Phenolic resin method

Information

  • Patent Grant
  • 10843404
  • Patent Number
    10,843,404
  • Date Filed
    Wednesday, May 18, 2016
    8 years ago
  • Date Issued
    Tuesday, November 24, 2020
    4 years ago
Abstract
The invention relates to a method, a device, a binder system, and a material system for producing components using layering technology, wherein the temperature in the building space and/or in the applied material is set to at least 70° C. and maintained for at least 2 hours. Areas on which binder has been selectively applied, solidify and form the component.
Description
CLAIM OF PRIORITY

This application is a national phase filing under 35 USC § 371 from PCT Application serial number PCT/DE2016/000209 filed on May 18, 2016, and claims priority therefrom. This application further claims priority from German Patent Application DE 10 2015 006 363.4 filed on May 20, 2015. PCT/DE2016/000209 and DE 10 2015 006 363.4 are each incorporated herein by reference in its entirety.


The invention relates to a method and a device for producing three-dimensional components. These moulded parts are suitable for use in casting applications, in particular as moulds and cores.


European Patent EP 0 431 924 B1 describes a process for producing three-dimensional objects based on computer data. In the process, a thin layer of particulate material is deposited on a platform and has a binder material selectively printed thereon by means of a print head. The particulate region with the binder printed thereon bonds and solidifies under the influence of the binder and, optionally, an additional hardener. Next, the platform is lowered by one layer thickness into a construction cylinder and provided with a new layer of particulate material, the latter also being printed on as described above. These steps are repeated until a certain desired height of the object is achieved. Thus, the printed and solidified regions form a three-dimensional object (component).


Upon completion, the object made of solidified particulate material is embedded in loose particulate material, from which it is subsequently freed. For this purpose a suction device may be used, for example. This leaves the desired objects which then have to be freed from any residual powder, e.g. by brushing it off.


Problems occur in known methods with respect to the binders used, which often attack the device itself and, in particular, the print head and are in some cases problematic from a health perspective, too.


Also, the further process conditions may be problematic and suboptimal for the production of advantageous components. In particular, the temperature distribution and suitable binders do not always allow positive process results and often adversely affect economic viability.


Therefore, it was an object of the present invention to provide a method by which advantageous component can be produced and which is advantageous in terms of economic viability, or which at least avoids or at least reduces the disadvantages of the prior art.


BRIEF DESCRIPTION

What is described is a method for the layered construction of components, wherein a particulate material is applied onto a construction area in a construction space layer by layer with a layer thickness, a binder is selectively applied, the temperature in the construction space or/and in the particulate material applied is adjusted to a desired temperature, and the steps of material application and binder application are repeated until a desired component is obtained, wherein the temperature in the construction space or/and in the material applied is adjusted to at least 70° C. and maintained for at least 2 hours, with the areas onto which the binder was selectively applied solidifying and forming the component.


In this context, it is advantageous that an unproblematic binder system can be used, which is water- or alcohol-based as a solvent and which is adjusted to and kept at a temperature of at least 70° C. in the applied particulate material over a long period of time. This has the advantage that, using this method, a very large area in the applied particulate material thus maintains a homogeneous desired temperature, which in turn allows uniform solidification and advantageous component properties to be obtained. This has the advantage not only that homogeneous material properties are achieved in the component, but also that, advantageously, a large area of the construction space can be used to produce components and the unused edge region of the construction space provided with particulate material remains relatively small. This increases the efficiency of the device and thereby reduces the cost per component or high-volume component, respectively. The binder system used in the method is preferably only slightly reactive at room temperature and the machine parts and, in particular, the print head are easy to clean and allow maintenance without any notable problems.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1: A schematic representation of the components of a powder-based 3D printer in an oblique sectional view.



FIG. 2: Sequence of a conventional 3D printing process using layer-wise radiation curing.



FIG. 3: Sequence of a construction process comprising radiation curing which is not effected in every layer.



FIG. 4: A schematic representation of the application of binder (400) onto the supplied particulate material, wherein (401) represents one particle and the dark arrow indicates the direction of penetration. In this case, the strength of the component is obtained by the binder bonding the particles of the particulate material and curing of the binder taking place, which results in a solid connection of the binder with the particulate material. FIGS. 4a-4d describe the sequence of the binder penetrating into the particulate material.



FIG. 5: FIGS. 5a and 5b show the energy input/heat input (500, 501, 502) and the energy loss/heat loss (503, 504, 505), respectively. FIG. 5c shows very inhomogeneous temperature distribution, and in this case, the isothermal lines (510-514) within which a solidification reaction is bound to happen, are shifted far towards the centre of the construction container. This considerably reduces the useful construction space, and the economic viability of the device and the method is disadvantageous. FIG. 5c shows the situation in the disclosed method, and it becomes evident that the useful construction space or the useful applied powder cake, respectively, is much greater which results in increased economic viability of the machine, and at the same time, the properties of the component may be advantageous. This is shown by isothermal line 510, which includes a large area that is kept homogeneous in its temperature during the process and thus yields positive process results.



FIG. 6: Preparation of the prepolymer as exemplified by a resol



FIG. 7: Condensation reaction of resol to cross-linked resite





DETAILED DESCRIPTION

In the following, several terms will be defined more precisely. Otherwise, the terms used shall have the meanings known to the person skilled in the art.


In the sense of the invention, “3D printing methods” are all methods known from the prior art which enable the construction of components in three-dimensional moulds and are compatible with the described process components and devices. In particular, these include powder-based methods, containing as one ingredient aqueous solutions or/and other fluid components or solvents which have to be extracted from the moulded part or escape from the moulded part during or for its solidification. The solidification and quality of the moulded part can be selectively influenced by the invention, with other quality features remaining unchanged or even being positively influenced.


A “moulded part”, “model”, “3D moulded part” or “component” in the sense of the invention means all three-dimensional objects manufactured by means of the method according to the invention or/and the device according to the invention which exhibit dimensional stability.


The “device” used for carrying out the method according to the invention may be any known 3D-printing device which includes the required parts. Common components include a coater, a construction field, means for moving the construction field or other components, a dosage device, a print head, a heating medium, displacement means for batch-wise or continuous processes, and other components which are known to the person skilled in the art and will therefore not be described in detail herein.


A “construction platform” or “construction area” moves, according to the disclosure, with respect to the printing and coater level. This relative movement takes place during the construction process in interrupted movements in layer thickness. The movement defines the layer thickness. As an alternative, the device may be configured such that the other parts of the device move upwards, thereby adjusting the layer strength or layer thickness.


