The present invention relates generally to the field of phase separation, and more particularly to a phase separation element and a phase separation device comprising such a phase separation element.
Phase separation is a type of liquid-liquid extraction and is a method of processing and purifying samples. Traditional phase separators are cartridge products that separate one of two immiscible liquid phases when the lower phase is organic and the upper phase is aqueous. Because of their general function, phase separators find application in a variety of different applications and markets. Phase separators are predominantly used in a chemistry environment in a variety of different applications, ranging from crude reaction work-up to preparation of samples or intermediates for synthetic programs, and a number of environmentally sensitive applications can also be captured.
The key to the separation of the two liquids is in the design of the frit material used in the cartridges. The main limitation of traditional phase separators is that they only work when the organic layer is on the bottom, i.e. the aqueous layer sits on top. This typically only occurs when organic samples are extracted into chlorinated (heavy) solvents. The mixture is transferred to the phase separator, and only the lower organic layer is allowed to pass through the cartridge. The frit is thus impervious to aqueous solvents, but allows passage of chlorinated solvents. The traditional separator is designed to rapidly separate chlorinated and aqueous solvents under gravity. No vacuum or positive pressure is required.
However, chemical products are often extracted into a less toxic and less dense organic solvent than chlorinated solvents, such as ethyl acetate. Recent moves towards green chemistry and tightening local and environmental regulations also restrict the use of chlorinated solvents in chemical laboratories, and disposal of these solvents is becoming prohibitively expensive for routine lab use and applications.
At present, one way to separate non-chlorinated organic solvents from aqueous solvents is to use hydrophobic filter papers, which are treated filter papers designed to be used in filter funnels or Buchner funnels (see e.g. http://www.whatman.com/). These suffer the drawback of being fragile when wet and risk breakthrough and contamination if not operated correctly.
A device for separating water from an organic solvent, irrespective of which one of the liquids is heavier, is described in US20060054556A1. The device comprises a tubular member which has an opening in the wall, which opening is covered by a water impermeable hydrophobic membrane. The tubular member is loosely fitted in an outer tube having a discharge outlet at the bottom. A mixture of water and organic solvent contained in the tubular member will be separated as the organic solvent can pass through the membrane from the inside to the outside while the water is retained in the tubular member. The membrane may be in the form of a membrane filter having a pore size of 0.1 to 2 μm. The membrane may alternatively be processed by spraying silicone or Teflon on the surface of solvent insoluble fibre to make it hydrophobic.
a, 4b and 4c show an alternative embodiment of the phase separation device according to the invention, comprising a receptacle and a phase separation element, wherein the phase separation element fits in a bottom portion of the receptacle.
The object of the present invention is to provide a more efficient, easy-to-use phase separator than those already known in the art for separating a biphasic aqueous and organic liquid system irrespective of which liquid is heavier.
An aim of the present invention is to enable separation of two immiscible liquid phases where the organic layer is lighter than the aqueous layer, such as when mixing water with an organic solvent selected from hexane, ethyl acetate, petroleum ethers, diethyl ether, or toluene. However, the present invention also enables separation where the organic liquid is heavier that the aqueous liquid, i.e. it provides a universal solution for both heavier and lighter organic liquids.
Further objects of the present invention are to provide a phase separator, which has a capacity to separate dispersions or shaken suspensions, and a phase separator, in which the mixture does not need to stand to separate, i.e. which can operate in continuous mode.
The present invention relates to a phase separation element, comprising a porous and hydrophobic material, wherein the phase separation element is a cylinder having a first end and a second end.
In a presently preferred embodiment, the phase separation element essentially consists of a porous and hydrophobic material.
The porous and hydrophobic material allows hydrophobic liquid to pass through the phase separation element, while the material prevents (or at least delays) non-hydrophobic liquids from entering and passing through the material. Another term for the phase separation element is “frit”, which is often used in the technical field of phase separation.
According to a first embodiment, the invention provides a phase separation element, in which the cylinder is tubular and has a lumen, and an outlet portion having an outlet opening at the first end of the cylinder.
In an embodiment, the phase separation element is closed at the second end of the cylinder. In an alternative embodiment, the phase separation element is open at the second end of the cylinder.
According to a second embodiment, the invention provides a phase separation element, in which the cylinder is solid, i.e. without a lumen. Nevertheless, hydrophobic liquid will pass through the phase separation element due to the porous structure of the hydrophobic material of the phase separation element.
In a preferred embodiment of the invention, the phase separation element essentially consists of a porous and hydrophobic polymer material, which can be obtained from manufacturers such as Filtrona, Porvair and Porex. The porous and hydrophobic material can be selected from for example polyethylene, polypropylene and polytetrafluoroethylene (PTFE).
