1. Field of the Invention
The present invention relates to a phase correction apparatus, a DVOR (Doppler VHF omnidirectional radio range) apparatus, and a phase correction method for radio navigation.
2. Description of the Related Art
An example of a DVOR apparatus for providing aircraft with directional information is disclosed in U.S. Pat. No. 4,484,196. The DVOR apparatus of the related art arranges, as shown in
The carrier antenna A radiates a reference phase signal in all directions. The reference phase signal is an AM wave formed by amplitude-modulating at 30 Hz a carrier of 108 to 118 MHz. The sideband antennas B1 to B48 arranged along the circle are sequentially activated at regular intervals of, for example, 30 times a second, so that the sideband antennas B1 to B48 successively emit subcarriers whose frequency is higher than that of the carrier by, for example, 9960 Hz. A distance between the sideband antenna emitting a subcarrier and an optional spatial point periodically changes with time, and therefore, the subcarriers received at the optional spatial point periodically change the frequency thereof due to Doppler effect, to form an FM wave of 30 Hz. The phase of this FM wave is dependent on an orientation with respect to a DVOR station where the DVOR apparatus is present. Namely, the sideband antennas B1 to B48 radiate the FM wave superposed by a variable phase signal.
The reference phase signal and variable phase signal are adjusted so that their phases agree with each other on magnetic north, i.e., at zero degrees. An aircraft receives these two signals, detects a phase difference between the AM wave and the FM wave both modulated at the same frequency of 30 Hz, and finds a present orientation of the aircraft.
Waveforms (e.g. (a), (c), (e)) provided by the odd-numbered sideband antennas must be continuous between two adjacent ones. Also, waveforms (e.g. (b), (d)) provided by the even-numbered sideband antennas must be continuous between two adjacent ones. If waveforms are discontinuous between adjacent odd- or even-numbered antennas, an aircraft is unable to correctly detect a phase difference between the AM wave from the carrier antenna A and the FM wave from the sideband antennas B1 to B48, and therefore, is unable to find a correct orientation.
To avoid the problem, the DVOR apparatus according to the related art precisely equalizes the lengths of the antenna cables C1 to C48 with one another, to align the phases of radio waves provided by the sideband antennas B1 to B48.
However, to align the phases of radio waves provided by the sideband antennas, the 48 antenna cables C1 to C48 of the DVOR apparatus must precisely be processed into identical electrical lengths. This process needs a long time and skill. Even with the identical electrical lengths, the related art is still vulnerable to phase shifts that may occur due to the aging of the antenna cables after installing the DVOR apparatus at a site.
According to a first aspect of the present invention, a phase correction apparatus includes storing means and correction means. The storing means stores a phase correction value associated with each a of plurality of transmission antennas. The phase correction value is calculated according to an electrical length of a signal path extending from a signal generator generating a transmission signal to the transmission antenna. The correction means corrects a phase of the transmission signal supplied from the signal generator to each transmission antenna according to the phase correction value for the transmission antenna stored in the storing means.
According to a second aspect of the present invention, provided is a DVOR apparatus having a carrier antenna radiating a carrier signal and a plurality of sideband antennas arranged along a circle around the carrier antenna and sequentially emitting a sideband signal. The DVOR apparatus includes a signal generator, storing means, correction means, switching means, and control means. The signal generator generates a sideband signal. The storing means stores a phase correction value associated with each of the sideband antennas. The phase correction value is calculated according to an electrical length of a signal path extending from the signal generator to the side band antenna. The correction means corrects a phase of the sideband signal supplied from the signal generator to each sideband antenna according to the phase correction value for the sideband antenna stored in the storing means. The switching means switches the sideband antennas from one to another so that the phase-corrected sideband signal is supplied to the sideband antenna. The control means controls the phase correction means, so that the correction means corrects the phase of the sideband signal in synchronization with the switching of the switching means.
Embodiments of the present invention will be explained with reference to the accompanying drawings.
In
Based on an output from the phase correction controller 5 to be explained later, the phase corrector 4 corrects a phase of the half-sine wave signal generated by the signal generator 12 and amplified by the power amplifier 13 and outputs the phase-corrected half-sine wave signal to the distributor 3. In response to a switching control signal from the signal generator 12, the distributor 3 switches the sideband antennas from one to another so that the phase-corrected half-sine wave signal from the phase corrector 4 is supplied to a proper one of the sideband antennas.