A “construction container” or “job box” provides a construction space. Accordingly, it has a bottom, walls and an open access area, the construction space. The construction container always comprises parts which do not move relative to the frame of the 3D printing device. Exchangeable construction containers, known as job boxes, allow virtually constant operation of the machine, because the job boxes can be moved in and out of the machine. The parts of a first construction operation can thus be unpacked outside the device (3D printing device), while new parts can already be printed in a second construction container within the machine.


A “construction space” in the sense of the invention is the geometric location where the particulate material bed grows during the construction process by repeated coating with particulate material. The construction space is generally bounded by a bottom, i.e. the construction platform, by walls and an open top surface, i.e. the construction plane. The construction plane may be horizontal, but may also form an angle, for example, in continuous processes, so that coating is performed obliquely, at an angle.


The “particle materials” or “construction materials” “or particulate material” of use herein may be any materials known for powder-based 3D printing, in particular sands, ceramic powders, metal powders, plastic materials, wood particles, fibre materials, celluloses or/and lactose powders. The particulate material is preferably a free-flowing powder when dry, but a cohesive, cut-resistant powder may also be used. In a preferred aspect, the particulate material used may be considered a “passive powder material”, because it is not directly involved in the binding reaction, i.e. solidification, of the component, but is merely solidified or “connected” by the binder system into a solid component. It may display inert behaviour. The applied particulate material may also be referred to as powder cake.


“Adjusting the temperature” or “tempering” means that a specific temperature is adjusted in the construction space or/and the applied particulate material or that the construction space is adjusted to a selected temperature. In one aspect, the applied particulate material is tempered, in particular, and the temperature is maintained, for example, at approx. 60, 70, 80, 90, 100, 110, 120, 130, 140, 150° C., or 80 to 100° C.


A “binder” or “binder system” is the material which is selectively applied onto the particulate material by means of the print head and which leads to solidification and, thus, the production of the component. The binder system comprises a solvent and further components, e.g. monomers, oligomers and/or polymers. The binding mechanism is a polymerization reaction. This results in a solid material which is capable of binding the particles in the powder. As the basic material, a pre-polymeric phenolic resin is preferred.


The “diffusion length” corresponds to the expansion of an applied binder in the particulate material and is influenced, inter alia, by the volume, temperature and composition of the binder.


Preferred embodiments will be described below.


What is disclosed is a method for the layered construction of components, wherein a particulate material is applied onto a construction area in a construction space layer by layer with a layer thickness, a binder is selectively applied, the temperature in the construction space or/and in the particulate material applied is adjusted to a desired temperature, and the steps of material application and binder application are repeated until a desired component is obtained, wherein the temperature in the construction space or/and in the material applied is adjusted to at least 70° C. and maintained for at least 2 hours, with the areas onto which the binder was selectively applied solidifying and forming the component.


Using the method disclosed herein, components are produced, on the one hand, which exhibit positive material properties, and on the other hand, the disclosed method allows the effective space within the applied powder cake to be increased, because a constant temperature, necessary for the duration required for the reaction, can be adjusted and maintained.


The temperature is selected such that the reaction temperature required for the solidification with positive component properties is set to be homogeneous in the powder cake. Preferably, the temperature is adjusted to 70 to 90° C., preferably at least 80° C., more preferably at least 90° C., still more preferably 80 to 150° C., and even more preferably 80 to 100° C. This is also referred to as an isothermal line, and an isothermal line of 80° C., preferably 90° C., is preferred.


In this manner, a substantially homogeneous temperature is adjusted and maintained in an advantageously large area of the powder cake, i.e. in an area of the applied particulate material.


In the method, the temperature is maintained over a period required for the reaction, preferably for 3 to 10 hours, more preferably for 4 to 6 hours, and still more preferably for at least 4 hours.


Use can be made of any suitable particulate materials known to the person skilled in the art, the particulate material preferably being a plastic material, a sand, a ceramic material or a metal. In this case, the particle size may be selected as required in conjunction with the other process parameters. Preferably, the average grain size is at least 8 μm, more preferably 10 μm to 1 mm.


The particulate material may be applied in different layer thicknesses, with a layer thickness of 50 to 800 μm being preferred.


The binder is adapted to the other process materials and conditions, and the binder used may preferably be a binder system comprising monomers, oligomers or/and polymers and a solvent, said solvent preferably being an aqueous or alcoholic solvent.


The component obtained by the method preferably has a green strength in the component of at least 280 N/cm2.


The method allows a final strength (bending strength) in the component of at least 300, preferably at least 500 N/cm2, to be achieved either directly or after further process steps.


In the method, the process conditions are set such that the component produced thereby has a loss on ignition of less than 3%, preferably less than 2.5%, more preferably less than 2.2%.


Further process steps are possible; the resulting component can be subjected to further processing steps.


In another aspect, the disclosure relates to a binder system comprising monomers, oligomers or/and polymers and a solvent, said solvent preferably being an aqueous or alcoholic solvent. The binder system preferably comprises a pre-polymeric phenolic resin.


In another aspect, the disclosure relates to a material system comprising a particulate material as described above and a binder system as described above.


In another aspect, the disclosure relates to a device for producing a component, said device comprising a construction space with a construction platform, means for applying a particulate material, means for selectively applying a binder system, means for adjusting a temperature in the construction space or/and the particulate material. Further aspects of the invention will be presented in more detail below, and these device elements can be combined with each other in any useful and functional manner desired.


Finally, in another aspect, the disclosure relates to a solid body (component) produced by means of a method, a binder system, by means of a material system or/and a device as described herein, wherein the solid body preferably has a bending strength of 500 N/cm2.


Further aspects will be described below.


One aspect of the method is a binding agent system or binder (400), which is printed on a powder (401) that is neutral with regard to the reaction and cures at a substantially higher temperature than room temperature over several hours. The majority of said curing takes place during the construction process. In this case, the entire resulting powder cake is kept warm for hours.


Various particulate materials (401) can be used as the powder. This includes ceramic powders, sand or even metal powders. For the method, the powder grains (401) should not be substantially smaller than 10 μm. Particles (401) greater than 1 mm generally make safe processing difficult. These statements refer to the average grain size. However, considerable parts of the aforementioned maximum and minimum grains (401) are detrimental to the process even if the average grain size requirements are met.


The particles are processed in the device into a thin layer (107) by a coater (101) in conjunction with the construction platform (102). For this purpose, the particulate material (401) is supplied at or from a starting position and smoothed by the coater (101) moving over the construction field. The respective position of the construction platform determines the layer thickness.


In a resin system or binder (400) according to the invention, the powder cake is kept at a temperature of 80° C. for at least 4 hours. This results in a bending strength in the components of over 300 N/cm2 with a loss on ignition of less than 2.2%.


