PHENOTYPIC AGE AND DNA METHYLATION BASED BIOMARKERS FOR LIFE EXPECTANCY AND MORBIDITY

Information

  • Patent Application
  • 20200347461
  • Publication Number
    20200347461
  • Date Filed
    January 17, 2019
    5 years ago
  • Date Published
    November 05, 2020
    4 years ago
Abstract
Identifying reliable biomarkers of aging is a major goal in geroscience. While the first generation of epigenetic biomarkers of aging were developed using chronological age as a surrogate for biological age, we hypothesized that composite clinical measures of “phenotypic age”, may facilitate the development of a more powerful epigenetic biomarker of aging. Here we show that our newly developed epigenetic biomarker of aging “DNAm PhenoAge” strongly outperforms previous measure in regards to predictions for a variety of aging outcomes, including all-cause mortality, cancers, physical functioning, and, age-related dementia. It is also associated with Down syndrome, HIV infection, socioeconomic status, and various life style factors such as diet, exercise, and smoking. Overall, this single epigenetic biomarker of aging is able to capture risks for an array of diverse outcomes across multiple tissues and cells, and in moving forward, will facilitate the development of anti-aging interventions.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jan. 14, 2019, is named 30435_0341WOU1_SL.txt and is 201,768 bytes in size.


TECHNICAL FIELD

The invention relates to methods and materials for examining biological aging in individuals.


BACKGROUND OF THE INVENTION

One of the major goals of geroscience research is to define ‘biomarkers of aging’1,2, which are individual-level measures of aging that can account for differences in the timing of disease onset, functional decline, and death over the life course. While chronological age is arguably the strongest risk factor for aging-related death and disease, it is important to distinguish chronological time from biological aging. Individuals of the same chronological age may exhibit greatly different susceptibilities to age-related diseases and death, which is likely reflective of differences in their underlying biological aging processes. Such biomarkers of aging will be crucial to enable instantaneous evaluation of interventions aimed at slowing the aging process, by providing a measurable outcome other than incidence of death and/or disease, which require extremely long follow-up observation.


One potential biomarker that has gained significant interest in recent years is DNA methylation (DNAm), given that chronological time has been shown to elicit predictable hypo- and hyper-methylation changes at many regions across the genome 3-7. As a result, the first generation of DNAm based biomarkers of aging were developed to predict chronological age8-10. The blood-based algorithm by Hannum9 and the multi-tissue algorithm by Horvath10 produced age estimates (DNAm age) that correlate with chronological age well above r=0.90 for full age range samples. Nevertheless, while the current epigenetic age estimators exhibit statistically significant associations with many age-related diseases and conditions11-17, the effect sizes are typically small to moderate. Further, using chronological age as the reference, by definition, may exclude CpGs whose methylation patterns don't display strong time-dependent changes, but instead signal the departure of biological age from chronological age.


Previous work by us and others have shown that “phenotypic aging measures”, derived from clinical biomarkers18-22, strongly predict differences in the risk of all-cause mortality, cause-specific mortality, physical functioning, cognitive performance measures, and facial aging among same-aged individuals. What's more, in representative population data, some of these measures have been shown to be better indicators of remaining life expectancy than chronological age18, suggesting that they are approximating individual-level differences in biological aging rates.


Accordingly, there is a need for improved methods of observing phenotypic aging, which is predictive of an earlier age of death (all-cause mortality) that is independent of chronological age and traditional risk factors of mortality.


SUMMARY OF THE INVENTION

This invention provides methods and materials useful to examine one or more clinical variables and DNA methylation biomarkers. As discussed in detail below, typically these biomarkers are based on variables that lend themselves to predicting life expectancy and risk for age-related diseases. For example, a first biomarker, referred to as “phenotypic age estimator”, is based on clinical variables such as measurements of factors such as Albumin, Creatinine, Glucose, C-reactive Protein, Lymphocyte Percentage, Mean Cell Volume, Red Blood Cell Distribution Width, Alkaline Phosphatase, White Blood Cell Count, and age at the time of assessment. A second biomarker, referred to as “DNA methylation PhenoAge”, is based on DNA methylation measurements at 513 locations across the human DNA molecule. As discussed below, by examining such biomarkers in an individual, it is possible to obtain information that is highly predictive of multiple morbidity and mortality outcomes in that individual.


The idea of using DNA methylation (DNAm) to estimate biological age has recently gained interest following the discovery that many CpGs throughout the genome display hyper- or hypo-methylation patterns as a function of chronological age. While most of the first-generation epigenetic biomarkers of aging capitalized on these age associations to identify CpGs from which to build composite scores, we hypothesized that a more powerful epigenetic biomarker of aging could be generated from DNA methylation data by replacing chronological age with a surrogate measure of “phenotypic aging” that, in and of itself, differentiates morbidity and mortality risk among same-age individuals. Using multiple large epidemiological studies, we demonstrate that our new epigenetic biomarker that is examines the above-noted combination of factors, DNAm PhenoAge, is highly predictive of multiple morbidity and mortality outcomes—including, but not limited to: life expectancy, heart disease, cancer, and age related dementia. Further, it produces reliable age estimates and risk predictions when measured in various tissues. This shows that our single DNAm based biomarker (DNAm PhenoAge) is capable of capturing risk for an array of diverse diseases and conditions across multiple tissues and cells. As such, DNAm PhenoAge will be useful for assessing personalized risk, improving our understanding of the biological aging process and, evaluating promising interventions aimed at slowing aging and preventing disease.


The invention disclosed herein has a number of embodiments. Embodiments of the invention include method of obtaining information on a phenotypic age of an individual, the method comprising observing methylation of genomic DNA obtained from the individual, wherein methylation is observed in at least 10 CpG methylation markers in polynucleotides having SEQ ID NO: 1-SEQ ID NO: 513 so that information on the phenotypic age of the individual is obtained. Typically in these methods, observing methylation of genomic DNA comprises hybridizing genomic DNA from the individual to a methylation array comprising the polynucleotides having sequences of SEQ ID NO: 1-SEQ ID NO: 513 coupled to a matrix; and/or comprises performing a bisulfite conversion process on the genomic DNA so that cytosine residues in the genomic DNA are transformed to uracil, while 5-methylcytosine residues in the genomic DNA are not transformed to uracil. In such embodiments, the method can comprise observing a clinical variable in the individual comprising at least one of: concentrations of albumin in the individual, concentrations of creatine in the individual, concentrations of glucose in the individual, concentrations of c-reactive protein in the individual, concentrations of alkaline phosphatase in the individual lymphocyte percentage in the individual, mean cell volume in the individual, red blood cell distribution width in the individual, white blood cell count in the individual, and age of the individual at the time of assessment. In certain embodiments of the invention, at least 3, 4, 5, 6, 7 or 8 clinical variables are observed.


Embodiments of the invention can include additional steps such as comparing the chronological age of the individual at the time of assessment and the phenotypic age so as to obtain information on life expectancy of the individual. Embodiments of the invention include using information on the phenotypic age obtained by the method to predict an age at which the individual may suffer from one or more age related diseases or conditions. Embodiments of the invention include those that compare the CG locus methylation profile observed in the individual to the CG locus methylation profile of genomic DNA having SEQ ID NO: 1-SEQ ID NO: 513 present in white blood cells or epithelial cells derived from a group of individuals of known ages; and then correlating the CG locus methylation observed in the individual with the CG locus methylation and known ages in the group of individuals. In typical embodiments of the invention, methylation is observed by a process comprising hybridizing genomic DNA obtained from the individual with at least 100, 200, 300, 400 or 500 polynucleotides comprising SEQ ID NO: 1-SEQ ID NO: 513 disposed in an array. In embodiments of the invention, the phenotypic age of the individual can be estimated using a weighted average of methylation markers within the set of 513 methylation markers. Optionally, methylation marker data is further analyzed, for example by a regression analysis. Optionally in these methods, methylation is observed in genomic DNA obtained from leukocytes or epithelial cells obtained from the individual.


A specific embodiment of the invention is a method of observing a phenotypic age of an individual, the method comprising observing methylation of genomic DNA obtained from the individual, wherein methylation is observed in 513 CpG methylation markers in polynucleotides having SEQ ID NO: 1-SEQ ID NO: 513; and the method comprises hybridizing genomic DNA from the individual to a methylation array comprising the polynucleotides of SEQ ID NO: 1-SEQ ID NO: 513 coupled to a matrix, so that the phenotypic age of the individual is observed.


In certain embodiments of the invention, methods include observing a clinical variable in the individual comprising at least one of: concentrations of albumin in the individual, concentrations of creatine in the individual, concentrations of glucose in the individual, concentrations of c-reactive protein in the individual, concentrations of alkaline phosphatase in the individual lymphocyte percentage in the individual, mean cell volume in the individual, red blood cell distribution width in the individual, white blood cell count in the individual, and age of the individual at the time of assessment. In some embodiments of the invention, the method further comprising observing at least one factor selected from individual diet history, individual smoking history and individual exercise history. Optionally, the observed phenotypic age is then used to assess a risk of a cancer mortality in the individual (e.g. to asses a risk of breast cancer, lung cancer or the like, or to assess a risk of dementia or diabetes mortality in the individual).


A related embodiment of the invention is a tangible computer-readable medium comprising computer-readable code that, when executed by a computer, causes the computer to perform operations including: receiving information corresponding to methylation levels of a set of methylation markers in a biological sample, wherein the set of methylation markers comprises 513 methylation markers that are identified in Table 5; determining an epigenetic age by applying a statistical prediction algorithm to methylation data obtained from the set of methylation markers; and then determining an epigenetic age using a weighted average of the methylation levels of the 513 methylation markers. Optionally in this embodiment, the tangible computer-readable medium comprising computer-readable code, when executed by a computer, further causes the computer to perform operations including: receiving information corresponding to methylation levels of a set of clinical variables in a biological sample, information that is then used for determining an epigenetic age.


Both phenotypic age, and in particular DNAm PhenoAge, are useful biomarkers for human anti-aging studies given that these are highly robust, blood based biomarkers that capture organismal age and the functional state of many organ systems and tissues, thus allowing efficacy of interventions to be evaluated based on real-time measures of aging, rather than relying on long-term outcomes, such as morbidity and mortality. Finally, this measure may be another component of the personalized medicine paradigm, as it allows for evaluation of risk based on an individual's personalized DNAm profile.


Other objects, features and advantages of the present invention will become apparent to those skilled in the art from the following detailed description. It is to be understood, however, that the detailed description and specific examples, while indicating some embodiments of the present invention, are given by way of illustration and not limitation. Many changes and modifications within the scope of the present invention may be made without departing from the spirit thereof, and the invention includes all such modifications.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1. Roadmap for developing DNAm PhenoAge. The roadmap depicts our analytical procedures. In step 1, we developed an estimate of ‘Phenotypic Age’ based on clinical measure. Phenotypic age was developed using the NHANES III as training data, in which we employed a proportional hazard penalized regression model to narrow 42 biomarkers to 9 biomarkers and chronological age. This measure was then validated in NHANES IV and shown to be a strong predictor of both morbidity and mortality risk. In step 2, we developed an epigenetic biomarker of phenotypic age, which we call DNAm PhenoAge, by regressing phenotypic age (from step 1) on blood DNA methylation data, using the InCHIANTI data. This produced an estimate of DNAm PhenoAge based on 513 CpGs. In step 3, we validated our new epigenetic biomarker of aging, DNAm PhenoAge, using multiple cohorts, aging-related outcomes, and tissues/cells. We also performed heritability and functional enrichment analysis.



FIG. 2. Mortality Prediction by DNAm PhenoAge. FIG. 2A: Using four samples from large epidemiological cohorts-two samples from the Women's health Initiative, the Framingham Heart Study, and the Normative Aging Study-we tested whether DNAm PhenoAge was predictive of all-cause mortality. The figure displays a forest plot for fixed-effect meta-analysis, based on Cox proportional hazard models, and adjusting for chronological age. Results suggest that DNAm PhenoAge is predictive of mortality in all samples, and that overall, a one year increase in DNAm PhenoAge is associated with a 4.2% increase in the risk of death (p=1.1E-36). This is in contrast to the first generation of epigenetic aging biomarkers by Hannum and Horvath, for which the Hannum measure predicts mortality, but to a much lesser degree, and the Horvath measure is not significantly associated with mortality. FIG. 2B & C: Using the WHI sample 1, we plotted Kaplan-Meier survival estimates using actual data from WHI sample 1 for the fastest versus the slowest agers (2B), and we used equation from the proportional hazard model to predict remaining life expectancy and plotted predicted survival assuming a chronological age of 50 and a DNAm PhenoAge of either 40 (slow ager), 50 (average ager), or 60 (fast ager) (2C). Median life expectancy was higher for slower agers, such that it was predicted to be approximately 81 years for the fastest agers, 83.5 years for average agers, and 86 years for the slowest agers.



FIG. 3. Chronological age prediction of DNAm PhenoAge in a variety of tissues and cells. Although DNAm PhenoAge was developed using methylation data from whole blood, FIG. 3 suggests that it also tracks chronological age in a wide variety of tissues and cells. For instance, the correlation across all tissues/cells we examined is r=0.71. C\Overall, correlations range from r=0.35 (breast) to r=0.92 (temporal cortex in brain).



FIG. 4. DNAm PhenoAge measured in dorsolateral prefrontal cortex relates to Alzheimer's disease and related neuropathologies. Using postmortem data from the Religious Order Study (ROS) and the Memory and Aging Project (MAP), we find a moderate/high correlation between chronological age and DNAm PhenoAge (FIG. 4A), that is further increased after adjusting for the estimated proportion on neurons in each sample (panel C). We also find that DNAm PhenoAge is significantly higher (p=0.00046) among those with Alzheimer's disease versus controls (panel D), and that it positively correlates with amyloid load (p=0.012, panel E), neuritic plaques (p=0.0032, panel F), diffuse plaques (p=0.036, panel G), and neurofibrillary tangles (p=0.0073, panel H).



FIG. 5. Association between phenotypic age and morbidity. Using NHANES IV as validation data, we tested whether phenotypic age, adjusting for chronological age, was associated with morbidity. Results showed strong dose-effects, such that those with high phenotypic ages tended to have more coexisting morbidities (A) and greater physical functioning problems (B) compared to phenotypically younger persons of the same chronological age.



FIG. 6. Longitudinal comparisons of phenotypic age and DNAm PhenoAge. The top two panels show the distributions of the change in phenotypic age (A) and DNAm PhenoAge (B) over nine years of follow-up in InCHIANTI. The second row depicts the age-adjusted correlations between the two time-points for phenotypic age (C) and DNAm PhenoAge (D). Both variables showed moderate/high correlations, suggesting that, above and beyond the expected increase with chronological time, they remain stable-those who are fast agers, remain fast agers. Finally, panel E shows the correlation between change in phenotypic age and change in DNAm PhenoAge, suggesting that those who experience an acceleration of phenotypic age based on clinical markers also experience age acceleration on an epigenetic level.



FIG. 7. Associations between smoking and DNAm PhenoAge. When comparing DNAm PhenoAge by smoking status, we find that current smokers have significantly high epigenetic ages (A). This is also true when comparing DNAm PhenoAge as a function of pack-years (B). However, no associations with pack-years are found when stratifying by smoking status-former versus current (C & D).



FIG. 8. Fixed effect meta-analysis of the effect of DNAm PhenoAge on the hazard of all cause mortality, stratifying by smoking. In smoking stratified analyses, adjusting for pack-years (in smokers) and chronological age, we find that DNAm PhenoAge significantly predicts mortality even within groups, and despite much smaller sample sizes. The Hannum measure also relates to mortality in both smokers and non-smokers; although to a lesser degree than DNAm PhenoAge.



FIG. 9. Effect of ethnicity on DNAm PhenoAge in the WHI. When comparing DNAm PhenoAge by race/ethnicity, we find that non-Hispanic blacks have the highest ages, whereas non-Hispanic whites have the lowest (A). Despite the fact that DNAm PhenoAge was trained in a mostly non-Hispanic white population, the differences by race/chronological age and ethnicity do not appear to be a reflection of the reliability of the measure within the various strata, given that it shows very consistent age trends across all three groups (B, C, & D).



FIG. 10. Associations with measures of age acceleration in the WHI. FIG. 10A: Correlations (bicor, biweight midcorrelation) between select variables and the three measures of epigenetic age acceleration are colored according to their magnitude with positive correlations in red, negative correlations in blue, and statistical significance (p-values) in green. Blood biomarkers were measured from fasting plasma collected at baseline. Food groups and nutrients are inclusive, including all types and all preparation methods, e.g. folic acid includes synthetic and natural, dairy includes cheese and all types of milk, etc. Variables are adjusted for ethnicity and dataset (BA23 or AS315). FIG. 10B: Multivariate linear regression analysis was also used to examine the associations, adjusting for covariates. Again we find that minority race/ethnicity, lower education, higher BMI, higher CRP, smoking and having metabolic syndrome is associated with higher DNAm PhenoAge. Red meat consumption is also associated positively associated with DNAm PhenoAge in model 2; however the association becomes marginal after adjusting for biomarkers, which may suggest that various biomarkers mediate the association between red meat consumption and DNAm PhenoAge.



FIG. 11. Age adjusted blood cell counts versus phenotypic age acceleration in the Women's Health Initiative (BA23 data). DNAm PhenoAge acceleration (x-axis) versus age adjusted estimates of various measures of abundance of blood cell counts. (A) plasma blasts (activated B cells), (B) percentage of exhausted CD8+ T cells (defined as CD8+CD28-CD45RA−), (C) naïve CD8+ T cell count, (D) naïve CD4+ T cell count, E) proportion of CD+8 T cells, F) proportion of CD4+ helper T cells, G) proportion of natural killer cells, H) proportion of B cells, I) proportion of monocytes, J) proportion of granulocytes (mainly neutrophils). The correlation coefficient and p-value results from the Pearson correlation test. Two software tools were used to estimate the blood cell counts using DNA methylation data. First, Houseman's estimation method 6, which is based on DNA methylation signatures from purified leukocyte samples, was used to estimate the proportions of CDS+ T cells, CD4+T, natural killer, B cells, and granulocytes. Granulocytes are also known as polymorphonuclear leukocytes. Second, the advanced analysis option of the epigenetic clock software 7,s was used to estimate the percentage of exhausted CD8 T cells (defined as CD28-CD45RA−) and the number (count) of naïve CD8+ T cells (defined as (CD45RA+CCR7+). Points are colored by race/ethnicity (blue=Hispanic, green=African Ancestry, grey=non-Hispanic white).



FIG. 12. Fixed effects meta analysis of the effect of DNAm phenotypic age acceleration on the hazard of death after adjusting for blood cell counts. The Cox regression model adjusted for chronological age, race/ethnicity, smoking pack years, and imputed blood cell counts (exhausted CD8+ T cells, naïve CD8+ T cells, CD4T cells, natural killer cells monocytes, granulocytes). The meta analysis p value is colored in red. A significant heterogeneity p value (red font) indicates that the hazard ratios differ significantly across studies.



FIG. 13. Properties of the 513 CpGs that underly DNAmPhenoAge. In our functional enrichment analysis of the chromosomal locations of the 513 CpGs, we distinguished CpGs with positive age correlation from CpGs with negative age correlation. CpGs with positive age correlation exhibited a lower variance but a similar mean methylation level compared to CpGs with negative age correlation (B,C). The 149 CpGs whose age correlation exceeded 0.2 tended to be located in CpG islands (E) and were significantly enriched with polycomb group protein targets (p=8.7E-5, D). A) Each CpGs was correlated with chronological age in whole blood. The histogram shows the correlation coefficients. To carry out a functional annotation analysis, we split the 513 CpGs into 3 groups according to the thresholds visualized as vertical red lines. Group 1 is comprised of 126 CpGs with a negative age correlation(<−0.2). Group 3 is comprised of 149 CpG with a positive age correlation(>0.2). Group 2 is comprised of 238 whose age correlation lies between −0.2 and +0.2. B) Variance of the DNA methylation levels versus the 3 groups. Note that CpGs with positive age correlation (i.e. CpGs in group 3) exhibit the lowest variance. C) Mean methylation levels in blood versus group status. D) Proportion of polycomb group protein targets (y-axis) versus membership in group 3, i.e. the set of clock CpGs that exhibit an age correlation >0.2. To avoid biasing the analysis, the comparison group was comprised of all CpGs that are located on the Illumina 27k array. E) Proportion of CpGs that are located in a CpG island (y-axis) versus membership in group 3. F) Proportion of CpGs that are located in a CpG island (y-axis) versus membership in group 2.



FIG. 14. Partial likelihood versus log(lambda) parameter for elastic net proportional hazard model. Ten-fold cross-validation was employed to select the parameter value, lambda, for the penalized regression. In order to develop a sparse phenotypic age estimator (the fewest biomarker variables needed to produce robust results) we selected a lambda of 0.0192, which represented a one standard deviation increase over the lambda with minimum mean-squared error during cross-validation. Of the forty-two biomarkers included in the penalized Cox regression model, this resulted in ten variables (including chronological age) that were selected for the phenotypic age predictor.



FIG. 15. Partial likelihood versus log(lambda) parameter for elastic net regression. The CpGs used in the elastic net represent those that are found on the Illumina Infinium 450k chip, the EPIC chip, and the Illumina Infinium 27k chip. Lambda was selected using 10-fold cross-validation; however, given that sparseness was not a goal with this model, the lambda with the minimum mean-squared error was selected (lambda=0.35). This lambda, produced a model in which phenotypic age is predicted by DNAm levels at 513 CpGs.





