Phase delay line for collinear array antenna

Information

  • Patent Grant
  • 6222494
  • Patent Number
    6,222,494
  • Date Filed
    Wednesday, June 23, 1999
    24 years ago
  • Date Issued
    Tuesday, April 24, 2001
    23 years ago
Abstract
A delay line, suitable for use as a feeder stage in an antenna array, comprises a single spiral revolution conductive strip formed on an insulating sheet. In one arrangement, the single spiral revolution conductive strip comprises first to fifth conductive strips connected end-to-end in series. The first and third conductive strips are positioned opposite each other, the third and fifth conductive strips are positioned opposite each other, and the second and fourth conductive strips are positioned opposite each other. The delay line finds particularly advantageous use in a collinear antenna array, particularly due to its very compact size.
Description




CROSS-REFERENCE TO RELATED APPLICATION




This application claims priority of European Patent Application No. 98305164.0, which was filed on Jun. 30, 1998.




FIELD OF THE INVENTION




The present invention relates to a delay line, and particularly but not exclusively to a feeding delay line in a collinear antenna array.




BACKGROUND OF THE INVENTION




In a wireless local area network (WLAN) a number of wireless access points (APs) form the wireless infrastructure, and wireless hosts communicate with each other via the wireless APs. The wireless hosts may be stationary or may roam around. Such a system is similar to any cellular network system.




A requirement for antennas at a wireless access point, or in a base station of a cellular network, is that the radiation must be omni-directional in the azimuth plane, in order to give an equal chance of access to all mobiles around it. There is a continuing desire for higher gain, omni-directional antennas, in particular for wireless APs, so as to extend the cell size in a cellular network and/or increase communication reliability of cells. However, such improvements need to be achieved whilst minimizing the cost, size and technical complexity of the antennas.




A good example of an omni-directional antenna is the well-known half wavelength dipole antenna which has a so-called “donut” shaped radiation pattern providing good omni-directional coverage. Such well-known half-wavelength dipole antenna's have a signal gain of 2 dBi, which can be insufficient for the desired large cell size/good communication reliability required or wireless AP antennas. A gain of 5 dBi can provide substantial improvements in omni-directional coverage.




The 2 dBi gain of a half-wavelength dipole antenna can be increased by “squashing” the “donut” radiation pattern across its vertical cross-section, thus changing it from the “donut” shape of a well-known half-wavelength dipole antenna to a “squashed donut”, being flatter and larger in the azimuth plane.




Theoretically, such a pattern modification can be obtained, for example, by means of a couple of ordinary half-wavelength dipoles vertically stacked on top of each other to form a collinear array and fed in phase. However, the implementation of such an antenna can be troublesome primarily due to difficulties in arranging the feeding for the array elements in such a way as to avoid disturbing the radiation pattern. Known solutions to the problem of providing a feeding network in the collinear array add to the cost, size, or technical complexity of the antenna, which is undesirable.




It is therefore an object of the present invention to provide a feeding arrangement suitable for use in a collinear array antenna which can be implemented in a collinear array without unduly increasing the technical complexity thereof, which minimizes interference with the radiation pattern of the antenna, and which does not unduly add to the physical size of the antenna.




SUMMARY OF THE INVENTION




Thus, in one aspect of the present invention there is provided a delay line formed on an insulating sheet and having an input and an output, and comprising a single spiral revolution conductive strip coupled between the input and output.




There is thus provided a compact delay line suitable for use in an antenna array feeder stage.




The single spiral revolution conductive strip may comprise in one preferable embodiment: first to fifth conductive strips connected end-to-end in series, the first and third conductive strips being opposite to one another, the third and fifth conductive strips being opposite to one another and the second and fourth conductive strips being opposite to one another. Preferably the first and third conductive strips are parallel, the third and fourth conductive strips are parallel, and the second and fourth conductive strips are parallel.




The end of the first conductive strip not connected to the second conductive strip may be connected to the input by a sixth conductive strip. The end of the fifth conductive strip not connected to the fourth conductive strip may be connected to the output by a seventh conductive strip.