The binder system (400) includes monomers, oligomers and/or polymers as binding ingredients. These are solved in a solvent. The binding mechanism is a polymerization reaction. It results in a solid material which is capable of binding the particles in the powder. As the basic material, a pre-polymeric phenolic resin is preferred.


According to the invention, the binder system (400) is configured for use in inkjet print heads (100) comprising piezo elements. In this case, its viscosity ranges from 5 to 20 mPas. Steam pressure is less than 3,000 Pa at room temperature. Surface tension is in the range of from 30-50 mN/m. The binder system is adjusted such that it takes at least approx. 1 minute for the reversible drying-up of the print head to hinder the function of first jets.


The binder system (400) exhibits extremely low reactivity at room temperature. This protects the print head (100), which remains highly reliable even after a long service life. Dried binder is easy to remove at room temperature even after weeks. This facilitates both cleaning of the device and reactivation of dried-up jets.


In the case of phenolic resins, the solvent for the binder system may be water. Therefore, the binder system can be regarded as hardly noxious if handled properly.


Due to the heating effect of the hot construction field surface, the print head (100) is cooled actively or passively, allowing the drop mass and, thus, the input to be kept constant throughout the construction process. Passive cooling may be effected by contact with the print head cleaning unit. Active cooling may be achieved, for example, by a cooling element through which cooling water flows and which is mounted to the print head (100). The introduction of pre-cooled compressed air, and also a fan, are suitable for cooling.


Upon reaching the surface of the particulate material, the binder printed by the print head (100) penetrates slowly into the powder cake as a function of the surface tension. In this case, a certain diffusion length is desired. Said diffusion is necessary to bond the individual layers with each other. The diffusion length depends on the fluid parameters, but also on the temperature on the construction field. Moreover, the temperature is controlled such during construction that the printed layers cure slowly, thus allowing interlaminar bonding.


For example, if water is used as the solvent, it is advantageous to work below 100° C. Above this limit, evaporation effects occur which may adversely affect the surface quality of the components.


It is advantageous for the process to set a diffusion length of 1.5 times the layer thickness. This results in a good compromise between anisotropy in the direction of construction, resolution and quality of the bottom surfaces of the component.


In this process, layer thicknesses of 50-800 μm are possible and useful. They are adjusted according to the powder material and the desired construction progress.


The device comprises means (200, 300-304) for heating the powder cake and keeping it warm. In this case, the energy input can be partly insulated by the powder, so that powder once heated up cannot cool off rapidly.


Infrared heat sources can be used as the heating means. They may be arranged statically (302) above the construction field or moved (200) over the construction field by moving parts of the device. Halogen radiators made of quartz glass as well as ceramic radiators are suitable. Mirrors for IR radiation are also suitable to influence and control the heat balance.


For example, an IR radiator with a maximum power of 9.5 kW and a length of one metre can be used to heat a construction field of 100×60 cm. In this case, the radiator is moved back and forth over the construction field, for example, at a speed of 0.05 m/s. This process is usually combined with the coating process. For a coating time of approx. 60 sec., which results substantially from printing and irradiation, over 90° C. may be reached in the powder cake during the construction process. As an alternative, a separate irradiation passage carried out x times every n layers may be used in addition to the described irradiation and/or as the only heating routine, with n≥2, preferably every 2 to 5 layers, particularly preferably every 3 layers, and with x≥1 irradiation, preferably 2 to 5, particularly preferably 3 to 4 irradiations.


Also, hot air may sweep (301) over the construction field and thereby heat it up. All forms of hot air blowers (301) are suitable for this purpose. Direct preheating of the powder with an air stream or a resistance heating is also possible. Also, a contacting, heated metal may be guided over the powder (304) to heat it up.


Another suitable process means are heatings in the construction container wall (300) and/or in the construction platform (301). On the one hand, these can introduce heat to the process; on the other hand, by active insulation, they can reduce heat losses.


Such heatings may be provided, for example, as electric resistance heatings. They can be controlled via standard control devices. For this purpose, sheets are commonly used, for example, which can be glued onto metallic surfaces, such as the construction container walls. The same effect is provided by heating cartridges which are inserted into bores in metallic plates.


In the case of poor insulation, power outputs of up to 5 W/cm2 are required for temperatures up to approx. 90° C. Depending on the insulation quality, enormous amounts of energy can be saved here.


Further, active insulation can be carried out using a heat transfer medium. The heat transfer medium, for example water or oil, may be transported in tubes, which are usually made of copper, extend within the job box wall and the job box floor in a contacting manner and preferably extend in a meandering manner so as to achieve the most uniform heating of the box possible.


Passive insulations are also useful for temperature control in the construction container. In this case, different “materials”, such as those also common in the construction industry, can be used: Mineral insulations, plastic materials, foams, but also air, vacuum etc. The passive insulations are installed such that the heat flow from the construction container is reduced.


Another essential means of the device is its control unit. The control unit determines the temperature control within the device. For this purpose, means for detecting important temperature parameters may be present in the device. This allows control circuits to be provided. A simple variant is the control of the power input into the device. In this case, a higher power input takes place during the warm-up phase of the machine. The power is gradually reduced during the ongoing production process.


In the above-described device with a 9.5 kW radiator, for example, the power is reduced from 100% to 70% during the first 3 hours of the construction process. With this power, the entire process is carried out after reaching stationary conditions.


The combination of heating elements and insulation must be adapted so as to achieve an homogeneous temperature field (e.g. FIG. 5d) in the powder cake. The required homogeneity depends on the binder system. A certain threshold must definitely be exceeded to ensure reliable curing of the binding agent.


In general, the selected temperature must not be too high, because otherwise the printing and construction process will be affected. The construction field surface temperature should not exceed 90° C. here. In order to achieve sufficient strength, the temperature must be above 80° C. In other words, the temperature has to be within a 10K range.


If the temperature distribution becomes very inhomogeneous (FIG. 5c), the isothermal lines (510-514) within which a solidification reaction is bound to happen, are shifted far towards the centre of the construction container. This considerably reduces the useful construction space.


The binding agent system is a heat-curable pre-polymeric resol resin solution and/or novolac solution, which reacts at the already described conditions, partly or fully during the construction process into an insoluble and infusible resite. The temperature control throughout the construction process is selected such that curing does not take place ad hoc, but over a period of several hours, allowing interlaminar bonding. (FIG. 7)


Resols and novolacs are prepolymers of a phenol-formaldehyde co-condensate. Resols are prepolymers which are polymerized with phenol under alkaline conditions with an excess of formaldehyde. (FIG. 6)


Resols include an increased number of free hydroxyl groups which tend to condensate further under temperature influence and form an insoluble resite.


