The present invention relates to the field of communication, and in particular to a phase shifter and an antenna.
A phase shifter is a device capable of adjusting a phase of a microwave signal, and has wide application in the field of radar, missile attitude control, accelerator, communication, instrument, even music or the like. A phase shifter with an adjustable dielectric layer modulates a phase of a microwave signal by changing a voltage difference between a signal line and a patch electrode to change a dielectric constant of the dielectric layer between the signal line and the patch electrode, based on the characteristics that the dielectric layer has different dielectric constants under different electric field intensities.
The present invention is intended to solve at least one of the technical problems in the art, and provides a phase shifter which realizes feeding in and feeding out of signals of the phase shifter through a first feeding structure and a second feeding structure, so as to solve the issue of converting a transverse electric field of a coplanar waveguide transmission line into a longitudinal electric field in a phase shifter using the coplanar waveguide transmission line, thereby achieving a phase shifter with low transmission loss.
In a first aspect, an embodiments of the present disclosure provides a phase shifter, which is divided into a first feeding region, a second feeding region and a phase-shift region, the phase shifter includes a first substrate and a second substrate arranged opposite to each other, and a dielectric layer between the first substrate and the second substrate; the first substrate includes a first base substrate, and a signal line and a reference electrode provided on a side of the first base substrate close to the dielectric layer; and the signal line and the reference electrode are located in the phase-shift region; the signal line includes a main structure and at least one branch structure connected to the main structure, and the at least one branch structure extends along an extending direction of the main structure; the second substrate includes a second base substrate, and at least one patch electrode provided on a side of the second base substrate close to the dielectric layer and located in the phase-shift region; the at least one patch electrode is provided corresponding to the at least one branch structure to form at least one variable capacitor; and an orthographic projection of the at least one patch electrode on the first base substrate at least partially overlaps with an orthographic projection of the at least one branch structure on the first base substrate; the phase shifter further includes a first feeding structure and a second feeding structure, the first feeding structure being electrically coupled to one end of the signal line, and the second feeding structure being electrically coupled to the other end of the signal line; the first feeding structure being located in the first feeding region; and the second feeding structure being located in the second feeding region; and at least one recess formed in the first base substrate and/or in the second base substrate; the at least one recess located at an edge of the first feeding region and/or at an edge of the second feeding region, and each of the at least one recess being filled with a conductive structure.
In some embodiments, the phase shifter further includes a first waveguide structure located in the first feeding region; the at least one recess includes a first recess located in the first feeding region; and an orthographic projection of the first feeding structure on the first base substrate at least partially overlaps with an orthographic projection of a first port of the first waveguide structure on the first base substrate; and the first port of the first waveguide structure is connected to a surface of the first base substrate away from the dielectric layer, the first recess is formed in the first base substrate, and a sidewall of the first waveguide structure covers an opening of the first recess; or the first port of the first waveguide structure is connected to a surface of the second base substrate away from the dielectric layer, the first recess is formed in the second base substrate, and a sidewall of the first waveguide structure covers an opening of the first recess.
In some embodiment, the phase shifter further includes a second waveguide structure located in the second feeding region, the at least one recess further includes a second recess located in the second feeding region; an orthographic projection of the second feeding structure on the first base substrate at least partially overlaps with an orthographic projection of a first port of the second waveguide structure on the first base substrate; the first port of the second waveguide structure is connected to the surface of the first base substrate away from the dielectric layer, the second recess is formed in the first base substrate, and a sidewall of the second waveguide structure covers an opening of the second recess; or the first port of the second waveguide structure is connected to the surface of the second base substrate away from the dielectric layer, the second recess is formed in the second base substrate, and a sidewall of the second waveguide structure covers an opening of the second recess.
In some embodiments, the orthographic projection of the first feeding structure on the first base substrate is within the orthographic projection of the first port of the first waveguide structure on the first base substrate; and/or the orthographic projection of the second feeding structure on the first base substrate is within in the orthographic projection of the first port of the second waveguide structure on the first base substrate.
In some embodiments, the first waveguide structure is provided on the side of the first base substrate away from the dielectric layer, and the second waveguide structure is provided on the side of the second base substrate away from the dielectric layer; or both the first waveguide structure and the second waveguide structure are provided on the side of the second base substrate away from the dielectric layer, and the orthographic projection of the first waveguide structure on the second base substrate does not overlap with the orthographic projection of the second waveguide structure on the second base substrate.
In some embodiments, the phase shifter further includes a first reflection structure and a second reflection structure; the first reflection structure is provided on a side of the first feeding structure away from the first waveguide structure, an orthographic projection of the first reflection structure on the first base substrate at least partially overlaps with the orthographic projection of the first port of the first waveguide structure on the first base substrate and at least partially overlaps with the orthographic projection of the first feeding structure on the first base substrate, and the first reflection structure is configured to reflect a microwave signal radiated by the first feeding structure towards a side deviating from the first waveguide structure, back into the first waveguide structure; and the second reflection structure is provided on a side of the second feeding structure away from the second waveguide structure, an orthographic projection of the second reflection structure on the second base substrate at least partially overlaps with the orthographic projection of the first port of the second waveguide structure on the second base substrate and at least partially overlaps with the orthographic projection of the second feeding structure on the second base substrate, and the second reflection structure is configured to reflect a microwave signal, radiated by the second feeding structure towards a side deviating from the second waveguide structure, back into the second waveguide structure.
In some embodiments, the first reflection structure is a waveguide structure, and an orthographic projection of a first port of the first reflection structure on the first base substrate at least partially overlaps with the orthographic projection of the first port of the first waveguide structure on the first base substrate; and the second reflection structure is a waveguide structure, and an orthographic projection of a first port of the second reflection structure on the second base substrate at least partially overlaps with the orthographic projection of the first port of the second waveguide structure on the second base substrate.
In some embodiments, the at least one recess further includes a third recess in the first feeding region; the first port of the first reflection structure is connected to the surface of the first base substrate away from the dielectric layer, the third recess is formed in the first base substrate, and a sidewall of the first reflection structure covers an opening of the third recess; or the first port of the first reflection structure is connected to the surface of the second base substrate away from the dielectric layer, the third recess is formed in the second base substrate, and a sidewall of the first reflection structure covers an opening of the third recess.