According to another aspect, the invention provides a phase separation device comprising a receptacle having an outlet portion comprising an outlet opening, and a phase separation element comprising a porous and hydrophobic material, wherein the phase separation element is a cylinder having a first end and a second end, wherein the phase separation element is in fluid communication with the outlet opening of the receptacle, and wherein the phase separation element is adapted to fit tight in the outlet portion of the receptacle.
In a presently preferred embodiment of the phase separation device, the phase separation element essentially consists of a porous and hydrophobic material.
In an alternative embodiment, the phase separation device comprises a receptacle having a bottom portion, and a phase separation element comprising a porous and hydrophobic material, wherein the bottom portion has an inner surface and optionally has an outlet portion comprising an outlet opening, wherein the phase separation element is a cylinder having a first end and a second end and a base surface comprising at least three circumferential points that are adapted to contact the inner surface of the bottom portion of the receptacle, and that the base surface of the cylinder has a different shape than the cross section area of the bottom portion, and that the phase separation element is adapted to fit in the bottom portion by connection between the inner surface of the bottom portion and the at least three circumferential points of the base surface of the cylinder.
In a presently preferred embodiment of the phase separation device, the phase separation element essentially consists of a porous and hydrophobic material.
In yet another embodiment of the phase separation device, the outlet portion of the receptacle comprises an insert, which has an inlet end having an inlet opening and an outlet end having an outlet opening and a lumen extending through the insert, wherein the inlet end of the insert is adapted to fit tight in the outlet portion of the receptacle, and wherein the phase separation element is adapted to fit tight in the inlet opening of the insert, and wherein the phase separation element is in fluid communication with the outlet opening of the insert.
According to another embodiment of the phase separation device, the outlet portion of the receptacle further comprises a second outlet opening, which is separated from the outlet opening described above.
The present invention will now be described by reference to the appended drawings, followed by examples of using the device according to the invention.
With reference to
For the purpose of the present application, the term “cylinder” is defined as a three-dimensional space geometric body (unknown inner) delimited by two identical, parallel spaced planar surfaces (base surfaces) and the envelope surface formed as a line connecting the corresponding points on both base surfaces can run along the base surfaces' entire circumference. In the most general case, the flat surface can be used as a base, and parallel displacement can have any angle to the base surface. The perpendicular distance between the surfaces is called height of the cylinder. The base surface can have any form. If the base surface is a circle, the cylinder is called a circular cylinder.
In an embodiment of the present invention, the phase separation element is a circular cylinder.
In accordance with the embodiment shown in
In
Suitably, the outlet portion 5 of the cylinder has a smaller outer diameter than the outer diameter of the second end 3 and the rest of the cylinder.
In
The embodiments of the phase separation element shown in
In an alternative embodiment to those shown in
This embodiment is suitable for the separation of a mixture of immiscible liquids, where the mixture is poured into the phase separation element and the hydrophobic liquid is allowed to pass through the phase separation element from the inside to the outside, while the non-hydrophobic liquid is retained inside the phase separation element. In this case, the liquid may exit the phase separation element anywhere along the surface of the phase separation element, and thus there is no need for a specific outlet portion. In this alternative embodiment, the first end 2 of the cylinder suitably has a smaller outer diameter than the outer diameter of the second end 3 and the rest of the cylinder.
In an embodiment of the present invention, the porous and hydrophobic material of the phase separation element has a pore size of above 2 μm and maximum 100 μm, such as about 5, 10, 15, 20, 50, 75 or 100 μm.
In a preferred embodiment of the invention, the phase separation element essentially consists of a porous and hydrophobic polymer material, which can be selected from for example polyethylene, polypropylene and polytetrafluoroethylene (PTFE).
In a presently preferred embodiment of the invention, the phase separation element is made of porous polyethylene material with a 10 μm pore size and a wall thickness of 1 mm.
As mentioned above, in
The tight fit of the phase separation element 1 in the outlet portion 8 of the receptacle 7 may be obtained by choosing the same shape of the base surface of cylinder of the phase separation element 1 and of the cross section of the outlet portion 8. For example, if the cross section of the outlet portion 8 is circular, the base surface of the cylinder shall also be circular. In an embodiment, the phase separation element 1 fits tight in the outlet portion 8 of the receptacle 7 by threaded connection, by clamping, squeezing or pressing the phase separation element 1 into the outlet portion 8 of the receptacle 7, or by welding.
In a preferred embodiment, it is the outlet portion 5 at the first end 2 of the cylinder of the phase separation element 1, which fits tight in the outlet portion 8 of the receptacle 7.