Novolacs are prepolymers synthesized under acidic conditions with a shortage of formaldehyde and co-condensed with resol to resite under temperature influence or polymerized with addition of a formaldehyde donor (e.g. urotropine) and temperature increase.


Due to its production process, the prepolymer contains residual monomers of phenol and formaldehyde. The phenol content is preferably below 5% and particularly preferably below 1%.


The formaldehyde content is preferably below 0.3%, particularly preferably below 0.1%.


By adding a solvent, which consists of mono- and/or polyalcohols and/or water or exclusively of water, the binder is diluted or adjusted, respectively, to such an extent that the viscosity is in the range of 5-20 mPas, preferably between 5-10 mPas and particularly preferably between 5-8 mPas.


For viscosity fine adjustment, further modifiers may be used, such as polyvalent alcohols like glycol, propanediol or propylene glycols, further carboxymethylcelluloses, xylitol, sorbite or gum arabic. Preferably, 1%-9%, particularly preferably 3%-7%, are used.


For surface tension adjustment, common surfactants, such as sodium lauryl sulfate or sodium laureth sulfate as well as fluorine-containing and silicone-based surfactants, may be used.


The binder liquid usually consists of 30%-40% prepolymer, 60%-70% solvent and 1%-7% viscosity modifier.


The binder input can be adjusted over a wide range according to the desired final strength and loss on ignition. Usually, the input and temperature control are selected such that the green strength is not below 280 N/cm2 to ensure safe handling of the components. If the condensation reaction is not fully achieved during the construction process, a subsequent oven process may complete the reaction. Preferably, the components are subsequently baked for 1-4 h at 120° C.-150° C., particularly preferably 2-3 h at 130° C.−140° C. Any solvent still remaining will also be completely expelled by this operation.


Usually, inputs of 5%-8% by weight of the particulate material are used, which make a sufficient green strength and a high final strength accessible.


The examples describe preferred embodiments, without being construed as limiting.


EXAMPLES
Example 1

Binder mixture: Resol/novolac-prepolymer 35%, water/i-propanol (80/20) 63%, 1,2-propanediol 3%


Input: 5.8% by weight


Particulate material: AFS 100 silica sand


Green strength: 380N/cm2


Final strength: 540N/cm2 (after 3 h @ 135° C.)


Loss on ignition: 2%


LIST OF REFERENCE NUMERALS






    • 100 inkjet print head


    • 101 powder coater


    • 102 construction platform


    • 103 component


    • 104 construction field edge


    • 107 powder layers


    • 200 heat source


    • 300 Resistance heating/liquid heating/air heating for the container wall


    • 301 Resistance heating/liquid heating/air heating for the construction platform


    • 302 hot air blower


    • 303 static heaters


    • 304 Resistance heating with contacting element


    • 400 Binder/binding agent system


    • 401 Powder particles


    • 500 Energy input onto the construction field surface


    • 501 Energy input into the powder cake through the construction container wall


    • 502 Energy input into the powder cake through the construction platform


    • 503 Energy loss from the construction field surface


    • 504 Energy loss of the powder cake through the construction container wall


    • 505 Energy loss of the powder cake through the construction platform


    • 510 Isothermal line in the powder cake for 90° C.


    • 511 Isothermal line in the powder cake for 80° C.


    • 512 Isothermal line in the powder cake for 70° C.


    • 513 Isothermal line in the powder cake for 60° C.




