Phased array antenna panels with large numbers of antennas and front end chips integrated on a single board are being developed in view of higher wireless communication frequencies being used between a satellite transmitter and a wireless receiver, and also more recently in view of higher frequencies used in the evolving 5G wireless communications (5th generation mobile networks or 5th generation wireless systems). Phased array antenna panels are capable of beamforming by phase shifting and amplitude control techniques, and without physically changing direction or orientation of the phased array antenna panels, and without a need for mechanical parts to effect such changes in direction or orientation.
Phased array antenna panels use RF front end chips that directly interface with and collect RF signals from antennas situated adjacent to the RF front end chips. After processing the collected RF signals, the RF front end chips may provide the processed signals to a master chip that is situated relatively far from the RF front end chips. As such, relatively long transmission lines are required to carry the processed signals from the RF front end chips to the master chip. By their nature, transmission lines cause passive energy loss in the signals, especially when the transmission lines employed in the phased array antenna panel are long. Moreover, using a greater number or larger amplifiers in RF front end chips to transmit the processed signals to the master chip would increase the size, complexity, and cost of the numerous RF front end chips that are used in a phased array antenna panel. Thus, there is a need in the art for effective large-scale integration of a phased array antenna panel with reduced passive loss of signals.
The present disclosure is directed to a phased array antenna panel having reduced passive loss of received signals, substantially as shown in and/or described in connection with at least one of the figures, and as set forth in the claims.
The following description contains specific information pertaining to implementations in the present disclosure. The drawings in the present application and their accompanying detailed description are directed to merely exemplary implementations. Unless noted otherwise, like or corresponding elements among the figures may be indicated by like or corresponding reference numerals. Moreover, the drawings and illustrations in the present application are generally not to scale, and are not intended to correspond to actual relative dimensions.
As illustrated in
In the present implementation, master chip 180 may be formed in layer 102c of substrate 102, where master chip 180 may be connected to front end units 105 on top layer 102a using a plurality of control and data buses (not explicitly shown in
As illustrated in
In one implementation, for a wireless transmitter transmitting signals at 10 GHz (i.e., λ=30 mm), each antenna needs an area of at least a quarter wavelength (i.e., λ/4=7.5 mm) by a quarter wavelength (i.e., λ/4=7.5 mm) to receive the transmitted signals. As illustrated in
In the present implementation, the phased array antenna panel is a flat panel array employing antennas 12-18, where antennas 12-18 are coupled to associated active circuits to form a beam for reception (or transmission). In one implementation, the beam is formed fully electronically by means of phase control devices associated with antennas 12-18. Thus, phased array antenna panel 100 can provide fully electronic beamforming without the use of mechanical parts.
As illustrated in
As illustrated in
It should be understood that layout diagram 190 in
In the present implementation, antennas 22a, 24a, 26a, and 28a may be configured to receive signals from one or more commercial geostationary communication satellites, for example, which typically employ circularly polarized or linearly polarized signals defined at the satellite with a horizontally-polarized (H) signal having its electric-field oriented parallel with the equatorial plane and a vertically-polarized (V) signal having its electric-field oriented perpendicular to the equatorial plane. As illustrated in
For example, antenna 22a provides linearly polarized signal 208a, having horizontally-polarized signal H22a and vertically-polarized signal V22a, to RF front end chip 206a. Antenna 24a provides linearly polarized signal 208b, having horizontally-polarized signal H24a and vertically-polarized signal V24a, to RF front end chip 206a. Antenna 26a provides linearly polarized signal 208c, having horizontally-polarized signal H26a and vertically-polarized signal V26a, to RF front end chip 206a. Antenna 28a provides linearly polarized signal 208d, having horizontally-polarized signal H28a and vertically-polarized signal V28a, to RF front end chip 206a.
