This invention is related to lasers and more particularly to control of Q-switched lasers.
Attempts have been made to develop low cost, simple lasers for use as light sources in laser display systems, biophotonics detection systems, and semiconductor micromachining systems. Passively-Q-switched lasers are attractive for these applications as they arc simple and low cost, yet produce powerful pulses of light that are immediately useful, or are well suited to converting to other wavelengths. Passively Q-switched lasers can produce pulses over a wide range of repetition frequencies and pulse energies, further enhancing their utility. However, most applications have not adapted the use of passive Q-switching. Acousto-optic Q-switching is much more prevalent due to its greater ability to produce strong pulses and its ability to produce these pulses in close synchronization with the other functions of the system. Acousto-optic Q-switching has become the standard, although it is a more complex and expensive technique than passive Q-switching. This expense and complexity has prevented the use of Q-switched lasers of any kind in many applications, particularly high volume, lower cost situations.
Although passive Q-switching is simpler and less expensive than acousto-optic Q-switching, passively Q-switched lasers are unable to deliver pulses in close synchronism with an externally-applied clock frequency. Although the pulse repetition frequency is proportional to the power with which the Q-switched laser is pumped, there is no direct way to synchronously control the pulse repetition frequency of a passively Q-switched laser. There is no equivalent of a trigger that can put out pulses on demand.
Should this deficiency be overcome, the PQSL would have application in tasks such as electronic trimming of integrated circuits and other micromachining. Through frequency conversion, the PQSL would become a good choice for fluorescence microscopy, flow cytometry, and other biophotonic applications. This inability to be synchronous, due to the free-running characteristic of PQSLs, has limited their use.
Thus, there is a need in the art, for a passive Q-switched laser control systems and methods that overcome the above disadvantages.
The disadvantages associated with the prior art are overcome by methods and apparatus for controlling a passively Q-switched laser (PQSL) that use a Q-switched laser as a voltage controlled oscillator in a phase-locked loop control circuit. According to embodiments of the invention, the PQSL may be optically coupled to a detector. The detector may be coupled to an input of a phase lock loop controller. A reference oscillator may be coupled to a reference input of the phase lock loop controller. An output of the phase lock loop controller may be coupled to an integrator. The integrator may be coupled to a means for controlling the amount of power provided to the PQSL. For example, a laser diode may provide pump power to the PQSL and the integrator may be coupled to a diode controller that regulates the amount of current provided to the laser diode.
The components above may be combined with a passively Q-switched laser in a phase lock loop controlled passively Q-switched laser (PQSL) system. In such a system, the timing of pulses from the PQSL may be controlled relative to a signal from the reference oscillator.
Embodiments of the present invention provide for locking the phase of Q-switched lasers over a wide range of frequencies.
The teachings of the present invention can be readily understood by considering the following detailed description in conjunction with the accompanying drawings, in which:
Although the following detailed description contains many specific details for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the invention. Accordingly, the exemplary embodiments of the invention described below are set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.
The present invention recognizes that a passively Q-switched laser (PQSL) is equivalent to a voltage controlled oscillator (VCO). Voltage controlled oscillators can be used to create phase-locked loops. Thus, it is possible to lock the frequency and phase of the pulses created by the laser to a reference oscillator. The pulse frequency response of the PQSL is a monotonic function of the applied pump power over much of its operating range, allowing the loop to be closed. The inventor has developed examples of such phase locked PQSL systems that demonstrate that this phase locking is possible over two full octaves of repetition rate. This can be a much larger range than is needed in display systems and other applications.
An example of a laser system 1 that utilizes a phase locked loop control circuit for pulse repetition rate control may be configured as shown in FIG. 1. The control circuit for a passively Q-switched laser (PQSL) 2 may include a laser diode 4 that provides pumping power to the PQSL 2. By way of example, the PQSL 2 may be a model ML-00005 laser from Synoptics of Charlotte, N.C. operating at 1064 nm. By way of example, the laser diode 4 may be built into the Synoptics PQSL package. The PQSL 2 and diode 4 operate under the control of a controller 3. In a particular embodiment, a Model 110 laser controller from Lightwave Electronics of Mountain View, Calif., may be used to control the diode current and temperature. Alternatively, the PQSL may be powered with a commercial diode current controller such as a Model 6000 Laser Diode Controller available from Newport Corporation of Irvine, Calif.
