acid)
Gradient: 55-95% eluent B over 3.5 minutes
Flow: 0.8 ml/min
Column: Phenomenex Synergi 4μ MAX-RP 80A, 2.0×50 mm
Eluent A: H2O (0.1% Formic Acid)
Eluent B: CH3CN (0.1% Formic Acid)
Gradient: 05-95% eluent B over 15 minutes
Flow: 0.4 ml/min
Column: Phenomenex Synergi 4μ MAX-RP 80A, 2.0×150 mm
Eluent A: H2O (10 mM NH4HCO3 buffer adjusted to pH=9.2 with NH4OH)
Eluent B: CH3CN
Gradient: 05-95% eluent B over 15 minutes
Flow: 0.8 ml/min
Column: Phenomenex Luna C18(2) 5 μm 2.0×50 mm
Capillary voltage: 3.6 kV (3.40 kV on ES negative)
Cone voltage: 25 V
Source Temperature: 120° C.
Scan Range: 100-800 amu
Ionisation Mode:
HPLC System: 2767 autosampler—2525 binary gradient pump
Mass Spec Detector: Waters ZQ
Eluent A: H2O (0.1% Formic Acid)
Eluent B: CH3CN (0.1% Formic Acid)
Gradient: 5-95% eluent B over 4 minutes
Flow: 2.0 ml/min
Column: Phenomenex Synergi 4μ MAX-RP 80A, 4.6×50 mm
Eluent A: H2O (0.1% Formic Acid)
Eluent B: CH3CN (0.1% Formic Acid)
Gradient: 00-50% eluent B over 4 minutes
Flow: 2.0 ml/min
Column: Phenomenex Synergi 4μ MAX-RP 80A, 4.6×50 mm
Eluent A: H2O (0.1% Formic Acid)
Eluent B: CH3CN (0.1% Formic Acid)
Gradient: 55-95% eluent B over 4 minutes
Flow: 2.0 ml/min
Column: Phenomenex Synergi 4μ MAX-RP 80A, 4.6×50 mm
Capillary voltage: 3.5 kV (3.2 kV on ES negative)
Cone voltage: 25 V (30 V on ES negative)
Source Temperature: 120° C.
Scan Range: 100-800 amu
Ionisation Mode:
Preparative LC-MS is a standard and effective method used for the purification of small organic molecules such as the compounds described herein. The methods for the liquid chromatography (LC) and mass spectrometry (MS) can be varied to provide better separation of the crude materials and improved detection of the samples by MS. Optimisation of the preparative gradient LC method will involve varying columns, volatile eluents and modifiers, and gradients. Methods are well known in the art for optimising preparative LC-MS methods and then using them to purify compounds. Such methods are described in Rosentreter U, Huber U.; Optimal fraction collecting in preparative LC/MS; J Comb Chem.; 2004; 6(2), 159-64 and Leister W, Strauss K, Wisnoski D, Zhao Z, Lindsley C., Development of a custom high-throughput preparative liquid chromatography/mass spectrometer platform for the preparative purification and analytical analysis of compound libraries; J Comb Chem.; 2003; 5(3); 322-9.
One such system for purifying compounds via preparative LC-MS is described below although a person skilled in the art will appreciate that alternative systems and methods to those described could be used. In particular, normal phase preparative LC based methods might be used in place of the reverse phase methods described here. Most preparative LC-MS systems utilise reverse phase LC and volatile acidic modifiers, since the approach is very effective for the purification of small molecules and because the eluents are compatible with positive ion electrospray mass spectrometry. Employing other chromatographic solutions e.g. normal phase LC, alternatively buffered mobile phase, basic modifiers etc as outlined in the analytical methods described above could alternatively be used to purify the compounds.
Hardware:
2767 Dual Loop Autosampler/Fraction Collector
2525 preparative pump
CFO (column fluidic organiser) for column selection
RMA (Waters reagent manager) as make up pump
Waters ZQ Mass Spectrometer
Waters 2996 Photo Diode Array detector
Waters ZQ Mass Spectrometer
Software:
Masslynx 4.0
Waters MS Running Conditions:
Capillary voltage: 3.5 kV (3.2 kV on ES Negative)
Cone voltage: 25 V
Source Temperature: 120° C.
