Phased array antenna including an antenna module temperature sensor and related methods

Information

  • Patent Grant
  • 6593881
  • Patent Number
    6,593,881
  • Date Filed
    Friday, November 9, 2001
    23 years ago
  • Date Issued
    Tuesday, July 15, 2003
    21 years ago
Abstract
A phased array antenna includes a plurality of phased array antenna modules and associated antenna elements. Further, at least one of the phased array antenna modules may also include a temperature sensor for measuring a temperature of the at least one phased array antenna module. More particularly, the temperature sensor may include a capacitor and a circuit element coupled in series with the capacitor having a resistance that varies with temperature. Additionally, the at least one phased array antenna module may further include a module controller for charging/discharging the capacitor through the circuit element, measuring a charging/discharging time required to charge/discharge the capacitor to a predetermined threshold, and determining the temperature of the at least one phased array antenna module based upon the charging/discharging time.
Description




FIELD OF THE INVENTION




The present invention relates to the field of communications, and, more particularly, to phased array antennas.




BACKGROUND OF THE INVENTION




Temperature sensors are used in a wide variety of applications. Many different types of temperature sensors are commercially available, and the type of temperature sensor that will be used in any particular application will depend on several factors. For example, cost, space constraints, durability, and accuracy of the temperature sensor are all considerations that typically need to be taken into account.




One particular application in which a relatively high degree of accuracy may be required of a temperature sensor is in the field of antennas. More particularly, so-called “smart” antenna systems are commonly being used in both ground based applications (e.g., cellular antennas) and airborne applications (e.g., airplane or satellite antennas). Smart antenna systems, such as adaptive or phased array antennas, combine the outputs of multiple antenna elements with signal processing capabilities to transmit and/or receive communications signals. As a result, such antenna systems can vary the transmission or reception pattern of the communications signals in response to the signal environment to improve performance characteristics.




Of course, one of the factors which affects the signal environment is the temperature at which the antenna elements operate. Accordingly, to provide accurate phase shifting in a phased array antenna system, it is generally desirable to know the temperature of the antenna elements.




Typical prior art temperature sensors may include thermistors, resistance-temperature detectors (RTDs), and active temperature-dependent current sources, for example. One such active temperature-dependent current source is the AD590 by Analog Devices, Inc., of Norwood, Mass., which is further described in the data sheet entitled “Two-Terminal IC Temperature Transducer” from Analog Devices, Inc., published 1997. Yet, in typical prior art temperature sensor configurations, such devices may require a connection to additional circuitry such as multiplexors, analog conditioning circuitry, and analog-to-digital (A/D) converters, for example.




This additional circuitry not only increases the cost of the temperature sensor, but may also require a relatively large amount of space. Furthermore, to provide a high degree of accuracy, such sensors typically require careful calibration over the operating temperature environment. This may be particularly difficult to perform in spaceborne antennas, for example, where operating temperatures may vary significantly depending upon whether the antenna elements are shaded or in direct sunlight.




Because of issues such as cost, space savings, and the difficulty of calibration, many phased array antenna systems include only a single centralized temperature controller coupled to temperature sensing devices such as those listed above. For example, U.S. Pat. No. 5,680,141 to Didomenico et al. entitled “Temperature Calibration System for a Ferroelectric Phase Shifting Array Antenna” discloses a phased array antenna that includes a single temperature sensor circuit connected to a plurality of temperature sensors, each of which senses the temperature of a phase shifter separate from the phased array antenna elements. Each phase shifter is connected to a plurality of antenna elements. The temperature sensor circuit connects to a data processor system for inputting temperature information used to calculate calibration error factors.




One drawback of such phased array antennas is that all of the temperature compensation processing is performed by a central processor. Thus, if temperatures of a large number of phase shifters are to be monitored, the controller's task of managing temperature compensation may become significantly complicated and require a significant amount of processing resources. Communicating analog temperature data from a large number of sensors back to a central processor can also require a significant amount of wiring and analog processing.




SUMMARY OF THE INVENTION




In view of the foregoing background, it is therefore an object of the present invention to provide a phased array antenna which includes a relatively accurate and easily calibrated temperature sensor for sensing the temperature of phased array antenna modules.




This and other objects, features, and advantages of the present invention are provided by a phased array antenna including a plurality of phased array antenna modules and associated antenna elements. Further, at least one of the phased array antenna modules may also include a temperature sensor for measuring a temperature of the at least one phased array antenna module.




More particularly, the temperature sensor may include a capacitor and a circuit element coupled in series with the capacitor having a resistance that varies with temperature. The circuit element may be a thermistor, for example. Additionally, the at least one phased array antenna module may further include a module controller for charging/discharging the capacitor through the circuit element, measuring a charging/discharging time required to charge/discharge the capacitor to a predetermined threshold, and determining the temperature of the at least one phased array antenna module based upon the charging/discharging time.




The temperature sensor may also include at least one calibration resistor coupled between the module controller and the capacitor. The module controller may thus sequentially charge/discharge the capacitor through the circuit element and the at least one calibration resistor, measure respective charging/discharging times required to charge/discharge the capacitor to the predetermined threshold through the circuit element and the at least one calibration resistor, and determine the temperature of the at least one phased array antenna module based upon the charging/discharging times. For example, the at least one calibration resistor may include a high calibration resistor and a low calibration resistor.