The single spiral revolution strip may comprise in another preferable embodiment: a first conductive strip coupled at one end to the input; a second conductive strip connected at one end to the other end of the first conductive strip and orientated at approximately 90° thereto; a third conductive strip connected at one end to the other end of the second conductive strip and orientated at approximately 90° thereto in a direction opposite to that of the first conductive strip: a fourth conductive strip connected at one end to the other end of the third conductive strip and orientated at approximately 90° thereto in a direction opposite to that of the second conductive strip; and a fifth conductive strip connected at one end to the other end of the fourth conductive strip and orientated at approximately 90° thereto in a direction opposite to that of the third conductive strip, and coupled at the other end thereof to the output.




The first conductive strip may be coupled to the input by a sixth conductive strip connected at one end to the other end of the first conductive strip and orientated at approximately 90° thereto in a direction opposite to that of the second conductive strip. The fifth conductive strip may be coupled to the output by a seventh conductive strip connected at one end to the other end of the fifth conductive strip and at its other end to the output, and orientated at approximately 90° relative to the fifth conductive strip in a direction opposite to the fourth conductive strip.




The first to sixth conductive strips are preferably formed on a first side of the insulating sheet, and the seventh conductive strip (


50


) is preferably formed on a second side of the insulating sheet.




Preferably, the third conductive strip is longer than the first conductive strip, the fourth conductive strip is shorter than the second conductive strip, the fifth conductive strip is shorter than the third (


44


) conductive strip, and the output is located opposite the input (


34


).




The present invention further provides an antenna array comprising at least one feeder stage including a single spiral revolution conductive strip delay line.




In another aspect of the present invention there is provided a collinear antenna array formed on an insulating sheet comprising: a first end fed dipole antenna system for a radio frequency generator having an operating wavelength L, comprising: on a first side of an insulating sheet a first and a second quarter wavelength conductive strip in end-to-end connection; on a second side of the insulating sheet a third quarter wavelength conductive strip, overlying the first quarter wavelength conductive strip, a fourth quarter wavelength conductive strip having a longer arm spaced from and parallel to the third quarter wavelength conductive strip and a shorter arm connected to the third quarter wavelength conductive strip and a fifth quarter wavelength conductive strip having a longer arm spaced from and parallel to the third quarter wavelength conductive strip, symmetrical with the fourth quarter wavelength conductive strip, and a shorter arm connected to the third quarter wavelength conductive strip; and means to connect said radio frequency generator between the end of the third quarter wavelength conductive strip remote from the connection to the fourth quarter wavelength conductive strip, and the corresponding end of the first quarter wavelength conductive strip, whereby the second and fourth quarter wavelength conductive strips form a linear dipole antenna; wherein the collinear antenna array further comprises; a feeder stage including a delay line having an input and an output and a single spiral revolution conductive strip coupled therebetween, the delay line input being connected to the end of the second quarter wavelength conductive strip remote from the first quarter wavelength conductive strip; and a monopole comprising a conductive strip having one end connected to the output of the delay line.




There is thus provided a collinear antenna array having a simple feeding network implementation, and an overall smaller size due to the feeder arrangement provided by the delay line having a compact size.




The collinear antenna array may further comprise an auxiliary antenna orientated orthogonal to the collinear antenna array. Thereby selection antenna diversity is achieved by means of a small extra antenna. The auxiliary antenna may be a bent-notch antenna.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention will now be described with reference to a preferred embodiment with reference to the accompanying drawings, in which:





FIG. 1

is a plan view of a printed sleeve antenna;





FIG. 2

is a schematic illustrating the RF currents in the aprts of the antenna of

FIG. 1

,





FIG. 3

is a plan view of a modified printed sleeve antenna also illustrating the RF currents therein;





FIG. 4

is a plan view of a collinear antenna array including the modified printed sleeve antenna of

FIG. 3 and a

phase delay line according to the present invention;





FIG. 5

is as detailed view of the phase delay line of

FIG. 4

; and





FIG. 6

is a plan view of the collinear antenna array of

FIG. 4

with an auxiliary antenna.