Multiplier: 500 V
Scan Range: 125-800 amu
Ionisation Mode ElectroSpray Positive or
Agilent 1100 LC-MS Preparative System:
Hardware:
Autosampler: 1100 series “prepALS”
Pump: 1100 series “PrepPump” for preparative flow gradient and 1100 series
“QuatPump” for pumping modifier in prep flow
UV detector: 1100 series “MWD” Multi Wavelength Detector
MS detector: 1100 series “LC-MSD VL”
Fraction Collector: 2דPrep-FC”
Make Up pump: “Waters RMA”
Agilent Active Splitter
Software:
Chemstation: Chem32
Agilent MS Running Conditions:
Capillary voltage: 4000 V (3500 V on ES Negative)
Fragmentor/Gain: 150/1
Drying gas flow: 13.0 L/min
Gas Temperature: 350° C.
Nebuliser Pressure: 50 psig
Scan Range: 125-800 amu
Ionisation Mode: ElectroSpray Positive or
Columns:
Phenomenex Synergy MAX-RP, 10μ, 100×21.2 mm
(alternatively used Thermo Hypersil-Keystone HyPurity Aquastar, 5μ, 100×21.2 mm for more polar compounds)
Phenomenex Luna C18 (2), 10μ, 100×21.2 mm
(alternatively used Phenomenex Gemini, 5μ, 100×21.2 mm)
Eluents:
Solvent A: H20+0.1% Formic Acid, pH˜1.5
Solvent B: CH3CN+0.1% Formic Acid
Solvent A: H20+10 mM NH4HCO3+NH4OH, pH=9.2
Solvent B: CH3CN
MeOH+0.2% Formic Acid (for both chromatography type)
Methods:
According to the analytical trace the most appropriate preparative chromatography type was chosen. A typical routine was to run an analytical LC-MS using the type of chromatography (low or high pH) most suited for compound structure. Once the analytical trace showed good chromatography a suitable preparative method of the same type was chosen. Typical running condition for both low and high pH chromatography methods were:
Flow rate: 24 ml/min
Gradient: Generally all gradients had an initial 0.4 min step with 95% A+5% B.
Then according to analytical trace a 3.6 min gradient was chosen in order to achieve good separation (e.g. from 5% to 50% B for early retaining compounds; from 35% to 80% B for middle retaining compounds and so on)
Wash: 1.2 minute wash step was performed at the end of the gradient
Re-equilibration: 2.1 minutes re-equilibration step was ran to prepare the system for the next run
Make Up flow rate: 1 ml/min
Solvent:
All compounds were usually dissolved in 100% MeOH or 100% DMSO
From the information provided someone skilled in the art could purify the compounds described herein by preparative LC-MS.
The starting materials for each of the Examples are described below or are commercially available unless otherwise specified.
Thionyl chloride (2.90 ml, 39.8 mmol) was slowly added to a mixture of 4-nitro-3-pyrazolecarboxylic acid (5.68 g, 36.2 mmol) in EtOH (100 ml) at ambient temperature and the mixture stirred for 48 hours. The mixture was reduced in vacuo and dried through azeotrope with toluene to afford 4-nitro-1H-pyrazole-3-carboxylic acid ethyl ester as a white solid (6.42 g, 96%). (1H NMR (400 MHz, DMSO-d6) δ 14.4 (s, 1H), 9.0 (s, 1H), 4.4 (q, 2H), 1.3 (t, 3H)).
A mixture of 4-nitro-1H-pyrazole-3-carboxylic acid ethyl ester (6.40 g, 34.6 mmol, prepared analogous to Preparation I) and 10% Pd/C (650 mg) in EtOH (150 ml) was stirred under an atmosphere of hydrogen for 20 hours. The mixture was filtered through a plug of Celite, reduced in vacuo and dried through azeotrope with toluene to afford 4-amino-1H-pyrazole-3-carboxylic acid ethyl ester as a pink solid (5.28 g, 98%). (1H NMR (400 MHz, DMSO-d6) δ 12.7 (s, 1H), 7.1 (s, 1H), 4.8 (s, 2H), 4.3 (q, 2H), 1.3 (t, 3H)).