Furthermore, the module controller may include a counter for measuring the charging/discharging time, a driver coupled to the circuit element for charging/discharging the capacitor, and a control logic circuit for controlling the driver. The module controller may also include a Schmitt hysteresis device coupled to the capacitor for determining when the capacitor has been charged/discharged to the predetermined threshold.




Additionally, the at least one phased array antenna module may include one or more phase shifters, attenuators, and/or delay devices coupled to the at least one antenna element. Moreover, the phased array antenna may further include an array controller coupled to the at least one phased array antenna module for controlling the phase shifter, attenuator, and/or delay devices based upon the temperature of the at least one phased array antenna module. The module controller may also control the phase shifter based upon the temperature of the at least one phased array antenna module.




A method aspect of the invention is for sensing a temperature of a phased array antenna module including a capacitor and a circuit element coupled in series with the capacitor and having a resistance that varies with temperature. The method may include charging/discharging the capacitor through the circuit element, measuring a charging/discharging time required to charge/discharge the capacitor to a predetermined threshold, and determining the temperature of the phased array antenna module based upon the charging/discharging time.




Yet another method aspect of the invention is for making a phased array antenna which includes positioning a plurality of phased array antenna modules in an array. Each phased array antenna module may include an associated antenna element. The method may also include providing a temperature sensor in at least one of the phased array antenna modules for measuring a temperature thereof.




More specifically, providing the temperature sensor may include coupling a capacitor in series with a circuit element having a resistance that varies with temperature. The circuit element may be a thermistor, for example. Moreover, mounting the temperature sensor may further include coupling at least one calibration resistor between the module controller and the capacitor. For example, the at least one calibration resistor may include a high calibration resistor and a low calibration resistor.




Furthermore, the method may also include mounting a module controller on the at least one phased array antenna module. The module controller is for charging/discharging the capacitor through the circuit element, measuring a charging/discharging time required to charge/discharge the capacitor to a predetermined threshold, and determining the temperature of the at least one phased array antenna module based upon the charging/discharging time.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic block diagram of a phased array antenna according to the present invention.





FIG. 2

is a schematic cross-sectional view of a phased array antenna module of the phased array antenna of FIG.


1


.





FIG. 3

is a more detailed schematic block diagram of the module controller and temperature sensor of the phased array antenna module of FIG.


2


.





FIG. 4

is a flow diagram of a method for sensing a temperature according to the present invention.





FIG. 5

is a schematic circuit diagram of an equivalent circuit for the temperature sensor of FIG.


3


.





FIGS. 6A-6C

are schematic circuit diagrams illustrating simplified circuit portions of the equivalent circuit of FIG.


5


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.




Referring initially to

FIGS. 1-3

, a phased array antenna


10


according to the present invention includes a plurality of phased array antenna modules


11


each including a housing


12


and at least one antenna element


13


associated with the housing. For example, the antenna element


13


may be carried by the housing


12


. Each phased array antenna module


11


may be implemented as an RF hybrid module, for example. Also, the antenna elements


13


may be dipole elements made of a conductive metal, for example, and may further be screen printed onto the housings


12


. Of course, other suitable antenna elements


13


and methods for making the same which are known to those of skill in the art may also be used.




The phased array antenna modules


11


may be positioned in an array and mounted on a base


14


, for example. Both the base


14


and the housings


12


may be a ceramic material, such a low-temperature co-fired ceramic (LTCC), for example, though other suitable materials may also be used. The phased array antenna


10


may also include one or more transmitters/receivers


18


for sending and receiving communications signals (e.g., RF signals) via the phased array antenna modules


11


, and an array controller


19


coupled to each of the phased array antenna modules. The array controller


19


will be described further below.




According to the invention, at least one of the phased array antenna modules


11


may also include a temperature sensor


15


carried by a respective housing


12


for measuring a temperature of the at least one phased array antenna module. The temperature sensor


15


may include a capacitor


20


and a circuit element


21


coupled in series with the capacitor which has a resistance that varies with temperature. The capacitor


20


may also be connected to a reference voltage, such as ground, as illustratively shown in FIG.


3


.




More specifically, the circuit element


21


may be a thermistor, for example. The temperature sensor


15


also preferably includes one or more calibration resistors, such as high and low calibration resistors


28


,


29


, coupled (along with the circuit element


21


) between a module controller


16


and the capacitor


20


.




It should be noted that the antenna elements


13


may be formed on the base


14


, and that the module controller


16


, one or more phase shifters


17


(both of which are described further below), the temperature sensor


15


and/or other RF control devices (e.g., attenuators, delay devices, etc.) may be included in the base, for example, in some embodiments. Other configurations which will be appreciated by those of skill in the art may also be used, all of which are included within the scope of the present invention.