Claims
  • 1. A method for the layered construction of components, wherein a particulate material is applied onto a construction area in a construction space layer by layer with a layer thickness, a binder is selectively applied, a temperature in the construction space or/and in the particulate material applied is adjusted to at least 80° C., and the steps of material application and binder application are repeated until a desired component is obtained, wherein the temperature is maintained for at least 2 hours, with the areas onto which the binder was selectively applied solidifying and forming the components.
  • 2. The method of claim 1, wherein the binder used is a binder system comprising: i) one or more monomers,ii) one or more oligomers or polymers, andiii) a solvent.
  • 3. The method of claim 2, wherein the solvent is an aqueous or alcoholic solvent.
  • 4. The method of claim 1, wherein the component thus obtained is subjected to further processing steps.
  • 5. The method of claim 1, wherein the temperature is adjusted to 80 to 150° C.
  • 6. The method of claim 5, wherein a substantially homogeneous temperature is adjusted and maintained in an area of the applied particulate material.
  • 7. The method of claim 6, wherein the temperature is maintained for 3 to 10 hours.
  • 8. The method of claim 7, wherein the particulate material is a plastic material, a sand, a ceramic material or a metal.
  • 9. The method of claim 8, wherein the particulate material has an average grain size of at least 8 μm.
  • 10. The method of claim 9, wherein the layer thickness is 50 to 800 μm.
  • 11. The method of claim 1, wherein the particulate material consists of particles.
  • 12. A method for the layered construction of components, wherein a particulate material consisting of particles is applied onto a construction area in a construction space layer by layer with a layer thickness, a binder is selectively applied, the temperature in the construction space or/and in the particulate material applied is adjusted to a desired temperature, and the steps of material application and binder application are repeated until a desired component is obtained, wherein the temperature in the construction space or in the material applied is adjusted to at least 70° C. and maintained for at least 2 hours, with the areas onto which the binder was selectively applied solidifying and forming the components.
  • 13. The method of claim 12, wherein the binder used is a binder system comprising: i) one or more monomers,ii) one or more oligomers or polymers, andiii) a solvent.
  • 14. The method of claim 12, wherein a homogeneous temperature is adjusted and maintained in an area of the applied particulate material; the homogenous temperature is maintained for 3 to 10 hours;the particulate material has an average grain size of at least 8 μm,the layer thickness is 50 to 800 μm; andthe binder includes an aqueous solvent.
  • 15. The method of claim 12, wherein the particulate material is a plastic material.
  • 16. The method of claim 12, wherein the particulate material is a sand, a ceramic material or a metal.
  • 17. The method of claim 12, wherein the binder includes a phenol-formaldehyde co-condensate having below 5% residual phenol and below 0.3% residual formaldehyde.
Priority Claims (1)
Number Date Country Kind
10 2015 006 363 May 2015 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/DE2016/000209 5/18/2016 WO 00
Publishing Document Publishing Date Country Kind
WO2016/184448 11/24/2016 WO A
US Referenced Citations (423)
Number Name Date Kind
3668997 Ratowsky Jun 1972 A
3913503 Becker Oct 1975 A
4247508 Housholder Jan 1981 A
4575330 Hull Mar 1986 A
4591402 Evans et al. May 1986 A
4600733 Ohashi et al. Jul 1986 A
4665492 Masters May 1987 A
4669634 Leroux Jun 1987 A
4711669 Paul et al. Dec 1987 A
4752352 Feygin Jun 1988 A
4752498 Fudim Jun 1988 A
4863538 Deckard Sep 1989 A
4938816 Beaman et al. Jul 1990 A
4944817 Bourell et al. Jul 1990 A
5017753 Deckard May 1991 A
5031120 Pomerantz et al. Jul 1991 A
5047182 Sundback et al. Sep 1991 A
5053090 Beaman et al. Oct 1991 A
5059266 Yamane et al. Oct 1991 A
5076869 Bourell et al. Dec 1991 A
5120476 Scholz Jun 1992 A
5126529 Weiss et al. Jun 1992 A
5127037 Bynum Jun 1992 A
5132143 Deckard Jul 1992 A
5134569 Masters Jul 1992 A
5136515 Helinski Aug 1992 A
5140937 Yamane et al. Aug 1992 A
5147587 Marcus et al. Sep 1992 A
5149548 Yamane et al. Sep 1992 A
5155324 Deckard et al. Oct 1992 A
5156697 Bourell et al. Oct 1992 A
5182170 Marcus et al. Jan 1993 A
5204055 Sachs Apr 1993 A
5216616 Masters Jun 1993 A
5229209 Gharapetian et al. Jul 1993 A
5248456 Evans, Jr. et al. Aug 1993 A
5252264 Forderhase et al. Oct 1993 A
5263130 Pomerantz et al. Nov 1993 A
5269982 Brotz Dec 1993 A
5284695 Barlow et al. Feb 1994 A
5296062 Bourell et al. Mar 1994 A
5316580 Deckard May 1994 A
5324617 Majima et al. Jun 1994 A
5340656 Sachs et al. Aug 1994 A
5342919 Dickens, Jr. et al. Aug 1994 A
5352405 Beaman et al. Oct 1994 A
5354414 Feygin Oct 1994 A
5382308 Bourell et al. Jan 1995 A
5387380 Cima Feb 1995 A
5398193 deAngelis Mar 1995 A
5418112 Mirle et al. May 1995 A
5427722 Fouts et al. Jun 1995 A
5431967 Manthiram et al. Jul 1995 A
5433261 Hinton Jul 1995 A
5482659 Sauerhoefer Jan 1996 A
5490962 Cima et al. Feb 1996 A
5503785 Crump et al. Apr 1996 A
5506607 Sanders, Jr. et al. Apr 1996 A
5518060 Cleary et al. May 1996 A
5518680 Cima May 1996 A