2,6-dichlorobenzoyl chloride (27.6 ml; 193 mmol, 1.1 eq.) in dioxane (50 ml) was added cautiously (dropwise) to a solution of 4-amino-1H-pyrazole-3-carboxylic acid ethyl ester (40 g; 175 mmol, 1 eq.) and triethylamine (80 ml; 578 mmol) in dioxane (350 ml) then heated at 50° C. for 1.5 hours. Further benzoyl chloride (5 ml) was added and the reaction heated at 50° C. overnight. The reaction mixture was filtered and the filtrate washed with dioxane. 2M sodium hydroxide solution (500 ml) was added to the mother liquor, heated at 50° C. for 6 hours, and then evaporated. 400 ml of water was added to the residue then acidified with concentrated hydrochloric acid to pH 3. The solid was collected by filtration, azeotroped with toluene/methanol and the solid dried in vacuo to give 4-(2,6-dichloro-benzoylamino)-1H-pyrazole-3-carboxylic acid (52.2 g) as a cream coloured solid. (LC/MS: Rt 2.31, [M+H]+ 300.08).
A mixture of 4-nitro-1H-pyrazole-3-carboxylic acid methyl ester (12 g, 71 mmol, prepared in an analogous manner to Preparation I) and 10% Pd/C (1 g) in EtOH (100 ml) was stirred under an atmosphere of hydrogen for 18 hours. The mixture was filtered through a plug of Celite, and reduced in vacuo to afford 4-amino-1H-pyrazole-3-carboxylic acid methyl ester as an orange solid (7.2 g, 73%).
A mixture of 2,6-difluorobenzoic acid (6.32 g, 40.0 mmol), 4-amino-1H-pyrazole-3-carboxylic acid methyl ester (5.68 g, 40.0 mmol), EDC (8.83 g, 46.1 mmol) and HOBt (6.23 g, 46.1 mmol) in DMF (100 ml) was stirred at ambient temperature overnight. The mixture was reduced in vacuo, the residue taken up in ethyl acetate and then washed with saturated aqueous sodium hydrogen carbonate, water and brine. The organic extracts was dried (MgSO4) and reduced in vacuo to give 4-(2,6-difluoro-benzoylamino)-1H-pyrazole-3-carboxylic acid methyl ester as a yellow solid (9.94 g). (LC/MS: Rt 2.81, [M+H]+ 282.01).
A mixture of 4-(2,6-difluoro-benzoylamino)-1H-pyrazole-3-carboxylic acid methyl ester (9.80 g) in 2 M aqueous NaOH/MeOH (1:1, 250 ml) was stirred at ambient temperature overnight. Volatile materials were removed in vacuo, water (400 ml) added and the mixture taken to pH 5 using 1M aqueous HCl. The resultant precipitate was collected by filtration and dried through azeotrope with toluene to afford 4-(2,6-difluoro-benzoylamino)-1H-pyrazole-3-carboxylic acid as a pink solid (2.8 g).
A mixture of the appropriate benzoylamino-1H-pyrazole-3-carboxylic acid (0.50 mmol), EDAC (104 mg, 0.54 mmol), HOBt (73.0 mg, 0.54 mmol) and the corresponding amine (0.45 mmol) in DMF (3 ml) was stirred at ambient temperature for 16 hours. The mixture was reduced in vacuo, the residue taken up in EtOAc and washed successively with saturated aqueous sodium bicarbonate, water and brine. The organic portion was dried (MgSO4) and reduced in vacuo to give the desired product.
A mixture of 5-bromo-2-nitropyridine (4.93 g, 24.30 mmol) and tert-butyl piperazine-1-carboxylate (5.0 g, 26.7 mmol) in acetonitrile (60 ml) was heated at refluxed for 3 days. The solvent was evaporated and the solid residue purified by flash chromatography on silica eluting with EtOAc/Petrol (1:3) and recrystallised from EtOAc/Petrol to afford the title compound as an orange solid (5.0 g, 67%) (LCMS: Rt 2.8, [M+H]+ 309).
A mixture of 4-(6-nitro-pyridin-3-yl)-piperazine-1-carboxylic acid tert-butyl ester (3.40 g, 11.0 mmol) and 10% Pd/C (400 mg) in EtOH/EtOAc 1:1 (200 ml) was stirred under an atmosphere of hydrogen for 24 hours. The mixture was filtered through glass microfibre filter, reduced in vacuo and dried to afford the title compound as a tan solid (2.87 g, 93%). (LCMS: Rt 2.41, [M+H]+ 279).
5-Bromo-2-nitropyridine (3.70 g, 18.40 mmol) was dissolved in acetonitrile (40 ml), 4-dimethylamino piperidine (2.5 g, 19.5 mmol) and Hunig's base (3.4 ml, 19.5 mmol) were added and the mixture heated at reflux for 60 h. The reaction mixture was allowed to cool to room temperature and the desired product was collected by filtration as a yellow solid (1.73 g, 38%) (LCMS: Rt 2.29, [M+H]+ 251).