The module controller


16


may include drivers


22


-


24


for sequentially charging/discharging the capacitor


20


to a predetermined threshold through the circuit element


21


and calibration resistors


28


,


29


, respectively. The drivers


22


-


24


may be CMOS tri-state drivers, for example, though other suitable drivers (e.g., precision analog switches) may also be used. The controller


16


may further include a control logic circuit


25


(e.g., a solid state control logic circuit) for controlling the drivers


22


-


24


to provide the sequential charging/discharging of the capacitor


20


.




The module controller


16


also illustratively includes a timing generator/counter


26


coupled to each of the drivers


22


-


24


and to a Schmitt hysteresis input device


27


. The Schmitt hysteresis input device


27


determines when the capacitor


20


has been charged/discharged to the predetermined threshold, as will be appreciated by those of skill in the art. For example, the predetermined threshold may be the threshold of the Schmitt hysteresis input device


27


.




By using a precise timing generator/counter


26


, a charging/discharging time required to charge/discharge the capacitor


20


to the predetermined threshold through each of the circuit element


21


and calibration resistors


28


,


29


may be accurately measured. That is, the timing generator/counter


26


may measure respective charging times between when one or more of the drivers


22


-


24


are driven to a logic 1 and when the Schmitt hysteresis input device


27


detects a logic 1, for example. Likewise, the discharging times can also be measured.




As a result, the module controller


16


may determine the temperature of the phased array antenna module


11


based upon the charging/discharging time. That is, since the charging/discharging time is measured through the circuit element


21


, it is the resistance of the circuit element (which varies with temperature) that determines the measured charging/discharging time. Thus, by using the measured charging/discharging times, the known fixed resistor values, and known calibration data of the circuit element


21


, the temperature may be calculated using various equations which will be discussed further below. Such calibration data is typically provided by the manufacturer, for example.




Furthermore, when respective charging/discharging times are measured through the high and low calibration resistors


28


,


29


, these charging/discharging times may be used to determine circuit error parameters such as variability of the capacitor


20


and changes in the input logic threshold of the Schmitt hysteresis input device


27


. While the temperature may be calculated using only the charging/discharging time through the circuit element


21


, using the calibration resistors


28


,


29


provides for even greater accuracy because the charging/discharging time may then be substantially normalized to changes in the thermistor resistance alone. The temperature measurement accuracy thus achieved may therefor approach the accuracy of the circuit element


21


alone, which for a thermistor may be ±0.1° C. or better.




It will therefore be appreciated by those of skill in the art that the present invention thus essentially provides a “self-calibrating” system, since the module controller


16


may compensate for changes in the above circuit error parameters. This may be particularly advantageous for ground or sea based phased array antennas (e.g., antennas on Naval ships, etc.), where the replacement of a failed antenna module may otherwise require cumbersome re-calibration.




Moreover, to further improve accuracy, a precision reference voltage, not shown, may be used to power the module controller


16


in some embodiments. Additionally, high quality analog switches, not shown, may be added in series with the circuit element


21


and calibration resistors


28


,


29


to minimize errors due to leakage current from the drivers


22


-


24


in some embodiments. Also, additional calibration resistors may be added to calibrate the temperature sensor


15


closer to specific operating temperatures, as will be appreciated by those of skill in the art.




As noted above, prior art temperature sensors typically require multiplexors, analog conditioning circuitry, A/D converters, etc., to be connected to the temperature sensing device (e.g., a thermistor). As a result, even if it were possible to include such additional circuitry in a phased array antenna module, this would consume a significant amount of space and would also increase costs. Moreover, the performance of such components will typically vary with temperature and radiation exposure, which may further add to the difficulty of locating such prior art temperature sensors in a phased array antenna module. Thus, in prior art phased array antennas, temperature sensing and compensation of phased array antenna modules based thereon is typically performed by the central phased array controller using stored tables of compensation test data, for example.




One particular advantage of the present invention is that the temperature of each individual phased array antenna module


11


may be determined at that module by its module controller


16


. That is, the control logic


25


may store the calibration data of the circuit element


21


and resistance values of the calibration resistors


28


,


29


and directly calculate the temperature compensation values based upon the measured charging/discharging times, as described above. For example, the antenna module


11


could measure the temperature and then autonomously calculate or look up the corresponding temperature compensation values. Alternately, the control logic


25


may instead report accurately scaled temperature data to the array controller


19


, which simplifies the array controller's task of performing temperature compensation.




Additionally, each phased array antenna module


11


may include a phase shifter


17


and associated amplifier(s) carried by the housing


12


and coupled to the antenna elements


13


(FIG.


2


). Of course, other devices such as attenuators, delay devices, etc., may also be included, as will be appreciated by those of skill in the art. Such phase shifters, attenuators, and/or delay devices may be digitally controlled, for example. Based upon the temperature data transmitted to the array controller


19


by the control logic


25


, the array controller may control each phase shifter


17


based upon the temperature of its respective phased array antenna module


11


via the control logic


25


.




Alternatively, according to the present invention the control logic


25


may advantageously store or download the temperature compensation lookup tables from the array controller


19


and determine the requisite phase shifting for the phased array antenna module


11


. Thus, the task of temperature compensation management may be decentralized from the array controller


19


to each of the phased array antenna modules


11


, which simplifies the antenna controller


19


.