In response to a synchronization signal s2 from the signal generator 12, the phase correction controller 5 refers to a phase correction table 6 and provides the phase corrector 4 with a phase correction control signal together with a phase correction value retrieved from the phase correction table 6.
The phase correction table 6 stores a phase correction value for each of the odd-numbered sideband antennas B1, B3, . . . , and B47, the phase correction values being necessary to secure consecutiveness of radio waveforms emitted from these odd-numbered sideband antennas. The phase correction values are calculated by measuring electrical lengths of signal paths (antenna cables C1, C3, . . . , and C47) from the signal generator 12 to the odd-numbered sideband antennas B1, B3, . . . , and B47 with the use of, for example, a network analyzer and by finding differences among the measured electrical lengths. To cope with the aging of the antenna cables C1, C3, . . . , and C47, the phase correction values may be updated by periodically measuring the electrical lengths of the signal paths.
The odd-numbered sideband antennas B1, B3, . . . , and B47 are connected through the antenna cables C1, C3, . . . , and C47, respectively, to the distributor 3 and sequentially emit radio waves based on the half-sine wave signal generated by the signal generator 12 and amplified by the power amplifier 13.
In the DVOR apparatus of
The phase corrector 7 corrects a phase of the half-cosine wave signal generated by the signal generator 15 and amplified by the power amplifier 16 and sends the phase-corrected half-cosine wave signal to the distributor 3. In response to a switching control signal s3 from the signal generator 15, the distributor 3 switches the sideband antennas from one to another so that the phase-corrected half-cosine wave signal from the phase corrector 7 is supplied to a proper one of the sideband antennas.
In response to a synchronization signal s4 from the signal generator 15, the phase correction controller 8 refers to a phase correction table 9 and provides the phase corrector 7 with a phase correction control signal together with a phase correction value retrieved from the phase correction table 9.
The phase correction table 9 stores a phase correction value for each of the even-numbered sideband antennas B2, B4, . . . , and B48, the phase correction values being necessary to secure consecutiveness of radio waveforms emitted from these even-numbered sideband antennas. The phase correction values are calculated by measuring electrical lengths of signal paths (antenna cables C2, C4, . . . , and C48) from the signal generator 15 to the even-numbered sideband antennas B2, B4, . . . , and B48 and by finding differences among the measured electrical lengths. To cope with the aging of the antenna cables C2, C4, . . . , and C48, the phase correction values may be updated by periodically measuring the electrical lengths of the signal paths.
The even-numbered sideband antennas B2, B4, . . . , and B48 are connected through the antenna cables C2, C4, . . . , and C48, respectively, to the distributor 3 and sequentially emit radio waves based on the half-cosine wave signal generated by the signal generator 15 and amplified by the power amplifier 16.
Operation of the DVOR apparatus shown in
The sideband transmitter 1 controls the distributor 3 so that the sideband antennas are switched from one to another every 1/720 seconds to receive a half-sine wave signal from the signal generator 12. Supplying a half-sine wave signal generated by the signal generator 12 to the sideband antenna B1 will be explained. The signal generator 12 sends the generated half-sine wave signal to the phase corrector 4 through the power amplifier 13. Also, the signal generator 12 provides the distributor 3 with a switching control signal s1 so that the distributor 3 may supply the half-sine wave signal to the sideband antenna B1. At the same time, the signal generator 12 provides the phase correction controller 5 with a synchronization signal s2.
In response to the synchronization signal s2 from the signal generator 12, the phase correction controller 5 refers to the phase correction table 6, retrieves a phase correction value corresponding to the sideband antenna B1 from the phase correction table 6, and provides the phase corrector 4 with a phase correction control signal together with the stored phase correction value. The phase corrector 4 uses the phase correction value corresponding to the sideband antenna B1 supplied from the phase correction controller 5, to correct the half-sine wave signal provided by the signal generator 12 and amplified by the power amplifier 13 and supplies the phase-corrected half-sine wave signal to the distributor 3.
The distributor 3 supplies the phase-corrected half-sine wave signal from the phase corrector 4 to the sideband antenna B1 through the antenna cable C1.