In an alternative embodiment of the phase separation device 6, in accordance with
This embodiment is suitable for the separation of a mixture of immiscible liquids, where the mixture is poured into the phase separation element and the hydrophobic liquid is allowed to pass through the phase separation element from the inside to the outside and is collected in the receptacle 7. The hydrophobic liquid may then be allowed to exit the receptacle 7 through an outlet opening 9, or may alternatively be retained in the receptacle 7 if the bottom portion 17 does not comprise an outlet opening 9, or if the outlet opening 9 is sealed, such as by use of a plug. The non-hydrophobic liquid will be retained inside the phase separation element 1 since the first end 2 of the phase separation element 1 is sealed.
Further in this embodiment, the first end 2 of the cylinder suitably has a smaller outer diameter than the outer diameter of the second end 3 and the rest of the cylinder. In a preferred embodiment, it is the first end 2 of the cylinder of the phase separation element 1, which fits in the bottom portion 17 of the receptacle 7.
In an alternative embodiment to that shown in
In yet other embodiments of the phase separation device 6, the phase separation element 1 is as defined in any one of the above-described embodiments. A phase separation element which is defined by a combination of two or more of the above-described embodiments is also within the scope of the present invention.
In yet an embodiment of the phase separation device 6, the receptacle 7 has an inlet opening (not shown).
In another embodiment of the phase separation device 6, the diameter of the receptacle 7 decreases step-wise at the outlet portion 8 such that a step is formed inside the receptacle 7 at a distance above the outlet opening 9 of the receptacle, and wherein the phase separation element 1 is adapted to fit into said step inside the receptacle 7.
In yet another embodiment of the invention, the phase separation device 6 comprises a plurality of phase separation elements 1, each of which is a cylinder comprising a porous and hydrophobic material and is adapted to fit tight in a hole in the outlet portion 8 of the receptacle 7. In said embodiment, each hole in the outlet portion 8 of the receptacle 7 may preferably be connected to the outlet opening 9 of the receptacle 7. In said embodiment, the phase separation element 1 is as defined in any one of the above-described embodiments. A phase separation element which is defined by a combination of two or more of the above-described embodiments is also contemplated.
With reference to
The insert 10 as depicted in
In an embodiment, the phase separation element 1 fits tight in the inlet opening 12 of the insert 10 by threaded connection, by clamping, squeezing or pressing the phase separation element 1 into the inlet opening 12 of the insert 10, or by welding.
In a preferred embodiment, it is the outlet portion 5 at the first end 2 of the cylinder of the phase separation element 1, which fits tight in the inlet opening 12 of the insert 10.
In an alternative embodiment to that shown in
In a preferred embodiment, the inlet end 11 of the insert 10 fits tight in the outlet portion 8 of the receptacle 7, such as in the outlet opening 9 of the receptacle 7, by threaded connection, by clamping, squeezing or pressing the inlet end 11 of the insert 10 into the outlet portion 8 of the receptacle 7, or by welding.
In an embodiment, the separation device additionally can comprise a coupling, such as a luer coupling, for connection of the separation device to other equipment.
According to a preferred embodiment, the outlet end 13 of the insert 10 comprises a male luer tip.
According to another presently preferred embodiment, the phase separation device comprises a phase separation element made of porous polyethylene material with a 10 μm pore size and a wall thickness of 1 mm, a receptacle in the form of a HDPE (high-density polyethylene) reservoir cartridge (e.g. SEMCO 2.5 fl.oz), and an insert in the form of a polypropylene ¼″ NPT Male luer with threaded fitting in the outlet portion of the receptacle. The phase separator element fits tight in the inlet opening of the insert by pushing it into the inlet opening of the insert.
With reference to
In an alternative embodiment to those shown in
Consequently, the phase separation device according to the present invention provides permeation of hydrophobic solvent from the outside to the inside, or from the inside to the outside of the phase separation element. The permeation can take place along the entire surface of the porous and hydrophobic material of the phase separation element.
In an embodiment, the receptacle of the phase separation device is designed to have an open top end, which simplifies connection to processing equipment upstream of the phase separation device, and thereby enables automation of the separation process. In an alternative embodiment, the receptacle has a closed top end.
The separation device of the present invention may be compatible with existing process equipment to which it may be relevant to connect the separation device, such as gravity racks, retort stands/clamps, connection tubes, or VacMaster glass boxes. In preferred embodiments of the invention, the separation device has a bottom luer tip and/or is compatible with plastic or Teflon stop-cocks.