As illustrated in
As shown in
As illustrated in
As further shown in
As further illustrated in
In one implementation, amplified and phase shifted horizontally-polarized signals H′22a, H′24a, H′26a, and H′28a in front end unit 205a, and other amplified and phase shifted horizontally-polarized signals from the other front end units, e.g. front end units 105b, 105c, and 105d as well as front end units in antenna segments 113, 115, and 117 shown in
As illustrated in
As further illustrated in
As illustrated in
As further illustrated in
As illustrated in
As further illustrated in
As illustrated in
As further illustrated in
Thus, various implementations of the present application result in reduced passive loss in the phased array antenna panel without increasing cost, size, and complexity of the phased array antennal panel. From the above description it is manifest that various techniques can be used for implementing the concepts described in the present application without departing from the scope of those concepts. Moreover, while the concepts have been described with specific reference to certain implementations, a person of ordinary skill in the art would recognize that changes can be made in form and detail without departing from the scope of those concepts. As such, the described implementations are to be considered in all respects as illustrative and not restrictive. It should also be understood that the present application is not limited to the particular implementations described above, but many rearrangements, modifications, and substitutions are possible without departing from the scope of the present disclosure.
This Patent Application is a Continuation Application of U.S. patent application Ser. No. 15/356,172, filed on Nov. 18, 2016. This application also makes reference to U.S. Pat. No. 9,923,712, filed on Aug. 1, 2016, titled “Wireless Receiver with Axial Ratio and Cross-Polarization Calibration,” and U.S. patent application Ser. No. 15/225,523, filed on Aug. 1, 2016, titled “Wireless Receiver with Tracking Using Location, Heading, and Motion Sensors and Adaptive Power Detection,” and U.S. patent application Ser. No. 15/226,785, filed on Aug. 2, 2016, titled “Large Scale Integration and Control of Antennas with Master Chip and Front End Chips on a Single Antenna Panel,” and U.S. Pat. No. 10,014,567, filed on Sep. 2, 2016, titled “Novel Antenna Arrangements and Routing Configurations in Large Scale Integration of Antennas with Front End Chips in a Wireless Receiver,” and U.S. Pat. No. 9,692,489 filed on Sep. 2, 2016, titled “Transceiver Using Novel Phased Array Antenna Panel for Concurrently Transmitting and Receiving Wireless Signals,” and U.S. patent application Ser. No. 15/256,222 filed on Sep. 2, 2016, titled “Wireless Transceiver Having Receive Antennas and Transmit Antennas with Orthogonal Polarizations in a Phased Array Antenna Panel,” and U.S. patent application Ser. No. 15/278,970 filed on Sep. 28, 2016, titled “Low-Cost and Low Loss Phased Array Antenna Panel,” and U.S. patent application Ser. No. 15/279,171 filed on Sep. 28, 2016, titled “Phased Array Antenna Panel Having Cavities with RF Shields for Antenna Probes,” and U.S. patent application Ser. No. 15/279,219 filed on Sep. 28, 2016, and titled “Phased Array Antenna Panel Having Quad Split Cavities Dedicated to Vertical-Polarization and Horizontal-Polarization Antenna Probes,” and U.S. patent application Ser. No. 15/335,034 filed on Oct. 26, 2016, titled “Lens-Enhanced Phased Array Antenna Panel,” and U.S. patent application Ser. No. 10/135,153 filed on Oct. 26, 2016, titled “Phased Array Antenna Panel with Configurable Slanted Antenna Rows,” and U.S. patent application Ser. No. 15/355,967 filed on Nov. 18, 2016, titled “Phased Array Antenna Panel with Enhanced Isolation and Reduced Loss.” Each of the aforementioned Patent Applications and Patents are hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2579324 | Kock | Dec 1951 | A |
2652189 | Gorman | Sep 1953 | A |
3835469 | Chen et al. | Sep 1974 | A |
3836973 | Shnitkin et al. | Sep 1974 | A |
4380013 | Slysh | Apr 1983 | A |
4739334 | Soref | Apr 1988 | A |
4799062 | Sanderford et al. | Jan 1989 | A |
4827276 | Fukuzawa et al. | May 1989 | A |
4829314 | Barbier et al. | May 1989 | A |
5479651 | Nakaguchi | Dec 1995 | A |
5883602 | Volman | Mar 1999 | A |
5936577 | Shoki et al. | Aug 1999 | A |
5936588 | Rao et al. | Aug 1999 | A |
6297774 | Chung | Oct 2001 | B1 |
6307502 | Marti-Canales et al. | Oct 2001 | B1 |
6307507 | Gross et al. | Oct 2001 | B1 |
6678430 | Noe et al. | Jan 2004 | B1 |
6808237 | Schmid et al. | Oct 2004 | B2 |
6891511 | Angelucci | May 2005 | B1 |
6911956 | Miyata | Jun 2005 | B2 |
7170442 | Lovberg et al. | Jan 2007 | B2 |
7480486 | Oh et al. | Jan 2009 | B1 |
7664193 | Jalali et al. | Feb 2010 | B2 |
7982555 | Rofougaran | Jul 2011 | B2 |
8274443 | Hauhe et al. | Sep 2012 | B2 |
8482462 | Komijani et al. | Jul 2013 | B2 |
8589003 | Brand et al. | Nov 2013 | B2 |
8618983 | Chen et al. | Dec 2013 | B2 |
9537214 | Gorman et al. | Jan 2017 | B2 |
9638795 | Ahmed | May 2017 | B2 |
9692489 | Rofougaran et al. | Jun 2017 | B1 |
9722322 | Bertin et al. | Aug 2017 | B2 |
9819410 | Azevedo et al. | Nov 2017 | B1 |
10090887 | Rofougaran et al. | Oct 2018 | B1 |
10103853 | Moshfeghi | Oct 2018 | B2 |
10199717 | Rofougaran | Feb 2019 | B2 |
10277370 | Moshfeghi | Apr 2019 | B2 |
10320090 | Zou et al. | Jun 2019 | B2 |
10666326 | Rofougaran et al. | May 2020 | B2 |
20020165001 | Phillips et al. | Nov 2002 | A1 |
20030122724 | Shelley et al. | Jul 2003 | A1 |
20040077379 | Smith et al. | Apr 2004 | A1 |
20040080455 | Lee | Apr 2004 | A1 |
20040082356 | Walton et al. | Apr 2004 | A1 |
20040196184 | Hollander et al. | Oct 2004 | A1 |
20040204114 | Brennan et al. | Oct 2004 | A1 |
20050205720 | Peltz et al. | Sep 2005 | A1 |
20060128336 | Waltman et al. | Jun 2006 | A1 |
20060205342 | McKay et al. | Sep 2006 | A1 |
20060273959 | Kawasaki | Dec 2006 | A1 |
20070115800 | Fonseka et al. | May 2007 | A1 |
20070127360 | Song et al. | Jun 2007 | A1 |
20070160014 | Larsson | Jul 2007 | A1 |
20080026763 | Rensburg et al. | Jan 2008 | A1 |
20080100504 | Martin et al. | May 2008 | A1 |
