The following prior applications are herein incorporated by reference in their entirety for all purposes:
U.S. patent application Ser. No. 14/925,686, filed Oct. 28, 2015, naming Armin Tajalli, entitled “Enhanced Phase Interpolation Circuit”, hereinafter identified as [Tajalli I].
The following additional references to prior art have been cited in this application:
U.S. Pat. No. 9,208,130, filed Aug. 16, 2012 and issued Dec. 8, 2015, naming Ming-Shuan Chen, entitled “Phase Interpolator”, hereinafter identified as [Chen].
Clocked digital communications systems often require timing signals which are offset in phase or delay from a known reference clock signal, either to provide an appropriate set-up or hold interval, or to compensate for propagation delay between the point of use and the location of the reference clock source. Systems relying on a single reference clock often utilize fixed or adjustable delay lines or delay circuits to generate a secondary clock signal which is time-offset from the original reference. As another example, a serial communications receiver may have a local clock synthesized from received data transitions, which may be phase-shifted an appropriate amount to allow its use in sampling the received data stream. Alternatively, systems providing a multi-phase reference clock, one example being a two-phase quadrature clock, may utilize phase interpolation techniques to generate a secondary clock signal intermediate to the two reference clock phases; in other words, having a phase offset interpolated between those of the reference clock phases.
Such phase interpolators also found extensive use in RF communications applications, as one example in producing an output signal having a particular phase relationship used to drive one element of a multi-element antenna array, such that the collection of element arrays driven by such output signals resulted in an output beam with the desired directional characteristics.
In one such application, two sinusoidal reference input signals having relative phase relationships of 90 degrees (thus commonly referred to as sine and cosine signals) are presented as inputs to the phase interpolator having an output W of:
W=A*sin(ωt)+(1−A)*cos(ωt) (Eqn. 1)
where the control input A is varied between (in this example) 0 and 1 to set the relative phase of output W as compared to reference inputs sin(ωt) and cos(ωt). Following common practice in the art, this document will utilize this well-known phase interpolator nomenclature, without implying any limitation to two clocks having that particular phase relationship, sinusoidal signals, single-quadrant versus multiple-quadrant operation, or a particular domain of applicability.
As will be well understood by one familiar with the art, the circuit of
In one typical embodiment, output W includes a sinusoidal or approximately sinusoidal linear waveform having a phase relationship intermediate between those of the sin(ωt) and cos(ωt) reference clock inputs, as controlled by A in the region 0≤A≤1. In a further embodiment, outputs W and {acute over (W)} are digital waveforms comprised of edge transitions having the described phase relationship, the digital output conversion occurring through the introduction of such known functional element as a zero-crossing detector, digital comparator, or analog limiter, to convert the sinusoidal result of Eqn. 1 into a digital waveform.
A known limitation of this type of phase interpolation is the non-linear nature of the control relationship between the phase control signal value and the resultant phase offset of the output signal. As will be readily apparent to one familiar with the art, Eqn. 1 implies that the phase of result W varies as
which is linear near the center of its range (e.g. around A=0.5) but becomes significantly nonlinear as A moves towards its extremes. Thus, a system reliant on a phase interpolator of this type where the phase of W is approximately 45 degrees offset from both the sine and cosine reference clocks would experience relatively smooth and consistent incremental variation of such phase for small incremental adjustments of A. However, as A is adjusted further, the amount of phase change per incremental change of A will begin to deviate from that consistent behavior by a nonlinearly varying amount.
Waveform Effects
For clarity of explanation and consistency with past practice, the previous examples of phase interpolation have assumed orthogonal reference clocks that are pure sinusoids. However, other waveforms and input phase relationships are equally applicable, and indeed other waveforms may be more easily produced within a digital integrated circuit environment than pure sinusoids. As one example, pseudo-sinusoidal waveforms, i.e. those having predominantly sinusoidal characteristics but presenting some amount of residual waveform distortion or additional spectral content, often may be utilized in comparable manner to pure sinusoids.
As one example, logic elements including ring oscillators and buffers operating at or near the frequency limits for a particular integrated circuit process may be observed to produce nearly sinusoidal outputs. This phenomenon may be explained by observing that the Fourier spectrum of a square wave has significant energy only at its fundamental frequency, third harmonic frequency, and subsequent odd harmonic frequencies. Thus, at operating frequencies where the fundamental signal frequency is near the transistor cutoff frequency, that signal's third, fifth, etc. harmonics (necessary to form a conventional square wave digital waveform) will be significantly attenuated, leaving a primarily sinusoidal result.
The relative control signal linearity of a phase interpolator will be dependent on both the actual signal waveforms and on the mixing algorithm used. Perfect triangle wave (e.g. constant slew rate) quadrature reference inputs, for example, are capable of producing completely linear control signal behavior with linear arithmetic summation. [Tajalli I] suggests that reference inputs having rounded (e.g. partial high frequency attenuation) or logarithmic (e.g. RC time constant constrained) rise times may show more linear control signal behavior with square root summation.