5555176 Menhennett et al. Sep 1996 A
5573721 Gillette Nov 1996 A
5589222 Thometzek et al. Dec 1996 A
5597589 Deckard Jan 1997 A
5616294 Deckard Apr 1997 A
5616631 Kiuchi et al. Apr 1997 A
5637175 Feygin et al. Jun 1997 A
5639070 Deckard Jun 1997 A
5639402 Barlow et al. Jun 1997 A
5647931 Retallick et al. Jul 1997 A
5658412 Retallick et al. Aug 1997 A
5665401 Serbin et al. Sep 1997 A
5717599 Menhennett et al. Feb 1998 A
5730925 Mattes et al. Mar 1998 A
5740051 Sanders, Jr. et al. Apr 1998 A
5747105 Haubert May 1998 A
5749041 Lakshminarayan et al. May 1998 A
5753274 Wilkening et al. May 1998 A
5807437 Sachs et al. Sep 1998 A
5824250 Whalen Oct 1998 A
5837960 Lewis et al. Nov 1998 A
5851465 Bredt Dec 1998 A
5884688 Hinton et al. Mar 1999 A
5902441 Bredt et al. May 1999 A
5902537 Almquist et al. May 1999 A
5904889 Serbin et al. May 1999 A
5934343 Gaylo et al. Aug 1999 A
5940674 Sachs et al. Aug 1999 A
5943235 Earl et al. Aug 1999 A
5989476 Lockard et al. Nov 1999 A
5997795 Danforth Dec 1999 A
6007318 Russell et al. Dec 1999 A
6036777 Sachs Mar 2000 A
6042774 Wilkening et al. Mar 2000 A
6048188 Hull et al. Apr 2000 A
6048954 Barlow et al. Apr 2000 A
6133353 Bui et al. Oct 2000 A
6146567 Sachs et al. Nov 2000 A
6147138 Hochsmann et al. Nov 2000 A
6155331 Langer et al. Dec 2000 A
6164850 Speakman Dec 2000 A
6165406 Jang et al. Dec 2000 A
6169605 Penn et al. Jan 2001 B1
6175422 Penn et al. Jan 2001 B1
6193922 Ederer Feb 2001 B1
6210625 Matsushita Apr 2001 B1
6216508 Matsubara et al. Apr 2001 B1
6217816 Tang Apr 2001 B1
6243616 Droscher et al. Jun 2001 B1
6259962 Gothait Jul 2001 B1
6270335 Leyden et al. Aug 2001 B2
6305769 Thayer et al. Oct 2001 B1
6316060 Elvidge et al. Nov 2001 B1
6318418 Grossmann et al. Nov 2001 B1
6335052 Suzuki et al. Jan 2002 B1
6335097 Otsuka et al. Jan 2002 B1
6350495 Schriener et al. Feb 2002 B1
6355196 Kotnis et al. Mar 2002 B1
6375874 Russell et al. Apr 2002 B1
6395811 Nguyen et al. May 2002 B1
6401001 Jang et al. Jun 2002 B1
6403002 Van Der Geest Jun 2002 B1
6405095 Jang et al. Jun 2002 B1
6416850 Bredt et al. Jul 2002 B1
6423255 Hoechsmann et al. Jul 2002 B1
6460979 Heinzl et al. Oct 2002 B1
6476122 Leyden Nov 2002 B1
6485831 Fukushima et al. Nov 2002 B1
6500378 Smith Dec 2002 B1
6554600 Hofmann et al. Apr 2003 B1
6596224 Sachs et al. Jul 2003 B1
6610429 Bredt et al. Aug 2003 B2
6616030 Miller Sep 2003 B2
6649121 Hamamoto Nov 2003 B1
6658314 Gothait Dec 2003 B1
6672343 Perret et al. Jan 2004 B1
6713125 Sherwood et al. Mar 2004 B1
6722872 Swanson et al. Apr 2004 B1
6733528 Abe et al. May 2004 B2
6742456 Kasperchik et al. Jun 2004 B1
6764636 Allanic et al. Jul 2004 B1
6827988 Krause et al. Dec 2004 B2
6830643 Hayes Dec 2004 B1
6838035 Ederer et al. Jan 2005 B1
6855205 McQuate et al. Feb 2005 B2
6896839 Kubo et al. May 2005 B2
6905645 Iskra Jun 2005 B2
6972115 Ballard Dec 2005 B1
6989115 Russell et al. Jan 2006 B2
7004222 Ederer et al. Feb 2006 B2
7037382 Davidson et al. May 2006 B2
7048530 Gaillard et al. May 2006 B2
7049363 Shen May 2006 B2
7087109 Bredt et al. Aug 2006 B2
7120512 Kramer et al. Oct 2006 B2
7137431 Ederer et al. Nov 2006 B2
7153463 Leuterer et al. Dec 2006 B2
7204684 Ederer et al. Apr 2007 B2
7220380 Farr et al. May 2007 B2
7291002 Russell et al. Nov 2007 B2
7296990 Devos et al. Nov 2007 B2
7332537 Bredt et al. Feb 2008 B2
7348075 Farr et al. Mar 2008 B2
7378052 Harryson May 2008 B2
7381360 Oriakhi et al. Jun 2008 B2
7387359 Hernandez et al. Jun 2008 B2
7402330 Pfeiffer et al. Jul 2008 B2
7431987 Pfeiffer et al. Oct 2008 B2
7435072 Collins et al. Oct 2008 B2
7435368 Davidson et al. Oct 2008 B2
7455804 Patel et al. Nov 2008 B2
7455805 Oriakhi et al. Nov 2008 B2
7497977 Nielsen et al. Mar 2009 B2
7515986 Huskamp Apr 2009 B2
7531117 Ederer et al. May 2009 B2
7550518 Bredt et al. Jun 2009 B2
7578958 Patel et al. Aug 2009 B2
7597835 Marsac Oct 2009 B2
7641461 Khoshnevis Jan 2010 B2
7665636 Ederer et al. Feb 2010 B2
7722802 Pfeiffer et al. May 2010 B2
7807077 Ederer et al. May 2010 B2
7736578 Ederer et al. Jun 2010 B2
7748971 Hochsmann et al. Jul 2010 B2
7767130 Elsner et al. Aug 2010 B2
7790096 Merot et al. Sep 2010 B2
7795349 Bredt et al. Sep 2010 B2
7799253 Höschmann et al. Sep 2010 B2
7879393 Ederer et al. Feb 2011 B2
7887264 Naunheimer et al. Feb 2011 B2
7927539 Ederer Apr 2011 B2
8020604 Hochsmann et al. Sep 2011 B2
8096262 Ederer et al. Jan 2012 B2
8186415 Marutani et al. May 2012 B2
8349233 Ederer et al. Jan 2013 B2
8506870 Hochsmann et al. Aug 2013 B2
8524142 Unkelmann et al. Sep 2013 B2
8574485 Kramer Nov 2013 B2
8715832 Ederer et al. May 2014 B2
8727672 Ederer et al. May 2014 B2
8741194 Ederer Jun 2014 B1
8911226 Gunther et al. Dec 2014 B2
8951033 Höchsmann et al. Feb 2015 B2
8956140 Hartmann Feb 2015 B2
8956144 Grasegger et al. Feb 2015 B2
8992205 Ederer et al. Mar 2015 B2
9174391 Hartmann et al. Nov 2015 B2
9174392 Hartmann Nov 2015 B2
9242413 Hartmann et al. Jan 2016 B2
9321934 Mögele et al. Apr 2016 B2
9327450 Hein et al. May 2016 B2
9333709 Hartmann May 2016 B2
9358701 Gnuchtel et al. Jun 2016 B2
9808993 Boydston Nov 2017 B2
10315357 Riman Jun 2019 B2
10632672 Vilajosana Apr 2020 B2
20010045678 Kubo et al. Nov 2001 A1
20010050031 Bredt et al. Dec 2001 A1
20020015783 Harvey Feb 2002 A1
20020016387 Shen Feb 2002 A1
20020026982 Bredt et al. Mar 2002 A1
20020079601 Russell et al. Jun 2002 A1
20020090410 Tochimoto et al. Jul 2002 A1
20020093115 Jang Jul 2002 A1
20020111707 Li et al. Aug 2002 A1
