PHASE COHERENT DIFFERENTIAL STRUCTURES

Information

  • Patent Application
  • 20110210767
  • Publication Number
    20110210767
  • Date Filed
    December 28, 2010
    14 years ago
  • Date Published
    September 01, 2011
    13 years ago
Abstract
Phase-coherent differential structures contain a phase-coherent transformer having two pairs of phase-coherent coupled differential inductors.
Description
FIELD

The present invention relates to differential structures. More particularly, the present invention relates to power-efficient, low phase noise differential structures that are tolerant of differential input phase mismatch.


BACKGROUND

Due to the high market demand for new wireless technologies, there is great interest in developing differential structures such as, for example, frequency dividers that are able to efficiently operate at high frequencies with large division gain.


The frequency divider is one of the key building blocks of phase-locked loops (PLLs) in communications systems that use frequency synthesizers for wireless and Serial/Deserialized (Ser/Des) for wired/optical applications.


Current technology utilizes conventional twist-coupled toggle latch based frequency dividers that store electrical energy non-coherently in the parasitic capacitances. However, the conventional twist-coupled toggle latch based frequency dividers waste energy and generate noise through the charging/discharging process. A more power efficient topology that introduces less noise to the signal would be highly desirable for future wireless technologies such as RF/millimeter wave systems.


Typical divider designs are reported in the following literature and graphed in FIG. 7.

  • [1] M. Wurser, et al, “42 GHz Static Frequency Divider in a Si/SiGe Bipolar Technology,” ISSCC Digest of Tech. Papers, 1997, pp. 86-87.
  • [2] Z. Lao, et al., “55 GHz Dynamic Frequency Divider IC,” Elec. Let. 34 (20), 1998, pp. 1973-1974.
  • [3] A. Felder, et al., “Static Silicon Frequency Divider for Low Power Consumption (4 mW, 10 GHz) and High-Speed (160 mW, 19 GHz),” Proceedings, IEEE BCTM, 1992, pp. 159-162.
  • [4] B. Razavi, et al., “A 13.4 GHz CMOS Frequency Divider,” ISSCC Digest of Tech. Papers, 1994, pp. 176-177.
  • [5] H. Wang, “A 1.8V 3 mW 16.8 GHz Frequency Divider in 0.25 μm CMOS,” ISSCC Digest of Tech Papers, 2000, pp. 196-197.
  • [6] H, Knapp, et al., “25 GHz Static Frequency Divider and 25 GB/s Multiplexer in 0.12 μm CMOS,” ISSCC, Digest of Tech. Papers, 2002, pp. 302-303.
  • [7] Z. Lao, et al., “1.3V Supply Voltage 38 GHz Static Frequency Divider,” Elec. Let. 40 (5), 2004, pp. 295-296.
  • [8] M. Tiebout, “A CMOS Direct Injection-Locked Oscillator Topology as High-Frequency Low-Power Frequency Divider,” IEEE J. of Solid-State Circuits, 39 (7), 2004, pp. 1170-1174.
  • [9] J. Lee, at al., “A 40-GHz Frequency Divider in 0.18 μm CMOS Technology,” IEEE J. of Solid State Circuits 39 (4), 2004, pp. 594-601.


To overcome the deficiencies of the conventional twist-coupled toggle latch based frequency dividers, the present disclosure presents a new design that employs a phase-coherent transformer to obtain power-efficient, low phase noise frequency dividers that are tolerant of differential input phase mismatch.


SUMMARY

According to the present disclosure, phase-coherent differential structures are disclosed.


According to a first embodiment disclosed herein, a circuit is disclosed, comprising: a differential structure having a first circuit for a first input and a second circuit for a second input; and a phase-coherent transformer connected to the differential structure for storing magnetic energy reverberating between the first circuit and the second circuit in accordance with toggling of the first input and the second input.


According to a second embodiment disclosed herein, a method for manufacturing a phase-coherent differential structure is disclosed, comprising: selecting a differential structure having a first circuit for a first input and a second circuit for a second input; and connecting a phase-coherent transformer to the differential structure for storing magnetic energy reverberating between the first circuit and the second circuit in accordance with toggling of the first input and the second input.


According to a third embodiment disclosed herein, a method for dividing frequency of a signal is disclosed, comprising: selecting a phase-coherent frequency divider circuit comprising a differential structure connected to an energy reverberation mechanism; and transmitting said signal through the phase-coherent frequency divider circuit, wherein the energy reverberation mechanism stories magnetic energy reverberating in the differential structure.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 depicts a master/slave (M/S) latch topology circuit according to the present disclosure;



FIG. 2 depicts a master only (M/O) latch topology circuit according to the present disclosure;



FIG. 3
a depicts performance characteristics of the circuit in FIG. 1;



FIG. 3
b depicts performance characteristics of the circuit in FIG. 2;



FIG. 4 depicts measured phase noise levels of the circuits in FIGS. 1 and 2 versus input signal noise level as a function of offset frequency;



FIGS. 5
a-h depict the output of circuit in FIG. 2 as the inputs are phase mismatched up to ±120°;



FIG. 6 depicts input sensitivity of circuits in FIGS. 1-2 versus frequency; and



FIG. 7 depicts operation effectiveness of the circuit in FIG. 2 by comparing its figure-of merit (F.O.M.) with other high speed and low power divider designs known in the art.