DETAILED DESCRIPTION OF THE INVENTION

In the description of embodiments, reference may be made to the accompanying figures which form a part hereof, and in which is shown by way of illustration a specific embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention. Many of the techniques and procedures described or referenced herein are well understood and commonly employed by those skilled in the art. Unless otherwise defined, all terms of art, notations and other scientific terms or terminology used herein are intended to have the meanings commonly understood by those of skill in the art to which this invention pertains. In some cases, terms with commonly understood meanings are defined herein for clarity and/or for ready reference, and the inclusion of such definitions herein should not necessarily be construed to represent a substantial difference over what is generally understood in the art.


All publications mentioned herein are incorporated herein by reference to disclose and describe aspects, methods and/or materials in connection with the cited publications. For example, Levine et al., Aging, 2018 Apr. 18; 10(4):573-591; U.S. Patent Publication 20150259742, U.S. patent application Ser. No. 15/025,185, titled “METHOD TO ESTIMATE THE AGE OF TISSUES AND CELL TYPES BASED ON EPIGENETIC MARKERS”, filed by Stefan Horvath; U.S. patent application Ser. No. 14/119,145, titled “METHOD TO ESTIMATE AGE OF INDIVIDUAL BASED ON EPIGENETIC MARKERS IN BIOLOGICAL SAMPLE”, filed by Eric Villain et al.; and Hannum et al. “Genome-Wide Methylation Profiles Reveal Quantitative Views Of Human Aging Rates.” Molecular Cell. 2013; 49(2):359-367 and patent US2015/0259742, are incorporated by reference in their entirety herein.


DNA methylation refers to chemical modifications of the DNA molecule. Technological platforms such as the Illumina Infinium microarray or DNA sequencing based methods have been found to lead to highly robust and reproducible measurements of the DNA methylation levels of a person. There are more than 28 million CpG loci in the human genome. Consequently, certain loci are given unique identifiers such as those found in the Illumina CpG loci database (see, e.g. Technical Note: Epigenetics, CpG Loci Identification ILLUMINA Inc. 2010). These CG locus designation identifiers are used herein. In this context, one embodiment of the invention is a method of obtaining information useful to observe biomarkers associated with a phenotypic age of an individual by observing the methylation status of one or more of the 513 methylation marker specific GC loci that are identified in Table 5.


The term “epigenetic” as used herein means relating to, being, or involving a chemical modification of the DNA molecule. Epigenetic factors include the addition or removal of a methyl group which results in changes of the DNA methylation levels. Novel molecular biomarkers of aging that observe methylation patterns in genomic DNA, such as those termed “DNA methylation PhenoAge”, or “phenotypic age” (allow one to prognosticate mortality, are interesting to gerontologists (aging researchers), epidemiologists, medical professionals, and medical underwriters for life insurances. Exclusively clinical biomarkers such as lipid levels, body mass index, blood pressures have a long and successful history in the life insurance industry. By contrast, molecular biomarkers of aging have rarely been used.


The profitability of a life insurance product directly depends on the accurate assessment of mortality risk because the costs of life insurance (to the insurance company) are directly proportional to the number of deaths in a given category. Thus, any improvement in assessing mortality risk and in improving the basic classification will directly translate into cost savings. For the reasons noted above, DNA methylation (DNAm) based biomarkers of aging are useful for predicting mortality. Consequently, they are useful the life insurance industry due to their ability to increase the accuracy of medical underwriting. DNAm measurements can provide a host of complementary information that can inform the medical underwriting process. In this context, the DNAm based biomarkers and associated method disclosed herein can be used both to molecularly estimate complete blood counts and to estimate biological age, as well as to directly predict/prognosticate mortality. Using embodiments of the invention disclosed herein, upon completing a medical exam, an insurer can, for example, look at a combination of the clinical biomarker and DNA methylation test results as well as other factors such as family health history and lifestyle choices to classify the applicant into useful classification categories such as: 1) preferred plus/super preferred/preferred select/preferred elite, 2) preferred, 3) standard plus, 4) standard, 5) preferred smoker, 6) standard smoker, 7) table rate A, 8) table rate B, etc. Each of these categories has a distinct mortality risk and usually directly relates to the pricing of the insurance product. The basic classification is largely determined by well established risk factors of mortality such as sex, smoking status, family history of death, prior history of disease (e.g. diabetes status, cancer), and a host of clinical biomarkers (blood pressure, body mass index, cholesterol, glucose levels, hemoglobin A1C).


The term “nucleic acids” as used herein may include any polymer or oligomer of pyrimidine and purine bases, preferably cytosine, thymine, and uracil, and adenine and guanine, respectively. The present invention contemplates any deoxyribonucleotide, ribonucleotide or peptide nucleic acid component, and any chemical variants thereof, such as methylated, hydroxymethylated or glucosylated forms of these bases, and the like. The polymers or oligomers may be heterogeneous or homogeneous in composition, and may be isolated from naturally-occurring sources or may be artificially or synthetically produced. In addition, the nucleic acids may be DNA or RNA, or a mixture thereof, and may exist permanently or transitionally in single-stranded or double-stranded form, including homoduplex, heteroduplex, and hybrid states.


The term “methylation marker” as used herein refers to a CpG position that is potentially methylated. Methylation typically occurs in a CpG containing nucleic acid. The CpG containing nucleic acid may be present in, e.g., in a CpG island, a CpG doublet, a promoter, an intron, or an exon of gene. For instance, in the genetic regions provided herein the potential methylation sites encompass the promoter/enhancer regions of the indicated genes. Thus, the regions can begin upstream of a gene promoter and extend downstream into the transcribed region.


The phrase “selectively measuring” as used herein refers to methods wherein only a finite number of methylation marker or genes (comprising methylation markers) are measured rather than assaying essentially all potential methylation marker (or genes) in a genome. For example, in some aspects, “selectively measuring” methylation markers or genes comprising such markers can refer to measuring more than (or not more than) 500, 200, 100, 75, 50, 25, 10 or 5 different methylation markers or genes comprising methylation markers.


The invention described herein provides novel and powerful predictors of life expectancy, mortality, and morbidity based on DNA methylation levels. In this context, it is critical to distinguish clinical from molecular biomarkers of aging. Clinical biomarkers such as lipid levels, blood pressure, blood cell counts have a long and successful history in clinical practice. By contrast, molecular biomarkers of aging are rarely used. However, this is likely to change due to recent breakthroughs in DNA methylation based biomarkers of aging. Since their inception, DNA methylation (DNAm) based biomarkers of aging promise to greatly enhance biomedical research, clinical applications, patient care, and even medical underwriting when it comes to life insurance policies and other financial products. They will also be more useful for clinical trials and intervention assessment that target aging, since they are more proximal to the biological changes that characterize the aging process compared to upstream clinical read outs of health and disease status.


The disclosure presented herein surrounding the prediction of mortality and morbidity show that these combinations of clinical and DNAm based biomarkers are highly robust and informative for a range of applications. DNAm PhenoAge can not only be used to directly predict/prognosticate mortality but also relate to a host of age related conditions such as heart disease risk, cancer risk, dementia status, cardiovascular disease and various measures of frailty.


The invention disclosed herein has a number of embodiments. One embodiment of the invention is a method of observing biomarkers that are associated with a phenotypic age of an individual. In such embodiments, the method comprises observing a biomarker comprising the state of a clinical variable in the individual comprising at least one of: concentrations of albumin in the individual, concentrations of creatine in the individual, concentrations of glucose in the individual, concentrations of c-reactive protein in the individual, concentrations of alkaline phosphatase in the individual lymphocyte percentage in the individual, mean cell volume in the individual, red blood cell distribution width in the individual, white blood cell count in the individual, and age of the individual at the time of assessment; and, in addition, further observing another biomarker comprising the individual's methylation status at at least 10 513 CpG methylation markers that are identified in Table 5 such that biomarkers associated with the phenotypic age of the individual are observed. In some embodiments, methylation is observed by a process comprising hybridizing genomic DNA obtained from the individual with 513 complementary sequences disposed in an array on a substrate. Optionally, methylation is observed by a process comprising treatment of genomic DNA from the population of cells from the individual with bisulfite to transform unmethylated cytosines of CpG dinucleotides in the genomic DNA to uracil.


In typical embodiments of the invention, at least 3, 4, 5, 6, 7 or 8 clinical variables are observed. In some embodiments of the invention, the second DNA methylation biomarker is observed in a population of leukocytes or epithelial cells obtained from the individual. Optionally the method comprises assessing on or more of the biomarkers in a regression analysis. In certain embodiments, the phenotypic age of the individual is estimated using a weighted average of methylation markers within the set of 513 methylation markers. Embodiments of the invention can further comprise examining at least one factor selected from the diet of the individual, whether the individual smokes and the levels that the individual exercises. Embodiments of the invention can compare the age of the individual at the time of assessment and the phenotypic age so as to obtain information on life expectancy of the individual. In certain embodiments of the invention, the method includes using the phenotypic age to predict the age at which the individual may suffer from one or more age related diseases or conditions. Further embodiments and aspects of the invention are discussed below.


Description of the Phenotypic Age Estimator

Previous work has shown that “phenotypic aging measures”, derived from clinical biomarkers (see, e.g. Levine M E., The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2013; 68(6):667-674; Li S et al., Twin Res Hum Genet. 2015; 18(6):720-726; Sebastiani et al., Aging Cell. 2017; and Ferrucci L et al., Public Health Reviews. 2010; 32(2):475-488), strongly predict differences in the risk of all-cause mortality, cause-specific mortality, physical functioning, cognitive performance measures, and facial aging among same-aged individuals. What's more, in representative population data, some of these measures have been shown to be better indicators of remaining life expectancy than chronological age (Levine M E., The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2013; 68(6):667-674), suggesting that they are approximating individual-level differences in biological aging rates. We developed a new phenotypic age predictor based on 10 variables total (9 clinical biomarkers and chronological age at the time of the assessment). These variables were selected out of a possible 42 biomarkers, using an elastic net proportion hazards model, and are aggregated into a composite score by forming a weighted average





WeightedAverage=(−Albumin*0.0336+log(Creatinine)*0.0095+Glucose*0.1953+C−reactiveProtein*0.0954−LymphocytePerc*0.0120+MeanCellVolume*0.0268+RedBloodCellDistributionWidth*0.3306+AlkalinePhosphatase*0.0019+WhiteBloodCellCount*0.0554+age*0.0804−19.9067).


Next the weighted average is transformed using a monotonically increasing function to arrive at a phenotypic age estimate (in units of years). Validation data for phenotypic age came from the fourth National Health and Nutrition Examination Survey (NHANES IV), and included up to 17 years of mortality follow-up for n=6,209 national representative US adults. Mortality results show that a one year increase in phenotypic age is associated with a 9% increase in the hazard of all-cause mortality (hazard ratio, HR=1.09, p-value=3.8E-49), a 9% increase in the risk of aging-related mortality(HR=1.09, p=4.5E-34), a 10% increase in the risk of CVD mortality (HR=1.10, p=5.1E-17), a 7% increase in the risk of cancer mortality (HR=1.07, p=7.9E-10), a 20% increase in the risk of diabetes mortality (HR=1.20, p=1.9E-11), and a 9% increase in the risk of lung disease mortality (HR=1.09, p=6.3E-4). Finally, in the proportional hazard model, phenotypic age completely accounted for the effect of chronological age, such that chronological age no longer exhibited a significant positive association with mortality.


Finally, we tested the association between phenotypic age and 1) the number of coexisting morbidities a participant had been diagnosed with, and 2) levels of physical functioning problems. Results showed that after adjusting for chronological age, persons with more coexisting morbidities also display higher phenotypic ages on average (p=3.9E-21). Similarly, those with worse physical functioning tended to have higher phenotypic ages (p=2.1E-10).


Description of DNAm PhenoAge Estimator

Data from the Invecchiare in Chianti (InCHIANTI) study was used to relate blood DNAm levels to phenotypic age. Elastic net regression produced a model in which phenotypic age is predicted by DNAm levels at 513 CpGs. The linear combination of the weighted 513 CpGs yields a DNAm based estimator of phenotypic age, that we refer to as ‘DNAm PhenoAge’.


To demonstrate the utility of DNAm PhenoAge, we used four independent large-scale samples-two samples from Women's Health Initiative (WHI) (n=2,016; and n=2,191), the Framingham Heart Study (FHS) (n=2,553), and the Normative Aging Study (n=657). In these studies, DNAm PhenoAge correlated with chronological age at r=0.67 in WHI (Sample 1), r=0.69 in WHI (Sample2), r=0.78 in FHS, and r=0.62 in the Normative Aging Study. The four validation samples were then used to assess the effects of DNAm PhenoAge on mortality. DNAm PhenoAge was significantly associated with subsequent mortality risk in all studies (independent of chronological age), such that, a one year increase in DNAm PhenoAge is associated with a 4% increase in the risk of all-cause mortality (Meta(FE)=1.042, Meta p=1.1E-36). We also observe strong associations between DNAm PhenoAge and a variety of other aging outcomes. For instance, independent of chronological age, higher DNAm PhenoAge is associated with an increase in a person's number of coexisting morbidities (Meta P-value=4.56E-15), a decrease in likelihood of being disease-free (Meta P-value=1.06E-7), an increase in physical functioning problems (Meta P-value=2.05E-13), an increase in the risk of coronary heart disease (CHD) risk (Meta P-value=2.43E-10, and an earlier age at menopause (Meta P-value=8.22E-4)—suggesting that women were epigenetically older if they had entered menopause earlier.


Additional replication data was used to test for associations with other aging outcomes. For instance, we find that among the 527 women who were cancer free at age 50, accelerated DNAm PhenoAge predicts incident breast cancer (p=0.033, OR: 1.037). We also find a marginally significant reduction of approximately 2.4 years for the DNAm PhenoAge of semi-super centenarian offspring, relative to controls (p=0.065). Using blood methylation data, we evaluated whether DNAm PhenoAge relates to clinically diagnosed dementia in living individuals. Results suggest that those with presumed Alzheimer's disease (AD, n=154) and/or frontotemporal dementia (FTD, n=116) have significantly higher DNAm PhenoAge compared to non-demented (n=334) individuals (P=2.2E-2), and the strength of the association is further increased (P=9.4E-3) when limiting the sample to those ages 75 and older. We also find that DNAm PhenoAge, relates to Down syndrome in two separate blood methylation datasets (p=0.0046 and p=4.0E-11), and similarly relates to HIV infection in two blood datasets (p=6E-6 and p=8.6E-6). We observe a suggestive relationship between DNAm PhenoAge in blood and Parkinson's disease status (p=0.028) for individuals from European ancestry.


We examined the association between DNAm PhenoAge and smoking and found that DNAm PhenoAge also significantly differs by smoking status (p=0.0033). Next, we re-evaluated the morbidity and mortality associations (fully-adjusted) in our four samples, stratifying by smoking status (smokers vs. non-smokers). We find that DNAm PhenoAge is associated with mortality both among smokers (adjusted for pack-years) (Meta(FE)=1.041, Meta p=2.6E-14), and among persons who have never smoked (Meta(FE)=1.027, Meta p=7.9E-7). Moreover, among never smokers, DNAm PhenoAge relates to the number of coexisting morbidities (Meta P-value=7.83E-6), physical functioning status (Meta P-value=2.63E-3), disease free status (Meta P-value=4.38E-4), and CHD (Meta P-value=1.80E-4), while among current smokers, it relates to the number of coexisting morbidities (Meta P-value=4.61E-5), physical functioning status (Meta P-value=1.01E-4), and disease free status (Meta P-value=0.0048), but only exhibits a suggestive association with CHD (Meta P-value=0.084).


We studied whether DNAm PhenoAge of blood predicts lung cancer risk in the first WHI sample. After adjusting for chronological age, race/ethnicity, pack-years, and smoking status, results showed that a one year increase in DNAm PhenoAge is associated with a 5% increase in lung cancer risk (HR=1.05, p=0.031), and when restricting the model to current smokers only, we find that the effect of DNAm PhenoAge on lung cancer mortality is even stronger (HR=1.10, p=0.014).


We also find evidence of social gradients in DNAm PhenoAge, such that those with higher education (p=6E-9) and higher income (p=9E-5) appear younger. DNAm PhenoAge relates to exercise and dietary habits, such that increased exercise (p=7E-5) and markers of fruit/vegetable consumption (such as carotenoids, p=5E-22) are associated with lower DNAm PhenoAge.


We also evaluated DNAm PhenoAge in other non-blood tissues. Although DNAm PhenoAge was developed from DNAm levels assessed in whole blood, our empirical results show that it strongly correlates with chronological age in a host of different tissues. For instance, when examining all tissue concurrently, the correlation between DNAm PhenoAge and chronological age was 0.71. Age correlations in brain tissue ranged from 0.54 to 0.92. Consistent age correlations were also found in breast (r=0.47), buccal cells (r=0.88), dermal fibroblasts (r=0.87), epidermis (r=0.84), colon (r=0.88), heart (r=0.66), kidney (r=0.64), liver (r=0.80), lung (r=055), and saliva (r=0.81).


Novelty Surrounding DNAm PhenoAge

DNA methylation (DNAm) data have given rise to highly accurate age estimation methods known as “epigenetic clocks”. These recently developed DNA methylation-based biomarkers allow one to estimate the epigenetic age of an individual (see, e.g. Levine M E., The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2013; 68(6):667-674; Li S et al., Twin Res Hum Genet. 2015; 18(6):720-726; Sebastiani et al., Aging Cell. 2017; and Ferrucci L et al., Public Health Reviews. 2010; 32(2):475-488). For example, the “epigenetic clock”, developed by Horvath, which is based on methylation levels of 353 CpGs, can be used to estimate the age of most human cell types, tissues, and organs (Sebastiani et al., Aging Cell. 2017). The first generation of DNAm based biomarkers of aging were developed using chronological age as a surrogate measure for biological age. While the current epigenetic age estimators exhibit statistically significant associations with many age-related diseases and conditions, the effect sizes are typically small to moderate. While chronological age is arguably the strongest risk factor for aging-related death and disease, it is important to distinguish chronological time from biological aging. Individuals of the same chronological age may exhibit greatly different susceptibilities to age-related diseases and death, which is likely reflective of differences in their underlying biological aging processes (Ferrucci L et al., Public Health Reviews. 2010; 32(2):475-488). Using chronological age as the reference in the developing of epigenetic biomarkers of aging, by definition, may exclude CpGs whose methylation patterns don't display strong time-dependent changes, but instead signal the departure of biological age from chronological age. Thus, we hypothesized that a more powerful epigenetic biomarker of aging could be generated from DNAm by replacing chronological age with a surrogate measure of “phenotypic age” that, in and of itself, differentiates morbidity and mortality risk among same-age individuals.


Using a novel two-step method, we were successful in developing a DNAm based biomarker of aging that is highly predictive of nearly every morbidity and mortality outcome we tested. Our study demonstrates that DNAm PhenoAge greatly outperforms the first generation of DNAm based biomarkers of aging from Hannum (Hannum et al., Mol Cell. 2013; 49) and Horvath (Horvath S., Genome Biol. 2013; 14(R115), in terms of both its predictive accuracy for time to death and its associations with various other aging measures, including disease incidence/prevalence and physical functioning. Most surprisingly, DNAm PhenoAge is associated with age-related conditions in samples other than whole blood, for instance obesity in liver.


Our applications demonstrate that the combination of advanced machine learning methods, relevant functional genomic data (DNA methylation), and large sample sizes resulted in an epigenetic biomarker that outperforms existing molecular biomarkers of aging in terms of its strong relationship with a host of age related conditions. The new DNAm PhenoAge measure performs better than any of molecular biomarker of human aging, when it comes to predicting healthspan and lifespan.


Our results also demonstrate the utility of a novel method for building DNAm based biomarkers of aging. Our development of the new epigenetic biomarker of aging proceeded along two main steps. In step 1, a novel measure of phenotypic age was developed using clinical data. A Cox penalized regression model—where the hazard of aging-related mortality was regressed on clinical markers and chronological age—was used to select variables for inclusion in our phenotypic age score. In step 2, phenotypic age is regressed on DNA methylation data from the same individuals. The regression produced a model in which phenotypic age is predicted by DNAm levels. The linear combination of the weighted CpGs yields a DNAm based estimator of phenotypic age that we refer to as ‘DNAm PhenoAge’ in contrast to the previously published measures of ‘DNAm Age’.


Practicing the Invention of DNAm PhenoAge

To use the epigenetic biomarker one needs to extract DNA from cells or fluids, e.g. human blood cells, saliva, liver, brain tissue. Next, one needs to measure DNA methylation levels in the underlying signature of 513 CpGs (epigenetic markers) that are being used in the mathematical algorithm. The algorithm leads to a “phenotypic age” (the apparent age of an individual resulting from the interaction of its genotype with the environment) for each sample or human subject. The higher the value, the higher the risk of death and disease.


As noted above, embodiments of the present invention relate to methods for estimating the biological age of an individual human tissue or cell type sample based on measuring DNA Cytosine-phosphate-Guanine (CpG) methylation markers that are attached to DNA. In a general embodiment of the invention, a method is disclosed comprising a first step of choosing a source of DNA such as specific biological cells (e.g. T cells in blood) or tissue sample (e.g. blood) or fluid (e.g. saliva). In a second step, genomic DNA is extracted from the collected source of DNA of the individual for whom a biological age estimate is desired. In a third step, the methylation levels of the methylation markers near the specific clock CpGs are measured. In a fourth step, a statistical prediction algorithm is applied to the methylation levels to predict the age. One basic approach is to form a weighted average of the CpGs, which is then transformed to DNA methylation (DNAm) age using a calibration function. As used herein, “weighted average” is a linear combination calculated by giving values in a data set more influence according to some attribute of the data. It is a number in which each quantity included in the linear combination is assigned a weight (or coefficient), and these weightings determine the relative importance of each quantity in the linear combination.