In some embodiments, the at least one recess further includes a fourth recess in the second feeding region; the first port of the second reflection structure is connected to the surface of the first base substrate away from the dielectric layer, the fourth recess is formed in the first base substrate, and a sidewall of the second reflection structure covers an opening of the fourth recess; or the first port of the second reflection structure is connected to the surface of the second base substrate away from the dielectric layer, the fourth recess is formed in the second base substrate, and a sidewall of the second reflection structure covers an opening of the fourth recess.
In some embodiments, the at least one recess is located in the first feeding region and formed in the first base substrate, and the at least one recess includes a plurality of recesses arranged in a ring; the at least one recess is located in the first feeding region and formed in the second base substrate, and the at least one recess includes a plurality of recesses arranged in a ring; the at least one recess is located in the second feeding region and formed in the first base substrate, and the at least one recess includes a plurality of recesses arranged in a ring; or the at least one recess is located in the second feeding region and formed in the second base substrate, and the at least one recess includes a plurality of recesses arranged in a ring.
In some embodiments, the first waveguide structure has at least one first sidewall which is connected together to form a waveguide cavity of the first waveguide structure; and/or the second waveguide structure has at least one second sidewall which is connected together to form a waveguide cavity of the second waveguide structure.
In some embodiments, the phase shifter further includes a first metal layer and a second metal layer; the first metal layer is provided on a side of the first base substrate away from the dielectric layer, the first metal layer is provided with a first cavity therein, the first cavity defines the first waveguide structure, the second metal layer is provided on a side of the second base substrate away from the dielectric layer, the second metal layer is provided with a second cavity therein to define the second waveguide structure; or the phase shifter further includes a second metal layer provided on a side of the second base substrate away from the dielectric layer; the second metal layer is provided with a first cavity and a second cavity, the first cavity defines the first waveguide structure, the second cavity defines the second waveguide structure; and an orthographic projection of the first cavity on the second base substrate does not overlap with an orthographic projection of the second cavity on the second base substrate.
In some embodiments, the phase shifter further includes a third substrate connected to a second port of the first waveguide structure; the third substrate includes a third base substrate and a feeding transmission line provided on a side of the third base substrate close to the first waveguide structure; and a first end of the feeding transmission line is connected to an external signal line, and a second end of the feeding transmission line extends into the second port of the first waveguide structure so as to feed a signal into the first waveguide structure.
In some embodiments, an orthographic projection of the signal line on the first base substrate does not overlap with the orthographic projection of the first port of the first waveguide structure on the first base substrate and an orthographic projection of the first port of the second waveguide structure on the first base substrate.
In some embodiments, the first feeding structure is a monopole electrode provided in a same layer as the signal line and made of a same material as the signal line; and/or the second feeding structure is a monopole electrode provided in a same layer as the signal line and made of a same material as the signal line.
In some embodiments, the signal line has at least one bending corner, the reference electrode has at least one bending corner, and the at least one bending corner of the reference electrode is provided in one-to-one correspondence with the at least one bending corner of the signal line.
In some embodiments, the reference electrode includes a first sub-reference electrode and a second sub-reference electrode; the signal line is provided between the first sub-reference electrode and the second sub-reference electrode; and an orthographic projection of each of the at least one patch electrode on the first base substrate at least partially overlaps with orthographic projections of the first sub-reference electrode and second sub-reference electrode of the reference electrode on the first base substrate.
In some embodiments, the first waveguide structure and/or the second waveguide structure has a filling medium therein, and the filling medium includes polytetrafluoroethylene.
In a second aspect, an embodiment of the present disclosure provides an antenna, including at least one phase shifter, each of which is the phase shifter as mentioned above.
In some embodiments, the phase shifter further includes a second waveguide structure provided corresponding to the second feeding structure; and the antenna further includes at least one radiation unit, one of which is provided corresponding to the second port of the second waveguide structure of one of the at least one phase shifter.
In some embodiments, each of the at least one radiation unit is a third waveguide structure including a first port close to the second waveguide structure and a second port away from the second waveguide structure, the first port of the third waveguide structure is connected to the second port of the corresponding second waveguide structure; and a size of an opening of the second port of the third waveguide structure is larger than a size of an opening of the first port of the third waveguide structure, and a size of an opening of the third waveguide structure at a position relatively away from the second waveguide structure is not smaller than a size of an opening of the third waveguide structure at a position relatively close to the second waveguide structure.
In some embodiments, the second waveguide structure includes four second sidewalls which are connected together to define a waveguide cavity of the second waveguide structure; the third waveguide structure includes one third sidewall, and the third sidewall surrounds to form a waveguide cavity of the third waveguide structure; and along a direction from the waveguide cavity of the second waveguide structure towards the waveguide cavity of the third waveguide structure, a shape of the waveguide cavity of the second waveguide structure gradually transitions to a shape of the first port of the waveguide cavity of the third waveguide structure.
In some embodiments, the radiation unit includes a radiation patch; the antenna further includes a fourth substrate, the second port of the second waveguide structure of each of the at least one phase shifter is connected to the fourth substrate, and the radiation patch is provided on a side of the fourth substrate away from the second waveguide structure; and an orthographic projection of the radiation patch on the fourth substrate at least partially overlaps with an orthographic projection of the second port of the second waveguide structure corresponding to the radiation patch on the fourth substrate.
In some embodiments, the phase shifter further includes a first waveguide structure provided corresponding to the first feeding structure; the antenna includes a plurality of radiation units and a plurality of phase shifters, and one of the plurality of radiation units is provided corresponding to the second port of the second waveguide structure of one of the plurality of phase shifters; and first waveguide structures of the plurality of phase shifters are connected to form a waveguide power division network, the waveguide power division network has a main port and a plurality of sub-ports, the main port of the waveguide power division network is connected to an external signal line, and the first port of each of the first waveguide structures serves as one sub-port of the waveguide power division network.
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention will be described in further detail with reference to the accompanying drawings. Obviously, the described embodiments are only a part of the embodiments of the present invention, not all embodiments. Based on the embodiments of the present invention, all other embodiments, obtained by those skilled in the art without any creative work, are within the protection scope of the present invention.