Polar Representation of Interpolator
I2+Q2=constant (Eqn.2)
as part of a described process of clock vector rotation. Some embodiments utilize polar vector rotation to perform clock phase interpolation, but with significantly less circuit complexity and power consumption than such prior art methods. The shaping function of Eqns. 3 and 4 are used on the control signals to minimize error of the rotated vector
Q==>[0:1:2n−1], I=round √{square root over ((R2−Q2))}) (Eqn. 3)
R=√{square root over (2)}*0.5*(2n−1) (Eqn. 4)
The resulting values I and Q may be used directly as the Phase inputs for sin(ωt) and cosine(ωt) clocks in a phase interpolator such as shown in
Generation of the I and Q signals controlling the clock mixing stages is complicated by the need to not only provide the necessary mapping of values to minimize the resulting vector amplitude and phase errors, but also to do so while minimizing power consumption in the overall circuit. Thus, as one example, generating I and Q values using R−2R resistive ladder DACs might provide sufficient resolution but would draw significant quiescent current. As another example, DACs based on a 2N resistor chain would provide excellent monotonicity and could incorporate the necessary curve matching, but again would draw significant quiescent current.
As shown in
Table I illustrates one embodiment of the curve-fitting function of Eqn. 3, where control steps 0-31 represent the 32 possible phase interpolation angles this embodiment provides. As may be seen, for control steps 0-16 the value of Q increases linearly; in the schematic of
As shown in
|C−(I2+Q2)|≤δ Eqn. 5
In order to achieve the above constraint, additional incremental steps may be added to provide a higher resolution between steps. For example, in some embodiments, 64 or 128 steps may be used, however it should be noted that any number of steps is acceptable as long as Eqn. 5 is satisfied.
In one embodiment, the transistor drain providing the output for each NMOS gate 400 not connected to a summing node is connected to Vdd as shown in
No limitation is implied in the descriptive example of 32 interpolation steps; other embodiments may provide different numbers of steps with higher or lower step granularity. Similarly, equivalent embodiments may be produced using PMOS gates and/or removal of incremental amounts of current from a common summation node rather than the example NMOS gates sourcing incremental amounts of current to a common summation node. Equivalent embodiments may also incorporate CMOS gates capable of both sinking and sourcing current to a common node. Similarly, functionally equivalent embodiments may utilize sets of gates driving summation nodes, wherein each gate is controlled by the decoding of a control value in another encoded form, for example as a binary code.
The corresponding schematics for the generation of the Q and I signals are given in
As described above, the first selection circuit 1605 receives the first reference signal clki<0>/clki<2>. Clki<0> and clki<2> may be 180 degrees offset clock signals, and the selection circuit is configured to determine which polarity to connect to the output node for the interpolated signal clko<0>/clko<1>. As shown, if pi<5>=1, a first differential pair 1607 is enabled connecting clki<0> to clko<0> and clki<2> to clko<1>. Similarly, if pi<5>=0 (and thus pib<5>=1), a second differential pair 1609 is enabled connecting clki<2> to clko<0> and clki<0> to clko<1>. The second selection circuit 1610 operates in a similar manner in order to connect the second reference signal to the output node for the interpolated signal. Through the use of the selection circuits, pi<5> and pi<6> may select which quadrant of phase to interpolate from. Table III below illustrates this relationship:
In some embodiments, the control step input comprises 5 bits the thermometer codeword comprises 31 bits. In some embodiments, the complements of the bits of the thermometer code are generated using an inverter. In some embodiments, a sum of squares of the I and Q control signals is within a threshold of a predetermined constant C. In some embodiments, the first and second reference signals have a phase difference of 90 degrees. In some embodiments, the first and second reference signals are sinusoidal signals. Alternatively, the first and second reference signals may be square wave signals.
