The present invention relates to sensors which exploit a change in phase of an interrogation signal to determine a sensed parameter, and particularly, but not exclusively to fibre optic interferometric sensing. The present invention finds particular application in the filed of seismic surveying and imaging.
Fibre optic sensors employ a length of optic fibre arranged in such a way that a sensed parameter causes a strain to be imposed on the fibre. Typically the fibre is arranged in a coil, although other arrangements are possible. Such strain causes a change in phase of the optical signal propagating in that fibre, which change can be detected by interferometric techniques. A variety of different arrangements for this type of transducer have previously been proposed, many of which have the coil of optic fibre wound on a deformable core or mandrel, which undergoes radial expansion or contraction in response to the sensed parameter, such as sensed vibration.
Such fibre optic sensors can exhibit extremely high sensitivities, and have the advantage of being completely passive, employing no power at the sensing transducer. Such sensors have also proved popular in applications where large arrays of sensors are required, on account of the relative ease with which they can be multiplexed.
An example of such an application is seismic surveying in the oil and gas exploration industry, where large time multiplexed arrays comprising hundreds or even thousands of vibration sensors and/or hydrophones can be used to sense reflections of an incident pulse from geological formations beneath the sea bed. Sampling such an array at regular periods provides 3D time lapsed data on existing or potential new reserves.
A problem experienced with this approach to sensing is that, for a given sampling rate, signals above a certain amplitude threshold cause the phase based sensed information to become distorted, and can cause failure of the demodulation process. This effect, commonly referred to as overloading or overscaling is dependent on the frequency of the measured signal. In seismic systems this can cause a particular problem with the direct arrival of the incident pulse, especially when that pulse has been generated close to the sensors (usually by an airgun towed from a surface vessel as it passes over the array). It is desirable to be able to record this incident pulse without the distortion that overscaling can produce.
It is known in the field of optical metrology that a combination of two wavelengths can be used to measure relatively large optical path lengths, of the order of 1 mm for example, to extremely high accuracies using interferometric techniques. This has the effect that the light propagating through the interferometer can be considered as having the synthetic wavelength, giving rise to a synthetic phase or phase change. See for example R. Dandliker, R. Thalmann, and D. Prongue, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339-(1988), which describes a free space interferometer capable of operating at a synthetic wavelength created by two laser sources operating in multiple polarisation states.
It is a general object of the present invention to provide improved sensing methods and apparatus, and an object of specific aspects of the invention to provide improved methods and apparatus for sensing using a multiplexed fibre optic sensor array.
According to a first aspect of the invention there is provided
A method of interrogating a phase based transducer, said transducer adapted to provide a phase output in response to a sensed parameter, said method comprising inputting first and second input pulses to said transducer, said pulses having a time delay therebetween, receiving an output from said transducer in response to said first and second input pulses, and processing the output to determine a measure of the sensed parameter, wherein at least one of said input pulses contains components of at least two different wavelengths.
In this way, the transducer can be considered to operate in response to a synthetic wavelength produced by the combination of the two different input wavelengths, producing a synthetic phase output. By arranging for the synthetic wavelength to be significantly greater than either of the two component wavelengths, the synthetic phase is relatively small, and therefore less susceptible to overscaling. Furthermore, since polarisation is not required, a less complex physical implementation is afforded. The method is therefore applicable to existing sensor arrangements, including multiplexed arrays, with little or no modification of hardware.
The precise arrangement of wavelengths and pulse timings of possible embodiments are discussed in greater detail below, however in a particularly preferred embodiment one pulse is formed of a first component having a first wavelength and first frequency shift (λ1 and f1), and a second component having a different wavelength λ2 and a different frequency shift f2. The other pulse of the pulse pair is again formed of two components, the first component having the first wavelength λ1 and the second component having the second wavelength λ2, ie both pulses have essentially the same combination of wavelengths. Both components of the other pulse however have a common, third frequency shift f3.
This arrangement provides particular advantage in processing the output of a transducer in order to provide a phase measure and hence a measure of the sensed parameter. According to this embodiment, it can be arranged for the transducer output to include phase components at different wavelengths and having different combinations of the three input frequencies. Careful selection of the input frequencies advantageously allows the desired output phase to be derived by frequency selective processes. Preferably the difference between frequencies from different pulses is significantly greater than the difference between the two frequencies in the same pulse.
This is particularly well exploited in an arrangement in which the transducer is adapted to produce an output pulse having components derived from both said input pulses, embodiments of which are described in greater detail below.
The invention extends to methods, apparatus and/or use substantially as herein described with reference to the accompanying drawings.
Any feature in one aspect of the invention may be applied to other aspects of the invention, in any appropriate combination. In particular, method aspects may be applied to apparatus aspects, and vice versa.