DETAILED DESCRIPTION




Reference is now made to the drawings, in which like reference numerals identify similar or identical elements.

FIGS. 1 and 2

illustrate an end fed dipole antenna system as described in U.S. Pat. No. 5,598,174. Such an end fed dipole antenna system utilizes a particularly advantageous feeding technique which provides an end fed dipole which operates as if it were center fed. The delay line according to the present invention can be combined with such an antenna to construct a compact collinear array antenna having high performance, as discussed hereafter.





FIG. 1

illustrates an antenna system, indicated generally as


10


, which comprises first and second conductive strips


12


,


14


formed on an insulating layer or sheet


16


, such as a printed circuit board (PCB). Conductive strips


12


,


14


are on the lower side of the PCB as viewed in

FIG. 1

, and are therefore shown in dashed outline. Each conductive strip is L/4 in length where L is the wavelength of operation, and the conductive strips are connected end-to-end. The end of conductive strip


12


which is remote from conductive strip


14


is connected to one side of a radio frequency (RF) generator


18


operating at the wavelength L.




On the upper side of the insulating layer


16


are third and fourth conductive strips


22


,


24


; conductive strip


22


is straight and of length L/4 and has one end connected to the other side of the RF generator


18


. Conductive strip


24


is essentially “L” shaped, the longer arm of the L lying parallel to and spaced from conductive strip


22


, and the shorter arm being connected to the opposite end of conductive strip


22


to that end of conductive strip


22


connected to the generator. Adjacent strips


22


,


24


is a fifth conductive strip


26


perpendicular to the other four conductive strips. Conductive strip


26


is of relatively small size and provides a suitable connection for unbalanced feed means such as a coaxial feed cable (not shown) which connects the RF generator


18


to the antenna. It will be appreciated that with this arrangement, the provision of a true ground plane, which would need to be of much greater size than strip


26


, is unnecessary. Conductive strip


22


overlies conductive strip


12


, i.e., the conductive strips


22


,


12


are in register but are separated by the thickness of PCB


16


. PCB


16


advantageously follows the general elongated outline of the strips but is of slightly greater area.




In

FIG.2

, both sides of the PCB


16


are shown in a schematic view. Above the chain dashed line are conductive strips


12


,


14


, and below the chain dashed line are conductive strips


22


,


24


and conductive strip


26


. While conductive strips


12


,


14


are shown to be thinner than conductive strips


22


,


24


, this is for clarity of illustration only; the conductive strips in practice may be of equal width.




It is well known in antenna theory that for optimum performance the RF currents in each arm of a linear dipole, e.g. that formed by conductive strips


12


,


14


, must be of equal amplitude and phase, that is the dipole must be balanced. This is easily achieved if the dipole is center fed from a balanced source. However, the dipole often has to be connected to an unbalanced source (e.g. a coaxial cable or a microstrip line) which creates the need for a balun. Moreover the RF signal has to be brought to the center of the dipole (i.e. the junction between conductive strips


12


and


14


) in a way that will not disturb the RF current distribution in the dipole itself.




The placement of conductive strip


22


underneath conductive strip


12


forms a transmission line that transfers the signal from the RF generator


18


to the junction of conductive strips


12


and


14


. Therefore the RF currents I


12


and I


22


, in conductive strips


12


and


22


respectively, are of equal amplitude and opposite phase. In such an arrangement, conductive strip


14


attached to conductive strip


12


can be regarded as a L/4 monopole with respect to the virtual ground positioned at the end of conductive strip


22


underneath the junction of conductive strips


12


and


14


. It can be assumed that the RF generator has moved to the other end of the line formed by conductive strips


12


,


22


and has one of its outputs connected to conductive strip


14


and the other floating. In order to ensure that the arrangement operates as a monopole (which is by definition an unbalanced antenna) fed from an unbalanced RF source


18


, the effect of a ground plane has to be present and the other (floating) end of the RF generator


18


has to be connected to it. This results in the injecting into this ground plane of an RF current, equal in amplitude and opposite in phase to the RF current


114


in conductive strip


14


.