In the following description, like reference numbers are used to identify like elements. Furthermore, the drawings are intended to illustrate mayor features of exemplary embodiments in a diagrammatic manner. The drawings are not intended to depict every feature of every implementation nor relative dimensions of the depicted elements, and are not drawn to scale.


DETAILED DESCRIPTION

In conventional latch based differential structures like, for example, frequency dividers, energy is stored in parasitics non-coherently. This wastes energy and generates noise due to the charging/discharging processes, resulting in power-hungry and high signal attenuation in high frequency applications. In contrast to this un-correlated energy storage mechanism, the phase coherent frequency dividers disclosed in the present disclosure store magnetic energy in a phase-coherent transformer (PCT) that includes two phase-coherent coupled differential inductors. The energy reverberation mechanism in the phase-coherent transformer makes the disclosed phase coherent frequency dividers power-efficient as they consume less power with increased division gain, with low phase noise and high operation efficiency, and tolerance for differential input phase mismatching.


In one exemplary embodiment, a phase-coherent transformer 20 may be implemented in a master/slave (M/S) latch topology circuit 10, as shown in FIG. 1. The circuit 10 consists of interconnected transistors M1 . . . M6 forming a Master latch and interconnected transistors S1 . . . S6 forming a Slave latch. The phase-coherent transformer 20 consists of inductors L1 and L2 of opposite polarity that are phase matched with inductors L3 and L4 that are also of opposite polarity.


To analyze the circuit 10, Vout+ and Vout− are initially presumed to be high and low respectively. When the input signal Vin+ is high and Vin− is low, the drain of a transistor M1 is low due to a current iA flowing into the transistor M1 from node A and the drain of a transistor M2 is high. Because of the phase coherence between the inductors L1, L2 and the inductors L3, L4, there is an induced electromotive force (EMF) pointing from the drain of a transistor S1 to node C helping the inductors L3 and L4 in the Slave latch to turn off. When Vin+ goes low and Vin− becomes high, current iC flows from node C into the drain of the transistor S1 as the current iA reduces to zero. It this the reduction of current iA that generates an induced current iCA that also flows from node C into the drain of the transistor S1, providing extra power gain and accelerating the state change.


According to Faraday's induction law, EMF=−dφm/dt=ωφm and diA/dt=Mdφm/dt, where φm is the magnetic flux linking the two differential inductors L1 to L2 and L3 to L4 and M is the mutual inductance. Therefore, the value of the induced current iCA depends on the rate of change in current iA, and thus the signal frequency of ω. The higher the input signal frequency, the larger the induced current iCA and the higher the incremental gain. As a result, instead of wasting energy by charging/discharging parasitics non-coherently in conventional frequency dividers, circuit 10 stores the magnetic energy in the phase-coherent transformer 20 that reverberates the energy back and forth between the Master and the Slave latches in accordance with the input toggling.


In another exemplary embodiment, a phase-coherent transformer 20 may be implemented in a master only (M/O) latch topology circuit 30, as shown in FIG. 2. The circuit 30 consists of interconnected transistors M1, M2 forming the sensing pair and M3, M4 forming a latching pair. The phase-coherent transformer 20 consists of inductors L1 and L2 of opposite polarity that are phase matched with inductors L3 and L4 that are also of opposite polarity.


To analyze the circuit 30, Vout+ and Vout− are initially presumed to be high and low respectively. When the input signal Vin+ is high and Vin− is low, the drain of a transistor M1 is low due to a current iA flowing into the transistor M1 from node A and the drain of a transistor M2 is high. Because of the inherent phase coherence between the inductors L1, L2 and the inductors L3, L4, there is an induced electromotive force (EMF) pointing from the drain of a transistor M3 to node C helping the inductors L3 and L4 to turn off. When Vin+ goes low and Vin− becomes high, current iC flows from node C into the drain of the transistor M3 as the current iA reduces to zero. Like for the circuit 10 described above, the reduction of current iA in the circuit 30 generates an induced current iCA that also flows from node C into the drain of the transistor M3, providing extra power gain and accelerating the state change.


As a result, a 2:1 frequency divider can be implemented in the master only (M/O) latch topology circuit 30 as the magnetic energy reverberates between the sensing/latching pairs once while the input signal toggles twice.