Furthermore, features implemented in hardware may generally be implemented in software, and vice versa. Any reference to software and hardware features herein should be construed accordingly.
Preferred features of the present invention will now be described, purely by way of example, with reference to the accompanying drawings, in which:
a and 6b show detection arrangements.
a and 8b illustrate an alternative detector arrangement, and associated frequency diagram.
Referring to
Referring to
If φ(t) is the sensed parameter, then the signal obtained from a photodetector used to measure a series of pulses returning from a sensor of the type described above can be written as cos(ωct+φ(t)) ie. the sensed information is represented as a phase change superimposed on a carrier signal of frequency ωc. Techniques that are well known to those skilled in the art can then be used to demodulate the phase signal from the carrier. The carrier frequency is typically chosen to be half of the Nyquist frequency, which is in turn half of the sampling frequency. It is usual for each returning optical pulse to be sampled once and so the sampling frequency is the rate at which pulse pairs are transmitted into the array. By way of an example, the sampling frequency could be approximately 320 KHz, giving a Nyquist frequency of approximately 160 KHz and a carrier frequency of approximately 80 KHz. The sampling frequency will typically have a practical upper limit dependent upon the type and arrangement of sensor or sensors, amongst other factors.
An overscale condition occurs when the instantaneous frequency of the phase modulated carrier falls outside the Nyquist band i.e. when
or when
where ωN and ωc are the Nyquist and carrier frequencies respectively. In practice this results in aliasing of instantaneous frequency back into the Nyquist band by folding or wrapping around one of its limits in frequency space. Depending on the magnitude and frequency of the sensed parameter, the instantaneous frequency can be wrapped back multiple times. If the sensed parameter is modeled approximately as ω(t)=ω0 cos ωmt, then the condition for overscale not occurring, for the usual condition of ωN=2ωc is sometimes expressed as
As will be explained in greater detail below, the larger the interrogating wavelength, the smaller is the phase value returned, and hence the lower is the sensitivity to overscale problems. However there is a practical limit to the values of wavelengths which can be propagated through optic fibres, which are the preferred application for the present invention. By generating a synthetic wavelength from two or more significantly smaller wavelength components however, a synthetic phase measurement having reduced sensitivity to overscale is afforded.
The AOMs are adapted to modulate their inputs at certain intervals to allow the passage of pulses of light through the device. AOM 406 is first switched on and shifts wavelength λ1 through frequency f1 and simultaneously AOM 416 switches wavelength λ2 through frequency f2. AOM 418 is switched on after a delay period determined by the geometry of the sensor being interrogated and shifts both wavelengths (having been combined in WDM 410) through frequency f3. In embodiments adapted to interrogate a sensor system as illustrated in
Frequency shifts imposed by AOMs necessarily also result in a change in wavelength. However, the changes are many orders of magnitude smaller than their base values, and as will be appreciated by the skilled reader it is beneficial for the purposes of this specification to ignore this wavelength perturbation, ie. to consider the output of an AOM to have the same wavelength as its input. References to wavelengths should be construed accordingly. Similarly, two different frequency shifts will typically result in two different frequencies. Both terms may be used herein, and references to frequencies and frequency shifts should be construed appropriately where necessary.
The light emerging from AOMs 406, 416 and 418 are multiplexed together in a further WDM 420 for onward transmission to the sensor array, so that little light energy is lost through the pulsing network.
Referring to
The output received from a sensor array such as that of
Although the input pulse pattern has been illustrated having first and second frequencies in the first pulse and the third frequency in the second pulse, it will be appreciated that the order of the pulses could equally be reversed, by changing the switching order of the AOMs.
In an interferometric system embodying the present invention, output pulses represent the combination of input pulses containing data represented as a phase difference. Here, because two different wavelengths are input to the sensor or transducer the phase difference acquired between the two arms of the interferometer will also be different. The difference between these two measurements is
Φ=φ1−φ2=4πneffL/λ1−4πneffL/λ2=[4πneffL/(λ+Δλ)](Δλ/λ)
where λ1=λ, and λ2=λ+Δλ. It is therefore apparent from this approach that the interferometer behaves as though the light propagating through its arms has a synthetic wavelength
λsyn=(λ+Δλ)λ/Δλ
Thus the smaller the difference between the wavelengths, the larger the synthetic wavelength, and therefore the smaller the synthetic phase, Φ.