The shapes and sizes of the components in the drawings do not reflect the true proportion, but only for the purpose of facilitating the understanding of the contents of the embodiments of the present invention.
Unless otherwise defined, technical or scientific terms used herein shall have the ordinary meaning as understood by those skilled in the art. The terms “first”, “second”, and the like, as used in the present disclosure, do not denote any order, quantity, or importance, but rather are used to distinguish between different components. Similarly, similar words such as “the one”, “one” or “said” do not mean a quantitative limit, but the existence of at least one. The word “comprise”, “include”, or the like, means that the element or item preceding the word includes the element or item listed after the word and its equivalent, but does not exclude other elements or items. The term “connected”, “coupled” or the like is not restricted to a physical or mechanical connection, but may include an electrical connection, whether direct or indirect. The terms “up”, “down”, “left”, “right” and the like are used only to indicate relative positional relationships, and when the absolute position of the object being described is changed, the relative positional relationship may also be changed accordingly.
The disclosed embodiments are not limited to the embodiments shown in the drawings, but include modifications of configurations formed based on a manufacturing process. Thus, the regions illustrated in the drawings have schematic properties, and the shapes of the regions shown in the drawings illustrate specific shapes of regions of elements, but are not intended to be limiting.
It should be noted that, in a case where a transmission line in a phase shifter is periodically loaded with variable capacitors in parallel, a phase change of a microwave signal through the phase shifter may be obtained by changing capacitances of the variable capacitors, and an equivalent model of the phase shifter is shown in
In a first aspect, referring to
A phase shifter adopting a coplanar waveguide (CPW) transmission line is taken as an example. The phase shifter includes a first feeding region Q01, a second feeding region Q02, and a phase-shift region Q03. The first substrate includes a first base substrate 10, and a reference electrode 12 and a signal line 11 on a side of the first base substrate 10 close to the dielectric layer 30. The signal line 11 and the reference electrode 12 are located in the phase-shift region Q03, and the signal line 11 and the reference electrode 12 form a CPW transmission line. The signal line 11 may include a main structure 111 extending in a same direction as the reference electrode 12, and a plurality of branch structures 112 connected to the main structure 111 and spaced apart from each other. At least one branch structure 112 is provided along an extending direction of the main structure 111.
The second substrate includes a second base substrate 20, and at least one patch electrode 21 on a side of the second base substrate 20 close to the dielectric layer 30. The patch electrode 21 is located in the phase-shift region, and an extending direction of the patch electrode 21 is the same as an extending direction of the branch structure 112 of the signal line 11. Moreover, patch electrodes 21 are provided in one-to-one correspondence with the branch structures 112, and an orthographic projection of each of the patch electrodes 21 on the first base substrate 10 at least partially overlaps with an orthographic projection of a corresponding branch structure 112 on the first base substrate 10. Moreover, in some examples, an orthographic projection of each of the patch electrodes 21 on the first base substrate 10 at least partially overlaps with an orthographic projection of the reference electrode 12 on the first base substrate 10. The patch electrodes 21 are provided in one-to-one correspondence with the branch structures 112, that is, one patch electrode 21 is provided over one branch structure 112. The patch electrode 21 overlaps with the branch structure 112 to form a variable capacitor Cvra(V). At least one variable capacitor Cvra(V) is perpendicular to the transmission direction of the electromagnetic wave, thereby forming a parallel capacitor. The phase shifter has an equivalent circuit model as shown in
It should be noted that, the phase shifter may include a plurality of variable capacitors Cvra(V), or only include one variable capacitor Cvra(V). Accordingly, only one patch electrode 21 may be provided on a side of the second base substrate 20 of the phase shifter close to the dielectric layer 30, or a plurality of patch electrodes 21 may be provided on a side of the second base substrate 20 of the phase shifter close to the dielectric layer 30, which may be specifically determined according to a required phase shift angle. In the following, a case where the phase shifter includes a plurality of patch electrodes 21 and each of the patch electrodes 21 overlaps with one branch structure 112 to form a variable capacitor Cvra(V), is taken as an example. That is, a case where the phase shifter includes a plurality of variable capacitors Cvra(V) is taken as an example for illustration, but the present invention is not limit thereto.
It should be noted that, the reference electrode 12 of the phase shifter may include only one sub-reference electrode, for example, the reference electrode 12 may include only one of a first sub-reference electrode 121 and a second sub-reference electrode 122, or the reference electrode 12 of the phase shifter may alternatively include both the first sub-reference electrode 121 and the second sub-reference electrode 122. In the following description, a case where the reference electrode 12 includes the first sub-reference electrode 121 and the second sub-reference electrode 122 is taken as an example, but the present invention is not limit thereto. In a case where the reference electrode 12 includes the first sub-reference electrode 121 and the second sub-reference electrode 122, the signal line 11 is provided between the first sub-reference electrode 121 and the second sub-reference electrode 122. An orthographic projection of each of the patch electrodes 21 on the base substrate at least partially overlaps with an orthographic projection of the corresponding branch structure 112 on the base substrate, and the orthographic projection of each of the patch electrodes 21 on the base substrate at least partially overlaps with orthographic projections of the first sub-reference electrode 121 and the second sub-reference electrode 122 on the base substrate, respectively.