A mixture of dimethyl-(6′-nitro-3,4,5,6-tetrahydro-2H-[1,3′]bypyridinyl-4-yl)-amine (1.70 g, 6.80 mmol) and 10% Pd/C (170 mg) in methanol-water 1:1 (50 ml) was stirred under an atmosphere of hydrogen for 24 hours. The mixture was filtered through a plug of Celite, reduced in vacuo and dried through azeotrope with toluene to afford the title compound as a beige solid (1.43 g, 96%). LCMS: Rt 1.86, [M+H]+ 221).
1-Fluoro-4-nitrobenzene (2.60 g, 18.40 mmol) was dissolved in acetonitrile (50 ml), 4-dimethylamino piperidine (2.5 g, 19.5 mmol) and Hunig's base (3.4 ml, 19.5 mmol) were added and the mixture heated to reflux over 24 h. The reaction mixture was allowed to cool to room temperature and evaporated in vacuo. The solid residue was triturated with diethyl ether and filtered to afford the title compound as a bright yellow solid (4.33 g, 94%) (LCMS: Rt 2.71, [M+H]+ 250].
A mixture dimethyl-[1-(4-nitro-phenyl)-piperidin-4-yl]-amine (2.0 g, 8.03 mmol) and 10% Pd/C (200 mg) in methanol-water 1:1 (50 ml) was stirred under an atmosphere of hydrogen for 24 hours. The mixture was filtered through a plug of Celite, reduced in vacuo and dried through azeotrope with toluene to afford the title compound as an off-white solid (1.75 g, 99%). LCMS: Rt 1.99, [M+H]+ 220).
By following the methods described above, the compounds set out in the table below were prepared.
1H NMR
11H NMR (DMSO-d6) 13.68 (2 H, br s), 10.5 (1 H, br s), 8.36 (1 H, br s), 7.63 (1 H, m), 7.27 (2 H, t), 3.20 (2 H, m), 2.89 (2 H, m), 2.68 (4 H, m), 1.59 (4 H, m), 1.45 (2 H, m)
1H NMR (CDCl3) 15.59 (1 H, br s), 11.45 (1 H, br s), 10.12 (1 H, br s), 8.79 (1 H, s), 7.49 (1 H, m), 7.18 (2 H, t), 6.87 (1 H, s), 3.62 (2 H, s), 2.52 (4 H, m), 1.73 (6 H, m)
1H NMR (DMSO-d6) 13.67 (1 H, br s), 12.19 (1 H, br s), 10.29 (1 H, br s), 8.41 (1 H, d), 7.69-7.57 (1 H, m), 7.33-7.21 (2 H, m), 3.81 (2 H, m), 2.98 (2 H, m), 2.76 (4 H, m), 1.15 (3 H, m)
1H NMR (DMSO-d6) 13.35 (1 H, br s), 10.38 (1 H, br s), 8.47 (1 H, t), 8.33 (1 H, s), 7.68-7.58 (1 H, m), 7.32-7.21 (2 H, m), 3.20-3.03 (2 H, m), 2.69-2.52 (2 H, m), 2.11 (3 H, s), 1.87- 1.73 (2 H, m), 1.65- 1.55 (3 H, m), 1.47- 1.33 (1 H, m), 0.94- 0.81 (1 H, m)
1H NMR (DMSO-d6) 13.70 (1 H, br s), 12.10 (1 H, br s), 10.35 (1 H, br s), 8.39 (1 H, br s), 7.68-7.57 (1 H, m), 7.26 (2 H, t), 7.00 (1 H br s), 3.58 (4 H, m) 3.49 (2 H, s), 2.42 (4 H, m)
1H NMR (DMSO-d6) 13.60 (1 H, br s), 10.10 (1 H, br s), 9.53 (1 H, br s), 8.45 (1 H, s), 8.08 (1 H, d), 7.95 (1 H, d), 7.63-7.42 (4 H, m), 3.47 (4 H, m), 3.13 (4 H, m), 1.43 (9 H, s)
1H NMR (DMSO-d6) 10.10 (1 H, s), 9.75 (1 H, br s), 9.05 (2 H, br s), 8.43 (1 H, s), 8.13 (1 H, d), 7.98 (1 H, d), 7.63-7.49 (4 H, m), 3.46-3.31 (4 H, m), 3.24 (4 H, m)
1H NMR (DMSO-d6) 8.37 (1 H, br s), 8.04 (1 H, br s), 7.96 (1 H, d), 7.60 (1 H, br s), 7.44 (1 H, d), 7.25 (2 H, br s), 3.70 (2 H, d), 2.68 (2 H, t), 2.19 (7 H, s), 1.83 (2 H, d), 1.58- 1.39 (2 H, m)
1H NMR (DMSO-d6) 13.49 (1 H, br s), 10.36 (1 H, br s), 10.09 (1 H, br s), 8.4 (1 H, s), 7.68-7.62 (1 H, m), 7.60 (2 H, d), 7.27 (2 H, t), 6.89 (2 H, d), 3.65 (2 H, d), 2.69- 2.57 (2 H, m), 2.18 (7 H, s), 1.82 (2 H, d), 1.54-1.39(2 H, m)