The effect of the presence of an infinite ground plane (ideal current sink) at this point (i.e. at the end of conductive strip


22


positioned below the junction of conductive strips


12


and


14


) is achieved by placing conductive strip


24


parallel to conductive strip


22


and connecting it to conductive strip


22


(at the junction of strips


12


and


14


). The L/4 length of conductive strip


24


forms, with respect to strip


22


, an open quarter wavelength transmission line and therefore, as seen by monopole


14


(and transferred RF generator


18


) appears as an infinitely large ground plane since conductive strip


24


is terminated at a position of zero current and maximum voltage of the standing wave. The result is that the RF currents I


24


and I


14


, in conductive strips


24


and


14


respectively, are of equal amplitude and orientation, as in the case of a center fed dipole, while the unbalanced RF generator


18


appears to feed unbalanced monopole antenna


14


, through a microstrip line formed by conductive strips


12


,


22


. The RF currents I


12


and I


22


cancel out each other in terms of radiation, while currents I


14


and I


24


act together as a center fed dipole. More precisely the currents in conductive strips


14


and


24


are distributed in the same way as in the arms of a center fed dipole, creating its effect of a true dipole-like radiation pattern. Although the system operates as if it were center fed, the dipole


14


,


24


is in fact end fed (through line


12


,


22


), and thus has the convenience of an end fed antenna.




If a physical ground plane is provided at the end of conductive strip


22


, closer to the actual location of the RF generator


18


(e.g. conductive strip


26


), it will be almost free of (unbalanced) ground currents since these are redirected to strip


24


, effectively radiating associated energy to the air. This feature of antenna


10


that prevents the occurrence of unbalanced ground currents on the ground plane associated to the antenna feeding point, is important for hand held radio devices since it can lead to significant improvements in RF efficiency.




In the preferred embodiment of the present invention, the end-fed dipole antenna of U.S. Pat. No. 5,598,174 described hereinabove with reference to

FIGS. 1 and 2

is modified and used as part of a collinear array antenna. The end-fed dipole antenna of

FIGS. 1 and 2

is modified, as shown in FIG.


3


and described further hereinafter, in order to improve the symmetry of the radiation pattern, which feature becomes more important in constructing an antenna array.




In

FIG. 3

elements which correspond to elements shown in

FIGS. 1 and 2

are identified by like reference numerals.

FIG. 3

shows the PCB


16


from the opposite side shown in

FIG. 1

, i.e. the underside. The grey areas are on the upperside of the PCB and the white (or clear) areas on the underside the underside being visible in FIG.


3


.

FIG. 3

shows the first and second conductive strips


12


and


14


, and the third and fourth conductive strips


22


,


24


. In addition a sixth conductive strip


28


is provided, essentially “L”-shaped and symmetrical with conductive strip


24


about conductive strips


12


and


22


.




The provision of strip


28


, symmetric to strip


24


, improves the symmetry of the radiation pattern of the printed sleeve antenna. In operation an RF current I


28


flows in conductive strip


28


. To ensure the radiation pattern of the antenna in

FIG. 3

is omnidirectional and maximized in the azimuth plane, the RF currents I


14


, I


24


and I


28


must be in phase.





FIG. 4

illustrates how the adapted end-fed dipole antenna of

FIG. 3

is further modified to form a collinear array incorporating a delay line in accordance with the present invention. Once again, like reference numerals denote like elements.




The end of the conductive strip


14


remote from the conductive strip


12


is connected through an interconnection comprising a delay stage


30


to a conductive strip


32


of length L/2 forming a half-wavelength monopole. The delay stage, or delay line


30


acts as a feeder delay stage in the arrangement of FIG.


4


.




In order for the antenna of

FIG. 4

to operate as a collinear array, the delay stage


30


must let approximately half of the total incident RF power from the RF source


18


be fed directly to the top element


32


of the collinear array. This is required to achieve a desired gain of 5 dBi, which is approximately twice the half-wavelength dipole power gain of 2 dBi.