20080163693 | Sfez et al. | Jul 2008 | A1 |
20080303701 | Zhang et al. | Dec 2008 | A1 |
20090010215 | Kim et al. | Jan 2009 | A1 |
20090136227 | Lambert | May 2009 | A1 |
20090175214 | Sfar et al. | Jul 2009 | A1 |
20090195455 | Kim et al. | Aug 2009 | A1 |
20090296846 | Maru | Dec 2009 | A1 |
20100046655 | Lee et al. | Feb 2010 | A1 |
20100090898 | Gallagher et al. | Apr 2010 | A1 |
20100149039 | Komijani et al. | Jun 2010 | A1 |
20100261440 | Corman et al. | Oct 2010 | A1 |
20100265925 | Liu et al. | Oct 2010 | A1 |
20100266061 | Cheng et al. | Oct 2010 | A1 |
20100267415 | Kakitsu et al. | Oct 2010 | A1 |
20100284446 | Mu et al. | Nov 2010 | A1 |
20110025432 | Gagnon et al. | Feb 2011 | A1 |
20110149835 | Shimada et al. | Jun 2011 | A1 |
20110291891 | Nsenga et al. | Dec 2011 | A1 |
20120143407 | Murthy | Jun 2012 | A1 |
20120224651 | Murakami et al. | Sep 2012 | A1 |
20120272857 | Graab et al. | Nov 2012 | A1 |
20130023210 | Rofougaran | Jan 2013 | A1 |
20130039342 | Kazmi | Feb 2013 | A1 |
20130069831 | Friedman et al. | Mar 2013 | A1 |
20130072112 | Gunnarsson et al. | Mar 2013 | A1 |
20130072113 | Lee et al. | Mar 2013 | A1 |
20130088393 | Lee et al. | Apr 2013 | A1 |
20130173094 | Cooper et al. | Jul 2013 | A1 |
20130208608 | Piazza et al. | Aug 2013 | A1 |
20140009347 | Bertin et al. | Jan 2014 | A1 |
20140022109 | Lee et al. | Jan 2014 | A1 |
20140035731 | Chan et al. | Feb 2014 | A1 |
20140035780 | Trotta | Feb 2014 | A1 |
20140077875 | Wang et al. | Mar 2014 | A1 |
20140079165 | Kludt et al. | Mar 2014 | A1 |
20140104124 | Chernokalov et al. | Apr 2014 | A1 |
20140125539 | Katipally et al. | May 2014 | A1 |
20140129060 | Cooper et al. | May 2014 | A1 |
20140161018 | Chang et al. | Jun 2014 | A1 |
20140184439 | Ainspan et al. | Jul 2014 | A1 |
20140191905 | Kamgaing | Jul 2014 | A1 |
20140210668 | Wang | Jul 2014 | A1 |
20140266866 | Swirhun et al. | Sep 2014 | A1 |
20150015449 | Jecko et al. | Jan 2015 | A1 |
20150129668 | Kam et al. | May 2015 | A1 |
20150296344 | Trojer et al. | Oct 2015 | A1 |
20150324683 | Linfield | Nov 2015 | A1 |
20150341098 | Angeletti et al. | Nov 2015 | A1 |
20160141248 | Pueschner et al. | May 2016 | A1 |
20160240919 | Wu et al. | Aug 2016 | A1 |
20170054216 | Shi et al. | Feb 2017 | A1 |
20170062944 | Zimmerman et al. | Mar 2017 | A1 |
20170264014 | Le-Ngoc | Sep 2017 | A1 |
20170332249 | Guey et al. | Nov 2017 | A1 |
20170353338 | Amadjikpe et al. | Dec 2017 | A1 |
20180027471 | Zhang et al. | Jan 2018 | A1 |
20180063139 | Day et al. | Mar 2018 | A1 |
20180109303 | Yoo et al. | Apr 2018 | A1 |
20180176799 | Lange et al. | Jun 2018 | A1 |
20180183152 | Turpin et al. | Jun 2018 | A1 |
20190123866 | Moshfeghi | Apr 2019 | A1 |
20190319754 | Moshfeghi | Oct 2019 | A1 |
20190319755 | Moshfeghi | Oct 2019 | A1 |
20190319756 | Moshfeghi | Oct 2019 | A1 |
20200076491 | Zhang et al. | Mar 2020 | A1 |
20200145079 | Marinier et al. | May 2020 | A1 |
20200204249 | Pyun | Jun 2020 | A1 |
20200412519 | Krishnaswamy et al. | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
2008027531 | Dec 2008 | WO |
Entry |
---|