Suitably, the phase separation element is a disposable article, which is adapted to be temporarily connected to a non-disposable receptacle and optionally to a non-disposable insert, for example by threaded fitting or by pushing, squeezing or clamping the phase separator element into the outlet portion of the receptacle, and/or the inlet of the insert. Alternatively, the phase separation element is adapted to be permanently connected to a receptacle, and optionally to an insert, for example by welding the pieces together. In this case, the resulting assembly is meant to be either disposable or non-disposable.
In a preferred embodiment of the present invention, the phase separation element is adapted to fit into a cartridge architecture, for example into a receptacle having a size in the range of from 1 mL to 100 L, such as 3 mL, 6 mL, 15 mL, 25 mL, 70 mL, 150 mL, 500 mL, 1 L, 10 L, 20 L, 50 L or 100 L. The phase separation element will be differently sized depending on the size of the receptacle to be used and depending on the intended application. For example, the length, diameter, pore size, and/or wall thickness the phase separation element may be varied to adapt it to various applications.
The phase separation element of the present invention must evidently be chemically resistant to the solvents it is required to separate. Industry standard solvent resistant plastics and frit materials will be used for the phase separation device according to the present invention. Further, it shall have a retention time for aqueous liquids and a liquid flow rate similar to or better than existing phase separators.
Examples of suitable materials for the phase separation element are, as described above, porous and hydrophobic polymer materials, such as polyethylene, polypropylene and polytetrafluoroethylene (PTFE).
Industrial applications of the present invention include breaking dispersions and separating an organic phase from an aqueous phase in a reaction workup. Also other applications in separating organic liquids from aqueous phases in environmental, food and agriculture, fragrance and flavour industries are contemplated. Applications of continuous extraction mode (as described above in connection with
The phase separation element and/or device of the invention may be used for steam distillation to recover product or reaction solvent, e.g. from aniline/water or water/chlorinated solvent systems. The distillate is collected in the phase separation element. The product or solvent is then passed through a drying column connected in series with the phase separation device. The dried product is collected. In a water/chlorinated solvent system, the chlorinated solvent can optionally be recycled.
Synthesis of compounds involving generation of water as a by-product (condensation reactions) is another area of application for the phase separation element and/or device according to the invention. Reactions involving generation of water utilise solvents such as toluene/xylene, which can form azeotropes, which in turn can be used to remove water from such a solvent reaction system. Azeotropic mixtures can be passed down a phase separation element according to the invention to separate the solvent from the mixture. The solvent may then be recycled into the reaction (continuous mode). This process could potentially replace the traditional Dean & Stark process.
Another application of the phase separation element and/or device according to the invention is phase transfer reactions, e.g. preparation of benzaldehyde by oxidation of benzyl alcohol with sodium hypochlorite/phase transfer catalyst. Yet another application is the separation of product from a reductive amination, e.g. preparation of dibenzylamine using titanium isopropoxide, which on quenching generates an emulsion difficult to break by traditional liquid/liquid extraction.
Like for like comparison between traditional liquid-liquid-extraction devices and the phase separation device according to the present invention show time and solvent efficiency advantages in phase separations, thus adding greater convenience.
The phase separator according to the present invention separates organic solvents from aqueous solvents irrespective of whether the organic solvent is heavier or lighter than the aqueous solvent. This is illustrated by the following experimental data obtained by testing a phase separation device according to the invention. The phase separation element used was made of polyethylene with a pore size of 10 μm, a wall thickness of 1 mm and a lumen having a diameter of approximately 5.5 mm, obtainable from Filtrona Filter Products (Jarrow, Newcastle, U.K.).
As seen in Table 1, heavy organic (i.e. hydrophobic) solvent (lower phase layer) ran through the phase separation element, while the aqueous solvent (upper phase layer) was retained for more than 12 hours. This is a similar performance compared to previously known phase separators, but a wider volume range is handled by the phase separation element according to the invention. Additionally, in the phase separation element according to the invention, a light organic solvent (upper layer) ran through the separation element (approx 15 mL/min) and the aqueous solvent (lower layer) was retained for more than 12 hours, except when using ethyl acetate, for which the retention of the aqueous solvent was shorter than for other organic solvents due to azeotropic and physical properties.
A further experiment was also made when using ethyl acetate as the organic solvent. An additional (secondary) phase separation filter was placed horizontally in the outlet portion of the receptacle, beneath the outlet opening of the phase separation element, as illustrated schematically in
The present invention is not limited to the above-described preferred embodiments. Various alternatives, modifications and equivalents may be used. Therefore, the above embodiments should not be taken as limiting the scope of the invention, which is defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
12178606.5 | Jul 2012 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/061609 | 6/5/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61662699 | Jun 2012 | US |