The delay stage


30


must also delay the RF current supplied to the top element


32


of the collinear array by 180°, because only then will the RF currents I


14


and I


32


, in conductive strips


14


and


32


respectively, be in phase. The RF currents I


14


, I


24


, I


28


and I


32


must all be in phase to maximize the radiation pattern in the azimuth plane and ensure the desired 5 dBi power gain.




The delay stage


30


according to the preferred embodiment of the present invention is shown in greater detail in FIG.


5


. The specific arrangement of the delay stage


30


shown in

FIG. 5

is for the specific implementation of the collinear array as discussed hereinabove, and this specific implementation is presented for illustrative purposes only to facilitate an explanation of the present invention. As discussed hereinafter, the delay stage of the specific embodiment may be modified and adapted according to the desired application, whilst still applying the principals of the present invention.




As illustrated in both

FIGS. 4 and 5

, the delay stage


30


has an input


34


and an output


36


. The delay stage input


34


is connected to the end of the conductive strip


14


remote from the conductive strip


12


, and the delay stage output


36


is connected to one end of the conductive strip


32


forming the half-wavelength monopole.




The delay stage


30


comprises a conductive strip, generally designated as


31


, which is formed in a single spiral revolution. That is, the single spiral revolution conductive strip


31


turns completely, once, through 360°. The single spiral revolution conductive strip


31


is comprised of five conductive strips connected end-to-end in series which are shaped to form the single spiral revolution The single spiral revolution conductive strip


31


comprises a first conductive strip


40


, a second conductive strip


42


, a third conductive strip


44


, a fourth conductive strip


46


, and a fifth conductive strip


48


.




The first


40


, second


42


, third


44


, fourth


46


and fifth


48


conductive strips are arranged such that the first


40


and third


44


conductive strips are substantially parallel and opposite to one another, the third


44


and fifth


48


conductive strips are substantially parallel and opposite to one another, and so that the second and fourth conductive strip


42


and


46


are substantially parallel and opposite to one other, the first to fifth conductive strips thereby forming a single spiral revolution conductive strip


31


.




By positioning the first conductive strip approximately parallel to the third conductive strip, the third conductive strip approximately parallel to the fifth conductive strip, and the second conductive strip approximately parallel to the fourth conductive strip, the RF currents in the respective conductive strips cancel each other out in terms of electromagnetic radiation, which is essential for the correct operation of the delay stage. Although ideally the respective conductive strips should be precisely parallel, it will be appreciated by one skilled in the art that an imperfect arrangement of the first to fifth conductive strips may still enable the delay stage


30


to operate within acceptable tolerances for the application.




In the preferred embodiment of

FIGS. 4 and 5

, the delay stage


30


thus comprises a conductive strip comprising a first conductive strip


40


coupled at one end to the delay stage input, a second conductive strip


42


connected at one end to the other end of the first conductive strip


40


and orientated at approximately 90° thereto, a third conductive strip


44


connected at one end to the other end of the second conductive strip


42


and orientated at approximately 90° thereto in a direction opposite to the first conductive strip


40


, a fourth conductive strip


46


connected at one end to the other end of the third conductive strip


44


and orientated at approximately 90° thereto in a direction opposite to that of the second conductive strip


42


, and a fifth conductive strip


48


connected at one end to the other end of the fourth conductive strip and orientated at 90° thereto in a direction opposite to that of the third conductive strip


44


, the other end of the fifth conductive strip


48


being coupled to the output


36


of the delay stage


30


.




The third conductive strip


44


is preferably approximately equal in length to the combined length of the first


40


and fifth


48


conductive strips to achieve ideal current balancing. Similarly the fourth conductive strip


46


is approximately equal in length to the second conductive strip


42


. However in practice, to achieve the single spiral revolution shape, the fourth conductive strip


46


is shorter than the second conductive strip


42


.