In some embodiments, the method further includes determining polarities of the first and second reference signals according to first and second selection bits received at first and second selection circuits, respectively. In some embodiments, determining the polarity of a given reference signal includes enabling one transistor of a pair of transistors associated with the corresponding selection circuit, each transistor of the pair receiving the given reference signal in opposite polarity. In some embodiments, a first transistor of the pair of transistors is enabled according to the selection bit and wherein a second transistor of the pair of transistors is disabled according to a complement of the selection bit.
Number | Name | Date | Kind |
---|---|---|---|
668687 | Mayer | Feb 1901 | A |
780883 | Hinchman | Jan 1905 | A |
3196351 | Slepian | Jul 1965 | A |
3636463 | Ongkiehong | Jan 1972 | A |
3939468 | Mastin | Feb 1976 | A |
4163258 | Ebihara | Jul 1979 | A |
4181967 | Nash | Jan 1980 | A |
4206316 | Burnsweig | Jun 1980 | A |
4276543 | Miller | Jun 1981 | A |
4486739 | Franaszek | Dec 1984 | A |
4499550 | Ray, III | Feb 1985 | A |
4722084 | Morton | Jan 1988 | A |
4772845 | Scott | Sep 1988 | A |
4774498 | Traa | Sep 1988 | A |
4864303 | Ofek | Sep 1989 | A |
4897657 | Brubaker | Jan 1990 | A |
4974211 | Corl | Nov 1990 | A |
5017924 | Guiberteau | May 1991 | A |
5053974 | Penz | Oct 1991 | A |
5166956 | Baltus | Nov 1992 | A |
5168509 | Nakamura | Dec 1992 | A |
5266907 | Dacus | Nov 1993 | A |
5283761 | Gillingham | Feb 1994 | A |
5287305 | Yoshida | Feb 1994 | A |
5311516 | Kuznicki | May 1994 | A |
5331320 | Cideciyan | Jul 1994 | A |
5412689 | Chan | May 1995 | A |
5449895 | Hecht | Sep 1995 | A |
5459465 | Kagey | Oct 1995 | A |
5461379 | Weinman | Oct 1995 | A |
5510736 | Van De Plassche | Apr 1996 | A |
5511119 | Lechleider | Apr 1996 | A |
5553097 | Dagher | Sep 1996 | A |
5566193 | Cloonan | Oct 1996 | A |
5599550 | Kohlruss | Feb 1997 | A |
5626651 | Dullien | May 1997 | A |
5629651 | Mizuno | May 1997 | A |
5659353 | Kostreski | Aug 1997 | A |
5727006 | Dreyer | Mar 1998 | A |
5748948 | Yu | May 1998 | A |
5802356 | Gaskins | Sep 1998 | A |
5825808 | Hershey | Oct 1998 | A |
5856935 | Moy | Jan 1999 | A |
5875202 | Venters | Feb 1999 | A |
5945935 | Kusumoto | Aug 1999 | A |
5949060 | Schattschneider | Sep 1999 | A |
5982954 | Delen | Nov 1999 | A |
5995016 | Perino | Nov 1999 | A |
6005895 | Perino | Dec 1999 | A |
6084883 | Norrell | Jul 2000 | A |
6119263 | Mowbray | Sep 2000 | A |
6172634 | Leonowich | Jan 2001 | B1 |
6175230 | Hamblin | Jan 2001 | B1 |
6232908 | Nakaigawa | May 2001 | B1 |
6278740 | Nordyke | Aug 2001 | B1 |
6307906 | Tanji | Oct 2001 | B1 |
6316987 | Dally | Nov 2001 | B1 |
6346907 | Dacy | Feb 2002 | B1 |
6359931 | Perino | Mar 2002 | B1 |
6378073 | Davis | Apr 2002 | B1 |
6384758 | Michalski | May 2002 | B1 |
6398359 | Silverbrook | Jun 2002 | B1 |
6404820 | Postol | Jun 2002 | B1 |
6417737 | Moloudi | Jul 2002 | B1 |
6433800 | Holtz | Aug 2002 | B1 |
6452420 | Wong | Sep 2002 | B1 |
6473877 | Sharma | Oct 2002 | B1 |
6483828 | Balachandran | Nov 2002 | B1 |
6504875 | Perino | Jan 2003 | B2 |
6509773 | Buchwald | Jan 2003 | B2 |
6522699 | Anderson | Feb 2003 | B1 |
6556628 | Poulton | Apr 2003 | B1 |
6563382 | Yang | May 2003 | B1 |
6621427 | Greenstreet | Sep 2003 | B2 |
6624699 | Yin | Sep 2003 | B2 |
6650638 | Walker | Nov 2003 | B1 |
6661355 | Cornelius | Dec 2003 | B2 |
6664355 | Kim | Dec 2003 | B2 |
6686879 | Shattil | Feb 2004 | B2 |
6690739 | Mui | Feb 2004 | B1 |
6766342 | Kechriotis | Jul 2004 | B2 |
6772351 | Werner | Aug 2004 | B1 |
6839429 | Gaikwad | Jan 2005 | B1 |
6839587 | Yonce | Jan 2005 | B2 |
6854030 | Perino | Feb 2005 | B2 |
6865234 | Agazzi | Mar 2005 | B1 |
6865236 | Terry | Mar 2005 | B1 |
6876317 | Sankaran | Apr 2005 | B2 |
6898724 | Chang | May 2005 | B2 |
6927709 | Kiehl | Aug 2005 | B2 |
6954492 | Williams | Oct 2005 | B1 |
6963622 | Eroz | Nov 2005 | B2 |