The module controller


16


may advantageously be implemented in a digital ASIC, for example. Again, this is because temperature sensing according to the present invention does not require additional multiplexors, analog conditioning circuitry, A/D converters, etc., as in the prior art, which may otherwise make implementation in an ASIC problematic. In fact, many phased array antenna module designs already include a module control ASIC for interfacing with the array controller, and such modules may already include adequate logic gate and input/output resources to be able to implement temperature sensing and compensation as described above without excessive design modifications. Additionally, the capacitor


20


, circuit element


21


, and calibration resistors


28


,


29


may potentially be included within such an ASIC in certain applications, as will be appreciated by those of skill in the art. Of course, it will be appreciated by those of skill in the art that certain of the components illustratively shown within the module controller (i.e., ASIC)


16


may be implemented outside of the ASIC using separate discrete components in some embodiments.




Turning now to the flow diagram of

FIG. 4

, a method aspect of the invention for sensing the temperature of a phased array antenna module


11


is now described. As noted above, the phased array antenna module preferably includes the capacitor


20


, the circuit element


21


, and the high and low calibration resistors


28


,


29


. The method begins (Block


40


) by charging/discharging the capacitor


20


through the circuit element


21


, at Block


41


, and measuring the charging/discharging time required to charge/discharge the capacitor to the predetermined threshold, at Block


42


, as described above. Of course, those skilled in the art will appreciate that various predetermined thresholds may be used, and that the predetermined thresholds used for charging and discharging may be different. The capacitor


20


is then similarly charged/discharged to the predetermined threshold through the calibration resistor


28


(R


HI


), the charging/discharging time then measured (Block


44


), and again charged/discharged through the calibration resistor


29


(R


LOW


), at Block


45


, and the charging/discharging time measured again. With one thermistor and two calibration resistors, up to fourteen timing measurements are possible, for example. Moreover, depending on the accuracy desired, some embodiments might only measure charge or discharge times, using just R


THERMISTOR


, R


LO


, R


HI


, R


THERMISTOR


and R


LO


, and R


THERMISTOR


and R


HI


, etc.




The charging/discharging and measurements steps


41


-


46


are preferably performed in a relatively rapid sequence to reduce the likelihood that the above described error parameters will vary between measurements. Once the various charging/discharging times are measured, the temperature of the phased array antenna module may be determined based upon the charging/discharging times, at Block


47


, as previously described above, thus ending the method (Block


48


). It will be appreciated that the ratio of the charging times may be based upon the ratio of the calibration resistances to the thermistor resistance, as will be described further in the example below.




Because of its accuracy, ease of integration and calibration, and other advantages, those of skill in the art will appreciate that the above described temperature sensor


15


and controller


11


may be used in numerous applications where temperature sensing is required other than antennas. For example, the temperature sensor of the present invention may be well suited for numerous applications, such as precision imaging sensors, temperature compensated oscillators, precision thermal control circuits, thermal instrumentation circuits, voltage references, process control systems, and even low-cost consumer products such as watches and toys that detect handling via temperature changes. Other examples include industrial/factory remote temperature monitoring, automobile/truck wheel hub remote temperature sensing, and other distributed temperature measuring applications where relatively low complexity and low power are desired (e.g., without analog-to-digital converters, etc.). Those of skill in the art will appreciate numerous other applications as well.




Thus, the present invention also more generally provides a temperature sensor which includes a capacitor


20


, a circuit element


21


coupled in series with the capacitor and having a resistance that varies with temperature, and a controller


16


. As previously described above, the controller


16


charges/discharges the capacitor


20


through the circuit element


21


, measures a charging/discharging time required to charge/discharge the capacitor to a predetermined threshold, and determines a temperature based upon the charging/discharging time.




Again, the circuit element


21


may be a thermistor, for example, and the temperature sensor may also include low and high calibration resistors


28


,


29


coupled between the controller


16


and the capacitor


20


in parallel with the circuit element. The controller


16


may also include a counter


26


for measuring the charging/discharging times, drivers


22


-


24


coupled to the circuit element


21


and calibration resistors


28


,


29


, respectively, for charging/discharging the capacitor


20


, and a control logic circuit


25


for controlling the drivers. Furthermore, the controller


21


may also include a Schmitt hysteresis device


27


coupled to the capacitor


20


for determining when the capacitor has been charged/discharged to the predetermined threshold. Of course, those of skill in the art will appreciate that other suitable device may also be used, such as comparators or differential line receivers, for example. As previously discussed, the controller


16


may also be implemented in an ASIC.




Determination of the temperature using the charging/discharging times as described above will be further understood with reference to the following example.




EXAMPLE




The following example is based upon the temperature sensor


15


illustratively shown in

FIG. 3

, which includes a thermistor as the circuit element


21


, the high and low calibration resistors


28


,


29


, and the capacitor


20


. An equivalent schematic circuit representation of the temperature sensor


15


modeled as a network of resistors driving a load capacitor is illustrated in FIG.