DNA methylation of the methylation markers (or markers close to them) can be measured using various approaches, which range from commercial array platforms (e.g. from Illumina™) to sequencing approaches of individual genes. This includes standard lab techniques or array platforms. A variety of methods for detecting methylation status or patterns have been described in, for example U.S. Pat. Nos. 6,214,556, 5,786,146, 6,017,704, 6,265,171, 6,200,756, 6,251,594, 5,912,147, 6,331,393, 6,605,432, and 6,300,071 and US Patent Application Publication Nos. 20030148327, 20030148326, 20030143606, 20030082609 and 20050009059, each of which are incorporated herein by reference. Other array-based methods of methylation analysis are disclosed in U.S. patent application Ser. No. 11/058,566. For a review of some methylation detection methods, see, Oakeley, E. J., Pharmacology & Therapeutics 84:389-400 (1999). Available methods include, but are not limited to: reverse-phase HPLC, thin-layer chromatography, SssI methyltransferases with incorporation of labeled methyl groups, the chloracetaldehyde reaction, differentially sensitive restriction enzymes, hydrazine or permanganate treatment (m5C is cleaved by permanganate treatment but not by hydrazine treatment), sodium bisulfite, combined bisulphate-restriction analysis, and methylation sensitive single nucleotide primer extension.


The methylation levels of a subset of the DNA methylation markers disclosed herein are assayed (e.g. using an Illumina™ DNA methylation array, or using a PCR protocol involving relevant primers). To quantify the methylation level, one can follow the standard protocol described by Illumina™ to calculate the beta value of methylation, which equals the fraction of methylated cytosines in that location. The invention can also be applied to any other approach for quantifying DNA methylation at locations near the genes as disclosed herein. DNA methylation can be quantified using many currently available assays which include, for example:


a) Molecular break light assay for DNA adenine methyltransferase activity is an assay that is based on the specificity of the restriction enzyme DpnI for fully methylated (adenine methylation) GATC sites in an oligonucleotide labeled with a fluorophore and quencher. The adenine methyltransferase methylates the oligonucleotide making it a substrate for DpnI. Cutting of the oligonucleotide by DpnI gives rise to a fluorescence increase.


b) Methylation-Specific Polymerase Chain Reaction (PCR) is based on a chemical reaction of sodium bisulfite with DNA that converts unmethylated cytosines of CpG dinucleotides to uracil or UpG, followed by traditional PCR. However, methylated cytosines will not be converted in this process, and thus primers are designed to overlap the CpG site of interest, which allows one to determine methylation status as methylated or unmethylated. The beta value can be calculated as the proportion of methylation.


c) Whole genome bisulfite sequencing, also known as BS-Seq, is a genome-wide analysis of DNA methylation. It is based on the sodium bisulfite conversion of genomic DNA, which is then sequencing on a Next-Generation Sequencing (NGS) platform. The sequences obtained are then re-aligned to the reference genome to determine methylation states of CpG dinucleotides based on mismatches resulting from the conversion of unmethylated cytosines into uracil.


d) The Hpall tiny fragment Enrichment by Ligation-mediated PCR (HELP) assay is based on restriction enzymes' differential ability to recognize and cleave methylated and unmethylated CpG DNA sites.


e) Methyl Sensitive Southern Blotting is similar to the HELP assay but uses Southern blotting techniques to probe gene-specific differences in methylation using restriction digests. This technique is used to evaluate local methylation near the binding site for the probe.


f) ChIP-on-chip assay is based on the ability of commercially prepared antibodies to bind to DNA methylation-associated proteins like MeCP2.


g) Restriction landmark genomic scanning is a complicated and now rarely-used assay is based upon restriction enzymes' differential recognition of methylated and unmethylated CpG sites. This assay is similar in concept to the HELP assay.


h) Methylated DNA immunoprecipitation (MeDIP) is analogous to chromatin immunoprecipitation. Immunoprecipitation is used to isolate methylated DNA fragments for input into DNA detection methods such as DNA microarrays (MeDIP-chip) or DNA sequencing (MeDIP-seq).


i) Pyrosequencing of bisulfite treated DNA is a sequencing of an amplicon made by a normal forward primer but a biotinylated reverse primer to PCR the gene of choice. The Pyrosequencer then analyses the sample by denaturing the DNA and adding one nucleotide at a time to the mix according to a sequence given by the user. If there is a mismatch, it is recorded and the percentage of DNA for which the mismatch is present is noted. This gives the user a percentage methylation per CpG island.


In certain embodiments of the invention, the genomic DNA is hybridized to a complimentary sequence (e.g. a synthetic polynucleotide sequence) that is coupled to a matrix (e.g. one disposed within a microarray such as on a DNA chip). Optionally, the genomic DNA is transformed from its natural state via amplification by a polymerase chain reaction process. For example, prior to or concurrent with hybridization to an array, the sample may be amplified by a variety of mechanisms, some of which may employ PCR. See, for example, PCR Technology: Principles and Applications for DNA Amplification (Ed. H. A. Erlich, Freeman Press, NY, N.Y., 1992); PCR Protocols: A Guide to Methods and Applications (Eds. Innis, et al., Academic Press, San Diego, Calif., 1990); Mattila et al., Nucleic Acids Res. 19, 4967 (1991); Eckert et al., PCR Methods and Applications 1, 17 (1991); PCR (Eds. McPherson et al., IRL Press, Oxford); and U.S. Pat. Nos. 4,683,202, 4,683,195, 4,800,159, 4,965,188, and 5,333,675. The sample may be amplified on the array. See, for example, U.S. Pat. No. 6,300,070, which is incorporated herein by reference.


In addition to using art accepted modeling techniques (e.g. regression analyses), embodiments of the invention can include a variety of art accepted technical processes. For example, in certain embodiments of the invention, a bisulfite conversion process is performed so that cytosine residues in the genomic DNA are transformed to uracil, while 5-methylcytosine residues in the genomic DNA are not transformed to uracil. Kits for DNA bisulfite modification are commercially available from, for example, MethylEasy™ (Human Genetic Signatures™) and CpGenome™ Modification Kit (Chemicon™). See also, WO04096825A1, which describes bisulfite modification methods and Olek et al. Nuc. Acids Res. 24:5064-6 (1994), which discloses methods of performing bisulfite treatment and subsequent amplification. Bisulfite treatment allows the methylation status of cytosines to be detected by a variety of methods. For example, any method that may be used to detect a SNP may be used, for examples, see Syvanen, Nature Rev. Gen. 2:930-942 (2001). Methods such as single base extension (SBE) may be used or hybridization of sequence specific probes similar to allele specific hybridization methods. In another aspect the Molecular Inversion Probe (MIP) assay may be used.


The 513 CpG sites discussed herein are found in Table 5 that is included with this application. The Illumina method takes advantage of sequences flanking a CpG locus to generate a unique CpG locus cluster ID with a similar strategy as NCBI's refSNP IDs (rs#) in dbSNP (see, e.g. Technical Note: Epigenetics, CpG Loci Identification ILLUMINA Inc. 2010). Further information on the present invention can be found in Levine et al., Aging, 2018 Apr. 18; 10(4):573-591 which is incorporated herein by reference.


Examples

Estimating Phenotypic Age from Clinical Biomarkers


Our development of the new epigenetic biomarker of aging proceeded along three main steps (FIG. 1). In step 1, a novel measure of phenotypic age was developed using clinical data from the third National Health and Nutrition Examination Survey (for step 2 III, n=9,926). NHANES III is a nationally-representative sample, with over twenty-three years of mortality follow-up. A Cox penalized regression model—where the hazard of aging-related mortality was regressed on forty-two clinical markers and chronological age—was used to select variables for inclusion in our phenotypic age score. Of the forty-two biomarkers included in the penalized Cox regression model, ten variables (including chronological age) were selected for the phenotypic age predictor (Table 4). These nine biomarkers and chronological age were then combined in a phenotypic age estimate (in units of years) as detailed in Methods.


Validation data for phenotypic age came from the fourth National Health and Nutrition Examination Survey (NHANES IV), and included up to 17 years of mortality follow-up for n=6,209 national representative US adults. Mortality results show (Table 1) that a one year increase in phenotypic age is associated with a 9% increase in the risk of all-cause mortality (HR=1.09, p=3.8E-49), a 9% increase in the risk of aging-related mortality (HR=1.09, p=4.5E-34), a 10% increase in the risk of CVD mortality (HR=1.10, p=5.1E-17), a 7% increase in the risk of cancer mortality (HR=1.07, p=7.9E-10), a 20% increase in the risk of diabetes mortality (HR=1.20, p=1.9E-11), and a 9% increase in the risk of lung disease mortality (HR=1.09, p=6.3E-4). Finally, in the proportional hazard model, phenotypic age completely accounted for the effect of chronological age, such that chronological age no longer exhibited a significant positive association with mortality.


We further tested whether the phenotypic age associations held-up when examining mortality among three age strata-young and middle-aged adults (20-64 years at baseline), older adults (65-79 years at baseline), and the oldest-old (80+ years at baseline). Results showed consistent findings for all-cause, aging-related, CVD, cancer, diabetes, and lung disease within all age strata (Table 1). Finally, to ensure that phenotypic age didn't simply represent an end-of-life marker, we removed participants who died within five years of baseline, and then re-examined mortality associations. Again, we find significant associations for all mortality outcomes, except Alzheimer's disease (Table 1).


Finally, as shown in FIG. 5, we tested the association between phenotypic age and 1) the number of coexisting morbidities a participant had been diagnosed with, and 2) levels of physical functioning problems. Results showed that after adjusting for chronological age, persons with more coexisting morbidities also displayed higher phenotypic ages on average (p=3.9E-21). Similarly, those with worse physical functioning tended to have higher phenotypic ages (p=2.1E-10).


An Epigenetic Biomarker of Aging (DNAm PhenoAge)

In step 2 (FIG. 1), data from the Invecchiare in Chianti (InCHIANTI) study was used to relate blood DNAm levels to phenotypic age. Elastic net regression produced a model in which phenotypic age is predicted by DNAm levels at 513 CpGs. The linear combination of the weighted 513 CpGs yields a DNAm based estimator of phenotypic age (mean=58.9, s.d.=18.2, range=9.1-106.1), that we refer to as ‘DNAm PhenoAge’ in contrast to the previously published Hannum and Horvath ‘DNAm Age’ measures.


While our new clock was trained on cross-sectional data in InCHIANTI, we capitalized on the repeated time-points to test whether changes in DNAm PhenoAge are related to changes in phenotypic age. As expected, between 1998 and 2007, mean change in DNAm PhenoAge was 8.51 years, whereas mean change in phenotypic age was 8.88 years. Moreover, participants' phenotypic age (adjusting for chronological age) at the two time-points was correlated at r=0.50, whereas participants' DNAm PhenoAge (adjusting for chronological age) at the two time-points was correlated at r=0.68 (FIG. 6). Finally, as shown in FIG. 6, we find that the change in phenotypic age between 1998 and 2007 is highly correlated with the change in DNAm PhenoAge between these two time-points (r=0.74, p=3.2E-80).


DNAm PhenoAge Strongly Relates to Aging Outcomes

In step 3 (FIG. 1), DNAm PhenoAge was calculated in four independent large-scale samples-two samples from Women's Health Initiative (WHI) (n=2,016; and n=2,191), the Framingham Heart Study (FHS) (n=2,553), and the Normative Aging Study (n=657). In these studies, DNAm PhenoAge correlated with chronological age at r=0.67 in WHI (Sample 1), r=0.69 in WHI (Sample2), r=0.78 in FHS, and r=0.62 in the Normative Aging Study. The four validation samples were then used to assess the effects of DNAm PhenoAge on mortality in comparison to the Horvath and Hannum DNAm Age measures. As shown in FIG. 2, DNAm PhenoAge was significantly associated with subsequent mortality risk in all studies (independent of chronological age), such that, a one year increase in DNAm PhenoAge is associated with a 4% increase in the risk of all-cause mortality (Meta(FE)=1.042, Meta p=1.1E-36). To better conceptualize what this increase represents, we compared the predicted life expectancy and mortality risk for person's representing the top 5% (fastest agers), the average, and the bottom 5% (slowest agers). Results suggest that those in the top 5% of fastest agers have a mortality hazard of death that is about 1.57 times that of the average person, i.e. your hazard of death is 57% higher than that of an average person. Further, contrasting the 5% fastest agers with the 5% slowest agers, we find that the hazard of death of the fastest agers is 2.47 times higher than that of the bottom 5% slowest agers (HR=1.04211.0/1.042−10.5). Finally, both observed and predicted Kaplan-Meier survival estimates showed that faster agers had much lower life expectancy and survival rates compared to average and/or slow agers (FIG. 2).


We also observe strong association between DNAm PhenoAge and a variety of other aging outcomes (Table 2). For instance, independent of chronological age, higher DNAm PhenoAge is associated with an increase in a person's number of coexisting morbidities (Meta P-value=4.56E-15), a decrease in likelihood of being disease-free (Meta P-value=1.06E-7), an increase in physical functioning problems (Meta P-value=2.05E-13), an increase in the risk of CHD risk (Meta P-value=2.43E-10, an earlier age at menopause (Meta P-value=8.22E-4)—suggesting that women were epigenetically older if they had entered menopause earlier.


Additional replication data was used to test for associations with other aging outcomes, which have previously been shown to relate to the first generation of epigenetic biomarkers14,15,23-26 For instance, we find that among the 527 women who were cancer free at age 50, accelerated DNAm PhenoAge predicts incident breast cancer (p=0.033, OR: 1.037). We also find a marginally significant reduction of approximately 2.4 years for the DNAm PhenoAge of semi-super centenarian offspring, relative to controls (P=−2.40, p=0.065). Using blood methylation data, we evaluated whether DNAm PhenoAge relates to clinically diagnosed dementia in living individuals. Results suggest that those with presumed Alzheimer's disease (AD, n=154) and/or frontotemporal dementia (FTD, n=116) have significantly higher DNAm PhenoAge compared to non-demented (n=334) individuals (P=2.2E-2), and the strength of the association is further increased (P=9.4E-3) when limiting the sample to those ages 75 and older. We also find that DNAm PhenoAge, relates to Down syndrome in two separate blood methylation datasets (p=0.0046 and p=4.0E-11), and similarly relates to HIV infection in two blood datasets (p=6E-6 and p=8.6E-6). We observe a suggestive relationship between DNAm PhenoAge in blood and Parkinson's disease status (p=0.028) for individuals from European ancestry.


DNAm PhenoAge Versus Behavioral and Demographic Characteristics

Given the recent study in which Zhang and colleagues27 developed an epigenetic mortality predictor that turned out to be an estimate of smoking habits, we examined the association between DNAm PhenoAge and smoking. As shown in FIG. 7, we find that DNAm PhenoAge also significantly differs by smoking status (p=0.0033). Next, we re-evaluated the morbidity and mortality associations (fully-adjusted) in our four samples, stratifying by smoking status (smokers vs. non-smokers) (FIG. 8 & Table 4). We find that DNAm PhenoAge is associated with mortality both among smokers (adjusted for pack-years) (Meta(FE)=1.041, Meta p=2.6E-14), and among persons who have never smoked (Meta(FE)=1.027, Meta p=7.9E-7). Moreover, as shown in Table 4, among never smokers, DNAm PhenoAge relates to the number of coexisting morbidities (Meta P-value=7.83E-6), physical functioning status (Meta P-value=2.63E-3), disease free status (Meta P-value=4.38E-4), and CHD (Meta P-value=1.80E-4), while among current smokers, it relates to the number of coexisting morbidities (Meta P-value=4.61E-5), physical functioning status (Meta P-value=1.01E-4), and disease free status (Meta P-value=0.0048), but only exhibits a suggestive association with CHD (Meta P-value=0.084). We previously reported that Horvath DNAm age of blood predicts lung cancer risk in the first WHI sample28. Using the same data, we replicate this finding for DNAm PhenoAge. After adjusting for chronological age, race/ethnicity, pack-years, and smoking status, results showed that a one year increase in DNAm PhenoAge is associated with a 5% increase in lung cancer risk (HR=1.05, p=0.031), and when restricting the model to current smokers only, we find that the effect of DNAm PhenoAge on lung cancer mortality is even stronger (HR=1.10, p=0.014).


In evaluating the relationship between DNAm PhenoAge and social, behavioral, and demographic characteristics we observe significant differences between racial/ethnic groups (p=5.1E-5), with non-Hispanic blacks having the highest DNAm PhenoAge on average, and non-Hispanic whites having the lowest (FIG. 9). We also find evidence of social gradients in DNAm PhenoAge, such that those with higher education (p=6E-9) and higher income (p=9E-5) appear younger. DNAm PhenoAge relates to exercise and dietary habits, such that increased exercise (p=7E-5) and markers of fruit/vegetable consumption (such as carotenoids, p=5E-22) are associated with lower DNAm PhenoAge, whereas smoking (p=3E-6) was associated with increased DNAm PhenoAge (FIG. 10A). Finally, these associations were re-examined in step-wise multivariate models. Overall, we find that associations for race/ethnicity, education, smoking, CRP, triglycerides, protein consumption, and metabolic syndrome are generally maintained (FIG. 10B).


DNAm PhenoAge in Other Tissues

Although DNAm PhenoAge was developed from DNAm levels assessed in whole blood, our empirical results show that it strongly correlates with chronological age in a host of different tissues (FIG. 3). For instance, when examining all tissue concurrently, the correlation between DNAm PhenoAge and chronological age was 0.71. Age correlations in brain tissue ranged from 0.54 to 0.92. Consistent age correlations were also found in breast (r=0.47), buccal cells (r=0.88), dermal fibroblasts (r=0.87), epidermis (r=0.84), colon (r=0.88), heart (r=0.66), kidney (r=0.64), liver (r=0.80), lung (r=055), and saliva (r=0.81).


Using the Horvath DNAm age measure, we previously found that body mass index is correlated with epigenetic age acceleration in two independent human liver samples (r=0.42 and r=0.42 in liver data sets 1 and 2, respectively)29. Using the same data, we replicated this finding using the new measure of PhenoAge acceleration (r=0.32, p=0.011 and r=0.48 p=7.7E-6 in liver data set 1 and 2, respectively. Interestingly we also find a significant correlation between BMI and DNAm PhenoAge acceleration in the first adipose data set (r=0.43, p=1.2E-23 using n=648 adipose samples from the Twins UK study) but not in a second smaller adipose data set (n=32 samples).


Biological Interpretation of DNAm PhenoAge

To test the hypothesis that DNAm phenotypic age acceleration captures aspects of the age-related decline of the immune system, we correlated DNAm PhenoAge acceleration with estimated blood cell count (FIG. 11). After adjusting for age, we find that DNAm PhenoAge acceleration is negatively correlated with naïve CD8+ T cells (r=−0.34, p=5.3E-47), naïve CD4+ T cells (r=−0.29, p=4.2E-34), CD4+ helper T cells (r=−0.34, p=5.3E-47), and B cells (r=−0.20, p=1E-16). Further, phenotypic age acceleration is positively correlated with the proportion of granulocytes (r=0.34, p=5.3E-47), exhausted CD8+(defined as CD28-CD45RA−) T cells (r=0.21, p=2.7E-18), and plasma blast cells (r=0.28, p=8.2E-32). These results are consistent with age related changes in blood cells.30 However, the strong association between DNAm PhenoAge and mortality/morbidity outcomes does not simply reflect changes in blood cell composition as can be seen from the fact that the associations between DNAm PhenoAge and morbidity and mortality held-up even after adjusting for estimates of seven blood cell count measures (FIG. 12).


In our functional enrichment analysis of the chromosomal locations of the 513 CpGs, we found that 149 CpGs whose age correlation exceeded 0.2 tended to be located in CpG islands (p=0.0045, FIG. 13) and were significantly enriched with polycomb group protein targets (p=8.7E-5, FIG. 13) which echoes results of epigenome wide studies of aging effects4,31,32.


Our heritability analysis of the DNAm PhenoAge acceleration used the SOLAR polygenic model to estimate the proportion of phenotypic variance explained by family relationship in the Framingham Heart Study pedigrees. The model assumes additive genetic heritability in a polygenic model, adjusting for chronological age and sex. The heritability estimated by the SOLAR polygenic model was (h2=0.33) among persons of European ancestry. Similarly, a heritability estimate from SNP data was calculated from WHI data using GCTA-GREML analysis. In this model, we find that heritability is estimated at h2=0.51 for participants of European ancestry.


Conclusion

Using a novel two-step method, we were successful in developing a DNAm based biomarker of aging that is highly predictive of nearly every morbidity and mortality outcome we tested. Our study demonstrates that DNAm PhenoAge greatly outperforms the first generation of DNAm based biomarkers of aging from Hannum9 and Horvath10, in terms of both its predictive accuracy for time to death and its associations with various other aging measures, including disease incidence/prevalence and physical functioning. Most surprisingly, DNAm PhenoAge is associated with age-related conditions in samples other than whole blood, for instance obesity in liver.


Our applications demonstrate that the combination of advanced machine learning methods, relevant functional genomic data (DNA methylation), and large sample sizes resulted in an epigenetic biomarker that outperforms existing molecular biomarkers. However, the unbiased, data-driven approach used in its construction entails that it is challenging to understand the molecular causes and consequences of DNAm PhenoAge. To partially address this challenge, we employed three approaches: i) study on the relationship between phenotypic aging and changes in blood cell counts, ii) functional enrichment studies of the underlying CpGs, iii) heritability analysis. Although DNAm PhenoAge captures some aspects of the age-related decline in the immune system, these changes in cell composition do not explain the strong association between DNAm PhenoAge and mortality/morbidity outcomes. Our functional enrichment study demonstrates that age related DNA methylation changes in polycomb group protein targets must play a role, which echoes results from previous epigenome wide studies of aging effects4,31,32 Our heritability analysis suggests that there is a genetic basis for differences in DNAm PhenoAge, after adjusting for chronological age. Our results also suggest DNAm PhenoAge may respond to modifiable lifestyle factors. In moving forward, it will be important to establish causative pathways to test whether DNAm PhenoAge mediates the links between these precipitating factors and aging-related outcomes (i.e. social, behavioral, environmental conditions→DNAm PhenoAge→morbidity/mortality).