6972701 | Jansson | Dec 2005 | B2 |
6973613 | Cypher | Dec 2005 | B2 |
6976194 | Cypher | Dec 2005 | B2 |
6982954 | Dhong | Jan 2006 | B2 |
6990138 | Bejjani | Jan 2006 | B2 |
6993311 | Li | Jan 2006 | B2 |
6999516 | Rajan | Feb 2006 | B1 |
7023817 | Kuffner | Apr 2006 | B2 |
7039136 | Olson | May 2006 | B2 |
7053802 | Cornelius | May 2006 | B2 |
7075996 | Simon | Jul 2006 | B2 |
7080288 | Ferraiolo | Jul 2006 | B2 |
7082557 | Schauer | Jul 2006 | B2 |
7085153 | Ferrant | Aug 2006 | B2 |
7085336 | Lee | Aug 2006 | B2 |
7127003 | Rajan | Oct 2006 | B2 |
7130944 | Perino | Oct 2006 | B2 |
7142612 | Horowitz | Nov 2006 | B2 |
7142865 | Tsai | Nov 2006 | B2 |
7164631 | Tateishi | Jan 2007 | B2 |
7167019 | Broyde | Jan 2007 | B2 |
7176823 | Zabroda | Feb 2007 | B2 |
7180949 | Kleveland | Feb 2007 | B2 |
7184483 | Rajan | Feb 2007 | B2 |
7199728 | Dally | Apr 2007 | B2 |
7231558 | Gentieu | Jun 2007 | B2 |
7269130 | Pitio | Sep 2007 | B2 |
7269212 | Chau | Sep 2007 | B1 |
7335976 | Chen | Feb 2008 | B2 |
7336112 | Sha | Feb 2008 | B1 |
7339990 | Hidaka | Mar 2008 | B2 |
7346819 | Bansal | Mar 2008 | B2 |
7348989 | Stevens | Mar 2008 | B2 |
7349484 | Stojanovic | Mar 2008 | B2 |
7356213 | Cunningham | Apr 2008 | B1 |
7358869 | Chiarulli | Apr 2008 | B1 |
7362130 | Broyde | Apr 2008 | B2 |
7362697 | Becker | Apr 2008 | B2 |
7366942 | Lee | Apr 2008 | B2 |
7370264 | Worley | May 2008 | B2 |
7372390 | Yamada | May 2008 | B2 |
7389333 | Moore | Jun 2008 | B2 |
7397302 | Bardsley | Jul 2008 | B2 |
7400276 | Sotiriadis | Jul 2008 | B1 |
7428273 | Foster | Sep 2008 | B2 |
7456778 | Werner | Nov 2008 | B2 |
7462956 | Lan | Dec 2008 | B2 |
7496162 | Srebranig | Feb 2009 | B2 |
7570704 | Nagarajan | Apr 2009 | B2 |
7535957 | Ozawa | May 2009 | B2 |
7539532 | Tran | May 2009 | B2 |
7599390 | Pamarti | Oct 2009 | B2 |
7613234 | Raghavan | Nov 2009 | B2 |
7616075 | Kushiyama | Nov 2009 | B2 |
7620116 | Bessios | Nov 2009 | B2 |
7633850 | Nagarajan | Dec 2009 | B2 |
7639596 | Cioffi | Dec 2009 | B2 |
7643588 | Visalli | Jan 2010 | B2 |
7650525 | Chang | Jan 2010 | B1 |
7656321 | Wang | Feb 2010 | B2 |
7688929 | Co | Mar 2010 | B2 |
7694204 | Schmidt | Apr 2010 | B2 |
7697915 | Behzad | Apr 2010 | B2 |
7698088 | Sul | Apr 2010 | B2 |
7706456 | Laroia | Apr 2010 | B2 |
7706524 | Zerbe | Apr 2010 | B2 |
7746764 | Rawlins | Jun 2010 | B2 |
7768312 | Hirose | Aug 2010 | B2 |
7787572 | Scharf | Aug 2010 | B2 |
7804361 | Lim | Sep 2010 | B2 |
7808456 | Chen | Oct 2010 | B2 |
7808883 | Green | Oct 2010 | B2 |
7841909 | Murray | Nov 2010 | B2 |
7860190 | Feller | Dec 2010 | B2 |
7869497 | Benvenuto | Jan 2011 | B2 |
7869546 | Tsai | Jan 2011 | B2 |
7882413 | Chen | Feb 2011 | B2 |
7899653 | Hollis | Mar 2011 | B2 |
7907676 | Stojanovic | Mar 2011 | B2 |
7933770 | Kruger | Apr 2011 | B2 |
8000664 | Khorram | Aug 2011 | B2 |
8030999 | Chatterjee | Oct 2011 | B2 |
8036300 | Evans | Oct 2011 | B2 |
8050332 | Chung | Nov 2011 | B2 |
8055095 | Palotai | Nov 2011 | B2 |
8064535 | Wiley | Nov 2011 | B2 |
8085172 | Li | Dec 2011 | B2 |
8091006 | Prasad | Jan 2012 | B2 |
8106806 | Toyomura | Jan 2012 | B2 |
8149906 | Saito | Apr 2012 | B2 |
8159375 | Abbasfar | Apr 2012 | B2 |
8159376 | Abbasfar | Apr 2012 | B2 |
8180931 | Lee | May 2012 | B2 |
8185807 | Oh | May 2012 | B2 |
8199849 | Oh | Jun 2012 | B2 |
8199863 | Chen | Jun 2012 | B2 |
8218670 | AbouRjeily | Jul 2012 | B2 |
8233544 | Bao | Jul 2012 | B2 |
8245094 | Jiang | Aug 2012 | B2 |
8253454 | Lin | Aug 2012 | B2 |
8279094 | Abbasfar | Oct 2012 | B2 |
8279745 | Dent | Oct 2012 | B2 |
8289914 | Li | Oct 2012 | B2 |
8295250 | Gorokhov | Oct 2012 | B2 |
8295336 | Lutz | Oct 2012 | B2 |
8305247 | Pun | Nov 2012 | B2 |
8310389 | Chui | Nov 2012 | B1 |
8341492 | Shen | Dec 2012 | B2 |
8359445 | Ware | Jan 2013 | B2 |
8365035 | Hara | Jan 2013 | B2 |
8406315 | Tsai | Mar 2013 | B2 |
8406316 | Sugita | Mar 2013 | B2 |
8429492 | Yoon | Apr 2013 | B2 |
8429495 | Przybylski | Apr 2013 | B2 |
8437440 | Zhang | May 2013 | B1 |
8442099 | Sederat | May 2013 | B1 |
8442210 | Zerbe | May 2013 | B2 |
8443223 | Abbasfar | May 2013 | B2 |
8451913 | Oh | May 2013 | B2 |
8462891 | Kizer | Jun 2013 | B2 |
