This application is a U.S. national filing under 35 U.S.C. 371 and claims priority from PCT/GB2003/002743, filed 27 Jun. 2003, and from British Application No. 0215087.8, filed 29 Jun. 2002 (each incorporated by reference herein).
This invention relates to a phase shifting device for an array of antenna elements and in particular, but not exclusively, to a ground-tilting antenna including such an array.
For a variety of reasons it may be desirable to induce and adjust the phase difference between signals emitted from a plurality of antenna elements in an array and one particular example of this is when the array forms a ground tilting antenna. It is well known by designers of wireless cell networks, such as mobile phone networks, that there is a continuous compromise to be made between coverage, capacity and quality. Maximum coverage is achieved by emitting a horizontal beam, but in periods of peak capacity it is found that there is often interference or calls simply dropping off, with such an arrangement. In general, therefore, antenna are tilted downwardly by about 5°. It has, however, been appreciated that even a fixed tilt is not ideal, because it does not allow for changes in usage within the cell either on a short-term basis or a long-term basis. Many aerials are therefore mounted on the system which can mechanically alter the tilt of the aerial, but these require an engineer to visit the site and they often require the antenna to be switched off during adjustment.
Proposals have, accordingly, been made to alter the tilt of the radiating beam electrically by inducing phase changes along the length of the array corresponding to tilts of various angles. However, these have tended to introduce their own mechanical and control complexities. For example, in WO 01/03233 a phase shift system is described in which the phase is altered by altering the line length for any given antenna by varying the insertion or withdrawal of generally C-shaped conductor portions lying within, but not touching, folded conductors that form part of the line. This requires fabrication and assembly to a fine degree of tolerance and the mechanical arrangements for achieving continuous adjustment of the phase in different senses in different parts of the array in a coordinated manner are complex. Other approaches are to use moveable dielectric bodies such as described in US-A-2002/0003458 or a slidable T-junction arrangement as described in U.S. Pat. No. 5,801,600. In each case the construction is complex and co-ordinated alteration of the phase shifts is difficult to obtain.
From one aspect the invention consists in the phase shifting device of an array of antenna elements having respective antenna feed lines formed on a printed circuit board with respective open circuits formed therein, the device including a body slidable relative to the printed circuit board and carrying a plurality of conductive strips for forming a RF connection across respective open circuits, the strips being formed such that any given feed line is lengthened by movement of the element in one direction and shortened by movement in an opposite direction.
Conveniently the conductive strips are generally C-shaped and there may be one set of conductive strips which are oppositely sensed from another set, such that on movement in one direction, the one set of strips moves to lengthen their respective feed lines, whilst the other set shorten their respective feed lines. The conductive strips are preferably capacitively connected to their respective feed lines.
The body is preferably a rigid RF transparent block and the conductive strips may be printed on the surface of the block or they may be formed on a circuit that is fixed to the block, with the body of the circuit interposed between the block and the printed circuit board so that there is no friction on the conductive strips to damage them. A lamination process may be used. Alternatively a thin dielectric sheet or coating may be interposed.
The invention further includes a phase changing assembly including a printed circuit board for an array of antenna elements, the board having respective antenna element feed lines formed thereon, each feed line having an open circuit formed therein, a phase shifting device as claimed in any one of the preceding claims with the body slidably mounted with respect to the printed circuit board and an actuator for causing slidable movement.
Preferably the printed circuit board is elongate and the body is moveable in the longitudinal axial path, which incorporates the one and the other direction movement defined above.
The invention still further includes a ground tilting antenna array comprising assembly as claimed above where the antenna elements are mounted in the vertical elongate array with the upper antenna elements connected to the feed lines whose length is lengthened when the body is moved in the one direction and the lower antenna elements connected to the feed lines whose length is shortened when the body is moved in the one direction whereby a phase shift can be caused along the length of the array.
Although the invention has been defined above it is to be understood that it includes any inventive combination of the features set out above or in the following description.
The invention may be performed in various ways and specific embodiments will now be described by way of example with reference to the accompanying drawings, in which:
Turning to
Turning now to
As can best be seen in
Turning to
Turning to
It will be noted that the only movement that needs to be achieved is the movement of the single block 17 and so no complex ganging or gearing needs to take place, nor is there any chance of mechanical wear or slackness introducing error. As the circuit 18 is adhered to the rigid block 17 with the conductive strips 23 adjacent the block 17 all the sliding takes place on the undersurface of the circuit, which can be coated with PTFE and the strips 23 are not subjected to wear. The upper surface of the printed circuit board 16 can also be lubriciously protected by being covered with a thin PTFE layer.
The rigid block 17 can be mounted in any suitable manner, but the Applicants have found that the arrangement illustrated is particularly convenient. This comprises a number of bolts 20 which are screwed through openings in the printed circuit board 16, into the chassis 15 along the central axis thereof. These bolts extend through slots 24 in the arm 19 to define precise linear travel for the arm 19 and hence the block 17. The bolts can be adjusted so that there is sufficient friction between the underside of the slider circuit 18 and the printed circuit board 17 for any particular position to be retained frictionally. Continuous adjustment of the phase is therefore available. Preferably the linear movement of the arm 19 is achieved by a stepper motor (not shown) acting on a remote end thereof so that the phase shift can be adjusted remotely, so the effective ground tilt angle of the array can be achieved, either at ground or, even more preferably, from a remote control station. Often the adjustment will be made to reflect changing traffic profiles over a period of weeks or months, but the system is equally capable of allowing changing angles throughout a pre-set daily pattern, in the manner of traffic light delays, so that, for example, antennas near roads, carrying rush hour traffic, may require a greater down tilt during peak periods than at other times or, it could be a real time adjustment which reflects the traffic being handled by any particular array at any particular time.
The circuit illustrated is designed for 1710 to 2170 MHz wideband operation, when connected to wideband antenna elements. However, it can be scaled to other frequency bands eg 800 MHz to 1 GHz, by those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
0215087.8 | Jun 2002 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB03/02743 | 6/27/2003 | WO | 00 | 12/28/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/004059 | 1/8/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5440318 | Butland et al. | Aug 1995 | A |
6208222 | Sinsky | Mar 2001 | B1 |
6326922 | Hegendoerfer | Dec 2001 | B1 |
6650291 | West et al. | Nov 2003 | B1 |
6683582 | Love | Jan 2004 | B1 |
6850130 | Gottl et al. | Feb 2005 | B1 |
6987487 | Zimmerman et al. | Jan 2006 | B2 |
20020167443 | McKinzie, III et al. | Nov 2002 | A1 |
20030016097 | McKinzie, III et al. | Jan 2003 | A1 |
Number | Date | Country |
---|---|---|
198 12 582 A 1 | Sep 1999 | DE |
1 033 773 | Sep 2000 | EP |
1439893 | Jun 1976 | GB |
WO 0103233 | Jan 2001 | WO |
WO 0113459 | Feb 2001 | WO |
WO 03036759 | May 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050248494 A1 | Nov 2005 | US |