Claims
- 1. A semiconductor waveguide scanning antenna, comprising in combination:
- a length of semiconductor waveguide of rectangular cross section adapted to propagate wave energy along a longitudinal axis transverse to said cross section and having a plurality of spaced parallel metallic elements selectively located on one surface of said waveguide along its length which act as perturbations that interact with the propagated wave energy to produce at least a first radiation pattern directed outwardly from said one surface at a predetermined radiation angle;
- distributed PIN diode means formed from contiguous layers of semiconductive material located on an adjacent surface of said waveguide which is perpendicular to said one surface, said layers being disposed orthogonally with respect to and projecting outwardly from said adjacent surface, so that the PIN diode means lies entirely outside of the rectangular cross section of the semiconductor waveguide, a dielectric insulator layer disposed between said PIN diode means and said adjacent surface; and
- means coupled to said PIN diode means for applying a bias potential thereto for controlling the conductivity of said PIN diode means which has the effect of varying the wavelength of said semiconductor waveguide and accordingly the radiation angle of said first radiation pattern.
- 2. A length of semiconductor waveguide of rectangular cross section adapted to propagate wave energy along a longitudinal axis transverse to said cross section;
- distributed PIN diode means formed from contiguous layers of semiconductive material located on one surface of said waveguide, said layers being disposed orthogonally with respect to and projecting outwardly from said one surface, so that the PIN diode means lies entirely outside of the rectangular cross section of the semiconductor waveguide, a dielectric insulator layer disposed between said PIN diode means for applying a bias potential thereto for controlling the conductivity of said PIN diode means which has the effect of varying the wavelength of said semiconductor waveguide and accordingly the phase of said propagated wave energy.
- 3. Apparatus as set forth in claim 1 or 2, wherein said rectangular cross section of said semiconductor waveguide has substantially equal dimensions; and wherein said PIN diode means in the dimension extending through the layers thereof is substantially thinner than the semiconductor waveguide.
- 4. Apparatus as set forth in claim 3, wherein said waveguide is composed of silicon.
- 5. Apparatus as set forth in claim 4, further including second PIN diode means located on the opposite surface of said waveguide with respect to the first said PIN diode means, mounted and biased in a similar manner, and also having a dielectric insulator layer disposed between the second PIN diode means and the waveguide.
Government Interests
The invention described herein may be manufactured and used by or for the Government for governmental purposes without the payment of any royalties thereon or therefor.
US Referenced Citations (6)