Corrected Notice of Allowability for U.S. Appl. No. 15/256,222 dated Jul. 10, 2020. |
Corrected Notice of Allowability for U.S. Appl. No. 16/377,980 dated Jul. 22, 2020. |
Corrected Notice of Allowability for U.S. Appl. No. 16/526,544 dated Jul. 16, 2020. |
Corrected Notice of Allowance for U.S. Appl. No. 16/526,544 dated May 13, 2020. |
Corrected Notice of Allowance for U.S. Appl. No. 15/836,198 dated May 22, 2020. |
Corrected Notice of Allowance for U.S. Appl. No. 16/294,025 dated May 18, 2020. |
Final Office Action for U.S. Appl. No. 15/256,222 dated Oct. 4, 2019. |
Final Office Action for U.S. Appl. No. 16/125,757 dated Jul. 15, 2020. |
Final Office Action for U.S. Appl. No. 16/377,847 dated Jul. 13, 2020. |
Final Office Action for U.S. Appl. No. 16/666,680 dated Jun. 29, 2020. |
Non-Final Office Action for U.S. Appl. No. 15/256,222 dated Aug. 27, 2018. |
Non-Final Office Action for U.S. Appl. No. 15/256,222 dated Mar. 21, 2019. |
Non-Final Office Action for U.S. Appl. No. 16/153,735 dated May 13, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/388,043 dated Aug. 3, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/819,388 dated Jul. 2, 2020. |
Notice of Allowance for U.S. Appl. No. 15/256,222 dated Apr. 3, 2020. |
Notice of Allowance for U.S. Appl. No. 15/607,750 dated Jun. 1, 2020. |
Notice of Allowance for U.S. Appl. No. 16/129,413 dated Aug. 12, 2020. |
Notice of Allowance for U.S. Appl. No. 16/153,735 dated Jul. 2, 2020. |
Notice of Allowance for U.S. Appl. No. 16/684,789 dated Jul. 10, 2020. |
Supplemental Notice of Allowability for U.S. Appl. No. 16/153,735 dated Jul. 22, 2020. |
Supplemental Notice of Allowance for U.S. Appl. No. 16/231,903 dated Jul. 1, 2020. |
Abbaspour-Tamijani et al., “Enhancing the Directivity of Phased Array Antennas Using Lens-Arrays,” Progress in Electromagnetics Research M, vol. 29, 2013. pp. 41-64. |
Advisory Action in U.S. Appl. No. 15/724,638 dated May 25, 2018. |
Baggett, Benjamin M.W. Optimization of Aperiodically Spaced Phased Arrays for Wideband Applications. MS Thesis. Virginia Polytechnic Institute and State University, 2011. pp. 1-137. |
Final Office Action in U.S. Appl. No. 15/724,638 dated Mar. 14, 2018. |
Final Office Action in U.S. Appl. No. 14/488,355 dated Mar. 4, 2016. |
Imbert et al., “Design and Performance Evaluation of a Dielectric Flat Lens Antenna for Millimeter-Wave Applications,” IEEE Antennas and Wireless Propagation Letters, vol. 14, 2015. pp. 1-4. |
International Search Report and Written Opinion in PCT/US2014/055984 dated Jun 18, 2015, pp. 1-12. |
Non-Final Office Action in U.S. Appl. No. 14/488,355 dated Nov. 13, 2015. |
Non-Final Office Action in U.S. Appl. No. 15/225,071 dated Aug. 21, 2017. |
Non-Final Office Action in U.S. Appl. No. 15/278,970 dated Jan. 3, 2018. |
Non-Final Office Action in U.S. Appl. No. 15/279,171 dated Apr. 24, 2018. |
Non-Final Office Action in U.S. Appl. No. 15/279,219 dated Dec. 27, 2017. |
Non-Final Office Action in U.S. Appl. No. 15/335,034 dated Apr. 6, 2018. |
Non-Final Office Action in U.S. Appl. No. 15/356,172 dated Mar. 14, 2018. |