20020155254 McQuate et al. Oct 2002 A1
20020167100 Moszner et al. Nov 2002 A1
20020182351 Akiyama et al. Dec 2002 A1
20030004599 Herbak Jan 2003 A1
20030065400 Beam et al. Apr 2003 A1
20030069638 Barlow et al. Apr 2003 A1
20030083771 Schmidt May 2003 A1
20030113729 DaQuino et al. Jun 2003 A1
20030114936 Sherwood et al. Jun 2003 A1
20040003738 Imiolek et al. Jan 2004 A1
20040005182 Gaylo Jan 2004 A1
20040012112 Davidson et al. Jan 2004 A1
20040025905 Ederer et al. Feb 2004 A1
20040026418 Ederer et al. Feb 2004 A1
20040035542 Ederer et al. Feb 2004 A1
20040036200 Patel et al. Feb 2004 A1
20040038009 Leyden et al. Feb 2004 A1
20040045941 Herzog et al. Mar 2004 A1
20040056378 Bredt et al. Mar 2004 A1
20040084814 Boyd et al. May 2004 A1
20040094058 Kasperchik et al. May 2004 A1
20040104515 Swanson et al. Jun 2004 A1
20040112523 Crom Jun 2004 A1
20040138336 Bredt et al. Jul 2004 A1
20040145088 Patel et al. Jul 2004 A1
20040170765 Ederer et al. Sep 2004 A1
20040187714 Napadensky et al. Sep 2004 A1
20040207123 Patel et al. Oct 2004 A1
20040239009 Collins et al. Dec 2004 A1
20050003189 Bredt et al. Jan 2005 A1
20050017386 Harrysson Jan 2005 A1
20050017394 Hochsmann et al. Jan 2005 A1
20050046067 Oriakhi Mar 2005 A1
20050074511 Oriakhi et al. Apr 2005 A1
20050079086 Farr Apr 2005 A1
20050093194 Oriakhi et al. May 2005 A1
20050167872 Tsubaki et al. Aug 2005 A1
20050174407 Johnson et al. Aug 2005 A1
20050179167 Hachikian Aug 2005 A1
20050212163 Bausinger et al. Sep 2005 A1
20050218549 Farr et al. Oct 2005 A1
20050219942 Wallgren Oct 2005 A1
20050280185 Russell et al. Dec 2005 A1
20050283136 Skarda Dec 2005 A1
20060012058 Hasei Jan 2006 A1
20060013659 Pfeiffer et al. Jan 2006 A1
20060105102 Hochsmann et al. May 2006 A1
20060108090 Ederer et al. May 2006 A1
20060159896 Pfeifer et al. Jul 2006 A1
20060175346 Ederer et al. Aug 2006 A1
20060208388 Bredet et al. Sep 2006 A1
20060237159 Hochsmann Oct 2006 A1
20060251535 Pfeifer et al. Nov 2006 A1
20060254467 Farr et al. Nov 2006 A1
20060257579 Farr et al. Nov 2006 A1
20070045891 Martinoni et al. Mar 2007 A1
20070054143 Otoshi Mar 2007 A1
20070057412 Weiskopf et al. Mar 2007 A1
20070065397 Ito et al. Mar 2007 A1
20070126157 Bredt Jun 2007 A1
20070215020 Miller Sep 2007 A1
20070238056 Baumann et al. Oct 2007 A1
20070241482 Giller et al. Oct 2007 A1
20080001331 Ederer Jan 2008 A1
20080003390 Hayashi Jan 2008 A1
20080018018 Nielsen et al. Jan 2008 A1
20080047628 Davidson et al. Feb 2008 A1
20080069994 Kanda Mar 2008 A1
20080138515 Williams Jun 2008 A1
20080187711 Alam et al. Aug 2008 A1
20080233302 Elsner et al. Sep 2008 A1
20080237933 Hochsmann et al. Oct 2008 A1
20080241404 Allaman et al. Oct 2008 A1
20080260945 Ederer et al. Oct 2008 A1
20080299321 Ishihara Dec 2008 A1
20090011066 Davidson et al. Jan 2009 A1
20090068376 Philippi et al. Mar 2009 A1
20090261497 Ederer et al. Oct 2009 A1
20090283501 Erikson et al. Nov 2009 A1
20100007048 Schweininger Jan 2010 A1
20100007062 Larsson et al. Jan 2010 A1
20100026743 Van Thillo et al. Feb 2010 A1
20100152865 Jonsson et al. Jun 2010 A1
20100207288 Dini Aug 2010 A1
20100212584 Ederer et al. Aug 2010 A1
20100243123 Ederer et al. Sep 2010 A1
20100244301 Ederer et al. Sep 2010 A1
20100247742 Shi et al. Sep 2010 A1
20100272519 Ederer et al. Oct 2010 A1
20100279007 Briselden et al. Nov 2010 A1
20100291314 Kashani-Shirazi Nov 2010 A1
20100323301 Tang et al. Dec 2010 A1
20110049739 Uckelmann et al. Mar 2011 A1
20110059247 Kuzusako Mar 2011 A1
20110177188 Bredt et al. Jul 2011 A1
20110223437 Ederer et al. Sep 2011 A1
20110300248 Tung Dec 2011 A1
20110308755 Hochsmann Dec 2011 A1
20120046779 Pax et al. Feb 2012 A1
20120094026 Ederer et al. Apr 2012 A1
20120097258 Hartmann et al. Apr 2012 A1
20120113439 Ederer et al. May 2012 A1
20120126457 Abe et al. May 2012 A1
20120189102 Maurer, Jr. et al. Jul 2012 A1
20120291701 Grasegger et al. Nov 2012 A1
20120329943 Hicks et al. Dec 2012 A1
20130000549 Hartmann et al. Jan 2013 A1
20130004610 Hartmann et al. Jan 2013 A1
20130026680 Ederer et al. Jan 2013 A1
20130029001 Gunther et al. Jan 2013 A1
20130092082 Ederer et al. Apr 2013 A1
20130157193 Moritani et al. Jun 2013 A1
20130189434 Randall et al. Jul 2013 A1
20130199444 Hartmann Aug 2013 A1
20130234355 Hartmann et al. Sep 2013 A1
20130302575 Mogele et al. Nov 2013 A1
20130313757 Kashani-Shirazi Nov 2013 A1
20140048980 Crump et al. Feb 2014 A1
20140065194 Yoo Mar 2014 A1
20140202381 Ederer et al. Jul 2014 A1
20140202382 Ederer Jul 2014 A1
20140212677 Gnuchtel et al. Jul 2014 A1
20140227123 Gunster Aug 2014 A1
20140236339 Fagan Aug 2014 A1
20140271961 Khoshnevis Sep 2014 A1
20140306379 Hartmann et al. Oct 2014 A1
20140322501 Ederer et al. Oct 2014 A1
20150042018 Gunther et al. Feb 2015 A1
20150069659 Ederer et al. Mar 2015 A1
20150110910 Hartmann et al. Apr 2015 A1
20150165574 Ederer et al. Jun 2015 A1
20150210822 Ederer et al. Jul 2015 A1
20150224718 Ederer et al. Aug 2015 A1
20150251352 Goto Sep 2015 A1
20150266238 Ederer et al. Sep 2015 A1
20150273572 Ederer Oct 2015 A1
20150290881 Ederer et al. Oct 2015 A1
20150291921 Rives Oct 2015 A1
20150308741 Chen Oct 2015 A1
20150375418 Hartmann Dec 2015 A1
20150375419 Gunther et al. Dec 2015 A1
20160001507 Hartmann et al. Jan 2016 A1
20160052165 Hartmann Feb 2016 A1
20160052166 Hartmann Feb 2016 A1
20160107386 Hartmann et al. Apr 2016 A1
20160114533 Grassegger et al. Apr 2016 A1
20160151840 McCoy Jun 2016 A1
20160257843 Boydston Sep 2016 A1
20160263828 Ederer Sep 2016 A1