In the above phase shifter, the signal line 11, the first sub-reference electrode 121, and the second sub-reference electrode 122 constitute a CPW transmission line. A signal is fed into the signal line 11 from one end of the two ends of the signal line 11, and is fed out of the signal line 11 from the other end of the two ends of the signal line 11. An electric field generated by the CPW transmission line is a transverse electric field. That is, the electric field direction is directed from the signal line 11 to the first sub-reference electrode 121 or the second sub-reference electrode 122, and the microwave signal is confined between the signal line 11 and the first sub-reference electrode 121 or between the signal line 11 and the second sub-reference electrode 122. The microwave signal is required to be fed in or fed out at the two ends of the signal line 11. In some examples, micro-strip lines are adopted to be directly connected to the two ends of the signal line 11 for power feeding. A micro-strip line may include a transmission electrode (not shown in the drawings) in a same layer as the signal line 11, and a third reference electrode on a side of the first base substrate 10 opposite to the transmission electrode (not shown in the drawings). Since transmission electrodes are coupled to the two ends of the signal line 11, and the signal line 11 may be fed power through the transmission electrodes. However, the electric field formed between the transmission electrode and the third reference electrode of the micro-strip line is a longitudinal electric field. That is, the electric field direction of the longitudinal electric field is directed from the transmission electrode to the third reference electrode and is approximately perpendicular to the first base substrate 10. Therefore, the transverse electric field on the signal line 11 of the CPW transmission line cannot be directly converted into the longitudinal electric field on the micro-strip line, and thus the microwave signal cannot be well transmitted directly from the signal line 11 to the transmission electrode, resulting in a large transmission loss. In other embodiments, in order to convert the transverse electric field at the two ends of the signal line 11 into the longitudinal electric field, the third reference electrode may be connected to the reference electrode 12 of the CPW transmission line, and a via needs to be formed in the first base substrate 10. The third reference electrode and the reference electrode 12 respectively provided on the two sides of the first base substrate 10 are connected to each other through the via in the first base substrate 10, in which case on one hand the process complexity is increased, and on the other hand, if the first base substrate 10 is a glass substrate, the via cannot be formed in the glass substrate. Moreover, if a flowing medium such as liquid crystal molecules is used in the medium layer 30, the liquid crystal molecules may leak out through the via.
In order to solve the above problem, an embodiment of the present disclosure provides the following technical solutions. With continued reference to
It should be noted that, the first direction and the second direction each are a direction intersecting with the plane in which the first base substrate 10 is located. That is, the transmission direction (the first direction) of the microwave signal converted by the first feeding structure 50 intersects with the plane in which the first base substrate 10 is located, and similarly, the transmission direction (the second direction) of the microwave signal converted by the electric field direction of the second feeding structure 60 intersects with the plane in which the first base substrate 10 is located. The first direction and the second direction may be any directions satisfying the above characteristics. For convenience of explanation, the following description will be given by taking the first direction as a direction perpendicular to the plane in which the first base substrate 10 is located, the second direction as a direction perpendicular to the plane in which the first base substrate 10 is located, and the first direction being the same as the second direction, as an example, but the present invention is not limited thereto.
It should be noted that, in a case where the phase shifter is applied to an antenna, the antenna may be a transmitting antenna or a receiving antenna, and the radiation unit is connected to the second feeding structure 60. If the antenna is used as a transmitting antenna, a signal fed by a feed-forward circuit may be received by the first feeding structure 50, then is input to the signal line 11, is coupled to the radiation unit by the second feeding structure 60 after being received by the second feeding structure 60, and transmitted out by the radiation unit. If the antenna is used as a receiving antenna, a signal is received by the radiation unit and then coupled to the second feeding structure 60 by the radiation unit, is received by the second feeding structure 60 and then transmitted to the signal line 11 through the second feeding structure 60, is received by the first feeding structure 50 connected to the other end of the signal line 11 and then coupled back to the feed-forward circuit through the first feeding structure 50. For convenience of explanation, the first feeding structure 50 and the second feeding structure 60 of the phase shifter are taken as an example of an input terminal and an output terminal, respectively.
In some examples, each of the first feeding structure 50 and the second feeding structure 60 may be any feeding structure capable of transmitting a microwave signal in a direction which is not parallel to the first base substrate 10. For example, the first feeding structure 50 may be a monopole electrode, and may be provided in a same layer as the signal line 11 and made of a same material as the signal line 11. The second feeding structure 60 may also be a monopole electrode, and may be provided in a same layer and made of a same material as the signal line 11. Therefore, the monopole electrodes are connected to the two ends of the signal line 11, may convert a transverse electric field generated by the signal line 11 of the CPW transmission line into a longitudinal electric field, and radiate a microwave signal in a direction perpendicular to the first base substrate 10, thereby achieving feeding in and feeding out of the microwave signal. A monopole electrode as the first and/or second feeding structures 50 and 60 may have a specific structure of any type. For example, the first and second feeding structures 50 and 60 each may be a monopole patch electrode in the same layer as the signal line 11. In some examples, the first and second feeding structures 50 and 60 may be integrally formed with the signal line 11 as a single piece, thereby simplifying the manufacturing process. In the following, the description is made by taking an example in which the first feeding structure 50 and the second feeding structure 60 each are monopole patch electrodes.
In some examples, in a case where each of the first feeding structure 50 and the second feeding structure 60 is a monopole patch electrode, a width of the first feeding structure 50 is greater than a width of the signal line 11 of the CPW transmission line, and a width of the second feeding structure 60 is also greater than the width of the signal line 11 of the CPW transmission line.
In some examples, with the above structure, for achieving smoothing transmission of a microwave signal, the branch structure 112 may be provided to penetrate through the main structure 111. In some embodiments, the branch structure 112 and the main structure 111 may be designed to be formed as a single piece. That is, as shown in
With continued reference to
In some examples, referring to
In some examples, referring to
With continued reference to
In some examples, referring to
With continued reference to
In some examples, referring to
With continued reference to
In the phase shifter, the first feeding structure 50 and the second feeding structure 60 each are a feeding structure having a longitudinal electric field in a direction approximately perpendicular to the first base substrate 10. Therefore, the first feeding structure 50 and the second feeding structure 60 are connected to the two ends of the signal line 11, respectively, and may convert a transverse electric field at both ends of the signal line 11 into a longitudinal electric field. A case where a microwave signal is fed in through the first feeding structure 50 and fed out through the second feeding structure 60 is taken as an example. A microwave signal is fed into the waveguide cavity of the first waveguide structure 70 through the second port 702 of the first waveguide structure 70, and is then coupled to the first feeding structure 50 by the first recess 101 through the first port 701 of the first waveguide structure 70. The microwave signal received by the first feeding structure 50 is transmitted to the signal line 11. The microwave signal propagates along the extending direction of the signal line 11, and is transmitted to the second feeding structure 60 at the other end of the signal line 11 after being phase-shifted. The phase-shifted microwave signal is coupled to the first port 801 of the second waveguide structure 80 through the second recess 102 by a longitudinal electric field in the second feeding structure 60, and is then fed out through the second port 802 of the second waveguide structure 80. Since the first feeding structure 50 and the second feeding structure 60 are connected to the two ends of the signal line 11 respectively, the first feeding structure 50 and the second feeding structure 60 can convert the transverse electric field at the two ends of the signal line 11 into the longitudinal electric field, thereby achieving the conversion from the transverse electric field at the two ends of the coplanar waveguide transmission line to the longitudinal electric field. Moreover, the first waveguide structure 70, the first recess 101, the second waveguide structure 80 and the second recess 102 are adopted to transmit microwave signals, so that the transmission loss of the microwave signals can be effectively reduced.