Non-Final Office Action in U.S. Appl. No. 15/432,018 dated Nov. 6, 2017. |
Non-Final Office Action in U.S. Appl. No. 15/432,018 dated Sep. 25, 2018. |
Non-Final Office Action in U.S. Appl. No. 15/432,091 dated Nov. 22, 2017. |
Non-Final Office Action in U.S. Appl. No. 15/432,185 dated Dec. 5, 2017. |
Non-Final Office Action in U.S. Appl. No. 15/600,443 dated Dec. 27, 2017. |
Non-Final Office Action in U.S. Appl. No. 15/640,174 dated Jun. 8, 2018. |
Non-Final Office Action in U.S. Appl. No. 15/724,638 dated Nov. 6, 2017. |
Notice of Allowance in U.S. Appl. No. 14/488,355 dated Jun. 8, 2016. |
Notice of Allowance in U.S. Appl. No. 15/225,071 dated Nov. 22, 2017. |
Notice of Allowance in U.S. Appl. No. 15/255,656 dated Apr. 10, 2018. |
Notice of Allowance in U.S. Appl. No. 15/256,038 dated Apr. 19, 2017. |
Notice of Allowance in U.S. Appl. No. 15/356,172 dated Sep. 26, 2018. |
Notice of Allowance in U.S. Appl. No. 15/432,091 dated Apr. 11, 2018. |
Notice of Allowance in U.S. Appl. No. 15/432,185 dated Sep. 12, 2018. |
Notice of Allowance in U.S. Appl. No. 15/724,638 dated Jul. 19, 2018. |
Restriction Requirement in U.S. Appl. No. 15/279,171 dated Dec. 21, 2017. |
Corrected Notice of Allowance for U.S. Appl. No. 16/526,544 dated Aug. 25, 2020. |
Corrected Notice of Allowance for U.S. Appl. No. 15/256,222 dated Oct. 28, 2020. |
Corrected Notice of Allowance for U.S. Appl. No. 15/836,198 dated Oct. 2, 2020. |
Corrected Notice of Allowance for U.S. Appl. No. 16/153,735 dated Nov. 18, 2020. |
Corrected Notice of Allowance for U.S. Appl. No. 16/377,980 dated Oct. 5, 2020. |
Corrected Notice of Allowance for U.S. Appl. No. 16/526,544 dated Sep. 25, 2020. |
Corrected Notice of Allowance for U.S. Appl. No. 16/684,789 dated Nov. 20, 2020. |
Final Office Action for U.S. Appl. No. 16/364,956 dated Oct. 2, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/233,044 dated Oct. 14, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/398,156 dated Oct. 15, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/451,998 dated Sep. 11, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/452,023 dated Sep. 9, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/461,980 dated Sep. 21, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/666,680 dated Nov. 13, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/689,758 dated Sep. 29, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/866,536 dated Sep. 1, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/941,690 dated Nov. 12, 2020. |
Notice of Allowability for U.S. Appl. No. 16/129,413 dated Nov. 9, 2020. |
Notice of Allowance for U.S. Appl. No. 16/125,757 dated Oct. 28, 2020. |
Notice of Allowance for U.S. Appl. No. 16/388,043 dated Nov. 5, 2020. |
Notice of Allowance for U.S. Appl. No. 16/452,023 dated Nov. 16, 2020. |
Supplemental Notice of Allowance for U.S. Appl. No. 16/153,735 dated Oct. 9, 2020. |
Notice of Allowance for U.S. Appl. No. 16/927,470 dated Oct. 29, 2020. |
Notice of Allowability for U.S. Appl. No. 16/129,413 dated Jan. 6, 2021. |
Corrected Notice of Allowability for U.S. Appl. No. 16/684,789 dated Jan. 11, 2021. |