1NMR (DMSO-d6) 10.22 (1 H, br s), 9.88 (1 H, br s), 9.12 (2 H, br s), 8.43 (1 H, s), 8.13 (1 H, d), 8.01 (1 H, d), 7.70-7.56 (2 H, m), 7.27 (2 H, t), 3.50-3.32 (4 H, m), 3.24 (4 H, br s)
Compounds of the invention were tested for kinase inhibitory activity using the following protocol.
Activated CDK2/CyclinA (Brown et al, Nat. Cell Biol., 1, pp 438-443, 1999; Lowe, E. D., et al Biochemistry, 41, pp 15625-15634, 2002) is diluted to 125 pM in 2.5× strength assay buffer (50 mM MOPS pH 7.2, 62.5 mM β-glycerophosphate, 12.5 mM EDTA, 37.5 mM MgCl2, 112.5 mM ATP, 2.5 mM DTT, 2.5 mM sodium orthovanadate, 0.25 mg/ml bovine serum albumin), and 10 μl mixed with 10 μl of histone substrate mix (60 μl bovine histone Hi (Upstate Biotechnology, 5 mg/ml), 940 μl H2O, 35 μCi γ33P-ATP) and added to 96 well plates along with 5 μl of various dilutions of the test compound in DMSO (up to 2.5%). The reaction is allowed to proceed for 2 to 4 hours before being stopped with an excess of orthophosphoric acid (5 μl at 2%). γ33P-ATP which remains unincorporated into the histone H1 is separated from phosphorylated histone H1 on a Millipore MAPH filter plate. The wells of the MAPH plate are wetted with 0.5% orthophosphoric acid, and then the results of the reaction are filtered with a Millipore vacuum filtration unit through the wells. Following filtration, the residue is washed twice with 200 μl of 0.5% orthophosphoric acid. Once the filters have dried, 20 μl of Microscint 20 scintillant is added, and then counted on a Packard Topcount for 30 seconds.
The % inhibition of the CDK2 activity is calculated and plotted in order to determine the concentration of test compound required to inhibit 50% of the CDK2 activity (IC50).
CDK1/CyclinB assay is identical to the CDK2/CyclinA above except that CDK1/CyclinB (Upstate Discovery) is used and the enzyme is diluted to 6.25 nM.
Assays for CDK4 inhibitory activity can be carried out using the proprietary 33 PanQinase® Activity Assay of Proqinase GmbH, Freiburg, Germany. The assays are performed in 96 well FlashPlates™ (PerkinElmer). In each case, the reaction cocktail (50 μl final volume) is composed of; 20 μl assay buffer (final composition 60 mM HEPES-NaOH, pH 7.5, 3 mM MgCl2, 3 μM Na-orthovanadate, 1.2 mM DTT, 50 μg/ml PEG2000, 5 μl ATP solution (final concentration 1 μM [γ-33P]-ATP (approx 5×105 cpm per well)), 5 μl test compound (in 10% DMSO), 10 μl substrate/10 μl enzyme solution (premixed). The final amounts of enzyme and substrate are as below.
The reaction cocktail is incubated at 30° C. for 80 minutes. The reaction is stopped with 50 μl of 2% H3PO4, plates are aspirated and washed twice with 200 μl 0.9% NaCl. Incorporation of 33P is determined with a microplate scintillation counter. Background values are subtracted from the data before calculating the residual activities for each well. IC50s are calculated using Prism 3.03.
Compounds of the invention can be tested for kinase inhibitory activity using the following protocol.