20160303762 Gunther Oct 2016 A1
20160311167 Gunther et al. Oct 2016 A1
20160311210 Gunther et al. Oct 2016 A1
20160318251 Ederer et al. Nov 2016 A1
20160339602 Kato Nov 2016 A1
20170028630 Ederer et al. Feb 2017 A1
20170050378 Ederer Feb 2017 A1
20170050387 Ederer Feb 2017 A1
20170106595 Gunther et al. Apr 2017 A1
20170136524 Ederer et al. May 2017 A1
20170145155 Wright May 2017 A1
20170151727 Ederer et al. Jun 2017 A1
20170157852 Ederer et al. Jun 2017 A1
20170182711 Gunther et al. Jun 2017 A1
20170197367 Ederer et al. Jul 2017 A1
20170203514 McCoy Jul 2017 A1
20170210037 Ederer et al. Jul 2017 A1
20170217098 Hartmann et al. Aug 2017 A1
20170217104 Cortes I Herms Aug 2017 A1
20170239889 Ganapathiappan Aug 2017 A1
20170252974 Ng Sep 2017 A1
20170297263 Ederer et al. Oct 2017 A1
20170305139 Hartmann Oct 2017 A1
20170326693 Ederer et al. Nov 2017 A1
20170355137 Ederer Dec 2017 A1
20170368748 De Pena Dec 2017 A1
20180015664 Kabalnov Jan 2018 A1
20180079133 Ederer et al. Mar 2018 A1
20180133975 Zhao May 2018 A1
20180141271 Gunther et al. May 2018 A1
20180141272 Hartmann et al. May 2018 A1
20180169758 Ederer et al. Jun 2018 A1
20180222082 Gunther et al. Aug 2018 A1
20180222174 Gunther et al. Aug 2018 A1
20180229428 Takano Aug 2018 A1
20180272601 Erickson Sep 2018 A1
20180304527 Paternoster Oct 2018 A1
20180319078 Ederer et al. Nov 2018 A1
20180326654 Ederer et al. Nov 2018 A1
20180326662 Gunther et al. Nov 2018 A1
20180333781 Ederer et al. Nov 2018 A1
20180345585 Ederer et al. Dec 2018 A1
20180369910 Gunter et al. Dec 2018 A1
20190047216 Emamjomeh Feb 2019 A1
20190084229 Gunther Mar 2019 A1
20190111486 Ederer et al. Apr 2019 A1
20190143608 Ederer et al. May 2019 A1
20190143665 Ederer May 2019 A1
20190160740 Ederer et al. May 2019 A1
Foreign Referenced Citations (68)
Number Date Country
720255 May 2000 AU
101146666 Mar 2008 CN
3221357 Dec 1983 DE
3930750 Mar 1991 DE
4102260 Jul 1992 DE
4305201 Apr 1994 DE
4 325 573 Feb 1995 DE
29506204 Jun 1995 DE
4440397 Sep 1995 DE
19525307 Jan 1997 DE
19530295 Jan 1997 DE
19528215 Feb 1997 DE
29701279 May 1997 DE
19545167 Jun 1997 DE
69031808 Apr 1998 DE
19853834 May 2000 DE
69634921 Dec 2005 DE
201 22 639 Nov 2006 DE
10 2006 040 305 Mar 2007 DE
102006029298 Dec 2007 DE
102007040755 Mar 2009 DE
102007047326 Apr 2009 DE
102011053205 Mar 2013 DE
102012020000 Apr 2014 DE
102015006363 Dec 2016 DE
102015008860 Jan 2017 DE
102015011503 Mar 2017 DE
102015011790 Mar 2017 DE
0361847 Apr 1990 EP
0431924 Jan 1996 EP
1381504 Jan 2004 EP
1415792 May 2004 EP
1457590 Sep 2004 EP
2297516 Aug 1996 GB
S62275734 Nov 1987 JP
2003136605 May 2003 JP
2004082206 Mar 2004 JP
2009202451 Sep 2009 JP
9003893 Apr 1990 WO
0134371 May 2001 WO
0140866 Jun 2001 WO
01078969 Oct 2001 WO
0226419 Apr 2002 WO
2004014637 Feb 2004 WO
2006100166 Sep 2006 WO
2007114895 Oct 2007 WO
2008049384 May 2008 WO
2008061520 May 2008 WO
2011063786 Jun 2011 WO
2013075696 May 2013 WO
2013174361 Nov 2013 WO
2014090207 Jun 2014 WO
2014166469 Oct 2014 WO
2015062569 May 2015 WO
2015078430 Jun 2015 WO
2015081926 Jun 2015 WO
2015085983 Jun 2015 WO
2015090265 Jun 2015 WO
2015090567 Jun 2015 WO
2015096826 Jul 2015 WO
2015149742 Oct 2015 WO
2015180703 Dec 2015 WO
2016019937 Feb 2016 WO
2016019942 Feb 2016 WO
2016058577 Apr 2016 WO
2016095888 Jun 2016 WO
2016101942 Jun 2016 WO
2016146095 Sep 2016 WO
Non-Patent Literature Citations (17)
Entry
US 4,937,420 A, 06/1990, Deckard (withdrawn)
Plenco (https://web.archive.org/web/20100918042707/https://www.plenco.com/phenolic-novolac-resol-resins.htm; Sep. 18, 2010).
International Search Report, Application No. PCT/DE2016/000209, dated Sep. 5, 2016.
Written Opinion of the International Search Authority, Application No. PCT/DE2016/000209, dated Sep. 5, 2016.
Marcus et al., Solid Freedom Fabrication Proceedings, Nov. 1993.
Cima et al., “Computer-derived Microstructures by 3D Printing: Bio- and Structural Materials,” SFF Symposium, Austin, TX, 1994.
Marcus, et al., Solid Freeform Fabrication Proceedings, Sep., 1995, p. 130-133.
Gebhart, Rapid Prototyping, pp. 118-119, 1996.
Joel Segal, Feature Article—Rapid Tooling—Cast Resin and Sprayed Metal Tooling by, Dated Apr. 2000.
EOS Operating Manual for Laser Sintering Machine with Brief Summary Feb. 22, 2005.
Sachs, E., P. Williams, D. Brancazio, M. Cima, and K. Kremmin, Three dimensional printing: Rapid Tooling and Prototypes Directly from a CAD Model. In Proceedings of Manufacturing International 1990 (Atlanta, GA, Mar. 25-28). ASME, New York, 1990, pp. 131-136.
Sachs et al., “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model”, Massachusetts Institute of Technology, pp. 143-151, Jan. 1990.
Williams, “Feasibility Study of Investment Casting Pattern Design by Means of Three Dimensional Printing”, Department of Mechanical Engineering, abstract only; Sep. 25, 2001.
Armin Scharf, “Erster 3D-Endlosdrucker”, zwomp.de, http://www.zwomp.de/2012/11/06/voxeljet-endlosdrucker/ dated Nov. 6, 2012.
Voxelj et' s VXconcept—Continuous 3D printing for sand casting, You-Tube, Nov. 16, 2011, XP002713379, retrieved from the Internet URL: http://www.youtube.com/watch?v=hgIrNXZjIxU retrieved on Sep. 23, 2013.
Screen shots of URL: http://www.youtube.com/watch?v=hgIrNXZjIxU taken in approximately 5 second intervals on Nov. 12, 2015.
Jacobs et al., 2005 SME Technical Paper, title “Are QuickCast Patterns Suitable for Limited Production?”.
Related Publications (1)
Number Date Country
20180141271 A1 May 2018 US