Corrected Notice of Allowance for U.S. Appl. No. 16/125,757 dated Dec. 31, 2020. |
Corrected Notice of Allowance for U.S. Appl. No. 16/125,757 dated Feb. 1, 2021. |
Corrected Notice of Allowance for U.S. Appl. No. 16/129,413 dated Nov. 27, 2020. |
Corrected Notice of Allowance for U.S. Appl. No. 16/364,956 dated Jan. 6, 2021. |
Corrected Notice of Allowance for U.S. Appl. No. 16/388,043 dated Dec. 24, 2020. |
Corrected Notice of Allowance for U.S. Appl. No. 16/388,043 dated Dec. 30, 2020. |
Corrected Notice of Allowance for U.S. Appl. No. 16/675,290 dated Dec. 16, 2020. |
Corrected Notice of Allowance for U.S. Appl. No. 16/927,470 dated Feb. 2, 2021. |
Corrected Notice of Allowance for U.S. Appl. No. 16/927,470 dated Jan. 26, 2021. |
Corrected Notice of Allowance for U.S. Appl. no. 16/388,043 dated Feb. 8, 2021. |
International Preliminary Report on Patentability for International Application No. PCT/US2018/064184 dated Jan 21, 2021. |
Morgan et al., “A Same-Frequency Cellular Repeater Using Adaptive Feedback Cancellation,” IEEE, Mar. 12, 2012, pp. 3825-3830. |
Non-Final Office Action for U.S. Appl. No. 16/377,847 dated Dec. 14, 2020. |
Notice of Allowability for U.S. Appl. No. 15/607,750 dated Jan. 11, 2021. |
Notice of Allowability for U.S. Appl. No. 16/129,413 dated Feb. 18, 2021. |
Notice of Allowance for U.S. Appl. No. 16/354,390 dated Feb. 25, 2021. |
Notice of Allowance for U.S. Appl. No. 16/364,956 dated Dec. 11, 2020. |
Notice of Allowance for U.S. Appl. No. 16/451,998 dated Jan. 14, 2021. |
Notice of Allowance for U.S. Appl. No. 16/689,758 dated Jan. 22, 2021. |
Notice of Allowance for U.S. Appl. No. 16/819,388 dated Jan. 25, 2021. |
Notice of Allowance for U.S. Appl. No. 16/866,536 dated Jan. 29, 2021. |
Supplemental Notice of Allowability for U.S. Appl. No. 16/153,735 dated Jan. 11, 2021. |
Supplemental Notice of Allowance for U.S. Appl. No. 16/452,023 dated Feb. 18, 2021. |
Supplemental Notice of Allowance for U.S. Appl. No. 16/153,735 dated Feb. 24, 2021. |
Corrected Notice of Allowability for U.S. Appl. No. 16/125,757 dated Mar. 11, 2021. |
Corrected Notice of Allowance for U.S. Appl. No. 16/354,390 dated Apr. 9, 2021. |
Corrected Notice of Allowance for U.S. Appl. No. 16/689,758 dated Apr. 7, 2021. |
Non-Final Office Action for U.S. Appl. No. 17/011,042 dated Mar. 23, 2021. |
Notice of Allowability for U.S. Appl. No. 16/388,043 dated Mar. 11, 2021. |
Notice of Allowability for U.S. Appl. No. 16/819,388 dated Apr. 5, 2021. |
Notice of Allowance for U.S. Appl. No. 16/377,847 dated Apr. 5, 2021. |
Notice of Allowance for U.S. Appl. No. 16/391,628 dated Mar. 17, 2021. |
Notice of Allowance for U.S. Appl. No. 16/451,980 dated Mar. 23, 2021. |
Notice of Allowance for U.S. Appl. No. 16/666,680 dated Mar. 2, 2021. |
Supplemental Notice of Allowance for U.S. Appl. No. 16/451,998 dated Mar. 2, 2021. |
Supplemental Notice of Allowance for U.S. Appl. No. 16/866,536 dated Mar. 17, 2021. |
Number | Date | Country | |
---|---|---|---|
20190097305 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15356172 | Nov 2016 | US |
Child | 16204397 | US |