It should be noted that, in the phase shifter provided in the embodiment of the present disclosure, the phase shifter may be provided with only the first waveguide structure 70, or only the second waveguide structure 80, or both the first waveguide structure 70 and the second waveguide structure 80, which is not limited herein. In the following, both the first waveguide structure 70 and the second waveguide structure 80 are provided in the phase shifter as an example.
In the phase shifter provided in the embodiments of the present disclosure, a tunable dielectric of any type may be used for the dielectric layer 30. For example, the dielectric layer 30 may include a tunable dielectric, such as liquid crystal molecules or ferroelectrics, and the following description will take the example where the dielectric layer 30 includes liquid crystal molecules. By applying voltages to the patch electrodes 21 and the CPW transmission line, the deflection angle of the liquid crystal molecules may be changed, so that the dielectric constant of the liquid crystal layer 30 is changed to achieve the phase shift of the microwave signals.
In some examples, the liquid crystal molecules in the dielectric layer 30 are positive liquid crystal molecules or negative liquid crystal molecules. It should be noted that, in a case where the liquid crystal molecules are positive liquid crystal molecules, in the embodiment of the present disclosure, an included angle between a long axis direction of the liquid crystal molecules and the patch electrode 21 is greater than 0 degree and less than or equal to 45 degrees. In a case where the liquid crystal molecules are negative liquid crystal molecules, in the embodiment of the present disclosure, an included angle between a long axis direction of the liquid crystal molecules and the patch electrode 21 is larger than 45 degrees and smaller than 90 degrees. In this case, the dielectric constant of the dielectric layer 30 is ensured to be changed after the liquid crystal molecules are deflected, thereby achieving the phase shift of the microwave signals.
In some examples, the phase shifter of the present embodiment further includes a signal connector 01, one end of the signal connector 01 is connected to an external signal line, and the other end of the signal connector 01 is connected to the second port 702 of the first waveguide structure 70. A microwave signal is input into the first waveguide structure 70 through the signal connector 01, and is coupled to the first feeding structure 50 through the first waveguide structure 70. The signal connector 01 may be of any type, such as an SMA connector, and the like, which is not limited thereto.
It should be noted that, in the phase shifter provided in the embodiment of the present disclosure, the microwave signal may be a high frequency signal, and the control signal for periodically loading the capacitors connected in parallel may be a low frequency signal, so that the microwave signal is different from the control signal for loading the capacitors. The microwave signal is input to the signal line 11 through the first feeding structure 50 or the second feeding structure 60, and the control signal for loading the capacitors is input to the patch electrode 21 and the signal line 11 through a signal line.
In some examples, the phase shifter provided by the embodiment of the present disclosure may further include a first signal line and a second signal line (neither of which is shown in the drawings). A control signal for the capacitors in parallel is periodically applied to the patch electrode 21 through the first signal line, and the first signal line is electrically coupled to the patch electrode 21. A control signal for the capacitors in parallel is periodically applied to the signal line 11 through the second signal line, and the second signal line is electrically coupled to the signal line 11.
In addition, it should be noted that, the phase shifter may include a plurality of phase adjusting units, and corresponding one or more patch electrodes 21 are provided in each of the plurality of phase adjusting units. An electric field is formed after each phase adjusting unit and the signal line 11 of the CPW transmission line are applied with voltages, and the liquid crystal molecules in the dielectric layer 30 are driven to deflect by the electric field, thereby changing the dielectric constant of the dielectric layer 30. Thus, the phase of the microwave signal may be changed. After the patch electrode 21 and the signal line 11 are applied with voltages, in different phase adjusting units, the microwave signal is correspondingly adjusted to have different phase shifts. That is, in each phase adjusting unit, the microwave signal may be correspondingly adjusted to have one phase shift. Therefore, when the phase shift of the microwave signal is required to be adjusted, the corresponding phase adjusting unit is controlled to be applied with voltages according to the phase shift to be adjusted, and it is not required to apply voltages to all the phase adjusting units, so that the phase shifter in the embodiment is convenient to be controlled and has low power consumption.
In addition, for facilitating control and simplifying wiring, the patch electrodes 21 in all the phase adjusting units may be controlled through a same first signal line. Of course, the patch electrodes 21 in different phase adjusting units may be controlled through different first signal lines according to actual requirements, which is not limited herein.
In some examples, referring to
Further, in order to ensure better transmission efficiency between the first feeding structure 50 and the first waveguide structure 70, the first feeding structure 50 and the first waveguide structure 70 may be provided opposite to each other. The first feeding structure 50 may be symmetric with respect to its center in shape (i.e., the first feeding structure 50 may be a center-symmetric pattern), and the first port 701 of the first waveguide structure 70 may be symmetric with respect to its center in shape (i.e., the first port 701 of the first waveguide structure 70 may be a center-symmetric pattern). A distance between an orthographic projection of a symmetric center of the first feeding structure 50 on the first base substrate 10 and an orthographic projection of a symmetric center of the first port 701 of the first waveguide structure 70 on the first base substrate 10 is not greater than a first preset value. The first preset value should be as small as possible, for example, smaller than 0.1 cm. If the first preset value is 0, the first feeding structure 50 and the first waveguide structure 70 are provided directly opposite to each other, and the symmetric center of the first feeding structure 50 coincides with the symmetric center of the first port 701 of the first waveguide structure 70. Similarly, in order to ensure better transmission efficiency of the second feeding structure 60 and the second waveguide structure 80, the second feeding structure 60 and the second waveguide structure 80 may be provided opposite to each other. The second feeding structure 60 may be symmetric with respect to its center in shape (i.e., the second feeding structure 60 may be a center-symmetric pattern), and the first port 801 of the second waveguide structure 80 may be symmetric with respect to its center in shape (i.e., the first port 801 of the second waveguide structure 80 may be a center-symmetric pattern). A distance between an orthographic projection of the symmetric center of the second feeding structure 60 on the first base substrate 10 and an orthographic projection of the symmetric center of the first port 801 of the second waveguide structure 80 on the first base substrate 10 is not greater than a second preset value. The second preset value should be as small as possible, for example, less than 0.1 cm. If the second preset value is 0, the second feeding structure 60 and the second waveguide structure 80 are provided directly opposite to each other, and the symmetric center of the second feeding structure 60 coincides with the symmetric center of the second waveguide structure 80.