The synthetic wavelength approach reduces the sensitivity of the sensor by the factor (Δλ/λ). It is then desired to perform phase detection of the synthetic phase to determine the phase change imposed by the transducer, and hence a measure of the sensed parameter. Arrangements capable of performing this phase detection are shown in
Before considering this detection in further detail, it is useful to consider the output from the transducer. The coherent intensities can be expressed as:
I(λ1)=Io1{1+V1 cos [2π(f1−f3)t+φ(M+1,λ1)−φ(M,λ1)]}
I(λ1)=Io2{1+V2 cos [2π(f2−f3)t+φ(M+1,λ2)−φ(M,λ2)]}
where I(λ1) and I(λ2) are the interferograms corresponding to wavelengths λ1 and λ2. φ(M+1,λ1) and φ(M,λ1) are the phase acquired by wavelength 1 between mirrors M+1 and M in the array, or more generally between different arms of the interferometer in question. If we substitute in these expressions:
ω1=2π(f1−f3)
ω2=2π(f2−f3)
φ1=φ(M+1,λ1)−φ(M,λ1)
φ2=φ(M+1,λ2)−φ(M,λ2)]
Then the interferograms could be written as
I(λ1)=Io1{1+V1 cos [ω1t+φ1]}
I(λ2)=Io2{1+V2 cos [ω2t+φ2]}
Turning now to
b shows the detail of detector 604 of
[I(λ1+λ2)ac]2=½(Io1V1)2+½(Io2V2)2+½(Io1V1)2 cos(2ω1t+φ1)+½(Io2V2)2 cos(2ω2t+φ2)+Io1Io2V1V2 cos [(ω1+ω2)t+(φ1+φ2)]+Io1Io2V1V2 cos [(ω1−ω2)t+(φ1−φ2)]
The synthetic phase φ1−φ2 is at the difference frequency (ω1−ω2) and is obtained by low-pass filtering the signal after the squarer at 626.
The resulting is pre-amplified at 628, digitised by a high frequency ADC 630 and passed to a phase demodulator 632 which can operate in any well known fashion.
If we choose as an example f1=200 MHz (upshift), f2=200.04 MHz (upshift), and f3=110 MHz (upshift), then the carrier frequency associated with each interferogram becomes (f1−f3)=90 MHz and (f2−f3)=90.04 MHz. The precise values of f1, f2 and f3 are typically dictated by available acousto-optic modulator (AOM) frequencies, pulse transition edge and the final carrier frequency (f1−f2)=0.04 MHz. The latter is typically selected to accommodate the array design.
To recover the ‘Normal’ phase information, which is to say the phase information at a single wavelength, the pulses retrieved from detector 608 (λ2 having a carrier frequency 90.04 MHz as noted above) are sub-sampled by an analogue to digital converter (ADC) at a slower (but more usual pulse repetition) sampling frequency 160 kHz so that the carrier in the said signal is aliased back to (f1−f2)=40 kHz. The sub-sampled signal is then demodulated in a demodulator. The demodulated signal corresponds to φ2. The aliasing condition for typical operation is
{1−REM[(f1−f3)/fN]}×fN=(f1−f2).
where ‘REM’ is the remainder after division within the [ ] brackets and fN is the Nyquist frequency. The Nyquist frequency here is 80 kHz.
In the case discussed above, [(f1−f3)/fN]=[90.04 MHz/80 kHz]=1125.5; the REM(1125.5)=0.5, so that {1−REM[(f1−f3)/fN]}×fN=40 kHz, which is (f1−f2). We could easily make (f1−f3)=90 MHz (upshift); (f2−f3)=90.nn MHz (upshift), and (f1−f2)=0.nn MHz so that pulse repetition rate is 4×0.nn MHz, where nn are any suitable decimal number combination. For example, if 0.nn=0.05, then the carrier frequency of the main signal is 50 kHz and the pulse repetition rate is 200 kHz.
Alternatively, the electrical signal from Detector 608 which is at 90.04 MHz could be down-converted by multiplying it with a 90 MHz signal and low pass filtering the result. The 90 MHz signal is itself the product of f1 and f3 followed by low pass filtering, or from a separate 90 MHz RF source. The down-converted signal is then demodulated as previously.
a shows a further embodiment for recovering the synthetic phase and involves the direct use of the optical outputs without mixing of the two wavelengths in the photodetector. Thus the mixing of the wavelengths is performed after photodetection, in the electrical domain as opposed to the arrangement of
In this way, embodiments of the present invention allow a transducer, or array of transducers to be interrogated to provide a synthetic phase output having reduced sensitivity to overscale, and a more conventional phase output. The outputs can be selected adaptively, such that the synthetic phase is only relied upon during an overscale condition.
It will be understood that the present invention has been described above purely by way of example, and modification of detail can be made within the scope of the invention.
Each feature disclosed in the description, and (where appropriate) the claims and drawings may be provided independently or in any appropriate combination.
Number | Date | Country | Kind |
---|---|---|---|
0713413.3 | Jul 2007 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB08/02306 | 7/4/2008 | WO | 00 | 12/28/2009 |