In the preferred embodiment of the present invention, the first conductive strip


40


is coupled to the input


34


of the delay stage


30


by a sixth conductive strip


38


, which is preferably orientated at approximately 90° to the first conductive strip


40


in a direction opposite to the second conductive strip


42


. In such preferred embodiment, the first to fifth conductive strips


40


to


48


are formed on one side of the insulating sheet together with the sixth conductive strip


38


. A seventh conductive strip


50


is provided on the other side of the insulating sheet, and couples the fifth conductive strip


48


to the output


36


of the delay stage


30


. The seventh conductive strip


50


is connected to the fifth conductive strip


48


by a via


52


through the insulating sheet


16


. The insulating sheet is preferably also provided with a via


54


to couple the end of the seventh conductive strip


50


connected to the output of the delay stage to the conductive strip


32


on the first side of the insulating sheet forming the half wavelength monopole.




It will be appreciated that, in an alternative arrangement, the seventh conductive strip


50


may be formed on the first side of the insulating layer and the third conductive strip


44


formed on the second side of the insulating layer, interconnections being provided to connect the appropriate ends of the second


42


and fourth


46


conductive strips.





FIG. 5

shows the dimensions, in millimeters, of the preferred implementation of the delay stage


30


of the invention for application in the collinear array of

FIG. 4

, wherein a 180° phase delay and 50% power feed is required at a frequency of operation of 2.4 to 2.5 GHz.




It will be appreciated by one skilled in the art that the single spiral revolution conductive strip delay line of the present may be utilized in antenna arrays requiring multiple feeds. For example in a collinear array having three antennas two feeder delay stages are required. The first feeder delay stage feeding ⅔ of the total incident RF power to the second and third antennas of the array, and the second feeder delay stage feeding ½ of the ⅔ power fed to the third antenna of the array.




Thus it will be appreciated by one skilled in the art that the specific dimensions of the single spiral revolution conductive strip delay line can be experimented with to achieve the required performance characteristics (phase delay, power feed) for a particular application whilst maintaining the single spiral revolution shape.




In a further modification, the collinear array of

FIG. 4

is adapted to include an extra antenna on the insulating sheet


16


thereby to provide a means for selection antenna diversity.

FIG. 6

shows a bent notch antenna implemented in the small ground plane


26


of the collinear array. Once again, like reference numerals are used in

FIG. 6

for elements corresponding to elements shown in other figures. The half wave monopole formed by conductive strip


32


is not shown in

FIG. 6

for reasons of clarity.




The bent notch antenna is indicated generally by numeral


60


in FIG.


6


and is represented diagrammatically by the white ‘L -shape’ gap in the shading representing the ground plane


26


formed on the underside of the insulating layer. The bent notch antenna


60


comprises two portions


60




a


and


60




b


forming the ‘L-shape’. The bent notch antenna


60


is an ordinary notch antenna bent into two sections in order to reduce the occupied surface. The total length of the notch in the specific application of

FIG. 6

is approximately L/4, L being the operating wavelength. An antenna diversity switch


62


is also provided in the ground plane


26


, and receives the RF feed to the antenna system from a cable attachment


66


. The feeding line “enters” the notch at such a point that the input impedance is close to 50 ohm. The antenna diversity switch is an SPDT (single pole double terminal), low distortion switch.




The antenna diversity switch


62


includes a switch connection


64


which can switch between two switch contacts


74


and


76


. Switch contact


74


provides the RF feed via a microstrip line


68


to the colliner antenna discussed hereinabove, and switch contact


76


provides the RF feed via microstrip line


78


to the notch antenna


60


. The microstrip line


78


is connected to the bent notch antenna feeding point.




The specific implementation of the bent notch antenna in the ground plane of the collinear array antenna to provide an auxiliary antenna to thereby give selection antenna diversity will be within the skills of one knowledgeable in the art. The provision of the bent notch antenna as the auxiliary antenna provides a compact collinear antenna array having selection antenna diversity.




Whereas the collinear array both transmits and receives, the addition of a notch antenna provides an auxiliary antenna for receiving only. As the auxiliary antenna is not used for transmission, then it is not required to have the careful design and high power gain of the collinear array.




The provision of the auxiliary antenna enables the antenna system to provide selection antenna diversity. As is well-known, antenna diversity switching circuitry is provided to enable the auxiliary antenna to be switched on when the signal received by the collinear array is weak.