Overall, we expect that DNAm PhenoAge will become a useful molecular biomarker for human anti-aging studies because it is a highly robust, blood based biomarker that captures organismal age and the functional state of many organ systems and tissues.


Methods

Using the NHANES training data, we applied a Cox penalized regression model—where the hazard of aging-related mortality (mortality from diseases of the heart, malignant neoplasms, chronic lower respiratory disease, cerebrovascular disease, Alzheimer's disease, Diabetes mellitus, nephritis, nephrotic syndrome, and nephrosis) was regressed on forty-two clinical markers and chronological age to select variables for inclusion in our phenotypic age score. Ten-fold cross-validation was employed to select the parameter value, lambda, for the penalized regression. In order to develop a sparse phenotypic age estimator (the fewest biomarker variables needed to produce robust results) we selected a lambda of 0.0192, which represented a one standard deviation increase over the lambda with minimum mean-squared error during cross-validation (FIG. 14). Of the forty-two biomarkers included in the penalized Cox regression model, this resulted in ten variables (including chronological age) that were selected for the phenotypic age predictor.


These nine biomarkers and chronological age were then included in a parametric proportional hazards model based on the Gompertz distribution. Based on this model, we estimated the 10-year (120 months) mortality risk of the j-the individual. Next, the mortality score was converted into units of years The resulting phenotypic age estimate was regressed DNA methylation data using an elastic net regression analysis. The penalization parameter was chosen to minimize the cross validated mean square error rate (FIG. 14), which resulted in 513 CpGs.


As noted above, these nine biomarkers and chronological age were then included in a parametric proportional hazards model based on the Gompertz distribution. Based on this model, we estimated the 10-year (120 months) mortality risk of the j-the individual based on the cumulative distribution function





MortalityScorej=CDF(120,Xj)=1−e−exjb(exp(120*y)−1)/y


where xb=represents the linear combination of biomarkers from the fitted model (Table 4):





WeightedAverage=(−Albumin*0.0336+log(Creatinine)*0.0095+Glucose*0.1953+C−reactiveProtein*0.0954−LymphocytePerc*0.0120−+MeanCellVolume*0.0268+RedBloodCellDistributionWidth*0.3306+AlkalinePhosphatase*0.0019+WhiteBloodCellCount*0.0554+age*0.0804−19.9067).


Next, the mortality score was converted into units of years using the following equation





PhenotypicAgej=141.50225+ln(−0.00553*ln(1−MortalityScorej)))/0.090165


Statistical Details on the Gompertz Proportional Hazards Model for Phenotypic Age Estimation


The Gompertz regression is parameterized only as a proportional hazards model. This model has been extensively used extensively for modeling mortality data. The Gompertz distribution implemented is the two-parameter function as described in Lee and Wang (2003)1, with the following hazard and survivor functions:






h(t)=λexp(γt)






S(t)=exp{−λγ−1(eγt−1)}


The covariates of the j-th individual are including in the model using the following parametrization: λj=exp(xjβ) which implies that the baseline hazard is given by h0(t)=exp(μt) where γ is an ancillary parameter to be estimated from the data.


The cumulative distribution function of the Gompertz model is given by






CDF(t,x)=1−exp(−exp(xb)(exp(γt)−1)/γ)


where t denotes time (here in units of months) and xb=Σu=1p xubu+b0.


We used the STATA software (StataCorp. 2001. Statistical Software: Release 7.0) to carry out the Gompertz regression analysis.


In step 1, we fit a parametric proportional hazards model analysis with Gompertz distribution using the STATA commands


stset person_months [pweight=wt], failure(mortstat==1)


streg var1 var2 var3 . . . vark,dist(gomp)


The Gompertz regression analysis resulted in coefficient values and parameter values (Table 1) and γ=0.0076927.


In step 2, we used the cumulative distribution function of the Gompertz model to estimate the 120-month mortality risk of each individual. Thus, CDF(t=120,xj) denotes the probability that the j-th individual will die within the next 120 months. In step 3, carried out another parametric proportional hazards model analysis with Gompertz distribution, but only including chronological age as a IV. We will refer to this analysis as the univariate Gompertz regression model since it only involved one covariate (age). The resulting estimate of the cumulative distribution function CDF·univariate(t,age)







CDF
.

univariate


(

t
,
age

)



=

1
-

e

{


-

e

(


age
*

b
1


+

b
0


)






γ

-
1




(


e

γ





t


-
1

)



}







allowed us to estimate the probability that the j-th individual with die within 120 months as follows CDF·univariate(120,agej) where agej is the age of the j-th individual.


In step 4, we solved the equation CDF(120,xj)=CDF·univariate(120,agej) for the variable agej. The resulting solution for the j-th individual, referred to as PhenotypicAge, is given by







PhenotypicAge
j

=


14


1
.
5


0

2

2

5

+


ln


(


-

0
.
0



0

5

5

3
*

ln


(

1
-

CDF


(

120
,

x
j


)



)



)




0
.
0


9

0

1

6

5







Data Used to Generate DNAM Phenoage

Participants ages 20 and over in NHANES III (1988-94) were used as the training sample to develop a new and improved measure of phenotypic aging (n=9,926), while participants ages 20 and over in NHANES IV (1999-2014) were used to validate the association between phenotypic aging and age-related morbidity and mortality (n=6,209). Overall, NHANES III had available mortality follow-up for up to 23 (n=deaths) and NHANES IV had available mortality follow-up for up to 17 years (n=deaths). InCHIANTI included longitudinal (two time-points-1998 and 2007) phenotypic and DNAm data on n=456 male and female participants, ages 21-91 in 1998, and 30-100 in 2007. Participants from WHI included 2,107 post-menopausal women, who were ages 50-80 at baseline and were followed-up for just over 20 years.


Steps for Measuring the DNA Methylation PhenoAge of a Tissue Sample and Estimating DNA Methylation-Based Predictors of Mortality


Step 1: Obtain Cells from Blood, Saliva, or Other Sources of DNA from an Individual.


There are several options.


Blood tubes collected by venipunture: Blood tubes collected by venipuncture will result in a large amount of high quality DNA from a relevant tissue. The invention applies to DNA from whole blood, or peripheral blood mononuclear cells or even sorted blood cell types.


Saliva spit kit:


Dried blood spots can be easily collected by a finger prick method. The resulting blood droplet can be put on a blood card, e.g. http://www.lipidx.com/dbs-kits/.


Step 2: Generate DNA Methylation Data

This step will be carried out by the lab that collects the samples.


Step 2a: Extract the genomic DNA from the cells


Step 2b: Measure cytosine DNA methylation levels.


Several approaches can be used for measuring DNA methylation including sequencing, bisulfite sequencing, arrays, pyrosequencing, liquid chromatography coupled with tandem mass spectrometry.


Our invention applies to any platform used for measuring DNA methylation data. In particular, it can be used in conjunction with the latest Illumina methylation array platform the EPIC array or the older platforms (Infinium 450K array or 27K array). Our coefficient values used pertain to the “beta values” whose values lie between 0 and 1 but it could be easily adapted to other metrics of assessing DNA methylation, e.g. “M values”.


Step 3: Estimate the DNA Methylation PhenoAge Estimate

The DNAm PhenoAge estimate can be estimated as a weighted linear combination of 513 CpGs in Table 5. This table also includes the probe designation/identifier used in the Illumina Infinium 450K array.


REFERENCES



  • 1 Kennedy, B. K. et al. Geroscience: Linking Aging to Chronic Disease. Cell 159, 709-713, doi:10.1016/j.cell.2014.10.039 (2014).

  • 2 Burch, J. B. et al. Advances in geroscience: impact on healthspan and chronic disease. J Gerontol A Biol Sci Med Sci 69 Suppl 1, S1-3, doi:10.1093/gerona/glu041(2014).

  • 3 Fraga, M. F. & Esteller, M. Epigenetics and aging: the targets and the marks. Trends in Genetics 23, 413-418, doi:10.1016/j.tig.2007.05.008 (2007).

  • 4 Rakyan, V. K. et al. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome research 20, 434-439, doi:10.1101/gr.103101.109 (2010).

  • 5 Teschendorff, A. E. et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome research 20, 440-446, doi:10.1101/gr.103606.109 (2010).

  • 6 Jung, M. & Pfeifer, G. P. Aging and DNA methylation. BMC biology 13, 1-8, doi:10.1186/s12915-015-0118-4 (2015).

  • 7 Zheng, S. C., Widschwendter, M. & Teschendorff, A. E. Epigenetic drift, epigenetic clocks and cancer risk. Epigenomics 8, 705-719, doi:10.2217/epi-2015-0017 (2016).

  • 8 Bocklandt, S. et al. Epigenetic predictor of age. PLoS One. 6, doi:10.1371/journal.pone.0014821(2011).

  • 9 Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 49, doi:10.1016/j.molcel.2012.10.016 (2013).

  • 10 Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol 14, doi:DOI: 10.1186/10.1186/gb-2013-14-10-r115 (2013).

  • 11 Levine, M., Lu, A., Bennett, D. & Horvath, S. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer's disease related cognitive functioning. Aging (Albany N.Y.) December (2015).

  • 12 Marioni, R. E. et al. The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int J Epidemiol 44, doi:10.1093/ije/dyu277 (2015).

  • 13 Marioni, R. et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 16, 25 (2015).

  • 14 Horvath, S. & Levine, A. J. HIV-1 infection accelerates age according to the epigenetic clock. J Infect Dis, doi:10.1093/infdis/jiv277 (2015).

  • 15 Horvath, S. et al. Accelerated Epigenetic Aging in Down Syndrome. Aging Cell 14, doi:DOI: 10.1111/acel.12325 (2015).

  • 16 Levine, M. E. et al. Menopause accelerates biological aging. Proc Natl Acad Sci USA 113, 9327-9332, doi:10.1073/pnas.1604558113 (2016).

  • 17 Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging (Albany N.Y.) 8, 1844-1865, doi:10.18632/aging.101020 (2016).

  • 18 Levine, M. E. Modeling the Rate of Senescence: Can Estimated Biological Age Predict Mortality More Accurately Than Chronological Age? The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 68, 667-674, doi:10.1093/gerona/gls233 (2013).

  • 19 Belsky, D. W. et al. Quantification of biological aging in young adults. Proceedings of the National Academy of Sciences 112, E4104-E4110, doi:10.1073/pnas.1506264112(2015).

  • Li, S. et al. Genetic and Environmental Causes of Variation in the Difference Between Biological Age Based on DNA Methylation and Chronological Age for Middle-Aged Women. Twin Res Hum Genet 18, 720-726, doi:10.1017/thg.2015.75(2015).

  • 21 Sebastiani, P. et al. Biomarker signatures of aging. Aging Cell, n/a-n/a, doi:10.1111/acel.12557 (2017).

  • 22 Ferrucci, L., Hesdorffer, C., Bandinelli, S. & Simonsick, E. M. Frailty as a Nexus Between the Biology of Aging, Environmental Conditions and Clinical Geriatrics. Public Health Reviews 32, 475-488, doi:10.1007/BF03391612 (2010).

  • 23 Ambatipudi, S. et al. DNA methylome analysis identifies accelerated epigenetic ageing associated with postmenopausal breast cancer susceptibility. Eur J Cancer 75, 299-307, doi:10.1016/j.ejca.2017.01.014 (2017).

  • 24 Horvath, S. et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (Albany N.Y.) 7, doi:10.18632/aging.100861(2015).

  • 25 Li, Y. et al. An epigenetic signature in peripheral blood associated with the haplotype on 17q21.31, a risk factor for neurodegenerative tauopathy. PLoS Genet 10, e1004211, doi:10.1371/journal.pgen.1004211 (2014).

  • 26 Horvath, S. & Ritz, B. R. Increased epigenetic age and granulocyte counts in the blood of Parkinson's disease patients. Aging (Albany N.Y.) 7, 1130-1142, doi:10.18632/aging.100859 (2015).

  • 27 Zhang, Y. et al. DNA methylation signatures in peripheral blood strongly predict all-cause mortality. Vol. 8 (2017).

  • 28 Levine, M. E. et al. DNA methylation age of blood predicts future onset of lung cancer in the women's health initiative. Aging (Albany N.Y.) 7, 690-700 (2015).

  • 29 Horvath, S. et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci USA 111, 15538-15543, doi:10.1073/pnas.1412759111 (2014).

  • 30 Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908, 244-254 (2000).

  • 31 Teschendorff, A. E. et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome research 20, 440-446 (2010).

  • 32 Horvath, S. et al. Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol. 13, R97 (2012).



Tables









TABLE 1







Mortality Validations for Phenotypic Age












Mortality Cause
Cases
HR
P-Value
















Full Sample






All-Cause
1052
1.09
3.8E−49



Aging-Related
661
1.09
4.5E−34



CVD
272
1.10
5.1E−17



Cancer
265
1.07
7.9E−10



Alzheimer's
30
1.04
2.6E−1 



Diabetes
41
1.20
1.9E−11



Lung
53
1.09
6.3E−4 



80 Years and Over






All-Cause
398
1.07
8.8E−15



Aging-Related
165
1.08
6.1E−10



CVD
112
1.08
9.9E−6 



Cancer
69
1.08
4.0E−4 



Alzheimer's
11
1.00
9.6E−1 



Diabetes
9
1.14
2.5E−2 



Lung
8
1.09
5.7E−2 



65-79 Years






All-Cause
510
1.10
6.2E−29



Aging-Related
343
1.10
2.4E−19



CVD
133
1.11
5.0E−10



Cancer
99
1.07
5.0E−5 



Alzheimer's
16
1.12
1.7E−2 



Diabetes
25
1.22
5.2E−8 



Lung
28
1.07
6.4E−2 



20-64 Years






All-Cause
144
1.10
6.4E−9 



Aging-Related
100
1.11
7.3E−8 



CVD
27
1.14
4.4E−4 



Cancer
55
1.09
2.1E−3 



Alzheimer's
3
0.66
7.0E−2 



Diabetes
7
1.24
2.7E−3 



Lung
8
1.20
6.5E-3 



5 + Years Survival






All-Cause
575
1.08
9.0E−21



Aging-Related
350
1.09
2.0E−16



CVD
141
1.10
6.6E−10



Cancer
128
1.05
3.7E−3 



Alzheimer's
24
1.05
2.5E−1 



Diabetes
26
1.21
4.1E−9 



Lung
31
1.08
3.3E−2 

















TABLE 2







Morbidity Validation for DNAm PhenoAge





















Physical












Comorbidity Count
Disease Free Status
CHD Risk
Functioning















Sample
Coefficient
P−value
Coefficient
P−value
Coefficient
P−value
Coefficient
P−value


















DNAm PhenoAge










WHI Sample 1
0.008
2.38E−1
−0.002
3.82E−1
0.016
5.36E−2
−0.396
1.04E−4


(Non-Hispanic White)










WHI Sample 2
0.031
2.95E−7
−0.026
1.63E−2
0.023
1.89E−1
−0.361
3.81E−5


(Non-Hispanic White)










WHI Sample 1
0.013
6.15E−2
−0.006
2.40E−2
0.021
2.02E−2
−0.423
4.50E−4


(Non-Hispanic Black)










WHI Sample 2
0.014
7.67E−2
−0.023
6.98E−2
0.048
2.27E−2
−0.473
3.75E−4


(Non-Hispanic Black)










WHI Sample 1 (Hispanic)
0.024
1.64E−2
−0.004
3.67E−1
0.033
5.07E−2
−0.329
7.37E−2


WHI Sample 2 (Hispanic)
0.003
7.83E−1
0.002
9.28E−1
0.073
1.98E−1
−0.377
6.54E−2


FHS
0.022
3.93E−7
−0.034
1.59E−3
0.028
5.47E−6
−0.016
4.60E−1


NAS
0.023
7.59E−6
−0.062
2.00E−4
0.03
2.27E−2
NA
NA


Meta P-value (Stouffer)

4.56E−15

1.06E−7

2.43E−10

2.05E−13


DNAm Age (Hannum)










WHI Sample 1
0.007
3.90E−1
−0.003
3.48E−1
0.013
2.36E−1
−0.399
2.90E−3


(Non-Hispanic White)










WHI Sample 2
0.025
1.53E−3
−0.02
1.55E−1
0.022
3.30E−1
−0.284
1.43E−2


(Non-Hispanic White)










WHI Sample 1
0.022
2.72E−2
−0.007
6.03E−2
0.015
2.67E−1
−0.345
4.29E−2


(Non-Hispanic Black)










WHI Sample 2
0.022
6.34E−2
−0.008
6.62E−1
0.055
6.12E−2
−0.323
9.56E−2


(Non-Hispanic Black)










WHI Sample 1 (Hispanic)
0.01
4.33E−1
−0.01
6.24E−2
0.011
6.10E−1
−0.599
1.16E−2


WHI Sample 2 (Hispanic)
−0.012
4.17E−1
0.035
0.209
−0.012
0.885
0.04
0.348


FHS
0.019
5.94E−4
−0.03
0.026
0.022
0.015
0.002
0.928


NAS
0.009
2.19E−1
−0.026
0.226
0.025
0.183
NA
NA


Meta P-value (Stouffer)

6.76E−6

2.03E−3

1.10E−3

2.03E−5


DNAm Age (Horvath)










WHI Sample 1
0.007
3.49E−1
−0.004
0.169
0.001
0.912
−0.08
0.071


(Non-Hispanic White)










WHI Sample 2
0.006
4.54E−1
−0.006
0.676
−0.02
0.382
−0.078
0.001


(Non-Hispanic White)










WHI Sample 1
0.018
3.96E−2
−0.006
0.062
0.009
0.407
−0.141
0.004


(Non-Hispanic Black)










WHI Sample 2
−0.008
4.20E−1
0.002
0.905
0.004
0.875
0
0.998


(Non-Hispanic Black)










WHI Sample 1 (Hispanic)
0.012
3.65E−1
−0.007
0.186
−0.001
0.978
−0.014
0.841


WHI Sample 2 (Hispanic)
−0.025
6.69E−2
−0.013
0.619
−0.024
0.757
0.045
0.332


FHS
0.011
5.82E−2
−0.021
0.083
0.007
0.519
0.01
0.673


NAS
0.011
7.90E−2
−0.039
0.045
0.006
0.714
NA
NA


Meta P-value (Stouffer)

4.54E−2

1.31E−3

7.51E−1

4.66E−4
















TABLE 4







Phenotypic Aging Measures and Gompertz Coefficients










Variable

Units
Weight













Albumin
Liver
g/L
−0.0336


Creatinine (log)
Kidney
umol/L
0.0095


Glucose, serum
Metabolic
mmol/L
0.1953


C-reactive protein
Inflammation
mg/dL
0.0954


Lymphocyte percent
Immune
%
−0.0120


Mean cell volume
Immune
fL
0.0268


Red cell distribution width
Immune
%
0.3306


Alkaline phosphatase
Liver
U/L
0.0019


White blood cell count
Immune
1000 cells/uL
0.0554


Age

Years
0.0804









Constant

−19.9067


Gamma

0.0077
















TABLE 5







513 Polynucleotides having CpGM ethylation Sites Useful in


Embodiments of the Invention.