Thereafter, the signal generator 12 provides the distributor 3 with a switching control signal so that the half-sine wave signal is supplied to the next sideband antenna B3 and the other sideband antennas. The signal generator 12 provides a phase correction controller 5 with a synchronization signal s2 so that the phase correction of the selected sideband antenna is conducted in synchronization with the switching of the distributor 3. In this way, the odd-numbered sideband antennas B1, B3, . . . , and B47 sequentially receive the half-sine wave signal whose phase is corrected with the use of phase correction values corresponding to the odd-numbered sideband antennas, respectively.
On the contrary, in a case where phase correction is conducted by the phase corrector 4, waveforms of the half-sine wave signal at the input end (a1) of the distributor are corrected as shown in (g) of
In this way, according to the present embodiment, the electrical lengths of signal paths from the sideband transmitter 1 to the sideband antennas B1, B3, . . . , and B47 are measured, phase correction values for the sideband antennas are calculated, respectively, according to the measured electrical lengths, and the phase of a half-sine wave signal supplied from the sideband transmitter 1 to each sideband antenna is corrected according to the phase correction value for the sideband antenna. Consequently, without precisely equalizing the lengths of the antenna cables C1, C3, . . . , and C47, the consecutiveness of radio waveforms emitted from the sideband antennas can be secured according to the present embodiment. Furthermore, the continuity of output waveforms of radiation can be maintained even if all of the electrical lengths between each of input end a1 of the distributor 3 associated with each corresponding sideband antenna and the corresponding terminals p1, p3, . . . , and p47.
The electrical lengths of the signal paths may periodically be measured to update the phase correction values in the phase correction table 6 accordingly. This technique can easily handle, without hardware readjustment, phase shifts that may occur due to the aging of the antenna cables C1, C3, . . . , and C47.
Two signal generators 12 and 15 of the first embodiment may be integrally constituted. According to a second embodiment, as shown in
Modifications
As shown in
In a similar manner, with regard to the DVOR apparatus of the second embodiment, the power amplifier (AMP) 13 (16) can be also connected between the output end of the phase corrector 4(7) and the input end of the distributor 3, and therefore, a sideband transmitter 21′ (22′) can be implemented as shown in
As to the DVOR apparatus of the first embodiment, the signal generator 12(15), the phase corrector 4(7), the phase correction controller 5(8), and the phase correction table 6(9) can be integrated into one integration circuit as the signal generation part 30 shown in
In a similar manner, with regard to the DVOR apparatus of the second embodiment, a signal generation part including the signal generator 12, the phase corrector 4, the phase correction controller 5, and the phase correction table 6, the signal generator 12, the phase shifter 18, the phase corrector 7, the phase correction controller 8, and the phase correction table 9 can be integrated into one integration circuit 31 as shown in
The present invention is applicable to radar signal processors of radar systems.
This application claims benefit of priority under 35 U.S.C. 119 to Japanese Patent Application No. 2006-163355 filed on Jun. 13, 2006, the entire contents of which are incorporated by reference herein. Although the present invention has been described above by reference to certain embodiments of the present invention, the present invention is not limited to the embodiments described above. Modifications and variations of the embodiments described above will occur to those skilled in the art in light of the teachings. The scope of the present invention is defined with reference to the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
P2006-163355 | Jun 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3181159 | Kramar et al. | Apr 1965 | A |
4005427 | Hofgen | Jan 1977 | A |
4197542 | Hofgen | Apr 1980 | A |
4382259 | Becavin et al. | May 1983 | A |
4484196 | Lucas et al. | Nov 1984 | A |
4591861 | Kautz | May 1986 | A |
4931803 | Shimko | Jun 1990 | A |
5008680 | Willey et al. | Apr 1991 | A |
5045859 | Yetter | Sep 1991 | A |
5623270 | Kempkes et al. | Apr 1997 | A |
20060038599 | Avants et al. | Feb 2006 | A1 |
20070247363 | Piesinger | Oct 2007 | A1 |
Number | Date | Country |
---|---|---|
2 081 548 | Feb 1982 | GB |
57-59179 | Apr 1982 | JP |
57-118169 | Jul 1982 | JP |
63-39876 | Aug 1988 | JP |
1-142478 | Jun 1989 | JP |
3-267803 | Nov 1991 | JP |
8-43513 | Feb 1996 | JP |
2001-249172 | Sep 2001 | JP |
2005-91285 | Apr 2005 | JP |
2005-210364 | Aug 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20110037653 A1 | Feb 2011 | US |