In some examples, referring to
In some examples, referring to
In some examples, referring to
In some examples, the phase shifter may further include a first connection structure 501 and a second connection structure 601 provided on a side of the first base substrate 10 close to the dielectric layer 30. The first connection structure 501 is connected between the first feeding structure 50 and the first end of the main structure 111 of the signal line 11, and the second connection structure 601 is connected between the second feeding structure 60 and the second end of the main structure 111 of the signal line 11. The first connection structure 501 and the second connection structure 601 each may be used as an impedance matching structure. At an interface between the first feeding structure 50 and the signal line 11 as an input terminal for the microwave signal, if the impedance of the first feeding structure 50 is different from that of the signal line 11, a standing wave ratio (of standing waves) is not equal to 1, that is, there is a return loss, which degrades the performance of the phase shifter, and therefore the impedance matching needs to be considered. With the first connection structure 501, the impedance matching is achieved between the first feeding structure 50 and the signal line 11. Similarly, at an interface between the second feeding structure 60 and the signal line 11 of the CPW transmission line as a loading terminal (e.g., the radiation unit), if the impedance of the second feeding structure 60 is different from that of the signal line 11 of the CPW transmission line, the standing wave ratio (of the standing waves) is not 1, that is, there is a return loss, which degrades the performance of the phase shifter, and therefore the impedance matching needs to be considered. With the second connection structure 601, the impedance matching is achieved between the second feeding structure 60 and the signal line 11.
In some examples, if the impedances of the first feeding structure 50, the second feeding structure 60, and the signal line 11 are the same, for example, all are equal to 100Ω, the impedance matching is not required, the first connection structure 501 and the second connection structure 601 each may be a connection line, the first connection structure 501 may have a same width as the main structure 111 of the signal line 11, and the second connection structure 601 may have a same width as the main structure 111 of the signal line 11. In the present embodiment, a case where all the first connection structure 501, the second connection structure 601, and the signal line 11 have a same width is taken as an example. In some examples, the first and second connection structures 501 and 601 may be integrally formed with the signal line 11 as a single piece to simplify the manufacturing process.
It should be noted that, the first connection structure 501 or the second connection structure 601 is connected to the main structure 111 of the signal line 11 of the CPW transmission line, and a gap is maintained between the first connection structure 501 or the second connection structure 601 and the first sub-reference electrode 121, and between the first connection structure 501 or the second connection structure 601 and the second sub-reference electrode 122.
In some examples, referring to
Specifically, if the first waveguide structure 70 and the second waveguide structure 80 are provided on different sides, in a case where the first waveguide structure 70 is provided on a side of the first base substrate 10 away from the dielectric layer 30, the first reflection structure 04 is provided on a side of the second base substrate 20 away from the dielectric layer 30; and in a case where the second waveguide structure 80 is provided on a side of the second base substrate 20 away from the dielectric layer 30, the second reflection structure 05 is provided on a side of the first base substrate 20 away from the dielectric layer 30. If the first waveguide structure 70 and the second waveguide structure 80 are provided on the same side, for example, both the first waveguide structure 70 and the second waveguide structure 80 are provided on a side of the second base substrate 20 away from the dielectric layer 30, the first reflection structure 04 and the second reflection structure 05 are provided on a side of the first base substrate 10 away from the dielectric layer 30.
In some examples, a waveguide structure may be adopted for the first reflection structure 04, and the waveguide cavity of the first reflection structure 04 has a first port 041 and a second port 042. The first port 041 of the first reflection structure 04 directly faces the first port 701 of the first waveguide structure 70, so that an orthographic projection of the first port 041 of the first reflection structure 04 on the first base substrate 10 at least partially overlaps with or completely overlaps with an orthographic projection of the first port 701 of the first waveguide structure 70 on the first base substrate 10. A waveguide structure may be adopted for the second reflection structure 05, and the waveguide cavity of the second reflection structure 05 has a first port 051 and a second port 052. The first port 051 of the second reflection structure 05 directly faces the first port 801 of the second waveguide structure 80, so that an orthographic projection of the first port 051 of the second reflection structure 05 on the second base substrate 20 at least partially overlaps with or completely overlaps with an orthographic projection of the first port 801 of the second waveguide structure 80 on the second base substrate 20.
In some examples, referring to
That is, not only the first recesses 101 are formed in the first base substrate 10 on which the first waveguide structure 70 is correspondingly provided, the second recesses 102 are formed in the second base substrate 20 on which the second waveguide structure 80 is correspondingly provided, but also the third recesses 103 are formed in the second base substrate 20 on which the first reflection structure 04 is correspondingly provided, and the fourth recesses 104 are formed in the first base substrate 10 on which the second reflection structure 05 is correspondingly provided, and the first recesses 101, the second recesses 102, the third recesses 103, and the fourth recesses 104 each are filled with the conductive structure 105. In this case, when a microwave signal fed through the second port 702 of the first waveguide structure 70 is coupled to the first feeding structure 50 through the first recesses 101 and the conductive structures 105 therein; and the microwave signal transmitted upward is reflected by the first reflection structure 04, is coupled to the first feeding structure 50 through the third recesses 103 and the conductive structures 105 therein, and then is transmitted through the transmission line to the second feeding structure 60. The microwave signal received by the second feeding structure 60 is coupled, through the second recesses 102 and the conductive structures 105 therein, to the second waveguide structure 80 to be fed out. The microwave signal transmitted downward is reflected by the second reflection structure 05, is coupled to the second feeding structure 60 through the fourth recessed 104 and the conductive structure 105 therein, and is coupled, through the second recesses 102 and the conductive structures 105 therein, to the second waveguide structure 80 to be fed out again. In this process, it can be seen that, the microwave signal energy loss is greatly reduced.