SEQ ID


Probe
Sequence With [CpG] Marked
NO












cg000
TAAAAATGATCATTTCTGCTTACGTTTACAGCTCATTTCATATTCTGCAAAATGT
1


79056
TTTCC[CG]TCTGCTATCACCGCCGCCATCCTCACAGCAGCCTGGGAGAAAGGCA




GAGCCAAAAGTCTC






cg000
GCCCTGCGGGAAGGGACTGGGGTTGGGAGGACGCTGGGCCTCTGGGTTTAGG
2


83937
CCTCACTC[CG]CCGGAGAGGGGGAGACAAACAGGCCAGACTCTCTTCCCAGA




GCAGGAGCGACCCCTCCCC






cg001
GCGTTTGTAGGCAGTGATGTCACAGAGTGCCTTCATGCTCCTCGGGTCTCCGGT
3


13951
TCTCCC[CG]GACCTCTGTAGTCCTCATTGCCAAAGTTGTACCCCCTGGGGAGTG




CACCCTGCCTGCATT






cg001
CTTTGCTTTCTTATCTCCAGCTCACACCTTTAAGTCTTATGTAGTTAAAGGACATT
4


68942
TATC[CG]CCTCCTTGGAGAACACAGCCCTCCAGTGTCTCCTGCAGCCTGGAGCC




TGGGACATTCTGG






cg001
TTATTGTAAACCCATTTTACCAGTGATGTGAATGAGCCGCAATGAAGGCTAAG
5


94146
GGACTTG[CG]CAAGGTGACATATATAAGCAACAGGCCTGCGATTGGAATCCAG




GCCCCAGAGTCTGGGCA






cg002
AGGGGGATGGAGCTTCTACACAGGGCCCCAGCGCTGTCGCTGTGGCTGCTGCT
6


30271
GCCGCTA[CG]GCTTAGTGCACCAGACGCTGCATTTCAGGTGCTCCTACAAAAG




AGGCCACTCCTGGAACG






cg002
AAGGTCCCGCGGCCTCGGGCCCCGCCCCGCCCCGGGGCCTCGAGCGCCAGGC
7


61781
CGGCCCGG[CG]AACCCCGCCCAAGGCCAACAAGGAGCCTTGTCCGCGCATTCC




AGCGGCAGAAACGGAATG






cg002
CCTCAGATGCACAGTGACACCCACCTTGGAGAGTTTCTGTGTCTCTTAAATGAC
8


97600
CGAATC[CG]TGTAGAAGGCTTATTACCACAATCTGTAGCTACTTGGTAAACGGC




AGCTCTTATTTTGAC






cg003
GCCAAACCAGTGGCTGTTTCTGAAATGTGAGCTTCCGCCCCAAGCTAAAAAGT
9


35286
GTTCACA[CG]TGGGTGGTCTGGAAAAGACCAAAGAGAGAGACCTGAGTTGAA




TTTGCCAGGCGGGTAAAC






cg003
CAGAACACCGAATAAATACCAGTTCTTACATGACATTTCACTCCACGGAAAAAT
10


38702
CTGGAG[CG]CACACTGCACCGCCGCCCGTGTGGCCTGCCCGCAACCCGGTGGC




TCTGCCCGGCCCCGGC






cg003
GAAGCAGTTCGATGCCTACCCCAAGACTTTGGAGGACTTCCGGGTCAAGACCT
11


50702
GCGGGGG[CG]CCACCGGTAGGCCGCAGCGGGGCCGGGGTCGCGTGGAGGG




GGGCGTCCTAGAGCTTAGCC






cg004
CTTGCACCTCTGGCTTTTGCAAACTGGGGGCCCAAGAGCTGCACCCAGGGATT
12


10898
TTATAGC[CG]TTCTTATCGGTCCTCAGGATCAAGGACCAATCAGGTCCCTCAAC




TGGTCTGGTGAGCCAA






cg004
TTGGGTGGGGCGTCTCAGCATTCCTCCAACGGGCAGGTCTCAGCGCTCCTCCCC
13


12772
CTGCTC[CG]CTCCTCTGCAGGGCCCAGGCGCCCTTGGCCTTAGGACCCAACTTC




TCTTACCGCCATGGA






cg004
TTTCTCTGGGAGGGGGCCTCTGCCCAGCTGTCCCCTGTGCGTCATGTGCAGGA
14


12805
GGCCAGG[CG]GCTCGCCTTACAGGGACCCGGCCACCTCTATATATAGCCCCTC




GAAGACAGCTGCTCAGT






cg004
CAGAGGAGACTCCTGGTCCCCTGTCCGGACCCCGCCCCGACCAGGTCCAGCCC
15


62994
CGCCCAA[CG]GCAAGTTAAGAGCCCCCCAGTGCCAGACGCTCCAGACAGACTG




CCACTCTTGGGGGGCAA






cg005
CTGGAGGCATCTTCGGACCTCTGGGCGGCCCAGCCCTGCCTGGCGTCTCCCCG
16


03840
CCGCTTG[CG]GCCTACCGCCAAGAAGCTATGCCTTAGGCAAACCATGGAGCTC




TGGCCCCAGAGGGCGCC






cg005
GGTGCCAGTGAAGGCCGGGTGCCTGGTCCCCCCAGGAGGCTGGTCTTGGAGC
17


15905
AGGTGGTC[CG]GTGCTGGTGGTGGAAGGACAGCAGCTTCTCTGCTAGTGGCC




ACAGGCAGAGCCTGCCTTT






cg005
AAAACATGCCCCAGCTTTCCCAAGATAACCAAGAGTGCCTCCAGAAACATTTCT
18


82628
CCAGGC[CG]TCTATATGGACACAGTTTCTGCCCCTGTTCAGGGCTCAGAGATAT




AATACAGACATTCAC






cg006
CTACAACTATGGCTTGTCTGAGTCCTGAGCCAGCAGAGCTCAGGCCACAGCAC
19


87674
CTGCACC[CG]TTTTCTGCTGCTGCACACAAGGGCTCTGTGCATTCCGCATCCAG




GTGTGCCCCTCCTCTT






cg007
TTCTCCAAGTAATTTTCATGTGCAGCCAGAATTGCAACTCACCAGGCTAAACTG
20


44433
CAGTTG[CG]CAATTCTGGTCTTCTTGATACCTGATTTCTTTGCCCCTTCTCTTTTC




TGGTTCAATGCAT






cg008
AATCCCCCTACCTTGATGTCTTCTCTTAGTAATCCCACTGATCCTCTCTGTTTTCT
21


45900
TTGC[CG]TATTCAGTGTTAAGCACAGTAAGTCTTTCCTACTGAAATAGCCATGG




TCCTAATCATAAT






cg008
ACTCAGTTCAAGGTTTATAAGAAGAGGAAATGTTTTGCCCTGGCCGCGTTTCCT
22


62290
TTTCCA[CG]TATTGTCTGTTAGAGTGCAAGCTGAAATAATGGGTTTTCTAGTTA




ATGGCATGTTCCAAT






cg009
GCCCGGATGCGTCCCTCTTTCTCCACCCCGCCGAGCCTAAACTAGTGACGGGG
23


43950
AGGGAGA[CG]GGATAGTGTTTCTGTTTCGTGGTCTTTGAATCCACAACCTCTAG




TCTGAACACAGAGAAC






cg009
CCCACTTTTCCAGATTGCTCTGAATGTCCTAGTGAGCTGCTCCCGTTGGGTAGG
24


55230
CTCCTG[CG]CCTCAACCGCGCTCGGTACTCGACGTTTATTATCAGGGAATTCTC




GGCTGCAAGATGGGA






cg010
AGAAGGAACTCTGAAGACTCCGTAGATTGCTCTAGACCGCCTCAGACACTCTC
25


56568
GGCGCAG[CG]TGGAGAGGATTTGTGCAAACATTTCCTCTGTGGACCAAGAGG




AATGCAAGAGGAGGCTGC






cg011
TCGCGGGTGATCTCCTGGCTCAGGGCCCGCATGCGGGAGTAGCAGGTCGGGG
26


14088
GAGTGGGC[CG]CGCGGCGGGGGCTCCCGCCAGGAGCAGCAGCAGCACGGGC




AGAGGCCCAGGCGTCCTCAT






cg011
TTGCCAGCTTAGTTGTAATTTCTTGTATCCATCTTGGTCCTCTTCAGTGCCCAGC
27


28603
CAGAG[CG]CTGGCAGACAGGCACTGGGTACGTTTTGTTGAATGAATTGGGAG




CGAACGTCGTTTAGTG






cg011
CTCCGTCGGCCCGGGCTCCTGCCTTGGGGGTGTCCCCTAGGTAGAGAATGCGT
28


31735
CGGGGAG[CG]CTTCCCGCCAGAGATGGGAAGCCCAGGAAGCCCCTCCCCATG




CAAACAGTGCCCCCGCCT






cg011
CGTGTATATTTTTAAACTGTGTGCTGACGACAGTTAAGTAAATGTGATTCAGAA
29


37065
CTTCTG[CG]TATTTTGCAGGACAGTTTTGACACAATGACATGACTCGCTAGCCA




GGAAAGATAACGACA






cg012
TTCTTAATAATGAATGAACCAACGACCCCCAAGGCTGGTTTGCCCGTGCACACG
30


11097
CACGCA[CG]TGTGCAACACGTAGCACTTGCTGAGTGTTTGCTACTTGCCAGGCC




TCATGTCAAGCACTT






cg012
GGCCAGGAGAGGGAGACTTGGCCCAAATAAAGTGACTCAGGCACCCTCAGGA
31


21637
ACTCTCGG[CG]CCCGGGGCCCCTTCGGGCAGCCTTCGACCCCCATGCGTCTTTC




GGGTCCCCAGGGACGCG






cg012
CACTTTTCCTCCCCAGTACGTGGGAGCCCTAGAGGACATGTTGCAGGCCCTGAA
32


52496
GGTCCA[CG]CGAGGTGAGTGCAGGCAGCCTCAGGGCTTTCACATCAGCACGT




GGCTGTGCTACTGGACA






cg012
GGCGAACCCACCCCTCCAGGCAGGGTTTCGCCCCTCGCCCCGCCCCTTCCCCCG
33


54459
CCCGGA[CG]GCCATGGCCATTCCCGGCATCCCCTATGAGAGACGGCTTCTCATC




ATGGCGGACCCTAGA






cg012
CAGTTTTAGTCCTTTACGGTGATTTGTAAGCCCAGGCCTTCTTAACTAGGCAAA
34


61503
TGCTGC[CG]CCAGGTGGCCTAGGCCTAACCCCAGAGCCGTTGTCTTGACGCTT




AAGCTTCCGGGGAGGG






cg013
ACGGGCAGGAATCTGTTGTAGAAGAGTTGCTGCCGGGACCTGCTGGTGAATT
35


35367
GGCTCCAC[CG]GATCCGGCTCCGCAGAAAGCTCACTGCTTCCTGTGGCTCCTG




GATTTCCAAGCCTCTGGG






cg014
AAGAAGCTAGGAGGGGAAATAAATTGAGTGGGGGTGGGGTTTCCCAAGAATC
36


00401
GGAGGAAC[CG]AGAACGAAGAGGGGTGGGGGAACGGGGAAAGAGAGAGGA




AAATCAAGTTTTCTTCAGCAC






cg014
TATGACACACCTATATTCACACAGTTGTGACTGTGGACACGCAAAATGCCTGAG
37


41777
GCCCTG[CG]TCCAATCCCGGAAGCACAGTTCCTGGGAGGAGTCACTTCTATAA




TAGCCGTATCTTCCCT






cg014
GGTGGTGGACTTTGGGACTGGACAGACCTGGTCACAGTCTAGGTTCTACATCT
38


50842
TACTGGT[CG]AGCAACTTTAGGCAAGTAGCTTAACTCCTCCGAACTTATTTTCCT




TTTCTACCAAATAAT






cg014
GCAAGTTTAAAAGTACTCACAAAATCTAATAGGCAATTCAACATAAAACTCCAT
39


59453
GGCTAT[CG]CTGTTCCTCACTTTCTGAACCTTTACCTGCCTGACTTTACTCCATA




CCACTCCAACTCAC






cg015
GTAGTTTTATTGTATCAGACTTAGTACAGGGGTGGGGTGGGGGTGTGTATTGG
40


11567
AATGATG[CG]TGCCCGTTTCTCTGCAAAATAGTTTCTATGTCATGGAAAGGAGT




CGATGGGACAAGAAGA






cg015
CAGCCCCGCGCCGCATCCTCCGGCCGCCCCCTCCCCGCTGCGAGCTTACGCCGC
41


19742
TGTCGC[CG]CCGCCACCGCCTTAAAAAGGACAAAACGGAACAGAAAATGAAT




GCATGCACAAAAAAAAT






cg016
ATGATAGGTGTGAGCCCCTGCGCTTTGCCAGGGCTGGTTTTTGGATGTGATTCT
42


23187
CAGGGC[CG]TCTTTCTTTACCCTTCTGCTCTGCTGAGGCCCACAGCAGCCTAGT




CTCCTTGGGTGTGGG






cg016
TGCTGGGTATCCGCGCCGGAACCGCGAGGGGGTTGGTTCAGGCCTAGGCGCG
43


26227
GGGCAGGA[CG]GGACCGGTGAGTGGCTCCTCCAAACAGCTATAGAGACCCAG




AAATGCCTGTGGAAAGCTA






cg016
CAGAACCTGCAGGAGCAGATCAATCCCCTCTTGGTAACACACCAGAGCCTGCG
44


51821
GATACCG[CG]ACTCCGAATCTAGTTCTACTGCCCGCTTTAGCACAGTGGCTGCA




GCTGTGCTCTGCGGGT






cg019
CTTCTAGTGGCAAATTTCTCCCTGCTGTGGCAGGAGGACGGCTCGGGGGAGCT
45


18706
CTGACCA[CG]ATTTCATGCAAAGATACGGTGAGACCCTCCGCTCAACAGTGGC




TTTTCTAAGGCTCTCCT






cg019
ACATGGGCTTCTCTTCGAGGAGGTAACATGTCCGCGCCCTGAGCCACGGCTCT
46


30621
CTGGGCG[CG]GCCATCTTGGTAGATCTGCCGTACAGAAGGGAAACAGTTGTTC




TTGTGTCATTAAACCGG






cg019
GCTTTTTTGGATTGTGTGAATGCTTCATTCGCCTCACAAACAACCACAGAACCA
47


46401
CAAGTG[CG]GTGCAAACTTTCTCCAGGAGGACAGCAAGAAGTCTCTGGTTTTT




AAATGGTTAATCTCCG






cg020
AGAGGCCTCGGTGATTTCCCGACCTCTCCTGTGAAGCCTGATTCGGAACTCTTC
48


16419
CAGCTG[CG]AAGAACTTGGCCGATTCTAAGGCACATCAGGGCTGCCTGGAACC




CTAACACCTGCCTAGG






cg020
TGCCTGATGGATAATCCATCACTTGCTTTTCTAGTATGAATGGTCTATTTACGGG
49


71305
TCCAG[CG]CCCCTGCTGGCTTACGACCTTTTCCAGGGCGGGGAGGGGCTGTCC




TCATCTCTGTGACCC






cg021
ACTGCGCCCAGCCCATTTTACAGACTTTTATTTTGTTCAGTTTCTTTATTGTCTTC
50


51301
CCAA[CG]TCCCCCCACACACACTGCACTAAAATGCAAACTTCACGAAGGCAAG




GAGGAACTTTTGCC






cg021
TGGGGAACGCGAGTGGGGACAGGGGGGCCTTCAGCTGGGCCCCAGGGAACC
51


54074
GCCCCGTGG[CG]CTCTCGGCCTCGCTCTCACTCACGGTGCTACAGGTGGTAAG




CAAATTGACTATGTTGTGG






cg021
CAGCCCCCCTCGGCGGCCGCACCGACACCGCACCCCAAGTCCTACCCCGGGGC
52


97293
CTGGCGG[CG]CTCCTCGCCGGGATGCCCTAGCTGTGCCGCAAGCTCCCCACGC




CCCTCTGCGTCCTTTTT






cg022
AGGAACCCATGGGAATGAGCTAACCGGAGTATTTCTGGTTAAGCATTGGCTAG
53


28185
AGAATGG[CG]CTGAGATTCAGAGAACAGGGCTGGAGGTAAAACCATTTATTA




CTAACCCCAGAGCAGTGA






cg022
GTGTGCAGAATTTATATATATAAATATATCTCCTCCAACCCCTCCCAATGAAGCA
54


29946
AGTCA[CG]TGAGTCAATCCTACCCTAAGATATTAGGGATTGAGCCTCCTGGGA




CATTTGGTGGCTTAG






cg023
GTGGGAGGTCCTTATGCTAGGAGACCTAATGTCTGTGCCTCAGTTTCTCTATCG
55


09431
GAGAGG[CG]ATGTCTCAAGAGGCCTTTCAGGGCTCAGAGTTGAGCTTTCTGAG




TTCCACATGGAAGTGA






cg024
GAACGACTCAGTCTCTCAAATCATAGCTAATTCTCCTCTGAGGGCCTTGCTGAA
56


80835
GTTCTG[CG]TTTGCTTGCTCCGCTTTCCTCTCATTTTGGACCTCCAGCCTTCCTGT




AGTCCGAGGCCCT






cg025
CCTCCGGTCTAGGGCTCTTTGTCTTTGCAAAGTGTCGAAACTGTCTGGCATAGT
57


03970
GGGCTC[CG]CCGGCGGAGGCTGGAGCCGAGGAAGCGAGGAGGCGGGATGA




GGGTGGGAGAGGGCTCGGG






cg026
TGCCCGAGGCAGAAGGATGTTTGACCTCCGGATAAGCGAGGCGCTGCTGTGC
58


31957
ATTCATTC[CG]GGCTGCATCGGTGGCGACAGCAGAGGCTCGGGCGGCGACTCT




CCGGCCAGCGGCGGCGGT






cg027
ACTGTTCAAAATGATGAACGAAGATGCAGCTCAGAAAAGCGACAGTGGAGAG
59


35486
AAGTTCAA[CG]GCAGTAGTCAGAGGAGAAAAAGACCCAAGAAGGTAAATCGC




CGGAATTAGGAATGTCTGT






cg028
TCCAGTTTTAATCTTTAAAAAGAAGAAGAAGCAGCAATGCATAAGCTGAGTGA
60


02055
TTCCCCG[CG]GAATCCAAAGCTAACAGAGCCAATAAGGCACCTTCGAGGGCAT




CCCAGCCCAGCTACTGA






cg029
CTCTTGCAGGAAGCCAGTTGAGGGAAGTTCTCCATGAATGTACGTCACAATGA
61


76574
TGATGAC[CG]ACCAAATCCCTCTGGAACTGCCACCATTGCTGAACGGAGAGGT




AGCCATGATGCCCCACT






cg030
GGTGACAGGGACCTAGGGCCTGGGCTGGGAGGAGGCGGGGCTAGTCCAGGA
62


07010
AGGGACCCG[CG]CCACCCAAGTGGCCCCTGCAGGGGCCTCCTGAGGCTCCTG




GGTCCTTCCCCAGCTCCCAT






cg031
TTCTTTCTCCTCCACTGCAAAGTTAAATGCGAGAAGGTAGAAACCCAGAGGCCA
63


12869
TGCTGG[CG]CTGAGAGATGAGCCCCACTCACCAGATTCAAGATCCCAAGGTAG




GCACAGACACAGGGCA






cg031
TGGAAGGTGTCAGCGTGTGGCTGTGTGATCTTGCATGTGTCTGTGTTCTGCAG
64


72991
GAACATG[CG]TCAGTGTGTGTGCATCAGTGTGCATCTCTATGTGTCATGCACTG




GTGTGTCTTCGTGTAT






cg032
AAAGTGTTGGGATTACAGGCGTGAGCCATTGCGCCTGGGCAGGTATTTTTTCT
65


58472
CATTAAG[CG]CTCCCCATCCAAGTCTGCCCTAGGCAGGAGTGCCTAGTGCACG




GGTACATACATACCCCG






cg033
AGGGCGTTTGCCACAGCCCCTTAACTCCTTCCAAAACACTCCGCTTAGATACTG
66


40261
ATAAGG[CG]CCAACTGCAGCCTGGAGAACCCCTATGCGCCATCTTGGCTTCCC




GCAGGCCTCTGCGCCG






cg033
CAGCCTCTTCCTGCTGTGTCACCATCTGCGGGAGGTGGTACTCTAGTCTCCCCT
67


87497
AAGACT[CG]GCTTGCCACCTGCACCAGCTCCCTGGGCAAAGGTCACCTGTGTTC




TTAATAGAGCAGAGA






cg035
ATGGAGTATGTATATGTTCAGCTTTACTAATGCCAAAATGTTTTCCAACATAGTT
68


35648
GTAAG[CG]ATTTGTGCCCTCGATAAGCAGGGTATGAGAATTTCCATTGTTCCAT




GTCCTAGCTGACTC






cg035
CAAATCTCTCTGCTTCCTTCGATGTTGCCTGTGGCAGAAATTTACATTATCCCTT
69


65081
CAGCC[CG]CTTAAAAAATTCTGTACTTCCCAAGCGGCTAAATTTTTAAAGTCCCT




CAACCACAAAAAT






cg036
AAGTAGAGAGGCAGCCGGGAGCCTGCCTTCTGTGTTCTCGGTGCAGGGGTATT
70


23878
CTGAGAA[CG]GCCCCTGCTCACACGGGTTTAAAAGGAACTCAGTGACCACAGA




CGGATGAGAACAGCGGA






cg037
TCCGCAGGGGTCTCCTGGGAGGAACCCACCAGCGATAGGAACACTGAAGCTG
71


03325
GGCTACGG[CG]TCCGCCCGAGCCTTTTCTTAAAGGCGCCGACCCCGGAAGCGG




GGCGTCCGAGGGAGCGCG






cg037
ACCTGCGCCCACAGGGCCTGGGGAAACCTTGAGTACGAATGCCACGCCGCGG
72


24882
CTTGTGGG[CG]ACACCACCGCTGTCACCATGCCCCAGGGCCACCTGGCAATGC




TGCTCTTTTCCCGTGACG






cg038
AAATTGATCAATACGAATGATCACGCCCCATGTGCATCTCCTCAGCAGCCACAA
73


19692
GAGAGA[CG]AGGTCACTGGAGGATAAACATCCGTGACTGCACCTCATGATCCA