5


. The resistors R


11


, R


21


, R


31


, R


13


, R


23


, and R


33


are used to model the driver output impedances. For example, when the driver


22


charges the capacitor


20


through the thermistor R


12


, then R


11


is modeled as a low impedance (R


on


,


11


), and R


21


, R


31


, R


13


, R


23


, and R


33


are modeled as high impedances (R


off




21


, R


off




31


, R


off




13


, R


off




23


, and R


off




33


).




The following is a summary of the basic circuit operation for purposes of the present example. The capacitor C is initially charged when the drivers


22


-


24


all drive high (for many time constants). The time is measured for discharging the capacitor C through the parallel combination of resistors R


12


, R


22


, and R


32


, followed by recharging the capacitor C for the next measurement cycle. A total of seven discharge times are measured, through the seven possible combinations of the resistors R


11


, R


21


, and R


31


being high or low impedance as follows: 1) R


on




11


with R


off




21


and R


off




31


; 2) R


on




11


with R


on




21


and R


off




31


; 3) R


on




11


with R


on




21


and R


on




31


; 4) R


on




11


with R


off




21


and R


on




31


; 5) R


off




11


with R


on




21


and R


off




31


; 6) R


off




11


with R


on




21


and R


on




31


; 7) R


off




11


with R


off




21


and R


on




31


. For additional accuracy, the seven discharge timing measurements can be followed by seven similar charging time measurements.




The following equations show how the resistance of the thermistor R


12


can be accurately calculated based on these timing measurements plus the known values of the resistors R


22


and R


32


. Leakage currents, imprecise timing capacitance value, non-zero driver impedances, and varying threshold voltages are errors that can be nulled out, as described below. For the following equations, R


on




11


, R


on




21


, R


on




31


are the driver-on impedances from Vo; R


off




11


, R


on




21


, R


on




31


are the driver-off leakage impedances from Vo; R


on




13


, R


on




23


, R


on




33


are the driver-on impedances to ground; and R


off




13


, R


off




23


, R


off




33


are the driver-off leakage impedances to ground.




Simplified versions of the equivalent circuit of

FIG. 5

are illustrated in

FIGS. 6A-6C

. For a particular driver set of enabled and disabled drivers, V


1


eq and R


1


eq represent the equivalent for the driver


22


, V


2


eq and R


2


eq for the driver


23


, etc. Also, V


1


&


2


eq and R


1


&


2


eq are equivalent to the combination of V


2


eq, R


2


eq, V


1


eq and R


1


eq. The references Veq and Req represent the entire aggregate equivalent drive from all three drivers


22


-


24


.




The value of R


1


eq can be calculated as the parallel combination of the resistors R


11


and R


13


, plus the series resistor R


12


as follows:








R




1




eq=R




11




*R




13


/(


R




11




+R




13


)+


R




12


.  (1)






The values of R


2


eq and R


3


eq are calculated in a similar fashion:








R




2




eq=R




21


*


R




23


/(


R




21




+R




23


)+


R




22


; and  (2)










R




3




eq=R




31


*


R




33


/(


R




31




+R




33


)+


R




32


.  (3)






Further, R


1


&


2


eq is the parallel combination of R


1


eq and R


2


eq:








R




1


&


2




eq=R




1




eq*R




2




eq


/(


R




1




eq+R




2




eq


).  (4)






Also, Req is the parallel combination of R


1


eq, R


2


eq, and R


3


eq, as follows:









Req




=





R1eq
*
R2eq
*

R3eq
/


(


R1eq
*
R2eq





+





R2eq
*
R3eq





+





R1eq
*
R3eq


)

.







(
5
)













The value of V


1


eq is calculated as the voltage divider of R


11


and R


13


, that is:








V




1




eq=Vo*R




13


/(


R




11




+R




13


).  (6)






The values of V


2


eq and V


3


eq are similarly calculated:








V




2




eq =Vo*R




23


/(


R




21




+R




23


); and  (7)









V




3




eq=Vo*R




33


/(


R+R




33


).  (8)




The value of V


1


&


2


eq is calculated as the voltage divider of R


1


eq and R


2


eq with V


1


eq and V


2


eq as follows:








V




1


&


2




eq


=(


V




1




eq−V




2




eq


)*


R




2




eq


/(


R




2




eq+R




3




eq


)+


V




2




eq.


  (9)






The value of Veq is similarly calculated as the voltage divider of R


1


&


2


eq and R


3


eq with V


1


&


2


eq and V


3


eq:












Veq
=





V3eq
+

R3eq
*

(

V1eq
-
V2eq

)

*

R2eq
/

















(

R1eq
+
R2eq

)

+
V2eq
-
V3eq

)

)

/












(

R3eq
+

R1eq
*

R2eq
/

(

R1eq
+
R2eq

)




)

.








(
10
)













The charge and discharge times follow the general capacitance charge and discharge equations (11) and (12):








Vc=Vinit


*(1−exp(−


t/R*C


)); and  (11)










Vc=Vinit


*(exp(−


t/RC


)),  (12)






where Vc is the voltage on the capacitor C.