Referring to
In order to make the specific structure of each of the recesses in the embodiments of the present disclosure clearer, a description will be given to illustrate how to form the first recesses 101, the second recesses 102, the third recesses 103, the fourth recesses 104, and the conductive structures 105 in the phase shifter shown in
In addition, the conductive structure 105 in each of the recesses may be formed of a metal layer by electroplating, evaporation, magnetron sputtering, and the like, and it is not required that the blind hole is completely filled with metal and it may be better to completely cover the sidewall of the blind hole. However, if the sidewall of the structure may not be completely covered by the metal due to the limit of the process, the feeding efficiency of the structure may be still improved, compared to a structure without such a configuration. Since the metallized blind holes exist in the first feeding region, and the blind holes formed in a same glass base substrate may be equivalent to an ideal electric wall, the energy of the monopole excitation radiation is thus bound in the waveguide structure as much as possible, so that more energy is collected to enhance conversion efficiency. The drilling the blind holes in the glass avoids the issue of liquid crystal leakage caused by the via, and a high performance feeding structure is easy to obtain. Through a simulation experiment, compared to a phase shifter without the first recesses 101, the second recesses 102, the third recesses 103, the fourth recesses 104 and the conductive structures 105, the transmission loss of the phase shifter, which is provided with the first recesses 101, the second recesses 102, the third recesses 103 and the fourth recesses 104 and the conductive structures 105, is reduced to a certain extent in the whole working frequency band. In some examples, the first waveguide structure 70 and the second waveguide structure 80 may be constructed of hollow metal walls. In particular, the first waveguide structure 70 may have at least one first sidewall that connects to form the waveguide cavity of the first waveguide structure 70, and/or the second waveguide structure 80 may have at least one second sidewall that connects to form the waveguide cavity of the second waveguide structure 80. If the first waveguide structure 70 has only one first sidewall, the first waveguide structure 70 is a circular waveguide structure. The first sidewall forms a circular hollow pipe and surrounds to form the waveguide cavity of the first waveguide structure 70. The first waveguide structure 70 may further include a plurality of first sidewalls to form a waveguide cavity of any shape. For example, referring to
It should be noted that, the thickness of the first sidewall of the first waveguide structure 70 may be 4 to 6 times of the skin depth of the microwave signal transmitted by the phase shifter; and the thickness of the second sidewall of the second waveguide structure 80 may be 4 to 6 times of the skin depth of the microwave signal transmitted by the phase shifter, which is not limited herein.
In some examples, the first waveguide structure 70 and the second waveguide structure 80 may be formed by cavities in a metal block. Specifically, referring to
In the phase shifter provided in the embodiment of the present disclosure, in order to apply the structure having the CPW transmission line periodically loaded with variable capacitors Cvra(V) to a phased array antenna and to achieve the function of beam scanning, it is required that the range of an adjustable phase difference of each of the phase shifters is greater than 360°. Therefore, in order to achieve this range, the phase shifters are placed and reasonably arranged in a limited area, and the overall length of the phase shifter is required not too long. Therefore, the capacitance of the variable capacitor Cvra(V) in each period should be sufficiently large, so as to achieve a phase difference in the limited length. However, if the capacitance of the variable capacitor Cvra(V) changes significantly, the impedance of the equivalent transmission line will be caused to change greatly, which will cause a big issue of a bad performance of the port and thus the increased transmission loss.
In order to solve the above problem, referring to
When each of the second region Q2 and the third region Q3 is provided with a plurality of variable capacitors Cvra(V), for any two variable capacitors Cvra(V) located on a same side of the first region Q1, the overlapping area between the patch electrode 21 and the branch structure 112 of the variable capacitor Cvra(V) close to the first region Q1 is greater than or equal to the overlapping area between the patch electrode 21 and the branch structure 112 of the variable capacitor Cvra(V) away from the first region Q1.
It should be noted that, an overlapping area refers to an overlapping area between an orthographic projection of the patch electrode 21 on the first base substrate 10 (or the second base substrate 20) and an orthographic projection of the branch structure 112 on the first base substrate 10 (or the second base substrate 20).
Moreover, in the embodiment of the present invention, for any two variable capacitors Cvra(V) on a same side of the first region Q1, the overlapping area between the patch electrode 21 and the branch structure 112 of the variable capacitor Cvra(V) close to the first region Q1 is greater than or equal to the overlapping area between the patch electrode 21 and the branch structure 112 of the variable capacitor Cvra(V) away from the first region Q1. That is, along the length direction of the main structure 111, the capacitances of the formed periodic variable capacitors Cvra(V) tend to increase first and then decrease. The capacitance of the variable capacitor Cvra(V) is positively correlated with an impedance of the variable capacitor Cvra(V), so that along the length direction of the main structure 111, the impedance of the phase shifter tends to increase first and then decrease (as shown in
In some embodiments, only one variable capacitor Cvra(V) is provided in the first region Q1, that is, only one patch electrode and only one branch structure 112 are provided in the first region Q1, and an orthographic projection of the only one patch electrode on the base substrate at least partially overlap with an orthographic projection of the only one branch structure 112 on the base substrate to form the one variable capacitor Cvra(V). The capacitance of the variable capacitor Cvra(V), that is, the overlapping area between the patch electrode and the branch structure 112, should be configured in such a manner that the microwave signal may be phase shifted not less than 360° after passing through the first region Q1, the second region Q2, and the third region Q3.
In some embodiments, the overlapping areas of the variable capacitors Cvra(V) formed in the second region Q2 are different from each other, and/or the overlapping areas of the variable capacitors Cvra(V) formed in the third region Q3 are different from each other. For example, the overlapping areas of the variable capacitors Cvra(V) formed in the second region Q2 and the third region Q3 increase monotonically in the direction approaching the first region Q1. That is, the capacitances of the variable capacitors Cvra(V) formed in the second region Q2 and in the third region Q3 increase regularly in the direction approaching the first region Q1, so that the microwave signal may be transmitted stably, and the transmission loss may be reduced as much as possible.