A detector 6 is optically coupled to the PQSL 2 and the detector 6 is coupled to an input 11 of a phase lock loop controller 10. A reference oscillator 12 is coupled to a reference input 13 of the phase lock loop controller 10, and an integrator 14 is coupled to an output 15 of the phase lock loop controller 10. The integrator 14 may be implemented with generic operational amplifier circuitry. The integrator 14 is coupled to the controller 3, which controls an amount of pump power that the laser diode provides to the PQSL. The Phase Locked Lop controller 10 may be implemented on a Programmable Logic Device (PLD) available from Altera Corporation of San Jose, Calif. A suitable program such as PLL may implement the phase control in the Phase Locked Loop Controller 10. In some applications, the detector may optionally include a divide-by-2 flip-flop that receives a pulse train characterized by a pulse frequency f and produces an output pulse train characterized by a pulse frequency f/2. Alternatively, an external divide-by-2 flip-flop may be coupled between the detector 6 and the input 11 of the phase lock loop controller 10.
In a particular embodiment, the controller 3 controls a current to the laser diode 4, which in turn controls the amount of power provided by the laser diode 4. The diode controller 3 allows the current supplied to the diode 4 to be controlled by a voltage applied to the controller 3. To control the pulse repetition rate of the PQSL 4, the system 1 operates as follows. The integrator 14 creates a voltage that is applied to the diode controller 3. The voltage from the integrator 14 controls the current supplied to the laser diode 4. The laser diode current controls the power from the laser diode 4. The power from the laser diode 4 determines the pulse repetition rate of the PQSL 2. In the embodiment depicted in
Experimentally it has been confirmed that the pulse repetition frequency in a PQSL controlled by a circuit of the type shown in
The results demonstrate that the goal of lockability of a passively Q-Switched laser was completely achieved.
Control of phase may in the manner described above may be important to other applications in addition to displays. For example, phase locked loop pulse repetition rate control may be used in association with lasers used for precise machining operations, such as memory repair.
While the above is a complete description of the preferred embodiment of the present invention, it is possible to use various alternatives, modifications and equivalents. For example, the pump power provided by the laser diode may be controlled by controlling the diode temperature. Therefore, the scope of the present invention should be determined not with reference to the above description but should, instead, be determined with reference to the appended claims, along with their full scope of equivalents. The appended claims are not to be interpreted as including means-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase “means for.”
This application claims priority from U.S. Provisional Application No. 60/365,936, filed Mar. 19, 2002, the entire disclosures of which are incorporated herein by reference.
This invention was made under contract # F29601-99-C-0136 by the United States Air Force. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
3609389 | Bjorkholm | Sep 1971 | A |
3764937 | Skolnick et al. | Oct 1973 | A |
4329664 | Javan | May 1982 | A |
4572662 | Silverman | Feb 1986 | A |
4744650 | Becker et al. | May 1988 | A |
4749961 | Kato et al. | Jun 1988 | A |
4834945 | Becker et al. | May 1989 | A |
5119382 | Kennedy et al. | Jun 1992 | A |
5394413 | Zayhowski | Feb 1995 | A |
5412673 | Caprara et al. | May 1995 | A |
5654973 | Stultz et al. | Aug 1997 | A |
5767969 | Chevalier | Jun 1998 | A |
5802083 | Birnbaum | Sep 1998 | A |
5832008 | Birnbaum et al. | Nov 1998 | A |
5847816 | Zediker et al. | Dec 1998 | A |
6356128 | Suga et al. | Mar 2002 | B2 |
20010014131 | Mashimo et al. | Aug 2001 | A1 |
20020158211 | Gillispie | Oct 2002 | A1 |
20030048814 | Gross et al. | Mar 2003 | A1 |
20030118060 | Spuehler et al. | Jun 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20030179785 A1 | Sep 2003 | US |
Number | Date | Country | |
---|---|---|---|
60365936 | Mar 2002 | US |