CDK4/CyclinD1 (Proqinase) is diluted to 12.5 nM in 5 mM Tris pH 7.5, 2.5 mM MgCl2, 25 μM EDTA, 2.5 m M DTT and 125 μM ATP. 10 μl of the enzyme solution is mixed with 10 μl of 100 μl biotin -KAPLSPKKAK4 (Altabioscience, 1 mM stock—10 mg in 2,250 μl H20), 900 μl H2O, 1 μl 10% triton and 35 μCi γ33P-ATP) and added to 96 well plates along with 5 μl of various dilutions of the test compound in DMSO (up to 4%). The reaction is allowed to proceed for 2 hours before being stopped with an excess of ortho-phosphoric acid (20 μl at 2%).
γ33P-ATP which remains unincorporated into the biotin -KAPLSPKKAK4 is separated from phosphorylated biotin -KAPLSPKKAK4 on a Millipore MAPH filter plate. The wells of the MAPH plate are wetted with 0.5% orthophosphoric acid, and then the results of the reaction are filtered with a Millipore vacuum filtration unit through the wells. Following filtration, the residue is washed twice with 200 μl of 0.5% orthophosphoric acid. Once the filters have dried, 20 μl of Microscint 20 scintillant is added, and then counted on a Packard Topcount for 30 seconds.
The % inhibition of the CDK4 activity is calculated and plotted in order to determine the concentration of test compound required to inhibit 50% of the CDK4 activity (IC50).
The compounds of Examples 7, 8, 9 and 10 have IC50 values of less than 0.1 μM against CDK4, and the compound of Example 1 has an IC50 value of less than 5 μM.
The compounds of Examples 7, 8, 9 and 10 have also been tested against CDK2 and it has been found that they are selective for CDK4 relative to CDK2 with the compounds of Examples 7, 9 and 10 showing greater than 5 fold selectivity and the compounds of Examples 9 and 10 showing greater than 20 fold selectivity.
Compounds of the invention can be tested for kinase inhibitory activity using the following CDK4 ELISA protocol.
MaxiSorp Plates (Nunc # 442404) are coated overnight at 4° C. with 300 ng/well Rb152 protein (produced in house) in 50 μl of DBPS buffer (Invitrogen). Plates are washed once with 250 μl of TBS-Tween and blocked for 1 hour at room temperature with 250 μl Superblock (Pierce) with a change of block solution after 10 minutes. Before use the plate is washed twice with TBS-Tween and primed with 100 μl of 1× assay buffer (5× assay buffer: 75 mM MgCl2, 250 mM HEPES, pH 7.4, 5 mM DTT, 5 mM EGTA, pH 8.0, and 0.1% Triton X-100). 5 μl of 10× test compound (in 25% DMSO) are added to duplicate wells. Cdk4/cyclinD1 (Proqinase) is diluted to 1.25× the final concentration of 2.25 nM in 1.25× assay buffer and 40 μl added per well. Positive control wells contain no inhibitor (DMSO only) and negative control wells, no enzyme. The kinase reaction is started by the addition of 5 μl of 100 μM ATP. The reaction is stopped after 30 minutes at room temperature by the addition of 10 μl of 0.5M EDTA and the plate washed twice with TBS-Tween. The primary antibody (anti-pRb Ser 780 CST) is diluted to 1:1000 and 75 μl added per well for 1 hour. The plate is washed 3× with TBS-Tween and 75 μl of the secondary antibody (AP-linked anti-rabbit CST) at 1:3000 is added per well. The plate is incubated for a minimum of one hour, then washed 8× with TBS-Tween. For the detection step, 6 mg of Attophos substrate (Promega) is dissolved in 5 ml water, added to 5 ml Attophos buffer and 90 μl of the solution added per well. The plate is read after 6 minutes incubation at room temperature on a fluorimeter (450 ex/580 em).
GSK3-β (Upstate Discovery) are diluted to 7.5 nM in 25 mM MOPS, pH 7.00, mg/ml BSA, 0.0025% Brij-35, 1.25% glycerol, 0.5 mM EDTA, 25 mM MgCl2, 0.025% β-mercaptoethanol, 37.5 mM ATP and 10 μl mixed with 10 μl of substrate mix. The substrate mix for GSK3-β is 12.5 μM phospho-glycogen synthase peptide-2 (Upstate Discovery) in 1 ml of water with 35 μCi γ33P-ATP. Enzyme and substrate are added to 96 well plates along with 5 μl of various dilutions of the test compound in DMSO (up to 2.5%). The reaction is allowed to proceed for 3 hours (GSK3-β) before being stopped with an excess of ortho-phosphoric acid (5 μl at 2%). The filtration procedure is as for Activated CDK2/CyclinA assay above.