Circuits 10 and 30 may be fabricated with standard 0.18 μm CMOS technology. Because one skilled in the art can easily recognize that bipolar technologies can also be used to implement embodiments disclosed in the present disclosure and their equivalents, the implementation of the bipolar technologies will not be discussed in the present disclosure.



FIGS. 3
a-b, 4, 5a-h, 6 and 7 depict performance characteristics of circuits 10 and 30. Specifically, FIG. 3a depicts that circuit 10 having a large division gain with small power consumption when operating at fin=18 Ghz. FIG. 3b depicts that circuit 30 also having a large division gain with small power consumption when operating at fin=19.4 Ghz. FIG. 4 depicts measured phase noise levels of the circuits 10 and 30 versus input signal noise level as a function of offset frequency. FIGS. 5a-h depict output of circuit 30 as the inputs are phase mismatched up to ±120°. FIG. 6 depicts input sensitivity of circuits 10 and 30 versus frequency, wherein power supply voltage is 1.8V, the input power signal is lower than −10 dBm and the circuit 10 shows 1 GHz dividing range while circuit 30 shows 2 GHz diving range. FIG. 7 depicts operation effectiveness of the circuit 30 by comparing its figure-of merit (F.O.M.) with other high speed and low power divider designs known in the art. As known in the art, the F.O.M. is defined by multiplying the dividing speed (the input signal frequency in Giga-Hz) with the output power gain and then dividing it by the total power consumption (in Watt), i.e. Speed×Gain/Power. As can be seen in FIG. 7, the circuit 30 is almost 27 dB more efficient than other divider designs known in the art.


One skilled in the art can easily appreciate that other differential structures, for example differential amplifiers, mixers, dynamic latches, registers and their equivalents, can also benefit from the use of a phase-coherent transformer as disclosed herein. A differential structure according to the present disclosure has connections and circuitry for both 0 and 180 degree phases of signal inputs and outputs and is able to suppress even harmonics and noise from interference caused by the substrate, ground and/or power supply.


The foregoing detailed description of exemplary and preferred embodiments is presented for purposes of illustration and disclosure in accordance with the requirements of the law. It is not intended to be exhaustive nor to limit the invention to the precise form(s) described, but only to enable others skilled in the art to understand how the invention may be suited for a particular use or implementation. The possibility of modifications and variations will be apparent to practitioners skilled in the art. No limitation is intended by the description of exemplary embodiments which may have included tolerances, feature dimensions, specific operating conditions, engineering specifications, or the like, and which may vary between implementations or with changes to the state of the art, and no limitation should be implied therefrom. Applicant has made this disclosure with respect to the current state of the art, but also contemplates advancements and that adaptations in the future may take into consideration of those advancements, namely in accordance with the then current state of the art. It is intended that the scope of the invention be defined by the Claims as written and equivalents as applicable. Reference to a claim element in the singular is not intended to mean “one and only one” unless explicitly so stated. Moreover, no element, component, nor method or process step in this disclosure is intended to be dedicated to the public regardless of whether the element, component, or step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. Sec. 112, sixth paragraph, unless the element is expressly recited using the phrase “means for . . . ” and no method or process step herein is to be construed under those provisions unless the step, or steps, are expressly recited using the phrase “step(s) for . . . . ”

Claims
  • 1-17. (canceled)
  • 18. A circuit, comprising: a differential structure having a first circuit for accepting a first input and a second circuit for accepting a second input; anda phase-coherent transformer connected to the differential structure for storing magnetic energy reverberating between the first circuit and the second circuit in accordance with toggling of the first input and the second input;wherein the differential structure is a frequency divider having a master only (M/O) latch topology.
  • 19. A circuit as recited in claim 18, wherein the phase-coherent transformer comprises a first pair of inductors of opposite polarity to one another and connected to the first circuit, and a second pair of inductors of opposite polarity to one another and connected to the second circuit, wherein the first pair of inductors are phase coherent with the second pair of inductors.
  • 20. A circuit as recited in claim 18, wherein the differential structure comprises one or more MOS transistors.
  • 21. A circuit as recited in claim 18, wherein the differential structure comprises one or more bipolar transistors.
  • 22. A circuit as recited in claim 18, wherein the first input of the differential structure is 180 degrees out of phase with the second input of the differential structure.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/997,352 filed on Jan. 30, 2008, now U.S. Pat. No. ______, incorporated herein by reference in its entirety, which is a national stage entry of PCT/US2006/029165 filed on Jul. 26, 2006, incorporated herein by reference in its entirety, which claims priority to U.S. provisional patent application Ser. No. 60/705,869 filed on Aug. 4, 2005, incorporated herein by reference in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government support under Grant Number N66001-04-1-8934 awarded by the U.S. Navy. The Government has certain rights in the invention.

Provisional Applications (1)
Number Date Country
60705869 Aug 2005 US
Continuations (1)
Number Date Country
Parent 11997352 Jan 2008 US
Child 12979684 US