For the simplified circuit illustrated in

FIG. 6C

, the capacitor C is initially charged to a voltage Vinit, and it then charges or discharges via Req towards the value Veq. The time to charge or discharge to a threshold Vt


10


or Vt


01


is measured as described above. If Veq is greater than Vinit, then the charging equation (11) applies. If Vinit is greater than Veq, then the charging equation (12) applies Equations (13) and (14) below show how the measured time for a particular set of drivers


22


-


24




24


driving high, low, or off to a threshold Vt


10


or Vt


01


must satisfy the charging and discharge equations. That is, for charging the capacitor C from Vinit to a threshold Vt


01


:








Vt




01




=Vinit


*(1−exp(−


t/Req*C


)); and  (13)






for discharging the capacitor C from Vinit to a threshold Vt


10


:








Vt




10




=Vinit


*(exp(−


t/Req*C


)).  (14)






Solving equations (13) and (14) for t:








t=−Req*C


*ln(1


−Vt




01




/Vinit


); (charging)  (15)






and








t=−Req*C


*ln(


Vt




10




/Vinit


). (discharging)  (16)






Since R


12


does not solely determine any of the measured time values, an accurate value of R


12


cannot be determined from a single timing measurement. However, as many as fourteen independent timing measurements can be made on this circuit, and all these time measurements should simultaneously satisfy equations (15) and (16) (i.e., as many as seven different charge and seven discharge timing measurements could be made). These fourteen equations can be solved to very precisely calculate the resistance value of the thermistor R


12


, and this value corresponds to the temperature measurement the circuit is designed to report. The fourteen equations can be used to calculate the following variables, for example: the thermistor R


12


value; high side leakage current of the driver


22


, modeled as R


off




11


; the low side leakage current of the driver


22


, modeled as R


off




13


; the high side leakage current of the driver


23


, modeled as R


off




21


; the low side leakage current of the driver


23


, modeled as R


off




23


; the high side leakage current of the driver


24


, modeled as R


off




31


; the low side leakage current of the driver


24


, modeled as R


off




33


; the Vt


01


threshold value; the Vt


10


threshold value; the high-side driver-on impedance value R


on




11


, R


on




21


, and R


on




31


(assuming these values are equal); the low-side driver-on impedance value R


on




13


, R


on




23


, and R


on




33


(assuming these values are equal); and the exact value of the timing capacitor C.




The fourteen equations can theoretically be solved directly for R


12


, so that R


12


is expressed as a mathematical function of R


22


, R


32


, and the timing measurements. The equations can also be solved iteratively using standard numerical methods. For the latter case, the iteration begins by initially substituting the fourteen measured delay values into the fourteen equations along with nominal initial values of the twelve error variables. These initial values are then modified until a solution is found, and R


12


is thereby calculated, as will be understood by those of skill in the art.




For many applications, the fourteen equations can be significantly simplified. It should be noted that the capacitance of the capacitor C is a common factor in all the equations and can be divided out. Also, the high and low side driver impedance values may generally be small (e.g., 10 to 20 ohms) compared with typical thermistor values (e.g., 10K ohms), and so estimating these values will not significantly degrade temperature measurement accuracy. Likewise, the values of Vt


01


and Vt


10


are typically known, fixed values (within a small range) for most circuits, and can likewise be estimated. With these assumptions, the number of variables is reduced to seven, which means that only the seven charge (or discharge) timing measurements are needed for many applications.




Further tradeoffs of accuracy versus simplicity of calculation can be made by assuming that the high side leakage currents of R


11


, R


13


, and R


21


are all approximately equal, since they may be on the same driver chip (i.e., part of the same ASIC) and have similar characteristics. The same argument applies for the low side leakage currents of R


23


, R


31


, and R


33


. With these additional assumptions, only three timing measurements are needed to resolve the three unknowns (i.e., the thermistor, the high side leakage current, and the low side leakage current.)




Another method of trading accuracy versus simplicity is to perform occasional “self-calibration” calculations that are more exact to calculate more accurate initial estimates for more of the full set of twelve variables. For example, a more-exact software-based calculation could be used to calibrate a simpler but faster algorithm implemented in dedicated logic in an ASIC. The self-calibration can be performed once when the circuit is initially manufactured, periodically at set intervals, or even at variable intervals that depend on the error history (i.e. an adaptive rate algorithm).




In summary, a range of accuracy versus complexity choices are available based on the basic methods outlined above. The optimum tradeoff of accuracy versus complexity can be customized in several different ways, depending upon the requirements of the particular application.




It will therefore be appreciated by those of skill in the art that the present invention provides a relatively simple temperature sensor design which requires only a few passive parts, is relatively inexpensive, and that will fit within a phased array antenna module (e.g., an RF module). Furthermore, when an integrated temperature sensor is used, the array module can provide its own temperature compensation, which in turn may provide simplified array design, assembly, and testing. In addition, array performance may be improved in the phased array antenna


10


according to the present invention because even though individual modules may be at different temperatures (i.e., because of partial sunlight, shadows, etc.), accurate temperature compensation may be performed at each antenna module. Also, management of module temperature by a host processor for the phased array antenna module


10


may advantageously be reduced according to the invention.




Many modifications and other embodiments of the invention will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings Therefore, it is understood that the invention is not to be limited to the specific embodiments disclosed, and that modifications and embodiments are intended to be included within the scope of the appended claims.