The anti-proliferative activities of compounds of the invention can be determined by measuring the ability of the compounds to inhibition of cell growth in a number of cell lines. Inhibition of cell growth is measured using the Alamar Blue assay (Nociari, M. M, Shalev, A., Benias, P., Russo, C. Journal of Immunological Methods 1998, 213, 157-167). The method is based on the ability of viable cells to reduce resazurin to its fluorescent product resorufin. For each proliferation assay cells are plated onto 96 well plates and allowed to recover for 16 hours prior to the addition of inhibitor compounds for a further 72 hours. At the end of the incubation period 10% (v/v) Alamar Blue is added and incubated for a further 6 hours prior to determination of fluorescent product at 535 nM ex/590 nM em. In the case of the non-proliferating cell assay cells are maintained at confluence for 96 hour prior to the addition of inhibitor compounds for a further 72 hours. The number of viable cells is determined by Alamar Blue assay as before. Cell lines can be obtained from the ECACC (European Collection of cell Cultures).
In particular, compounds of the invention were tested against the HCT-116 cell line (ECACC Reference: 91091005) derived from human colon carcinoma.
The oral bioavailability of the compounds of formula (I) may be determined as follows.
The test compound is administered as a solution both I.V. and orally to balb/c mice at the following dose level and dose formulations;
At various time points after dosing, blood samples are taken in heparinised tubes and the plasma fraction is collected for analysis. The analysis is undertaken by LC-MS/MS after protein precipitation and the samples are quantified by comparison with a standard calibration line constructed for the test compound. The area under the curve (AUC) is calculated from the plasma level vs time profile by standard methods. The oral bioavailability as a percentage is calculated from the following equation:
A tablet composition containing a compound of the formula (I) is prepared by mixing 50 mg of the compound with 197 mg of lactose (BP) as diluent, and 3 mg magnesium stearate as a lubricant and compressing to form a tablet in known manner.
A capsule formulation is prepared by mixing 100 mg of a compound of the formula (I) with 100 mg lactose and filling the resulting mixture into standard opaque hard gelatin capsules.
A parenteral composition for administration by injection can be prepared by dissolving a compound of the formula (I) (e.g. in a salt form) in water containing 10% propylene glycol to give a concentration of active compound of 1.5% by weight. The solution is then sterilised by filtration, filled into an ampoule and sealed.
A parenteral composition for injection is prepared by dissolving in water a compound of the formula (I) (e.g. in salt form) (2 mg/ml) and mannitol (50 mg/ml), sterile filtering the solution and filling into sealable 1 ml vials or ampoules.
A formulation for i.v. delivery by injection or infusion can be prepared by dissolving the compound of formula (I) (e.g. in a salt form) in water at 20 mg/ml. The vial is then sealed and sterilised by autoclaving.
A formulation for i.v. delivery by injection or infusion can be prepared by dissolving the compound of formula (I) (e.g. in a salt form) in water containing a buffer (e.g. 0.2 M acetate pH 4.6) at 20 mg/ml. The vial is then sealed and sterilised by autoclaving.
A composition for sub-cutaneous administration is prepared by mixing a compound of the formula (I) with pharmaceutical grade corn oil to give a concentration of 5 mg/ml. The composition is sterilised and filled into a suitable container.
Aliquots of formulated compound of formula (I) are put into 50 mL vials and lyophilized. During lyophilisation, the compositions are frozen using a one-step freezing protocol at (−45° C.). The temperature is raised to −10° C. for annealing, then lowered to freezing at −45° C., followed by primary drying at +25° C. for approximately 3400 minutes, followed by a secondary drying with increased steps if temperature to 50° C. The pressure during primary and secondary drying is set at 80 millitor.
The compound of formula (I) is dissolved in dichloromethane/ethanol (1:1) at a concentration of 5 to 50% (for example 16 or 20%) and the solution is spray dried using conditions corresponding to those set out in the table below. The data given in the table include the concentration of the compound of Formula (I), and the inlet and outlet temperatures of the spray drier.