TCACGCACGACGGCCG






cg039
TCTTCCTCCATGTCCAAGACACCCAGCTTAACAACCCTGTAGCCCCCAACTTGGC
74


29796
CCTAG[CG]GCACCTCGCCTCGACCTTGCCATTTTATACTCAATTGGGGCGTAGG




GTTCTGAAGCCCAG






cg039
CATCTCCACTTCTCCAGTCCGCCCTACTCTCCACCCGTGACCTCCAGTGGAGACC
75


77782
CCAGG[CG]GCAGCATCAGTATTTGATCGGCCCTTCGTCAGCACGCTGCCAGCC




CTGGCCGGCTGGGTT






cg039
AGTTGCCACAGGGTAAGCCCAGTGCCCTTTTGCCCAAGGTCAGGTCACTTGGT
76


91512
GCTGGGG[CG]TCACAGAGCCCAGGAAACTTGGGATCAGAACCCCCTGCTCCCC




GCTCCCCACCTCATCCC






cg040
CTGACCCTCACGCAGTGTCCGCCTCCAGGGAACTGTGGAACACGTCGCAGAGA
77


07936
GCTCAAG[CG]CCACGTTTGGATCCCTGAGCAGCTGTCACAAGCCTGCACCCAG




GACTGGGGGGCCTGCTG






cg040
GAGGGAGCAAAGGTCTCCGGTGTGGCAGGCAGGTTTTTCCAGGCAGCTGGCA
78


14889
GGTGTGCT[CG]CGCAGCTGACACTGCCTTGGGAGCACAGAAGGTGGCAGCAA




AGATCATGCGGTCTTTTGA






cg040
AGGGTGCCTGCCTCTCCCGGCCTGCGCCTGCGCGCTGGGGCCTTCGGCTGAAG
79


84157
GGGTGTG[CG]CTAGCGGAGCTCCGGGAAATGAATGAATGAATGAATGAATGA




AATGCTGAAGCGGGCAGG






cg040
TAAGGCATCTGCTGAGTGTATAACCATTTTACCTCTTGTTTTTAGCCCTCTTCTG
80


87608
GGTCA[CG]CTAGAATCAGATCTGCTCTCCAGCATCTTCTGTTTCCTGGCAAGTG




TTTCCTGCTACTTT






cg041
GACGCCGGCCCGAGGTGGCGCCGGAGCTGCTGGCAGAGGGGCGGCGGGCGG
81


69469
CGGCGGCGG[CG]GCTACAGGAGGGACTGACAAAGCCCCACGGCACGCCGCTC




CCTACTTATAGCACCGGCGG






cg043
CCCCGGTCCGCCTGGCCCCTCGCCCGCCCGCCAGGCCCGCCGAATGCGGCCTC
82


33463
CGCCCCG[CG]CGCCTAAAGGAGGAGCGTCGCGGGGGATGGAGGCGGCGCGC




GGTGGGACCTGGGGAGATG






cg043
CGAACTCCTCACCTCAAATGATCCGCCCACCTCAGCCTCCCAAAGTGCTGGGAT
83


59302
TATAGG[CG]TAAGCCACTGCACCTGACCAATACAGTCTTAATAGGGCTATTTGG




ACCTCCTTGGAGACA






cg044
GAGACCTCCTGCCAACCCAATTCCCAGTGCGCAGATGGGGAGGAAGAGGCAG
84


16752
CGAGGAGG[CG]CCCCCAGCTCAAGGTCACCCATCAGGTCTGGGGCAGAGAGA




GCCAGAAGCCCGGAATTCC






cg044
CACCCTACTGCATGTTGCAAAGTATTCCTTTAAAATGAAGTGAGTAAAATACTG
85


24621
GGATGA[CG]TTATCTGGAGCCCAAGAAAGATGGCTCATTTGGAAAGGCCTAAT




ATCCCAAGTTGCTTAC






cg044
GGCCGGGTGGGGGGAGGTGACTTGATGTCATCCTGAGCAGCTGGGCGGCGG
86


80914
GTGCCGGTG[CG]CACGGAGCCGAGCCGGGGCTCCCGTTGCGCTGCACCGCGT




TGGGTCGGAGTCCCAGGACT






cg045
GCAGCCCGGGAAGGGGCATTGGTGGCGCTTGGCAGCAGGTGTGACAGACCTC
87


28819
CTCCGGGG[CG]CCTGATCCGCGGCGGGGGCGGGGCCTGCCCCTAGGGCCCCT




CCAGAGAACCCACCAGAGG






cg046
CAAGGGTCTAGGGTCCTGGGTATCTCTAGGTACTGAGACAGCTGTGTGGTCTG
88


01137
CTGCATC[CG]TGCCCCTCTCTGAGCCTAGAGCCTGGGCTGGCCCAGGAAGCAG




GAAGAAGTCTGCACCAG






cg046
TCAGCTCGTGGGCTGCCAGCGTGCAACCTCTCACCTAGATAATGGTATATAATA
89


16566
TAAATA[CG]TTTCCCTTCCCCCCTTTTTTCTCTTCCTCCTCTTTCTCCTTTCCCTCCC




ATTTTCCACAT






cg047
GGTGGGTGGTCCGGCCCCGAGCCCTCCTGACTCTCTCGCCAATGCCCAGAGGC
90


18414
GCCGCAG[CG]ATTCCAGGGAGGCCGCGCTCTCGCCCCAAGGCAACCAGAAGC




CCACGTGCCAGGAGAGGC






cg047
GTTCTCATCCCATATGCCTTTGTCCAAAGGTTGCACGGGGGTTAAGCTTGGCCC
91


36140
AGAAGG[CG]CCGAGGGCTGGTCGAGTTCTCCCCTTTCCAAGAACCAGCCGAAT




CTCCCTCCCGCAGATC






cg047
TGATCGGGACGAGGAAGGGTCACTCCGTGACCCGGGATAGGGCCGGGATGCA
92


55031
GCCTTGGA[CG]GGGCTGGGCCCAAATGTGGGCTCTGGAGGGAGCCGGGCTG




GGGCTGGTGCTGGTGCTCCC






cg048
CAGCGGGAGATCAAGTGAGCCTCAAAACATTAGAAAAACCCAAGCCAGTCTGC
93


18845
AGAGCAC[CG]CAGCCGCCTCAGGGCCGGTTACCATAGCTACCCTTGGCTTCCC




AGCCCAGCACATGTCTG






cg048
CTCTGCGGGGACAGAGGTCTCAGGAAAGTAGCCTTTATTTATGTGGCACCGAT
94


36038
CGGAACC[CG]CGGCCGGCCAGGCGGACCTGGACGGAGCGTCCCTGCTCGGAA




CCTGGCGCGGGGCGCCGC






cg050
AGGGTAGGGAGAGCGGGAGGCTGCTGGCCTGAGGCTAAAGCTAGTCACTGAC
95


87948
CTCTATCA[CG]TGCTTGTTATATGTTAGGCATGATATGCCAGCTCCTTTTATTCG




GCGTAGCAATCTCTGA






cg050
TCCACAAAGTACTTTCCATCAGATACACTTTTCTGATGGAAACCAGGTGTGTGA
96


89968
TGGTTA[CG]GCCCCAGGTTAGCTCCAGAGCACATTCAACTGTGGGTAAACACA




AATGTGCCCTGTGCCA






cg051
TTAATGCCCCCCAGAATCAGCACCATGTCATCACAGGCTTGGGTCAAGGGGCG
97


25838
GGTCAGA[CG]CCAGTCACATCCGCTCACTGCCCACAGCCACCCCCCCACAGTG




AGTCATCTGCCAGGGTG






cg052
GGTGTCCTGCCTGGGGTATCCCCAGAGTTTGGCACACGGTGATAGCCAACATT
98


28408
CACTGAG[CG]CCAAAGGGCCAGGTGCTGCCACTCTCTCAAAATAAGCCTCTGC




CACTTACTGAACAACTA






cg052
CTGCAAGATCGTGGTGGTGGGAGACGCAGAGTGCGGCAAGACGGCGCTGCTG
99


70634
CAGGTGTT[CG]CCAAGGACGCCTATCCCGGGGTGAGGGACCTGCGTCTTGGG




AGGGGGACGCTAAGGCTGC






cg052
GATGTCTCCAGGCACCCCCGACCTGGGCTTGGCCCTCTGCTTGGGGCGGAGCT
100


94243
TCCAGGA[CG]TGCTGGGACCTAGGTCTGACCCCGCCCAAGGCAGAGTTGAACC




CACTGTGAACTTTCAGG






cg053
CTGAGCAAGTCTTTGATTCATGGATTCCCAGCAACTCTAGCTGGAACAACTTCT
101


16065
TTGGCT[CG]TATTCCTCTGGTATATGTGCTGAATTTAGAATTCAATCACTGGAC




ACCAGGAAAGGCAAC






cg054
CTTAGTTAACTCACCTGAAAAATGGGAACAATAATACAAGCCACAGTTATGAG
102


22352
AATTCAA[CG]AGATAATGCATGTACAGCACCTGGCACATGGTAAAACGCTCAA




TAAGTGGTAGTTAGTAG






cg054
GAGTCTGGTAAGTGTCGGATGGTAGAACCAGGGTTGGGACTCGGGACCTCCA
103


40289
ACAGCATA[CG]ATGTGGTGGGGGTGGGCAGCCTGGGTGGGGGTGGGCATTA




CTCTGGGGCTGGATTCAGCT






cg054
CTCTCACCCGCTGCCGGGCTGGATTGTCCTCCACTTGTGCTTATCTGGTCCTCGA
104


41133
TGCCG[CG]CTCCGACGTCTTATCTGAGGGAGCCTTCCGTTAATGAAGGCTCTAT




AAACATCTGACAAA






cg054
GCCAGGTCACCCTCTCACTCTGTGCCTCTTAGTTATCTTGCATGCTCTGGTCTTT
105


42902
GCATA[CG]CTGCTCCCTGCACCAGGAACCTCCATCCCCATCTTTGTCTGCTTGTC




GAACTTCAGAAAT






cg054
GGTCCTGCCCCTCACCCCTCTCGCGGGGGGTCGACCTGCTCGTGGATGGGGAC
106


73871
CCTGGCG[CG]CCTGGGCTCCCATCCGGGGGTTCCCCGACCCAGGTCCCGGTCA




CCCCCAGCGCAGGGCCC






cg054
GAGCCGCCGATTGGCTAGGAGCACTTGAGCAGCGGAAGCAGCTGGCTCGCGC
107


92270
GGGGACTG[CG]GTGAGGGGGCGAGCCGTGAAGATGGCGGCAGTGGTGGAG




GTGGAGGTTGGAGGTGGTGCT






cg055
GCATTACCCCTTGTGGGAGCCATATTTTTCTAGAAGGCATTTTGATCAAGACAG
108


01584
GCCTCC[CG]CGGTTATTGATCTTAGGGTCATTGAGAGTCCAAGAACTGGGGAG




ATGAAGGCCACCCGGC






cg055
TGGGGGGCGCTGGCTGCCTGCTGGCCCTGGGGTTGGATCACTTCTTTCAAATC
109


32892
AGGGAAG[CG]CCTCTTCATCCTCGACTGTCCAGTGCCGCCGAAGAAAAAGTGC




CTGTGATCCGACCCCGG






cg056
ACCCGGAAATGCACAAGCCTCTTGATGCATAAAAACAGCTGGGCTCCCTTGGA
110


97249
GACAGAG[CG]CCATGGGAAACCGGGTCTGCTGCGGAGGAAGCTGGTGAGTA




GGCTGGAAGGGCAAAGGGG






cg057
CCAAGTAAAAAAAGCCAGATTTGTGGCTCACTTCGTGGGGAAATGTGTCCAGC
111


59269
GCACCAA[CG]CAGGCGAGGGACTGGGGGAGGAGGGAAGTGCCCTCCTGCAG




CACGCGAGGTTCCGGGACC






cg058
CTCCGACCCTGCCGCCCCCATTCTCCGCTCCCCGCTCTGGGGCTGAGTGAGGCA
112


51163
GGATGG[CG]AGAGACCCCTGAGCCACCAAGTCCGCTTACCTCAGGCAGATCCC




GACGGGGGCTCGGCGC






cg058
AAAGAGACGGTTTGGGAATTGCTCTGAGGATGCTATGCAAGTCACTAATAAAG
113


98102
GAAGACA[CG]GACAGATGAACTTAAAAGAGAAGCTTTAGCTGCCAAAGATTG




GGAAAGGGAAAGGACAAA






cg061
GAGTTTTCCTCTCACACTTGACCCTGATTTTGTTTTGCAGAAGCGACAGGCTGT
114


34964
GGACAC[CG]TGAGTAAGAGTCCTGGCAAAGGGGTCTGTGACAGAGCCCTTTTT




ACAGGCTTGCTTTCCC






cg061
CTGACCTCACCACCCACCAGGGAGGTGGGTCTTATTCTGGGCATCGTGCCAAG
115


44905
TTCTTAG[CG]GGGCCCTCTAGAATCTCTAAAGCAAATCAGGCTGAAGAGGGGA




AAACCAGCAGGGGGAGG






cg061
ACTTTCCAGCTCTTCCGAAGTTCGTTCTTGCGCAAAGCCCAAAGGCTGGAAAAC
116


71242
CGTCCA[CG]ATGACCAGCATGACTCAGTCTCTGCGGGAGGTGATAAAGGCCAT




GACCAAGGCTCGCAAT






cg061
CTGTGGGTTCGGCACTAGGTCCTCCTCCCCGTGGCTTCCTAGTAGGCATGTGGT
117


89653
GGTGTA[CG]CCTGCTGGGCACCTAGCGAGAGGGGTCGTGAGTTGGGAGGGA




GCCACGTTGGGGTGCCTG






cg062
CCGCAGCCGAGCAGGAAGAGCGAGCCGGGGGATTGAGACTGTCCGATCCAAC
118


95856
CTAGGGCA[CG]AGCCTGGTATAAATCGCGGACTAACAGAGACTATCTGATGAA




GAGACTAACGGAGAGAGA






cg063
GGCTCTTTTGTGGCTAATCTAGCGAGGGACCTAGGGCTGGGGGTGGAGGAGC
119


27515
TGTCTTCA[CG]TGAAGCCCGGGTAGTGTCTGATGATAATAAAAAGTATTTGCAC




CTTGATTTGCTGACTGG






cg063
AAATTGCCTGAAATTTCAGAGTTGGACTTCATCACTTGTCTGTGAGCCGACGCA
120


63129
GGCAGG[CG]TATTCTATATCAACGACAGACTCTCCTCTGCCATTTCCTTTCCTGA




ATCTAGTTAACATT






cg064
GGAGAGCAAGTCAAGAAATACGGTGAAGGAGTCCTTCCCAAAGTTGTCTAGGT
121


93994
CCTTCCG[CG]CCGGTGCCTGGTCTTCGTCGTCAACACCATGGACAGCTCCCGGG




AACCGACTCTGGGGCG






cg065
TGTCTTTCGGTTCATAATTGCGATTGTTAGCGAAGTGGTCTCGAATTCCATTTCA
122


33629
CTCCC[CG]TTCGCCGCTCTCAGACTAAATTGCAAATATCCCCAAGTCTGTAGCA




AAAAAAGTTTTCTC






cg066
AGCGCCTGGGCGAGTGACATCTGGGCCGGACCAGCTGGTGCTGCGCGGCGCA
123


37774
GGTAAGGG[CG]TGCGCGGGCAGGGACAGGGGTAAGGGGTGCCGGGGCGCG




GGGATACAGGGAGGCCTGCCC






cg066
TTATTCTGGTATCAATAAAAAGGAACTGTTACTATAGTAACAGATATTCCACTT
124


38451
GGTGCA[CG]GCCACTTCCACGATGCGGAACATCATGTCCAAGCCACACGCTTG




AGAGGCACAAATAAAT






cg066
GAAGCAATTTGAGGGTGTTCCAGATCACACCAACAGCGGATGCTGCATCTGGG
125


90548
TAGTTCA[CG]TACCCGAACAAAAATTTTAAAAATTTGGTGTGGCCTTTGCCATC




CATTCACTCCTCAAAA






cg069
TGAGTCAGAGGCAGGTGCTGCAAGGTAGGGCCGAGGCGGGCAGGTGCCCTA
126


08778
ACTAGCTGG[CG]CCGAGGAGACCCGGGTGCGGTGGGCTCCACCGACTCTCTCT




CCCGCAGTGTTCGAGCAAT






cg069
AACCGGGACGGAGGCTGGCCCTGGGACAGCAGGCGGCTCCGAGAACGGGTCT
127


58034
GAGGTGGC[CG]CGCAGCCCGCGGGCCTGTCGGGCCCAGCCGAGGTCGGGCC




GGGGGCGGTGGGGGAGCGCA






cg069
CTCGCCTGGGTCTCTCTCGCCCCGTCGCCCCCATTCCCCCACCCTCGGAATGAG
128


75499
GAGGGG[CG]CCTGCTACCCCCGGCCAGGCAGGCAGTGTGTCCCTCGGATTCCT




TCCAATTTCCTGATCC






cg069
GTAAGACAGGAAATCAATCAGAGGCAGAGCGACGCCTCTGGCTCTGGTCTAGT
129


94793
GGTGCAG[CG]TCTCTAGCCCTCGCCCCGCCCACCGTCCCCGCGAGGCGTCCACT




CGCCGAGCCCCGCCCT






cg070
GTGGCGCAGGTGCAGGACTGTGGGAAGACAGGAGCGCCAGGGAATGTCTGG
130


38400
CCAGCAGCG[CG]CTGCCCTCAAGGGGCCTCCTTGAAGGCCCCTTGAAGAGGGC




AACACAACTAATGACGATA






cg070
CCCCAGCTCAGGGTCCGTGTACTTGGGGACCATTTCCTGCTCTGCTGTGGTCTA
131


73964
CTGGAC[CG]TCTGGCATCGCTGTGACCGCATGGGCCGTGCTCCATCAATATTGT




TTTTTTGTGTGTGGG






cg071
TACAGCCTTCCGGGAGCTGGACGGGGCCTCCCCAGCTTTGGGCAGCTTGGGAC
132


80649
AGTGGCC[CG]AGACTGTGGGAATCCGAAACCTCGCTTCTGGCTAGCCACAAGG




TCTGGGCGCGCCCCAGG






cg072
TCCCATTCACAGACAAACTGCTAAAAGCAAAACCAAAACTTTCCAAATAAGCCA
133


11259
GGCTTT[CG]TCAGTTCCTCAGAACTAGTTCTGGTTTGACTCACTCTCATGTTACG




GCAAACCTTAAGCT






cg072
AACGTGCGGTTGCCGTGACTAAACGCATTCATTCACCCTACAAGATTTAGGAAA
134


36943
ATGTAA[CG]TTGCAAGGGAAGCAAGGTCTCTGTGTAAACCTCGTAATCGCCAC




CAAAAGTCGGTAGCTG






cg072
CACATTTCCCGCACAAGTCCCCAAGCCTTGGACCCCCCTCATCAGGACCTCCGG
135


65300
CACAGG[CG]CCCGTTTCCCGCCACTGCCTTCCAGTGGTTTGGTCCCCGAGCAGG




ACCCAAGGCGGGGCA






cg074
GCCCCTCCCTCTCTGCCCTTTCATTAGCTTAATTACACCGTGCCTATGACAACAG
136


84827
AGCAA[CG]GAAACTGATACCTCGGGCCTCTGGGGCTTGAATTATTCAAACTCT




GTAAAGCAGCACACA






cg074
CGTGGGGCTGGCGGCGCGGATGCCCTGGGGCGCTGCAGACCCCGAGAGGCC
137


94518
GCTTGCCCG[CG]GGGACGTCAGCCGCTTTTGCTGTTAAAATCTGAAATGTTCAG




CAAGTTAGAAACTTGAAA






cg076
CCGGATGAGCAGTGACTTCAGGGCTTGGGCTACTCTGGCTTAACGGGACCAGT
138


54934
AGCAGAG[CG]CCGCCCGTCCTGCTTGCTGCTGGGTCCGGTTGCCGAGGCGGA




AAAGTCGCAAGCTCCTTC






cg078
TCGGTCAGGCGTGTGCAGACAGCGCCTGCAGGTCTGGGTGGGTGCTGATCTG
139


17698
AGTGTCTG[CG]CCTGGGCCATGTTTTTGAGCCTGGCACAGGGGTGCTTAGTGA




ACACATGACCGCCTAGCG






cg078
TAGTTCATCTGCTGGCCGGCTCTCAGTCCCCGTGGCGCCCCCTTTCCTCTTGTCC
140


50604
CAGAG[CG]CTCTCGACTCCACCATGCCAAGGGGATTCCTGGTGAAGCGAACTA




AACGGACAGGCGGCT






cg079
AGGGAAACCGAGGGCCAGGAAACAACTAGAATCCGACGGTATTTCCTAGCTCC
141


29310
CTGATGG[CG]CTTCCCATGCCCCCAACTAAATCATGAAATAACCCACTCACCTG




TTTGCACCGGGCCTGC






cg080
CCTTTAATCTTTTTGTTTTGGTTTGAATCTGCTCGGCGCAGACTGGCCAAGGATC
142


35942
CTCTC[CG]CCCTCCCCCTTCCTCCTGGCGCGGGAGAGGCACCGGATATCCCCAC




CCTCCCCGAGCTCT






cg080
TGTGCCTCAGGCTTATAATAGGGCCGGTGCTGCCTGCCGAAGCCGGCGGCTGA
143


67365
GAGGCAG[CG]AACTCATCTTTGCCAGTACAGGAGCTTGTGCCGTGGCCCACAG




CCCACAGCCCACAGCCA






cg080
CAGACCTGCCTTAAAAGCAGCTTGCCCGCCTTCTCTCCTCCCCTCCGGGCGGGC
144


74477
CCTGCA[CG]TGGCCCTGACAGCAGTAGGCCCCACCCCTGCTGGATCCAGTGAG




CTCAGGTGGGGCTGGC






cg081
AATGTGCTGGGTGCAGCTTTGGGTAATACATATGCCGAACCTTCTCTTTAAGGG
145


69325
TCCACG[CG]CAGCCTCGGGTGTGAATGAAGGAGAAGAGATCGTGTACCACAC




ATGATGCTTACGGAGCA






cg082
GCGCGGCAGTGGCCTCGCAGGGCGCTGGGTCCCTCTCCCCAGCTCTCCTCCCCC
146


12685
TGGCCC[CG]TCGCCCCGCCCTCGCCGGGCTGGGCTGCGGGGTCAGGGGCCGA