In some embodiments, the variable capacitors Cvra(V) formed in the second region Q2 and in the third region Q3 are the same in number, and the variable capacitors Cvra(V) formed in the two regions are symmetrically arranged with respect to the first region Q1. That is, the capacitances (or overlapping areas) of the variable capacitors Cvra(V) formed in the second region Q2 and in the third region Q3 change in a same manner in the direction approaching the first region Q1. Therefore, the microwave signal may be transmitted more stably, and the transmission loss may be reduced as much as possible.
In some embodiments, as shown in
In some embodiments, the pitches between the variable capacitors Cvra(V) are the same. In this case, the pitches between the patch electrodes 21 may be set to a same pitch, while the pitches between the branch structures 112 may also be set to a same pitch. Of course, the pitches between the variable capacitors Cvra(V) (or between the patch electrodes 21, or between the branch structures 112) may be designed to monotonically increase or decrease according to a certain rule; or the pitches between the variable capacitors Cvra(V) (or between the patch electrodes 21, or between the branch structures 112) may also be designed to be different from each other, and do not have a certain arrangement rule, which is not limited in the embodiment of the present invention.
When the phase shifter with the CPW transmission line periodically loaded with variable capacitors provided in the embodiment of the present disclosure is manufactured and applied to an array antenna, since a pitch in the array antenna is generally required to be 0.5λ to 0.6λ, where λ is a vacuum wavelength of a microwave signal corresponding to a work frequency of the phase shifter, in order to meet this requirement, a layout area left for the phase shifter under each radiation unit is only 0.5×0.5λ, while the phase shifter needs to achieve a phase shift angle of 360°, so it is required to bend the CPW transmission line to a certain extent.
In some examples, as shown in
In some examples, the first and/or second waveguide structures 70 and/or 80 may have a filling medium therein to increase the dielectric constant of the entire first and/or second waveguide structures 70 and/or 80, so that the first and second waveguide structures 70 and 80 may be reduced in size. The filling medium may include any kind of medium, for example, the filling medium may be polytetrafluoroethylene.
In some embodiments, various materials of substrates may be used for the first base substrate 10, the second base substrate 20, and the third base substrate 03, for example, a glass substrate with a thickness of 100 to 1000 micrometers may be adopted; a sapphire substrate may be adopted; a polyethylene terephthalate substrate with a thickness of 10 to 500 micrometers, a triallyl cyanurate substrate and a polyimide transparent flexible polyimide substrate may be adopted; and a foam substrate, a printed circuit board (PCB), and the like may alternatively be adopted.
In some embodiments, the patch electrode 21, the branch structure 112, the main structure 111, the reference electrode 12, the first feeding structure 50, the second feeding structure 60, the first connection structure 501, and the second connection structure 601 each may be made of a metallic material, such as aluminum, silver, gold, chromium, molybdenum, nickel, or iron.
In a second aspect, the present disclosure provides an antenna including at least one phase shifter described above. In some examples, the antenna may further include at least one radiation unit 90, one of which is provided corresponding to the second port 802 of the second waveguide structure 80 of one of the at least one phase shifter. That is, if the antenna is used as a transmitting antenna, the signal is coupled to the first port 801 of the second waveguide structure 80 through the second feeding structure 60, and then is transmitted to the radiation unit 90 corresponding to the second port 802 of the second waveguide structure 80 through the second port 802 of the second waveguide structure 80. If the antenna is used as a receiving antenna, the signal is received by the radiation unit 90, then is transmitted to the second port 802 of the second waveguide structure 80 corresponding to the radiation unit 90, and then is coupled to the second feeding structure 60 through the first port 801 of the second waveguide structure 80. In the antenna provided by the embodiment of the present disclosure, any number of radiation units 90 may be included such that one of the at least one phase shifter is connected to one of the radiation units 90 to adjust the phase of the radiation unit 90, and in the array antenna, the phases of the radiation units 90 are adjusted to control the transmission direction of a beam, thereby forming a phased array antenna. The following description will be given by taking the radiation units 90 arranged in a 1×3 array as an example.
In some examples, referring to
A size of an opening of the second port of the third waveguide structure is greater than that of the first port of the third waveguide structure, and the third waveguide structure (i.e., the radiation unit 90) may be a horn antenna, as shown in
In some examples, referring to
In some examples, with continued reference to
The main port 100a of the waveguide power division network 100 is connected to an external signal line, and for example, the main port 100a may be connected to a signal connector 01. The signal transmitted through the external signal line is received by the main port 100a and divided into a plurality of sub-signals. Each of the sub-signals is output through one sub-port 100b. Specifically, the waveguide power division network 100 may have one main waveguide structure 1001 extending in an extending direction parallel (or approximately parallel) to the first base substrate 10. The main port 100a may be provided at a midpoint of the main waveguide structure 1001 in the extending direction. The plurality of first waveguide structures 70 may extend in a direction perpendicular (or approximately perpendicular) to the first base substrate 10, and the second ports 702 of the plurality of first waveguide structures 70 are connected to the main waveguide structure. The first port 701 of each of the first waveguide structures 70 serves as one sub-port 100b of the waveguide power division network. The signal is received by the main port 100a and divided into a plurality of sub-signals, and one of the sub-signals enters one first waveguide structure 70 and is coupled to the first feeding structure 50 corresponding to the first waveguide structure 70 through the first port 701 of the first waveguide structure 70.
In some examples, similar to the above, referring to
In some examples, referring to
In some examples, referring to
In some examples, referring to
In some examples, the fourth substrate 40 may be a substrate of any material. For example, for the fourth substrate 40, a glass substrate with a thickness of 100 to 1000 microns may be adopted; a sapphire base substrate may be adopted; a polyethylene terephthalate substrate with a thickness of 10 to 500 microns, a triallyl cyanurate substrate, a polyimide transparent flexible substrate may be adopted, and a foam substrate, a printed circuit board (PCB), and the like may be adopted.
Referring to
It will be understood that, the above embodiments are merely exemplary embodiments adopted to illustrate the principles of the present disclosure, and the present disclosure is not limited thereto. It will be apparent to those skilled in the art that, various modifications and improvements could be made without departing from the spirit and scope of the disclosure, and such modifications and improvements should be considered to be within the scope of the present disclosure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2021/078045 | 2/26/2021 | WO |