A solid solution of the compound of formula (I) and PVP can either be filled directly into hard gelatin or HPMC (hydroxypropylmethyl cellulose) capsules, or be mixed with pharmaceutically acceptable excipients such as bulking agents, glidants or dispersants. The capsules could contain the compound of formula (I) in amounts of between 2 mg and 200 mg, for example 10, 20 and 80 mg.
The antifungal activity of the compounds of the formula (I) can be determined using the following protocol.
The compounds are tested against a panel of fungi including Candida parpsilosis, Candida tropicalis, Candida albicans-ATCC 36082 and Cryptococcus neoformans. The test organisms are maintained on Sabourahd Dextrose Agar slants at 4° C. Singlet suspensions of each organism are prepared by growing the yeast overnight at 27° C. on a rotating drum in yeast-nitrogen base broth (YNB) with amino acids (Difco, Detroit, Mich.), pH 7.0 with 0.05 M morpholine propanesulphonic acid (MOPS). The suspension is then centrifuged and washed twice with 0.85% NaCl before sonicating the washed cell suspension for 4 seconds (Branson Sonifier, model 350, Danbury, Conn.). The singlet blastospores are counted in a haemocytometer and adjusted to the desired concentration in 0.85% NaCl.
The activity of the test compounds is determined using a modification of a broth microdilution technique. Test compounds are diluted in DMSO to a 1.0 mg/ml ratio then diluted to 64 μg/ml in YNB broth, pH 7.0 with MOPS (Fluconazole is used as the control) to provide a working solution of each compound. Using a 96-well plate, wells 1 and 3 through 12 are prepared with YNB broth, ten fold dilutions of the compound solution are made in wells 2 to 11 (concentration ranges are 64 to 0.125 μg/ml). Well 1 serves as a sterility control and blank for the spectrophotometric assays. Well 12 serves as a growth control. The microtitre plates are inoculated with 10 μl in each of well 2 to 11 (final inoculum size is 104 organisms/ml). Inoculated plates are incubated for 48 hours at 35° C. The IC50 values are determined spectrophotometrically by measuring the absorbance at 420 nm (Automatic Microplate Reader, DuPont Instruments, Wilmington, Del.) after agitation of the plates for 2 minutes with a vortex-mixer (Vorte-Genie 2 Mixer, Scientific Industries, Inc., Bolemia, N.Y.). The IC50 endpoint is defined as the lowest drug concentration exhibiting approximately 50% (or more) reduction of the growth compared with the control well. With the turbidity assay this is defined as the lowest drug concentration at which turbidity in the well is <50% of the control (IC50). Minimal Cytolytic Concentrations (MCC) are determined by sub-culturing all wells from the 96-well plate onto a Sabourahd Dextrose Agar (SDA) plate, incubating for 1 to 2 days at 35° C. and then checking viability.
Compounds of the formula (I) are dissolved in acetone, with subsequent serial dilutions in acetone to obtain a range of desired concentrations. Final treatment volumes are obtained by adding 9 volumes of 0.05% aqueous Tween-20™ or 0.01% Triton X-100™, depending upon the pathogen.
The compositions are then used to test the activity of the compounds of the invention against tomato blight (Phytophthora infestans) using the following protocol. Tomatoes (cultivar Rutgers) are grown from seed in a soil-less peat-based potting mixture until the seedlings are 10-20 cm tall. The plants are then sprayed to run-off with the test compound at a rate of 100 ppm. After 24 hours the test plants are inoculated by spraying with an aqueous sporangia suspension of Phytophthora infestans, and kept in a dew chamber overnight. The plants are then transferred to the greenhouse until disease develops on the untreated control plants.
Similar protocols are also used to test the activity of the compounds of the invention in combatting Brown Rust of Wheat (Puccinia), Powdery Mildew of Wheat (Ervsiphe vraminis), Wheat (cultivar Monon), Leaf Blotch of Wheat (Septoria tritici), and Glume Blotch of Wheat (Leptosphaeria nodorum).
The foregoing examples are presented for the purpose of illustrating the invention and should not be construed as imposing any limitation on the scope of the invention. It will readily be apparent that numerous modifications and alterations may be made to the specific embodiments of the invention described above and illustrated in the examples without departing from the principles underlying the invention. All such modifications and alterations are intended to be embraced by this application.
Number | Date | Country | Kind |
---|---|---|---|
0614456.2 | Jul 2006 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB07/02655 | 7/13/2007 | WO | 00 | 6/10/2009 |
Number | Date | Country | |
---|---|---|---|
60830924 | Jul 2006 | US |