Claims
  • 1. A phased array antenna comprising:a plurality of phased array antenna modules and associated antenna elements; and at least one of said phased array antenna modules further comprising a temperature sensor for measuring a temperature of said at least one phased array antenna module, said temperature sensor comprising a capacitor, a thermistor coupled to said capacitor, and at least one calibration resistor coupled to said capacitor; said at least one phased array antenna module further comprising a module controller for sequentially operating said capacitor through said thermistor and through said at least one calibration resistor for determining the temperature of said at least one phased array antenna module based thereon.
  • 2. The phased array antenna of claim 1 wherein said module controller sequentially charges said capacitor through said thermistor and said at least one calibration resistor, measures respective charging times required to charge said capacitor to the predetermined threshold through said thermistor and said at least one calibration resistor, and determines the temperature of said at least one phased array antenna module based upon the charging times.
  • 3. The phased array antenna of claim 1 wherein said at least one calibration resistor comprises a high calibration resistor and a low calibration resistor.
  • 4. The phased array antenna of claim 2 wherein said module controller comprises a counter for measuring the charging times.
  • 5. The phased array antenna of claim 1 wherein said module controller comprises at least one driver coupled to said thermistor and said at least one calibration resistor for charging said capacitor.
  • 6. The phased array antenna of claim 5 wherein said module controller further comprises a control logic circuit for controlling said at least one driver.
  • 7. The phased array antenna of claim 2 wherein said module controller comprises a Schmitt hysteresis device coupled to said capacitor for determining when said capacitor has been charged to the predetermined threshold.
  • 8. The phased array antenna of claim 1 wherein said module controller is implemented in an ASIC.
  • 9. The phased array antenna of claim 1 wherein said module controller sequentially discharges said capacitor through said thermistor and said at least one calibration resistor, measures respective discharging times required to discharge said capacitor to the predetermined threshold through said thermistor and said at least one calibration resistor, and determines the temperature of said at least one phased array antenna module based upon the discharging times.
  • 10. The phased array antenna of claim 1 wherein said at least one phased array antenna module further comprises a phase shifter coupled to said at least one antenna element.
  • 11. The phased array antenna of claim 10 further comprising an array controller coupled to said at least one phased array antenna module for controlling said phase shifter based upon the temperature of said at least one phased array antenna module.
  • 12. The phased array antenna of claim 10 wherein said module controller controls said phase shifter based upon the temperature of said at least one phased array antenna module.
  • 13. A phased array antenna comprising:a plurality of phased array antenna modules and associated antenna elements, each phased array antenna module comprising a temperature sensor for measuring a temperature of said phased array antenna module; said temperature sensor comprising a capacitor, a thermistor coupled to said capacitor, and at least one calibration resistor coupled to said capacitor; each phased array antenna module further comprising a module controller for sequentially operating said capacitor through said thermistor and said at least one calibration resistor for determining the temperature of said phased array antenna module based thereon.
  • 14. The phased array antenna of claim 13 wherein said module controller sequentially charges said capacitor through said thermistor and said at least one calibration resistor, measures respective charging times required to charge said capacitor to the predetermined threshold through said thermistor and said at least one calibration resistor, and determines the temperature of said phased array antenna module based upon the charging times.
  • 15. The phased array antenna of claim 13 wherein each at least one calibration resistor comprises a high calibration resistor and a low calibration resistor.
  • 16. The phased array antenna of claim 13 wherein each module controller comprises at least one driver coupled to said thermistor and said at least one calibration resistor for charging said capacitor.
  • 17. The phased array antenna of claim 16 wherein each module controller further comprises a control logic circuit for controlling said at least one driver.
  • 18. The phased array antenna of claim 14 wherein each module controller comprises a Schmitt hysteresis device coupled to said capacitor for determining when said capacitor has been charged to the predetermined threshold.
  • 19. The phased array antenna of claim 13 wherein said module controller is implemented in an ASIC.
  • 20. The phased array antenna of claim 13 wherein said module controller sequentially discharges said capacitor through said thermistor and said at least one calibration resistor, measures respective discharging times required to charge said capacitor to the predetermined threshold through said thermistor and said at least one calibration resistor, and determines the temperature of said phased array antenna module based upon the discharging times.
  • 21. A phased array antenna module comprising:a housing; at least one antenna element carried by said housing; a phase shifter carried by said housing and coupled to said at least one antenna element; a temperature sensor carried by said housing for measuring a temperature of the phased array antenna module and comprising a capacitor, a thermistor coupled to said capacitor, and at least one calibration resistor coupled to said capacitor; and a module controller carried by said housing for sequentially operating said capacitor through said thermistor and said at least one calibration resistor for determining the temperature of said phased array antenna module based thereon, and controlling said phase shifter based upon the determined temperature.
  • 22. The phased array antenna module of claim 21 wherein said module controller sequentially charges said capacitor through said thermistor and said at least one calibration resistor, measures respective charging times required to charge said capacitor to the predetermined threshold through said thermistor and said at least one calibration resistor, and determines the temperature of the phased array antenna module based upon the charging times.
  • 23. The phased array antenna module of claim 21 wherein said at least one calibration resistor comprises a high calibration resistor and a low calibration resistor.
  • 24. The phased array antenna module of claim 21 wherein said module controller comprises at least one driver coupled to said thermistor and said at least one calibration resistor for charging said capacitor.
  • 25. The phased array antenna module of claim 24 wherein said module controller further comprises a control logic circuit for controlling said at least one driver.
  • 26. The phased array antenna module of claim 22 wherein said module controller comprises a Schmitt hysteresis device coupled to said capacitor for determining when said capacitor has been charged to the predetermined threshold.
  • 27. The phased array antenna module of claim 21 wherein said module controller is implemented in an ASIC.
  • 28. The phased array antenna module of claim 21 wherein said module controller sequentially discharges said capacitor through said thermistor and said at least one calibration resistor, measures respective discharging times required to discharge said capacitor to the predetermined threshold through said thermistor and said at least one calibration resistor, and determines the temperature of the phased array antenna module based upon the discharging times.
  • 29. A method for sensing a temperature of a phased array antenna module comprising a capacitor, a thermistor coupled to the capacitor, and at least one calibration resistor coupled to the capacitor, the method comprising:sequentially charging the capacitor through the thermistor and the at least one calibration resistor; measuring respective charging times required to charge the capacitor to a predetermined threshold through the thermistor and the at least one calibration resistor; and determining the temperature of the phased array antenna module based upon the charging times.
  • 30. The method of claim 29 wherein the at least one calibration resistor comprises a high calibration resistor and a low calibration resistor.
  • 31. A method for sensing a temperature of a phased array antenna module comprising a capacitor, a thermistor coupled to the capacitor and at least one calibration resistor coupled to the capacitor, the method comprising:sequentially discharging the capacitor through the thermistor and the at least one calibration resistor; measuring respective discharging times required to discharge the capacitor to a predetermined threshold through the thermistor and the at least one calibration resistor; and determining the temperature of the phased array antenna module based upon the discharging times.
  • 32. The method of claim 31 wherein the at least one calibration resistor comprises a high calibration resistor and a low calibration resistor.
  • 33. A method for making a phased array antenna comprising:positioning a plurality of phased array antenna modules in an array, each phased array antenna module having an associated antenna element; providing a temperature sensor in at least one of the phased array antenna modules for measuring a temperature thereof by coupling a capacitor to a thermistor and at least one calibration resistor; and providing a module controller in the at least one phased array antenna module for sequentially operating the capacitor through the thermistor and the at least one calibration resistor for determining the temperature of the at least one phased array antenna module based thereon.
  • 34. The method of claim 33 wherein the module controller is for sequentially charging the capacitor through the thermistor and the at least one calibration resistor, measuring a respective charging times required to charge the capacitor to a predetermined threshold through the thermistor and the at least one calibration resistor, and determining the temperature of the at least one phased array antenna module based upon the charging times.
  • 35. The method of claim 33 wherein module controller is for sequentially discharging the capacitor through the thermistor and the at least one calibration resistor, measuring a respective discharging times required to discharge the capacitor to a predetermined threshold through the thermistor and the at least one calibration resistor, and determining the temperature of the at least one phased array antenna module based upon the discharging times.
  • 36. The method of claim 33 wherein the at least one calibration resistor comprises a high calibration resistor and a low calibration resistor.
RELATED APPLICATION