GCGGAGAGGGGTGAGTA






cg082
GTGAGTGAGGGGCTCAAGAAACTCTACAAGAGCAAGCTGCTGCCCTTGGAAG
147


51399
AGCATTAC[CG]CTTCCACGAGTTCCACTCGCCCGCCCTGGAGGATGCCGACTTC




GACAACAAGCCCATGGT






cg083
TCGGGGTCCCTTGGCCTGGAGACCCTTTGTCCAACCCGTCGCCCACCTCAAGAC
148


31960
CTGCCT[CG]ATGCTGCGCATACAGTAGGTATCCAATAAATGTTCCTGGGATAG




AAGGCAAAGGCGCTGG






cg084
AGCCAGCAGCAGTGCCATCATCCCGTGCCCACCCACACGCCCCATCCAGGGTG
149


24423
CCCGAGA[CG]AGCCCATCTCGGACTGCACGGCCTCCTGACTGATGGCAGCTCA




AGGACACCCGGGTCCTT






cg084
CCACTATGTTCAGTCTAGTGAGTCTGAGCAATTAACTCACATTTTGAATTTCAAG
150


75827
TCTCT[CG]CCTTAGGCAAAACACCACCACCTGATGCTCACCAGAGGGGCGTGA




CGCGGCAGCTGGGCA






cg084
TGGGCAGTGGCGGGGCACGCAGGCGGCGATCAGAGGCTGTCCCGTCCTCTCC
151


87374
GGGGGCCG[CG]GCTCATCCTGCCAGGCATCTCCGAGGAAAGTTTGCTCTCCGG




AAAAGAAGAAACCCGCGC






cg085
AAACATGGATCAAGAAACTGTAGGCAATGTTGTCCTGTTGGCCATCGTCACCCT
152


29529
CATCAG[CG]TGGTCCAGAATGGTAAGGAAAGCCCTTCACTCAGGGAAGAACA




GAAGGGGAGATTTTCTT






cg085
AGCGACAGAGCAACGTCGCACTGCATTCTTACCAAACACCCAGGTGAACGACG
153


86737
CATCCAA[CG]ATTTGGGAGCTCAGGACCCATGGTCCCTAAAAGGCAACAATTA




AGACTCCCATTTAGACC






cg085
GAAGAGAGGAGAGGTTTAGAGTCAAAGAGCCCCAAACATTAGTGAGAGTATA
154


87542
TGTATGAA[CG]TTTGGTCATCTTAGAACAGTGGTTGGCATCCACAGGAGACCA




GCAGAATCACATGGGCGC






cg086
GGGGATCCCCAGTTGCCAAAGGATGGAGGGCGGAGCTGGAGGACCTCAGGCT
155


54655
AGTGAGCA[CG]CCCTTGCCCAGGCCTGCAGTGGCTGCACTCGCCAGCTGGCCC




ATGGCCCTGTCCGACTCC






cg086
TCTTTTTGTGACTCTCAAGGAAAGTCGGTTTTCTGAGCTCTTACTGGCTTAGTAG
156


68790
CGTGG[CG]TTCAACGCAGAGCATTCTAGGTAATGTAGTTTTCATAGATCCCGA




GGTGGGTGCCGGGGA






cg086
GAGAAGGGAGGCAGCTGCGGCAAAGTTAGAGCAAGTACTGCAGCAGCCAGG
157


94544
TTGGGTCCG[CG]CCGTCGGGTTTCTGAGAAAAGGGAGGAAAGAGGCGGGGC




CTGCACGGTGTGTCCCCGCCC






cg088
TTCCTATCCCACTGATCGTTTTAGAGCCTGAACAGACAAAACATCCTGGTTACC
158


72493
AAGACT[CG]AAGAATGCATAAGCTGGGACCAGGCAAAACAAACAGATCACTG




TGGGCTCACAGAGCAGG






cg088
GGGCAACGCGGCCGGATCCTGGAGTTCCCCTCCGTGCTGTGGAATTGGGTCAG
159


96629
GCGTGTA[CG]GTCCTGACCCTAGGACACAGCTGCATGTCCTCACCTCGGTGTTC




AAAGCTGCACCGGCCA






cg088
GGGCGAGGCGTGAGAACGAGCATTTCTAAGTTCCCAGGTGATGCCCCTAGTGT
160


99632
TGGTCGG[CG]TCCACACTCTGAGGACAGTGACCTCTCTGCTCTGTCCCTCATGT




CTTACTACTACTGTCT






cg089
AATCATCAAGGCCATTTTCAAATCCCATTGGTCTAGCCGTCACATGGTGAGAAC
161


00043
CGAATG[CG]CGGATAATTACGGAGCTGATATTTCCCCCCCTCCCCTTCTTTTT CC




TCCCTCCCCTCCAA






cg090
ACCGCATACAGCACAACTCAAGTTTGCATCAGACTGGGAAGCGAACTTAAGCC
162


45681
AGCGGTG[CG]TGGCCCAGGAGTGGGAAAGGAAATGGATGCCTGAAGTGGAA




GAGGTGGTGCAGAGGGGGC






cg090
TTTTATCTGCCCTCGGTACGCTGATTTCCAAAACCCAGCCTCATATTCTATACTC
163


96950
CAAAG[CG]CACTGCCAGGTGGGCCAACTCCAGCCCCCACAATCCGATGCCAAG




GCCACTTCTTGCCAC






cg091
GTTTATAGTGGTCTGGCTTTTGGCCATGACAATGACACCTTGCCCTTTTAATTTG
164


96959
GGGCC[CG]TGCAAATATTCACTGAAAGCTGTCAAGAGGAAAACAGAATTGGTT




ATTGAATCACTTGCT






cg092
GCCCCCTGGCGGCCACAGCGCAAGCCCGGTCTCTCCTCCTGCTGGAAGGACAC
165


54939
CGGGGAC[CG]CACCTCCAGCTGTGGGAGTTCCGAGAGACCCCGCCCTGCCCGC




TCCTCCCTGGAGGCCGC






cg092
AAGTGCGGCCCTTGGGCCCGCAGCATTAGCCTCATCAGGGTGCTGGTTAAACA
166


94589
CACAAAT[CG]TCAGACCTCCACCCCAGACTTTCTGAATCAGAAACTCTGGGGGC




ACAGCCCAGGAATCTT






cg093
CAGGGAAACGCGGGAAGCAGGGGCGGGGCCTCTGGTGGCGGTCGGGAACTC
167


04040
GGTGGGAGG[CG]GCAACATTGTTTCAAGTTGGCCAAATTGACAAGAGCGAGA




GGTATACTGCGTTCCATCCC






cg093
ATTTCCATGATAAAGTATCGTTTCCCTGGTAACAATAGCATTGGTCTTGAGAAG
168


22949
CTTCTC[CG]ATTGCAGCAGGACCTTTAAGCTGAGAACTGAAAAACGAATGGGA




AGTGTTATGAGCAGAA






cg094
TCCTCGGGAGACAGGGTCTCCAGCAGGCTGTCGATGTCGGGGTCTTCACTCAC
169


04633
CTGCCGG[CG]ATATTTGGCTACTCTAGACATCTTGGCAAAATGGGCTGTGGCT




GCCAGGGGCTATCAGAG






cg094
CGGGATGGGGGAGCCCAGCAGTGCCCACTGCACGCCTGGTGACGAGTCTCCC
170


13557
CTCATCTG[CG]CAGCTCAGTTTGCTCAGTTTGCTCTTCGTGACACGTGACTCGG




CAAGGGGAGCAGGAGGA






cg094
AAAAAAAAGAAAAGAAAATACTTGATGGAAGGCTGCCATCACCATGCTGCAAA
171


34995
ATCTCCA[CG]CCCCTGCTGCCCGCACCTGTCCTTCCTCCCTCCCTCCTCCCCTGG




CCTGGGGAAGCCCCT






cg094
GAGGGAACACATATAGAAGGGATTAAGGGGTAGTTGATGACTCTTTGGGAAA
172


80837
AGAGGGTA[CG]GGAGAAGCAAGGGGAAGAAAGACATCTATTTGTCAAAGAG




CAAAGGCAAGGCAAAGCTGG






cg095
GAGCCGCTCGCTCCCGACACGGCTCACGATGCGCGGCGAGCAGGGCGCGGCG
173


48179
GGGGCCCG[CG]TGCTCCAGTTCACTAACTGCCGGATCCTGCGCGGAGGGAAA




CTGCTCAGGTGGGCGCGGG






cg095
GGAAGCCCGGAGCCGCCCCTCCCCGCTCCCCCGCCCCGCCGCCCCGGACGGAC
174


56292
GGGCGCG[CG]GAGCCAACCCCGCTGCCGCTGGCTGTCCAAATCCCACCAGAGC




CAATGGGAGCGCGAGGG






cg096
GGAACGGTTCCGGCAGGGTTGGGTTTCCAGAGCTGTCCAGGGGCGCCTGGTG
175


30437
CTGAATCC[CG]CTTGGAAAGAGGCTTGGAGGTGGATGGGAAGGGATTTCCAA




CGGAGGCGGCTCCTCTCTC






cg097
CGCCTCTCTGGACCTCTTTTT1CATCTGTAGCTTGGGGATAACACTGACTAACAT
176


99873
GGCCA[CG]CTGAGCACTGCAAATCTAGCCTGATTGCCAGTCAGAATGCACGCC




CGGCCTCGCTGTTTC






cg098
CCCCAGAGAGCTTTCATCTAGAAGGTTTGACTCTGGCCAGACAACCAGCGAGC
177


09672
ATCTTCT[CG]CAATCTGTTGCTTCTTCCATGGCAAACTCCAGAGAATTAAGAAG




CCAAACTCAACATCGC






cg098
CCAACGGGTGAAGAGCCTAGGTGIIII1GATCTGTGCCTTCTCTGTTCCTCAGA
178


51465
GATATG[CG]GGCGTCCTTCTAGAAGCCCATCTCGCTCACCTGTGTGGTCACCCT




TGTCCCGCCCTTCCT






cg098
TCGCCGCCTTCTCGCTCATGGCCATCGCCATCGGCACCGACTACTGGCTGTACT
179


92203
CCAGCG[CG]CACATCTGCAACGGCACCAACCTGACCATGGACGACGGGCCCCC




GCCCCGCCGCGCCCGC






cg100
CTGTTGACCCGCAGGACTCGCTGGATGTTGAGGTCGTCAGCACCTTCTGCGGG
180


52840
GGTCAGG[CG]TCCGGGCCCGCTGCCCACAAACACGGGATAGTGGTTCAGGTCT




GAGTGAGGGGGTGGAGA






cg101
GGCGGCGGCGCCAGGACATGGAGCTCGAGAACATCGTGGCCAACTCGCTGCT
181


58181
GCTGAAAG[CG]CGTCAAGGTGGGTGCGCGGCAGGCGCCCCCGACCCCCCCCC




CAGAGAACCCCGAATCCCG






cg102
TCGCCCCCAGCCCACTTCACTCCATCACTGTCTTCCTTAGAGTTTATCCAGAAGG
182


02457
CAAGA[CG]TGGTATCCAAGCTCAGAACCAAGAGCCCACAGCATGGTGTGAGCT




CTTTCTGCCTCTTGC






cg102
GTGATGTTTAGAACCTTTTGGGGGATTCCTTCTCTCTCAGAATTTAACCTGGCA
183


25525
AGAGAA[CG]ACTGAGTTCTAGGAATTTTCTTGTCTGGAGAGAGTAAAATAAAT




GTATTTTTTAAAAGCT






cg105
CTCGCTGCTTCTCCCCTAGTCTTCGGGTCCCTTGAACGCAGGTCGCTTGTTTGCC
184


23019
TTACG[CG]TAGTCAGCGGCCAGTGGCTATTTATGGCAGTAAGGAATATTATCC




ACATTTCACATGGAG






cg105
TAAGCTGTCCAGACCTGGCTTGAAAACCCATCCCATGGCAAGGCAGGGATTCG
185


70177
CTGGCCG[CG]GTTGGCTCTATCTTGATCTGAGCAAGCCGCTGGACGTCCCTAG




TTATCTTCTTCCTATCC






cg105
CTCTCTGCAGCCCAGGAACAATAAATACTTCCTCCCCATGTTTAAAAATAACCCC
186


91174
ATGAC[CG]CTTTTGGCAGTCATAGGTGAGGCGGGCACCACCTAAGGCCCCCCC




ACCCCATGCCGTTCT






cg106
GAGAATCTGAAAATGAGACCCAAGCGAAAGTATAGACATTTTATTGTGGAGCA
187


36246
AAACCAA[CG]ACACCCTCAAGGGAGGAGTGCAGGCACTCAAAGATTTGAGTC




ACAGGCAATGTGGTTCAC






cg106
CTCAACAAGGCCTGCATCTCCGGACTGGAGCTCAAGTATAGCCCAGCGAGTGT
188


54016
CAAGAAA[CG]AAATTCTCCAAGGGTGGCGGAATCAAGCCCCAAGTCCCATGTG




TCACTGGACCGGTGAGG






cg106
TAGCCACCTCCTAGCACCTCAGGTTTTTTACCTTTGAGTCTATGAAGCCTGCGG
189


67970
AGGTCA[CG]CCCTAGGGAAAGAAGGAGCCCACTGGGTGTCAGGTCCTGCCTCT




AGGGAGGGGACCGCGG






cg106
GAGAAGGGCGGTGGAGTGGGACTTCCCGCTGGCCTAGAAAACTTCAGCTAGG
190


69058
GCTGGGGG[CG]GTGGCTCCTGCCTGTAATCTCAGCACTTTGGGAGGCTGAGG




CTGGAGGATCGCTTAAGGC






cg107
ATATAGTCCTATTGGAACCCAGATAAGCTTAGTCTCAAAGCCTCCCCTCTTGTCA
191


95646
CCACC[CG]ACTCTGCCTTACTCTTGGTAGAACCACAGCGATGACAGCTGCTTGG




GAACATAACCACAA






cg108
GGCTTTTCCCTTTGACCTTAACACTTTTGGGGTTATCTCTGAGGCGAATGCTAAA
192


78896
GGAGA[CG]CTCCAGGACTCGACCTCTGAAGGTCCTTGGAGCCAATTCCGTAAT




ATGATCATGGAAACT






cg109
AGAGACTGTGTCCACCGTCATTGAAAGGGTAATGCTTGAGAAAGGCCTGAAG
193


00550
GATATGGG[CG]GACAGAGTGTGTGTCTAGGGCAATAAAAAGTAACTGCTCCA




GATGTTGAAGAAAATAATG






cg109
AAGAGGGCCCCTCCAGGCCAGTCTGGGCACCCTGGGATAGCGGCTGCAGGTA
194


17602
GGCAGAGG[CG]CTGCCAGTGCCCAGGTGGCCTTTCCCTCCATCCGGCCCTTCCC




ACCTTCCTATAACCTTC






cg109
GAGGCAGCAGTAGAAACAGTTTGCTCCAAGGACCAAACTTATTCTGGTGTGCA
195


22280
GCTCACT[CG]CCCCTACTCATCTCCAGTGTATTTCAAGAGTATGCAGGGAAGGA




AAAAGTCAGGCTGAGT






cg111
AGCGGACGCCTGGGCCAGGCCTCACAACGTCCAGAGCTGGAATGGGTCTTTTG
196


77450
CTTTCGG[CG]CAGGGGTGACGGGATCAGCGGAGGGTAGGGGTGTACACTAGC




TGCGGTCTGATTTAGCCC






cg112
AGGGCTGTCGCGCCTGCCGTGTGGTCCTGGAGAATGAGGCTTACCAAAGGCTC
197


33384
AAGACAG[CG]TCCCCATGGAGTGACATGGTTAAAGTGTTGAAAGAAAAGAAC




TGTTGGCATTGAATTCTG






cg112
GGTTCGCTGACGCTCAGTGTTTTGGCCCGGACGGTCACATGTTTCCTTTGTTGT
198


37115
GAGCTG[CG]GCAGAGACTGGTGGCTGGAGGAGACGCCGGCGCTGGAGAGTG




CGCTGCGCCGCCCGCCGC






cg114
CCAGGGAAGCGAAGCCCAGCTGTTCCTTCGGGGTGTGTACTTGGAACTGCATC
199


26590
CAGGTCT[CG]CTTAGGGTCCCCGCGGCGAGGCGGAGCAGCTAATTTGAGAGC




ACAACAAATAAACAAGGA






cg114
TGGGGTTGGAGCTGGGCTGTGGCACTGGACTGCGTTCGGGGACGGGGGACG
200


59714
CAGCCAGAA[CG]CGAGGGTGGTAGGGAAATATTGGGGGTTTCGCGTGCACCG




AAGGGAATGGGAGGAGAAGA






cg114
CGGATCGCGGGGAAGTTCCTCTCAGCGCCTCAGGTGTCTGGGCGTGTGCAGCT
201


87705
GTGTTGG[CG]CACACTTGCCGCTACAGCCCTTCTGTCAGCCCTTTAGCTTCGAT




GGGGCGCTGGTGGCCG






cg114
TAAAGAAATGACAGGTGTTAAATTTAGGATGGCCATCGCTTGTATGCCGGGAG
202


90446
AAGCACA[CG]CTGGGCCCAATTTATATAGGGGCTTTCGTCCTCAGCTCGAGCA




GCCTCAGAACCCCGACA






cg116
CATAAAAGAGGAGACATAGGGGGCTTGGTGAGATACCCTGAAACCTCCCCCCT
203


00161
CTGACCC[CG]CAGCCAGGCCCCAGGCTGGCCGGGAGTGGCCCCTCACACTGGT




TCTCCCCACTTTCTCTG






cg116
CCTCGCGCTGATCTTGGTGGGCCACGTGAACCTGCTGCTGGGGGCCGTGCTGC
204


18577
ATGGCAC[CG]TCCTGCGGCACGTGGCCAATCCCCGCGGCGCTGTCACGCCGGA




GTACACCGTAGCCAATG






cg116
GAGTGGGTGGGTGGGTCTGGAGAAGCTATGTGTACCAACCAGGTTCACATATT
205


31518
TTTCTTC[CG]TGAAGCTCTGTCTCCACCCTCTCTGGAGCTTCTGCCTGCCTTATTT




ACACCCCACTCTCC






cg118
GGGGGAAAGTAAGGGAGAGAGAAAGAGACGGAGAAAAACAGGAAAACTTAC
206


33861
TCTTCAGTA[CG]CAGGGAAGAATAGAGAAAGAAAAACACAAAGAAACGCCAC




GCAGACTGCAGAGAAGGACC






cg118
TCGTCGGGGAGTGAAAGCAGGCGCAGGGAAATAAAAAGAAGGAAAGGGAGA
207


96923
CAGACCAGG[CG]CCTAACAGATGGGGACCAAGAAACAAGAGATAGCTGAGAG




GTGCAAACAGAAGAGAAAAA






cg119
GCCAGCCCAACTGTTGTATTTTCAGTTCTTCCAGTGTGAATCAGTTAATATTCTC
208


03057
GGGAA[CG]AGGGAGAGGTTGATCCTATGAGGAAATCAACCACAGTGAAAAGG




CTTGGGCCGCTTTTGT






cg121
TGGCGGTGGGCTACCCTTTTGTTCCTCTTTTACCACCTGGGTTACGTTTGTGGGC
209


45907
AGATC[CG]CTACCCGGTCCCAGAGGAGTCACAGGAAGGGACTTTTGTAGGGA




ATGTCGCTCAAGATTT






cg121
CCTTGCTGGCTCTGTCTGCTGAGGTTTTACCCAAGTGACTCCATTTTGAATCTTA
210


77001
CAACT[CG]CACACTACTCATGTGGAAGATTTAAATGTACATTCCAGGACCTGGT




GCTTTCTCTTCCGC






cg121
GTGGCCACAGAATCCCCTTCCTACAACTGGCAGGGGTCGGCATGGGCTGGAGC
211


88560
TCAGAGA[CG]GCCAGCTAGGACTTCAGGACACACAGCAAACTAGCTGCGCCCC




GCTGAGGGTCAGCGCAC






cg122
CTGACCTCCAGGAAGCTGAGCGTGGTGGATGGAACTCTACGATCTCTTTCTCTC
212


38343
CAAGGA[CG]GAAACCTCATCCAAGCAGTCCCAGAGGAAACGGATAAAGGTAT




TTGAAAGGGAGCGAGCG






cg122
GCCCTGGCAGTGCTCTCGCGGTGGCCTGGCTCTCTCTCTCCGGCCTGAAGGAG
213


47247
AGCAAAG[CG]CCCCAGCTGCCTAGGGCCACCGCTCCTGACGAATCCGCCAGCC




ACTGCACGACAGATGGT






cg122
TATCAACAAAAATACCCACTTCAGGAGGTGGTTGTAAAGATTATACAAGAGAC
214


61786
TGCAGAG[CG]TTAGGCAGCACCTGGCACAAGACAAATGCTCAGTAAAAGACC




ACTGCTGTCATTAAGGTC






cg122
CTGTCACAATTGTTAACACCTTCTTTGACCAGCCTTTTTACATTTGACAATTCTCT
215


65604
TCAG[CG]CCTCTTTCCTGCCAGCAGGAAGGTTTTGCTGCCTTGGCTTTCGGGAG




CCCCCTAGACAGC






cg122
CACGACTCACGGACATGGCCCCAGCTAATTGGTAGCCCCTGGGTTCAACCGGA
216


69343
ATCAGCG[CG]TGAGTCCAAGACTGGGAGAAAGAGGCTCATCCGAGACTACAA




TTCCCAGAATGCGCTTCA






cg122
GTAAACAAGCAAACAAAAACACATACACAAACCGGTCACTGTCAGACTGTCTG
217


89045
TGAGAAG[CG]CTCCACAGGACACAGCTGGAGAATGTGTCACAAAGGAACTCA




GAGGGGGGCGGTCAGGGA






cg123
CAAGAACCTGGACACCTTCTACCGGTAACAATGGGGGTGTGGCTTGCTTCTTTG
218


24144
GTGCTC[CG]CTGCTCAAACCTCTAGGGGGAGCATGCAGACGGGCAGGTTGTG




GGGCACGTGGGCTCCGA






cg123
TGGCGATCCAGGAGCACCAGTACAGGTCGGTGACGGCGATGAGGTACAGGTC
219


73771