Claims
  • 1. A collinear antenna array formed on an insulating sheet comprising:a first end fed dipole antenna system for a radio frequency generator having an operating wavelength L, comprising: on a first side of an insulating sheet a first and a second quarter wavelength conductive strip in end-to-end connection; on a second side of the insulating sheet a third quarter wavelength conductive strip, overlying the first quarter wavelength conductive strip, a fourth quarter wavelength conductive strip having a longer arm spaced from and parallel to the third quarter wavelength conductive strip and a shorter arm connected to the third quarter wavelength conductive strip, and a fifth quarter wavelength conductive strip having a longer arm spaced from and parallel to the third quarter wavelength conductive strip, symmetrical with the fourth quarter wavelength conductive strip, and a shorter arm connected to the third quarter wavelength conductive strip; and means to connect said radio frequency generator between the end of the third quarter wavelength conductive strip remote from the connection to the fourth quarter wavelength conductive strip, and the corresponding end of the first quarter wavelength conductive strip, whereby the second and fourth quarter wavelength conductive strips form a linear dipole antenna; wherein the collinear antenna array further comprises: a feeder stage including a delay line having its input connected to the end of the second quarter wavelength conductive strip remote from the first quarter wavelength conductive strip; and a monopole comprising a conductive strip having one end connected to the output of the delay line.
  • 2. A collinear antenna array according to claim 1 further comprising an auxiliary antenna orientated orthogonal to the collinear antenna array.
  • 3. A collinear antenna array according to claim 1 wherein the delay line comprises a single spiral revolution conductive strip coupled between the input and output.
  • 4. A collinear antenna array according to claim 3, wherein the single spiral revolution conductive strip comprises:first to fifth conductive strips connected end-to-end in series, the first and third conductive strips being opposite to one another, the third and fifth conductive strips being opposite to one another, and the second and fourth conductive strips being opposite to one another.
  • 5. A collinear antenna array according to claim 4, wherein the end of the first conductive strip not connected to the second conductive strip is connected to the input by a sixth conductive strip and the end of the fifth conductive strip not connected to the fourth conductive strip is connected to the output by a seventh conductive strip.
  • 6. A collinear antenna array according to claim 5, wherein the first to sixth conductive strips are formed on a first side of the insulating sheet, and the seventh conductive strip is formed on a second side of the insulating sheet.
  • 7. A collinear array according to claim 4, in which the third conductive strip is longer than the first conductive strip, the fourth conductive strip is shorter than the second conductive strip, the fifth conductive strip is shorter than the third conductive strip, and the output is located opposite the input.
  • 8. A collinear antenna array according to claim 3, wherein the single spiral revolution strip comprises:a first conductive strip coupled at one end to the input; a second conductive strip connected at one end to the other end of the first conductive strip and orientated at approximately 90° thereto; a third conductive strip connected at one end to the other end of the second conductive strip and orientated at approximately 90° thereto in a direction opposite to that of the first conductive strip; a fourth conductive strip connected at one end to the other end of the third conductive strip and orientated at approximately 90° thereto in a direction opposite to that of the second conductive strip; and a fifth conductive strip connected at one end to the other end of the fourth conductive strip and orientated at approximately 90° thereto in a direction opposite to that of the third conductive strip, and coupled at the other end thereof to the output.
  • 9. A collinear antenna array according to claim 8, wherein the first conductive strip is coupled to the input by a sixth conductive strip connected at one end to the other end of the first conductive strip and orientated at approximately 90° thereto in a direction opposite to that of the second conductive strip, and wherein the fifth conductive strip is coupled to the output by a seventh conductive strip connected at one end to the other end of the fifth conductive strip and at its other end to the output, and orientated at approximately 90° relative to the fifth conductive strip in a direction opposite to the fourth conductive strip.
Priority Claims (1)
Number Date Country Kind
98305164 Jun 1998 EP
US Referenced Citations (4)
Number Name Date Kind
3585534 Senf Jun 1971
5387919 Lam et al. Feb 1995
5598174 Erkocevic et al. Jan 1997
5754145 Evans May 1998
Foreign Referenced Citations (2)
Number Date Country
WO 9104588 Apr 1991 WO
WO 9708772 Mar 1997 WO