This application is based upon prior filed copending provisional application Serial No. 60/255,007 filed Dec. 12, 2000, the entire subject matter of which is incorporated herein by reference in its entirety.

US Referenced Citations (28)
Number Name Date Kind
4931803 Shimko Jun 1990 A
4980691 Rigg et al. Dec 1990 A
4994814 Aoki et al. Feb 1991 A
4996532 Kirimoto et al. Feb 1991 A
5008680 Willey et al. Apr 1991 A
5027126 Basehgi et al. Jun 1991 A
5072228 Kuwahara Dec 1991 A
5225841 Krikorian et al. Jul 1993 A
5231405 Riza Jul 1993 A
5243274 Kelsey et al. Sep 1993 A
5283587 Hirshfield et al. Feb 1994 A
5353031 Rathi Oct 1994 A
5493255 Murtojarvi Feb 1996 A
5559519 Fenner Sep 1996 A
5592179 Windyka Jan 1997 A
5655841 Storm Aug 1997 A
5680141 Didomenico et al. Oct 1997 A
5771016 Mullins et al. Jun 1998 A
5938779 Preston Aug 1999 A
5990830 Vail et al. Nov 1999 A
5995740 Johnson Nov 1999 A
5999990 Sharrit et al. Dec 1999 A
6011512 Cohen Jan 2000 A
6023742 Ebeling et al. Feb 2000 A
6157681 Daniel et al. Dec 2000 A
6163220 Schellenberg Dec 2000 A
6172642 DiDomenico et al. Jan 2001 B1
6390672 Vail et al. May 2002 B1
Non-Patent Literature Citations (1)
Entry
AD590 Two-Terminal IC Temperature Transducer, Analog Devices, Inc., Norwood, MA, 1997, pp. 1-10.
Provisional Applications (1)
Number Date Country
60/255007 Dec 2000 US