8472513 | Malipatil | Jun 2013 | B2 |
8620166 | Dong | Jun 2013 | B2 |
8498344 | Wilson | Jul 2013 | B2 |
8498368 | Husted | Jul 2013 | B1 |
8520348 | Dong | Aug 2013 | B2 |
8520493 | Goulahsen | Aug 2013 | B2 |
8539318 | Cronie | Sep 2013 | B2 |
8547272 | Nestler | Oct 2013 | B2 |
8577284 | Seo | Nov 2013 | B2 |
8578246 | Mittelholzer | Nov 2013 | B2 |
8588254 | Diab | Nov 2013 | B2 |
8588280 | Oh | Nov 2013 | B2 |
8593305 | Tajalli | Nov 2013 | B1 |
8602643 | Gardiner | Dec 2013 | B2 |
8604879 | Mourant | Dec 2013 | B2 |
8638241 | Sudhakaran | Jan 2014 | B2 |
8643437 | Chiu | Feb 2014 | B2 |
8649445 | Cronie | Feb 2014 | B2 |
8649460 | Ware | Feb 2014 | B2 |
8674861 | Matsuno | Mar 2014 | B2 |
8687968 | Nosaka | Apr 2014 | B2 |
8711919 | Kumar | Apr 2014 | B2 |
8718184 | Cronie | May 2014 | B1 |
8755426 | Cronie | Jun 2014 | B1 |
8773964 | Hsueh | Jul 2014 | B2 |
8780687 | Clausen | Jul 2014 | B2 |
8782578 | Tell | Jul 2014 | B2 |
8791735 | Shibasaki | Jul 2014 | B1 |
8831440 | Yu | Sep 2014 | B2 |
8841936 | Nakamura | Sep 2014 | B2 |
8879660 | Peng | Nov 2014 | B1 |
8897134 | Kern | Nov 2014 | B2 |
8898504 | Baumgartner | Nov 2014 | B2 |
8938171 | Tang | Jan 2015 | B2 |
8949693 | Ordentlich | Feb 2015 | B2 |
8951072 | Hashim | Feb 2015 | B2 |
8975948 | GonzalezDiaz | Mar 2015 | B2 |
8989317 | Holden | Mar 2015 | B1 |
9015566 | Cronie | Apr 2015 | B2 |
9020049 | Schwager | Apr 2015 | B2 |
9036764 | Hossain | May 2015 | B1 |
9059816 | Simpson | Jun 2015 | B1 |
9069995 | Cronie | Jun 2015 | B1 |
9077386 | Holden | Jul 2015 | B1 |
9083576 | Hormati | Jul 2015 | B1 |
9093791 | Liang | Jul 2015 | B2 |
9100232 | Hormati | Aug 2015 | B1 |
9106465 | Walter | Aug 2015 | B2 |
9124557 | Fox | Sep 2015 | B2 |
9148087 | Tajalli | Sep 2015 | B1 |
9152495 | Losh | Oct 2015 | B2 |
9165615 | Amirkhany | Oct 2015 | B2 |
9172412 | Kim | Oct 2015 | B2 |
9178503 | Hsieh | Nov 2015 | B2 |
9183085 | Northcott | Nov 2015 | B1 |
9197470 | Okunev | Nov 2015 | B2 |
9281785 | Sjoland | Mar 2016 | B2 |
9288082 | Ulrich | Mar 2016 | B1 |
9288089 | Cronie | Mar 2016 | B2 |
9292716 | Winoto | Mar 2016 | B2 |
9300503 | Holden | Mar 2016 | B1 |
9306621 | Zhang | Apr 2016 | B2 |
9331962 | Lida | May 2016 | B2 |
9362974 | Fox | Jun 2016 | B2 |
9363114 | Shokrollahi | Jun 2016 | B2 |
9374250 | Musah | Jun 2016 | B1 |
9401828 | Cronie | Jul 2016 | B2 |
9432082 | Ulrich | Aug 2016 | B2 |
9432298 | Smith | Aug 2016 | B1 |
9444654 | Hormati | Sep 2016 | B2 |
9455744 | George | Sep 2016 | B2 |
9455765 | Schumacher | Sep 2016 | B2 |
9461862 | Holden | Oct 2016 | B2 |
9479369 | Shokrollahi | Oct 2016 | B1 |
9509437 | Shokrollahi | Nov 2016 | B2 |
9520883 | Shibasaki | Dec 2016 | B2 |
9544015 | Ulrich | Jan 2017 | B2 |
9565036 | Zerbe | Feb 2017 | B2 |
9634797 | Benammar | Apr 2017 | B2 |
9667379 | Cronie | May 2017 | B2 |
20010006538 | Simon | Jul 2001 | A1 |
20010055344 | Lee | Dec 2001 | A1 |
20020034191 | Shattil | Mar 2002 | A1 |
20020044316 | Myers | Apr 2002 | A1 |
20020057592 | Robb | May 2002 | A1 |
20020154633 | Shin | Oct 2002 | A1 |
20020163881 | Dhong | Nov 2002 | A1 |
20020167339 | Chang | Nov 2002 | A1 |
20020174373 | Chang | Nov 2002 | A1 |
20020181607 | Izumi | Dec 2002 | A1 |
20030016763 | Doi | Jan 2003 | A1 |
20030016770 | Trans | Jan 2003 | A1 |
20030046618 | Collins | Mar 2003 | A1 |
20030085763 | Schrodinger | May 2003 | A1 |
20030146783 | Bandy | Aug 2003 | A1 |
20030174023 | Miyasita | Sep 2003 | A1 |
20030185310 | Ketchum | Oct 2003 | A1 |
20030218558 | Mulder | Nov 2003 | A1 |
20040027185 | Fiedler | Feb 2004 | A1 |
20040092240 | Hayashi | May 2004 | A1 |
20040146117 | Subramaniam | Jul 2004 | A1 |
20040155802 | Lamy | Aug 2004 | A1 |
20040161019 | Raghavan | Aug 2004 | A1 |
20040169529 | Afghahi | Sep 2004 | A1 |
20050024117 | Kubo | Feb 2005 | A1 |
20050063493 | Foster | Mar 2005 | A1 |
20050128018 | Meltzer | Jun 2005 | A1 |
20050134380 | Nairn | Jun 2005 | A1 |
20050174841 | Ho | Aug 2005 | A1 |
20050195000 | Parker | Sep 2005 | A1 |
20050201491 | Wei | Sep 2005 | A1 |
20050213686 | Love | Sep 2005 | A1 |
20050220182 | Kuwata | Oct 2005 | A1 |
20050270098 | Zhang | Dec 2005 | A1 |
20060036668 | Jaussi | Feb 2006 | A1 |
20060097786 | Su | May 2006 | A1 |
20060103463 | Lee | May 2006 | A1 |
20060120486 | Visalli | Jun 2006 | A1 |
20060126751 | Bessios | Jun 2006 | A1 |
20060133538 | Stojanovic | Jun 2006 | A1 |
20060140324 | Casper | Jun 2006 | A1 |
20060159005 | Rawlins | Jul 2006 | A1 |
20060232461 | Felder | Oct 2006 | A1 |
20060233291 | Garlepp | Oct 2006 | A1 |
20060291589 | Eliezer | Dec 2006 | A1 |
20070001713 | Lin | Jan 2007 | A1 |
20070001723 | Lin | Jan 2007 | A1 |
20070002954 | Cornelius | Jan 2007 | A1 |
20070030796 | Green | Feb 2007 | A1 |
20070076871 | Renes | Apr 2007 | A1 |
20070103338 | Teo | May 2007 | A1 |
20070121716 | Nagarajan | May 2007 | A1 |
20070182487 | Ozasa | Aug 2007 | A1 |
20070201546 | Lee | Aug 2007 | A1 |
20070201597 | He | Aug 2007 | A1 |
20070204205 | Niu | Aug 2007 | A1 |
20070263711 | Kramer | Nov 2007 | A1 |
20070283210 | Prasad | Dec 2007 | A1 |
20080007367 | Kim | Jan 2008 | A1 |
20080012598 | Mayer | Jan 2008 | A1 |
20080104374 | Mohamed | May 2008 | A1 |
20080159448 | Anim-Appiah | Jul 2008 | A1 |
20080192621 | Suehiro | Aug 2008 | A1 |
20080317188 | Staszewski | Dec 2008 | A1 |
20090059782 | Cole | Mar 2009 | A1 |
20090115523 | Akizuki | May 2009 | A1 |
20090154604 | Lee | Jun 2009 | A1 |
20090195281 | Tamura | Aug 2009 | A1 |
20090262876 | Arima | Oct 2009 | A1 |
20090316730 | Feng | Dec 2009 | A1 |
20090323864 | Tired | Dec 2009 | A1 |
20100046644 | Mazet | Feb 2010 | A1 |
20100081451 | Mueck | Apr 2010 | A1 |
20100148819 | Bae | Jun 2010 | A1 |
20100180143 | Ware | Jul 2010 | A1 |
20100215087 | Tsai | Aug 2010 | A1 |
20100215112 | Tsai | Aug 2010 | A1 |
20100235673 | Abbasfar | Sep 2010 | A1 |
20100271107 | Tran | Oct 2010 | A1 |
20100283894 | Horan | Nov 2010 | A1 |
20100296556 | Rave | Nov 2010 | A1 |
20100309964 | Oh | Dec 2010 | A1 |
20110014865 | Seo | Jan 2011 | A1 |
20110028089 | Komori | Feb 2011 | A1 |
20110032977 | Hsiao | Feb 2011 | A1 |
20110051854 | Kizer | Mar 2011 | A1 |
20110072330 | Kolze | Mar 2011 | A1 |
20110074488 | Broyde | Mar 2011 | A1 |
20110084737 | Oh | Apr 2011 | A1 |
20110103508 | Mu | May 2011 | A1 |
20110127990 | Wilson | Jun 2011 | A1 |
20110228864 | Aryanfar | Sep 2011 | A1 |
20110235501 | Goulahsen | Sep 2011 | A1 |
20110268225 | Cronie | Nov 2011 | A1 |
20110299555 | Cronie | Dec 2011 | A1 |
20110302478 | Cronie | Dec 2011 | A1 |
20110317559 | Kern | Dec 2011 | A1 |
20120082203 | Zerbe | Apr 2012 | A1 |
20120133438 | Tsuchi | May 2012 | A1 |
20120152901 | Nagorny | Jun 2012 | A1 |
20120161945 | Single | Jun 2012 | A1 |
20120213299 | Cronie | Aug 2012 | A1 |
20120257683 | Schwager | Oct 2012 | A1 |
20130010892 | Cronie | Jan 2013 | A1 |
20130013870 | Cronie | Jan 2013 | A1 |
20130088274 | Gu | Apr 2013 | A1 |
20130106513 | Cyrusian | May 2013 | A1 |
20130114519 | Gaal | May 2013 | A1 |
20130114663 | Ding | May 2013 | A1 |
20130129019 | Sorrells | May 2013 | A1 |
20130147553 | Iwamoto | Jun 2013 | A1 |
20130188656 | Ferraiolo | Jul 2013 | A1 |
20130195155 | Pan | Aug 2013 | A1 |
20130202065 | Chmelar | Aug 2013 | A1 |
20130215954 | Beukema | Aug 2013 | A1 |
20130259113 | Kumar | Oct 2013 | A1 |
20130271194 | Pellerano | Oct 2013 | A1 |
20130285720 | Jibry | Oct 2013 | A1 |
20130307614 | Dai | Nov 2013 | A1 |
20130314142 | Tamura | Nov 2013 | A1 |
20130315501 | Atanassov | Nov 2013 | A1 |
20130346830 | Ordentlich | Dec 2013 | A1 |
20140159769 | Hong | Jun 2014 | A1 |
20140177645 | Cronie | Jun 2014 | A1 |
20140177696 | Hwang | Jun 2014 | A1 |
20140266440 | Itagaki | Sep 2014 | A1 |
20140269130 | Maeng | Sep 2014 | A1 |
20140286381 | Shibasaki | Sep 2014 | A1 |
20150049798 | Hossein | Feb 2015 | A1 |
20150070201 | Dedic | Mar 2015 | A1 |
20150078479 | Whitby-Strevens | Mar 2015 | A1 |
20150078495 | Hossain | Mar 2015 | A1 |
20150117579 | Shibasaki | Apr 2015 | A1 |
20150146771 | Walter | May 2015 | A1 |
20150222458 | Hormati | Aug 2015 | A1 |
20150249559 | Shokrollahi | Sep 2015 | A1 |
20150256326 | Simpson | Sep 2015 | A1 |
20150333940 | Shokrollahi | Nov 2015 | A1 |
20150349835 | Fox | Dec 2015 | A1 |
20150380087 | Mittelholzer | Dec 2015 | A1 |
20150381232 | Ulrich | Dec 2015 | A1 |
20160020796 | Hormati | Jan 2016 | A1 |
20160020824 | Ulrich | Jan 2016 | A1 |
20160036616 | Holden | Feb 2016 | A1 |
20160197747 | Ulrich | Jul 2016 | A1 |
20160261435 | Musah | Sep 2016 | A1 |
20170310456 | Tajalli | Oct 2017 | A1 |
20170317449 | Shokrollahi | Nov 2017 | A1 |
20170317855 | Shokrollahi | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
1671092 | Sep 2005 | CN |
1864346 | Nov 2006 | CN |
101478286 | Jul 2009 | CN |
1926267 | May 2008 | EP |
2039221 | Feb 2013 | EP |
2003163612 | Jun 2003 | JP |
2005002162 | Jan 2005 | WO |
2009084121 | Jul 2009 | WO |
2010031824 | Mar 2010 | WO |
2011119359 | Sep 2011 | WO |
Entry |
---|
“Introduction to: Analog Computers and the DSPACE System,” Course Material ECE 5230 Spring 2008, Utah State University, www.coursehero.com, 12 pages. |
Abbasfar, A., “Generalized Differential Vector Signaling”, IEEE International Conference on Communications, ICC '09, (Jun. 14, 2009), pp. 1-5. |
Brown, L., et al., “V.92: The Last Dial-Up Modem?”, IEEE Transactions on Communications, IEEE Service Center, Piscataway, NJ., USA, vol. 52, No. 1, Jan. 1, 2004, pp. 54-61. XP011106836, ISSN: 0090-6779, DOI: 10.1109/tcomnn.2003.822168, pp. 55-59. |
Burr, “Spherical Codes for M-ARY Code Shift Keying”, University of York, Apr. 2, 1989, pp. 67-72, United Kingdom. |
Cheng, W., “Memory Bus Encoding for Low Power: A Tutorial”, Quality Electronic Design, IEEE, International Symposium on Mar. 26-28, 2001, pp. 199-204, Piscataway, NJ. |
Clayton, P., “Introduction to Electromagnetic Compatibility”, Wiley-Interscience, 2006. |
Counts, L., et al., “One-Chip Slide Rule Works with Logs, Antilogs for Real-Time Processing,” Analog Devices Computational Products 6, Reprinted from Electronic Design, May 2, 1985, 7 pages. |
Dasilva et al., “Multicarrier Orthogonal CDMA Signals for Quasi-Synchronous Communication Systems”, IEEE Journal on Selected Areas in Communications, vol. 12, No. 5 (Jun. 1, 1994), pp. 842-852. |
Design Brief 208 Using the Anadigm Multiplier CAM, Copyright 2002 Anadigm, 6 pages. |
Ericson, T., et al., “Spherical Codes Generated by Binary Partitions of Symmetric Pointsets”, IEEE Transactions on Information Theory, vol. 41, No. 1, Jan. 1995, pp. 107-129. |
Farzan, K., et al., “Coding Schemes for Chip-to-Chip Interconnect Applications”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14, No. 4, Apr. 2006, pp. 393-406. |
Grahame, J., “Vintage Analog Computer Kits,” posted on Aug. 25, 2006 in Classic Computing, 2 pages, http.//www.retrothing.com/2006/08/classic_analog_.html. |
Healey, A., et al., “A Comparison of 25 Gbps NRZ & PAM-4 Modulation used in Legacy & Premium Backplane Channels”, DesignCon 2012, 16 pages. |
International Search Report and Written Opinion for PCT/EP2011/059279 dated Sep. 22, 2011. |
International Search Report and Written Opinion for PCT/EP2011/074219 dated Jul. 4, 2012. |
International Search Report and Written Opinion for PCT/EP2012/052767 dated May 11, 2012. |
International Search Report and Written Opinion for PCT/US14/052986 dated Nov. 24, 2014. |
International Search Report and Written Opinion from PCT/US2014/034220 dated Aug. 21, 2014. |
International Search Report and Written Opinion of the International Searching Authority, dated Jul. 14, 2011 in International Patent Application S.N. PCT/EP2011/002170, 10 pages. |
International Search Report and Written Opinion of the International Searching Authority, dated Nov. 5, 2012, in International Patent Application S.N. PCT/EP2012/052767, 7 pages. |
International Search Report for PCT/US2014/053563, dated Nov. 11, 2014, 2 pages. |
Jiang, A., et al., “Rank Modulation for Flash Memories”, IEEE Transactions of Information Theory, Jun. 2006, vol. 55, No. 6, pp. 2659-2673. |
Notification of Transmittal of International Search Report and the Written Opinion of the International Searching Authority, for PCT/US2015/018363, dated Jun. 18, 2015, 13 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/EP2013/002681, dated Feb. 25, 2014, 15 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Mar. 3, 2015, for PCT/US2014/066893, 9 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2014/015840, dated May 20, 2014. 11 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2014/043965, dated Oct. 22, 2014, 10 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2015/037466, dated Nov. 19, 2015. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2015/039952, dated Sep. 23, 2015, 8 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2015/041161, dated Oct. 7, 2015, 8 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2015/043463, dated Oct. 16, 2015, 8 pages. |
Oh, et al., Pseudo-Differential Vector Signaling for Noise Reduction in Single-Ended Signaling, DesignCon 2009. |
Poulton, et al., “Multiwire Differential Signaling”, UNC-CH Department of Computer Science Version 1.1, Aug. 6, 2003. |
Schneider, J., et al., “ELEC301 Project: Building an Analog Computer,” Dec. 19, 1999, 8 pages, http://www.clear.rice.edu/elec301/Projects99/anlgcomp/. |
She et al., “A Framework of Cross-Layer Superposition Coded Multicast for Robust IPTV Services over WiMAX,” IEEE Communications Society subject matter experts for publication in the WCNC 2008 proceedings, Mar. 31, 2008-Apr. 3, 2008, pp. 3139-3144. |
Skliar et al., A Method for the Analysis of Signals: the Square-Wave Method, Mar. 2008, Revista de Matematica: Teoria y Aplicationes, pp. 109-129. |
Slepian, D., “Premutation Modulation”, IEEE, vol. 52, No. 3, Mar. 1965, pp. 228-236. |
Stan, M., et al., “Bus-Invert Coding for Low-Power I/O, IEEE Transactions on Very Large Scale Integration (VLSI) Systems”, vol. 3, No. 1, Mar. 1995, pp. 49-58. |
Tallini, L., et al., “Transmission Time Analysis for the Parallel Asynchronous Communication Scheme”, IEEE Transactions on Computers, vol. 52, No. 5, May 2003, pp. 558-571. |
Tierney, J., et al., “A digital frequency synthesizer,” Audio and Electroacoustics, IEEE Transactions, Mar. 1971, pp. 48-57, vol. 19, Issue 1, 1 page Abstract from http://ieeexplore. |
Wang et al., “Applying CDMA Technique to Network-on-Chip”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, No. 10 (Oct. 1, 2007), pp. 1091-1100. |
Zouhair Ben-Neticha et al, “The streTched-Golay and other codes for high-SNR fnite-delay quantization of the Gaussian source at 1/2 Bit per sample”, IEEE Transactions on Communications, vol. 38, No. 12 Dec. 1, 1990, pp. 2089-2093, XP000203339, ISSN: 0090-6678, DOI: 10.1109/26.64647. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Feb. 15, 2017, 10 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration., for PCT/US17/14997, dated Apr. 7, 2017. |
Holden, B., “Simulation results for NRZ, ENRZ & PAM-4 on 16-wire full-sized 400GE backplanes”, IEEE 802.3 400GE Study Group, Sep. 2, 2013, 19 pages, www.ieee802.0rg/3/400GSG/publiv/13_09/holden_400_01_0913.pdf. |
Holden, B., “An exploration of the technical feasibility of the major technology options for 400GE backplanes”, IEEE 802.3 400GE Study Group, Jul. 16, 2013, 18 pages, http://ieee802.org/3/400GSG/public/13_07/holden_400_01_0713.pdf. |
Holden, B., “Using Ensemble NRZ Coding for 400GE Electrical Interfaces”, IEEE 802.3 400GE Study Group, May 17, 2013, 24 pages, http://www.ieee802.org/3/400GSG/public/13_05/holden_400_01_0513.pdf. |
Farzan, et al., “Coding Schemes for Chip-to-Chip Interconnect Applications”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14, pp. 393-406, Apr. 2006. |
Anonymous, “Constant-weight code”, Wikipedia.org, retrieved on Jun. 2, 2017. |
Reza Navid et al, “A 40 Gb/s Serial Link Transceiver in 28 nm CMOS Technology”, IEEE Journal of Solid-State Circuits, vol. 50, No. 4. Apr. 2015, pp. 814-827. |
Linten, D. et al, “T-Diodes—A Novel Plus-and-Play Wideband RF Circuit ESD Protection Methodology” EOS/ESD Symposium 07, pp. 242-249. |
Hyosup Won et al, “A 28-Gb/s Receiver With Self-contained Adaptive Equalization and Sampling Point Control Using Stochastic Sigma-Tracking Eye-Opening Monitor”, IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 64, No. 3, Mar. 2017. pp. 664-674. |
Giovaneli, et al., “Space-frequency coded OFDM system for multi-wire power line communications”, Power Line Communications and Its Applications, 20015 International Symposium on Vancouver, BC, Canada, Apr. 6-8, 2005, Piscataway, NJ, pp. 191-195. |
Loh, M., et al., “A 3×9 Gb/s Shared, All-Digital CDR for High-Speed, High-Density I/O”, Matthew Loh, IEEE Journal of Solid-State Circuits, Vo. 47, No. 3, Mar. 2012. |