CAGCAGGC[CG]CCCTGCGCCAGCAGCAGCACCACGGACAGCGCCTGGTAGCC




CCAGCGGCACCTGGGACTG






cg124
GGAGGGATAATGGGATCAGGAGGCTCAGAAAAGGGCAAAGAATGGGAAGGG
220


02251
GCATGGAAA[CG]GGTCTTGAAACAGTTAAAAAGAGAAGATAATCACCGTCAG




CGTCGAAATGGAGCCAGATC






cg124
GCCTAACCCGGCCTCCGAGGGGTGTCCCAGCGGGGCCTGGGGTCCAGGGCAG
221


73775
AGTTCTTC[CG]CCCCAGCCATTGGGAATGAAGGCCTCAGTGATGTTATCTGTAA




AGCCGGAGGAATGGCAT






cg127
GAGGGGGATTTCCAGCTGCTGGCCGGGGCCTCTCACCCCTACCCCCGCGTAGT
222


43894
TCATCTG[CG]ACGCAACGCCTTGTGTCAAAGCCCAGCACAGGTTCTGCCGCCTC




TGACCTCTCTGAGGGT






cg128
GGTGACGGTTACAGGCGAGTCCTCTCTTTGACATACTCAATTAAGCTCTGTACA
223


13792
CTTGAG[CG]TCTGTCCACTCGTAGGTGTGCATACTTCCACTGCGGATTTAAACT




TTCAAAGAAGTCTAG






cg128
ACTCAGACAGGCAGGAAGCTGAAGGCAAAGGAACTCTCTATCTGATTGGTTTC
224


64235
CATTCAG[CG]TTTCTGATTAATAAGAGACGTCCCTCAAATAGGAAGATATTGCC




GCTGATGGCGCTGCAG






cg129
ATTCACATTTAGTTCGCCTAGGAAAACTAGCAGTTAGTGAAAAACTGGCCACAT
225


85418
CACAGC[CG]CACAGCTCCAGCAGCCCGGGTAGCTTCCCCACCCTCACTTTCTCC




AGCCCCGCCTCCAGG






cg129
GGCATGCCTGCACCCTCAGGGCAGCCCCGGACATCGGCGTCAGGTTGCTTGAG
226


91365
TCAGGGG[CG]TGGGAATCAGACAGACCCGGTCTCAGATGCCACCCTGTACTGT




TGGTTCTGTCATTTATG






cg130
GACTGGGCAAAAATTAACCAGGGCTCCAACAGGCGAAGGTCACTGGACTGGG
227


42288
CAGGGGCA[CG]CTCCGCCTGGGGAGAGGAGATCCAGGAACGGTGTGTGGAG




CTGGGCTCGGGGGGTGCCTG






cg131
ATGGGGGTTGTGGCTGTGGAGCGGAAGTGGGTCTCAACCACTATAAATCCTCT
228


19609
CTGTGCC[CG]TCCGGAGCTGGTGAGGACAGCCTGCCAGAGTCTGGTAAGAAA




GGGACTCAGGGTGCGGGG






cg131
GACTCAGCCACTGGTGTAAGTCAGGCGGGAGGTGGCGCCCAATAAGCTCAAG
229


20519
AGAGGAGG[CG]GGTTCTGGAAAAAGGCCAATAGCCTGTGAAGGCGAGTCTAG




CAGCAACCAATAGCTATGA






cg132
GGTGGCCGTCCGCGTGGCAGGGCGGGGGTCCCAGGGCGGCTGTGCTTGGTGC
230


18906
TGGGAGGC[CG]CCCGAGGGCAGCGCCGGCCCCGAGTCAGCAGCCGCAGGGC




ACCCTGGAGATGCGGAACGC






cg132
AGACCCTACGTAGGATTGCATCTTTACGTCGTAGGCTTGGTCTCGTGTATTTTTA
231


58700
TTGAG[CG]TGTTTAATTAGCTGAGGTTACTCGCTTTGGCACCCCAGTGATCGTT




TTTGCCACCAAGCT






cg132
CTCTCCCAGCCGTTTCCCAGCGTGTCATGTGCTGAGAAATGGTGGGCTTAGCCA
232


96371
CGCAAA[CG]TTTACTGAGCATCTACTATTTGGTAGGAGCTGTTAGGCACCATGC




TAGCAGTGGAGATAA






cg133
GGGGACCAGTTTCCCCTCCTGGGATATTTGGTGTGCGACATGCCCTTCCCCCAG
233


07384
CCCCAG[CG]CCCGTTCCCTTTGGAAGCCTGGGTGCTCCTCAGACCACTTGGGG




ACTCCCTGCTTCACCT






cg133
CTGTCTTACCTGCAGCAGCCTCAGTTATGTTTTTGACAACTATAGCAACCAACTA
234


23474
CCTCT[CG]CGAGAACTTACTTTTGGCCATCGCACGAGCAAGTTTATTCCAAGAC




TCGCGATAACCCTC






cg133
CAAAGTCACTCAGCTCGCCAGGGGCAGAGCCAGGGTGCTCACAGGGTGGCCA
235


51161
ACCTTCCA[CG]TCTGCCCTGGACACGGGACTTTCAGTACTAAAATGTGCGGAC




GTCCTTCTCCCGGACGTC






cg134
TTTTCCCGGGCAGCTTACCTGCTCGGCCTGGGTCTTTCTGGACAGCAGGCGCTG
236


09216
GAGGTG[CG]CGTCACTGTCCGCCGCCGTGTCCGCGGCTGCGCCAGACAGTGTA




GAACCTGCGGCCTCGA






cg134
AGAGGCTAAATGCCAGGGGGATGGAGTGAGCTACGAGGAAACCACTATTCCC
237


49372
CGACCCAG[CG]CCTACCACAATCTGTTTGGATTACCACTGATTAGTCGTCGAGA




TGCTGAGGTGGTACTGA






cg134
ATCTCTCACCTTGCTACTTTCTCGGTAGCCGTTTCTGTTGTCCCTGGATTGGGGG
238


60409
CTCGG[CG]TTCGCTGTCCCTGGGCACCAACCCTTTTAAAGACAGTAACGTTGTA




GGAAATCAAATTAG






cg135
CTGTCTCTCCACCCTGTCCACCAATCAGCACCTGGAGGTGGGCTGGGAGCTGC
239


09147
CTGTGAC[CG]CTTCAGCATCTTTTGGGAGTGGTGACAGAGCCACAGAGGGCTG




TGAGCTTGCCCGGCCCC






cg135
CGGTCCGGGTTCGCTTGCCTCGTCAGCGTCCGCGTTTTTCCCGGCCCCCCCCAA
240


10262
CCCCCC[CG]GACAGGACCCCCTTGAGCTTGTCCCTCAGCTGCCACCATGAGCG




GTAAGGATGAGTCCAC






cg135
CGGGCAGCCGCGGGAAGCTGGTGATGCTCATGTAGTCCACTGGCGAGTAGGC
241


14050
GCCCAGGG[CG]CTCTCCTGGCTGGCCTCGTTCTCCGCCGCCATCCTCGCCCGCG




CCCCCCAGCAGCGCAGC






cg135
CCAGATTACAGTCTCTAAGTCTTAAAGAGGCCAGCCCCACTTAGAGGTTTTCCT
242


50877
GAGCTG[CG]TATCAGGACATGAGTTCCTTCCACTATTTCTAGGAGTACTACACT




AGAGCAGTATGAGAC






cg135
TAGGGACTGTTCATCCATTGGTGTTTGTGTGCAAACTAAGACGACTCTGTTCTG
243


64075
CGCAGG[CG]TGTTGGGGGTGCTCCCCCTTCCTCTCCATAACACAGACGCCTCCC




GCGCAGGCGTATTGC






cg135
ATTTCCATATATCCTTTATCCAGATTCCCTAAATTATTACTGCATTTGCTTTATCC
244


71802
TTCT[CG]ATCAGTGGACAGATAGATGATATAGACAGATAGATAGACAAATATA




TATTTTTTGAACTC






cg135
ACCTGCCTGGGTGCAGGACCCCAGAGGGACCCCAGGCCACCCCTGGCCTGCCC
245


87552
ATGCCCA[CG]GGAATCCCGACCTTGGGCTGCCTGTCTATTGCACCAGAACCGTC




CCAGGGCTGACTCAGA






cg136
GACAAAGTGCAGGGGATATAGACCAACCGCTTGTGAAGGCTGCTGGTTCTGTT
246


13532
AGAAGCC[CG]CTTTCGATTGTCAGTGGCTTTGAGGCAAAGGATTTTGGAAGGG




AAAGCAAAGTGATTGTC






cg136
GGACGTTGGACGTCAGCAAGGCCTGGGTGGTGCTGGTGAACGGTGATGCTTG
247


31913
CGGCCACA[CG]CGGGGTGGCTAAGCCAGGGACCCGAACTCATATGAGGTCTG




GAAGGTGTGTTGAGACACT






cg136
AGGCGGTGAGGGGCTTCCGGTTGGGGTGGCAGGGTGGTGGATCTGTCGGTCC
248


54195
CGTTTTCC[CG]TCGCACGTGGTGGCCACTGTTGGCTTCTGAATGGTTTGCAAGG




CGGATATCCACGCCAAG






cg136
AGTCCAGAAAGGCCCAGCCTGAATCACTGTGAGGTTGCCAGGGGCTTGGTTTC
249


56062
AGTTACT[CG]GAAACCACCCATCCTCCAGGCCAGCACCCAGGAGCTGCGTGGG




CCTTGGGCAGTGCCCCT






cg136
CCCATCCGGGATTGAGGAGCATCCCAATTCTGGGACCATCTCGGGGTCCCTGA
250


56360
CCCGGGG[CG]AATGGCTCTCCCATCTTGGGACCCCCATGCAGGGCTGCAGACC




CCCAGGCGCCCCCACCC






cg137
GAGCGAATCCTCTTCGGGCTTTCCAGAGTGCGGGGGATAGATAAAGAGTAGCT
251


00897
GGGGAGA[CG]CCCCCTGACCTTGCTGGGTCCCAGAACCCGGCTGCTCACCCCC




AAGGGGTCCTCTCCAGC






cg137
GCCACTACAGCACTGGTGCCCAAACCTGGCACACTAGGAACAAAGTCCTTGTT
252


18960
ACTTCTT[CG]TGGGCGTTTTCACCAAGTAGACTTGGAGGTTAACAAAGGACGC




AAAGGAGAGGTTCTAAT






cg138
TTTTCACAGGAGTGAGGCAGAAGACAGAAACTGCAACAAACCGCCGGGGGGT
253


43773
GGGATTAA[CG]TCCAAAGCTCACACCGGCTTCAACTGATTGGCAGGAACGAAG




TGGGTGGAGCCTCCTGAC






cg138
AATAATAAATAATAATGAATCCATTCTTCCTTCGGTCGTGGGTCTGGCAGGCAT
254


54874
AAATTC[CG]GCCGGGATTCCGACCCCAGGGCCAGAGCAGGACTCGCCTTGGC




GTCTATGAGTGGGCGGG






cg138
CTTGGGGGGCCAGGGGCAGGGCCTGTGGGGCGGGGCGGGCCTGGCTTGTTG
255


61644
GGCCTGTGC[CG]GGTGTCCGGGAGGGGCCAGACGGGGTCTTGGAGGGGCGG




GGCCGGGGCCTGTGGGGCGGG






cg138
GGGCTGAAGAGACCCCCCCCCAACACACCAGCCCCGAAAACCGTCTGCCGTCC
256


99108
CCTATAG[CG]CTGCATGGAAAAGAACCAAGACAAGGACTTGGAGTGGAGAAG




ACAGAAATTGTCCACTGA






cg139
CCATTTGAGGGCAAGGGCTGTGTCTTTGGGTACTTCGCTCCTCGCAGTCACAAG
257


75369
TACTGG[CG]TGCGTACGCGGGGAGAGATCGCTCCTCAAAACGGGGTCCTGAA




CGCTGCCCCGCGGCCCC






cg139
GGACGGCGCGGAGGAGCTGGAGGATCTGGTGCACTTCTCCGTGTCTGAGTTG
258


94175
CCTAGTCG[CG]GCTACGGCGTCATGGAGGAGATCCGGCGGCAGGGCAAGCTG




TGCGACGTGACCCTCAAGG






cg140
CATGCCTAGGGAATGACAGGCATCTCCACAGGCAGGCTGCATCCACCTTGGCT
259


09688
GGGGTGT[CG]TCATTGGCTGCCTATTAGAAAAACGACAGGACAATGCATACCA




CCGCCTCCCGACTGTAA






cg141
CAACTGCTTGCCAATTTAAATTTCTGGAGAGAAAAATGCACCCACTACAAAACG
260


05047
GACGAG[CG]GAGGGTTAGACCTTTGCCAGGTAGCGCTCAAAATCCGCTAAGA




CTACTCCCACCGAAACT






cg141
GCTGATCTCCAGTCTGCACACTGTTGGCAAATTAATCTTTCTGAGCTCTTGTTTT
261


59818
CATCG[CG]TCCCTCTCCTGCTCCAAAGCCCTCTGGGACTGCCTCCAGTAGCGCT




TCACAAACTTCAGC






cg141
CGCACAAAATCCCAGCCTCAAGGGCAGAACATTTTAAATGACCCACCCATCCTA
262


75438
GAGATG[CG]CCAGTTAGGTCATCTTATATATCTTGAGATAGCTGAGATGGTCA




GATCAACCAAGGACCT






cg142
TACCCCTCTGCCTAGCTACCTGGAGCCGGACTTTGGCCGTGTCCAGCGGGAAG
263


23995
GTGATCA[CG]TCCGCCAAGCACGCCGCTATTCCAGCTGAGAAGAGCTGGACCC




CCAGGGTCGGGTGTACG






cg142
CATGATACTCATGTATTTCCTTAGATCAAGTCAGCCTAGATCAGGTGTTCTTCCA
264


81160
GAGGC[CG]TATTGAGATCATTTTTATTTGCAGCCTGTGCATTTTCTCATCTCGG




GTGATGGCCTCACA






cg143
AGCCCGGCTGCAGACTCGTTAGCAGCGAGGCTTTAAATACAAAAGTGGGCCG
265


50002
GGAGCCCC[CG]CGTGGTGCCGCGGTGCCCCCTCATTATGCATGCATGGAAAAG




CAAACAAACAAAAACATT






cg144
GTCAGTGTTCTTTTAGTTTGCTTAAACTGTGTGGGTACTTGAGTCCTTTTAAACG
266


23778
ATTAA[CG]CTGGGAAGAGGCACCATTTAATTAATTAATTTGTTCTGGAAGGGA




TCAGTGTACAATTTT






cg144
CCACATTTGCAACCTTGGCCATCTGTCCAGAACCTGCTCCCACCTCAGGCCCAG
267


67840
GCCAAC[CG]TGAGTACCCTGCCCCACTGGGCTAGTCCCTGGCCTGCCAGCTTCA




GGGAGAGGGGTCTTC






cg144
CACCACAGACTCTGGGAGGCTCGGCGGCTGGAGCAGCAGGCAGCTCCCCGCA
268


73016
GCTCCCGG[CG]CTTCCAGGCAGCTCTCTGAGCCGTGCCAGAGGCCCGGCCCGC




CATTCCCAGGTAGGAGAC






cg145
GAAGAGTGTCGGGATCCACACAGGAACACACAGGAGAAATTCACCACTGTGC
269


50518
AGGAGGGA[CG]TGGTTAAGGCGAGTTCTGCCATTAACGTGTAATTAGACAACA




CTTTTACCCCGCCCCTCC






cg146
CGCCGCCGCCTCTTCGTCGCCTCAGCCTGGCGTTTTGTTCCGAGAGACGGGAG
270


89355
AGGCGAG[CG]GAGCTGACAGTGATTTTGACAGTGATTTAAACCCGCTTTTGTT




GTTGTTGGCTTTTCGTT






cg147
AGTGAACTGAGCAACAGCAAGTGCAAAGGCCCTGCTAGCACCATGAGCACGA
271


47225
TGAGAGAT[CG]TCCAGGAGGCGGTGTTGATGCGGCAAAGGGCAACAGGAAG




GGCATTAGGACTTGAAATCG






cg147
AATCAAAGGCGGGGTACAGGGCCAGAGGGAGGAGGAAACAACTTCCCGGTT
272


54581
GCTTTCAGA[CG]CTTCAGAGATCCTCTGGAGGCCTGGGGGAGCTTTTGAGTAC




TTTATTTCAGTTGGTCCCT






cg149
CGGAATACTGTCTGGCTGTGCACGTGGAGGTGGCGAAATGTGGAAGCTTAAC
273


16213
GAAGTTGG[CG]CCATGAAGCTAAAGACTGCTACCCCGGGGCTCTAGCTCGCTC




CGCCTAATGGCGGGCCGC






cg149
CAGCATGCAGGCACCGCCTCCTCATCTGCATAGAGCCGCCCTCCTCTCAGCCAA
274


18082
ACCTGC[CG]CTCATCTGCATAAGCCCCGCCTGCTGAAGGCTCTGCAGCTTGAAT




ATTTTCTGAGCGGAA






cg149
GAGGGACGACAGCTTTTACTGTCCCAAATCCTGAGATTAAGACCTCAGGGCTA
275


72143
AATCTTG[CG]TGGCGGTAAAAATTATTTGGAAGTTCTGTGCAACCGTTCCAATA




TTCCGCTTTTACGTGC






cg150
TCAGGGCTGGCAGTCTGGGCCAGGGTGTGGTTTCCAGCGTCAGGCCAGGCTCT
276


13019
GCTGTCT[CG]CGAGGGTCCGGCCTCAATGCTCCAGGCCCCGGCGTTGGGCCGC




GCCTCCTCGTGGGCCTC






cg151
TTCTTGACATTCAGAAGTCAGATTCAGGGACCCCATGGCAGAGCCTGTTTCTAA
277


71237
CACTTG[CG]CCTATTCGACTATAGGGACTATATTCTGCACAGAAATATACTTAG




TTTTATATATGGTTA






cg152
GGACAGGTACACGACGATGACGACCGGGGTGGTGAGAAGCTGCCCGACCAG
278


01877
GTCGGTGAG[CG]CCAGCCAGCCGATGCACAGCAGGAAGGACTTCTTGCGCTT




GCTCTCCCGGCGCCGGTAGC






cg153
TTCCAGCAAATAGAAAACAACCGAGAGCCTGAATTCACTGTCAGCTTTGAACAC
279


44028
TGAACG[CG]AGGACTGTTAACTGTTTCTGGCAAACATGAAGTCAGGCCTCTGG




TATTTCTTTCTCTTCT






cg153
CTTTCAAAGGCAAGCTGCAGGGCTCCTTGGTTTTGTCACATTCCTCATTCTGGG
280


81313
GCTTTG[CG]GTTTTGTCTTGGGAATCTCGAGGCTCTCCCAAGGTTCCTTTCTATG




TTTATATCATTTAG






cg154
CTGGTCCCCCCGGCGGGCGGCGGCGCGGGCAGGGGCAAGGGCTCCGGGCTC
281


27448
CTGCGGCTG[CG]TTGGCTGCTCAGGCCACCATAATCCAGCTCGCGGCTCGCAG




CTCCCGGGCGGGCTGGGGA






cg154
GTCTCCTAGGGCTGAAGACAACTTGGATTGCGAGGCTAGGGCTTGGGGAGTC
282


47479
GTGCATCC[CG]TTCCGGGCCTCCGCAGCCCAACATGGGCCCCGGGTTCCAAAG




TTTGCGAAGTTGGGCGCC






cg154
TTAAAACTGTTTTCCAGGGCAGTTTCTCTCTCTGGTTCTAGGACACTTAATTGGG
283


89301
CTCAA[CG]TTTCCCCCAAGTCTTGGCTGTGGGTTTGTTGTGGGCTGGGTGGTTG




AGGAGAGGATGCAG






cg154
CCGCAGACCCCTCGGTCTTGCTATGTCGAGCTCACCCGTGAAGCGTCAGAGGA
284


98283
TGGAGTC[CG]CGCTGGACCAGCTCAAGCAGTTCACCACCGTGGTGGCCGACAC




GGGCGACTTCCACGGTG






cg155
CGTGTCACAGACTCTCAGAAAGCACAGTGAGAGTTCCCCTGGTTGAGAATCGC
285


51881
AGGCTGC[CG]CTGGCTTCCCCCACTTCCCTGGGCACATCGGAGGAGGGGGCCA




CAGCTGGTCCCTGGTCT






cg155
CCCCGAGGCTCCCGCATCAACGCCCTCAGTCGGATGGGACTGAGGGTGCCGCC
286


69512
GCCACCA[CG]CCGGGGACTGTTGACAGCCAGAACCTTTAAGCGTAACAGAGTC




ACCTGGCAAGTTTGTAC






cg156
ATTGGCAGGTCCTCGATTATCGGCGAGTCACTGAGGTTCCGAGAGGGGCGTCT
287


11364
CTGCTCA[CG]CAAACAGCTACCCAGCCGCCTCCCACGGTCTGACCTCAGCCAAG




GTGACGCGGCTTAAAG






cg156
CTGTATCTCTTTGTCTCTCCCTGTGTGTGTGTGGGGTCTCTCTCAGTCTTTGTCCC
288


42326
TCTG[CG]TCTCTGGGTCTCTCTGTCTCTGTCTCCCTGCGTCTCTCTCTCTCTGTCA




TCTGGCTCTTC






cg158
AGAGGGCAGGGCTGTATTCCGCTACTGGGTCCTATGCACCATGCAGAACCAGT
289


11427
GTCTTCA[CG]TGGAGACTCATCACTGATCCGAAAGGTGACTGCTTCTGTATTAC




ACTCATTTCCCCATGA






cg158
AGAGACACTATCTCCAAAAGAAAAAAAGAGAAACGTATGGTTACATGATTTCC
290


56055
TTCTGTG[CG]ATCATCAGAGTCACTCGCAGACCTGGATGGTGTACGGCCTACA




ATGCACCTAAACCACCT






cg158
TCCGGGCGAGGAGATCAGCAGGGGTTTTCGAGGGAGCCTGGGGCCCAGGGC
291


81088
AGGGGTACG[CG]GGTCAACTCAACAGATGTAAGGCGTGGCCGAACCCCATTC




AGCTAGCAGTACCCAGCCTC






cg158
ACTTCTCCGAGGTTACACAGCTAGGAAATGGTGGCAACAGTAAGAGCCCACGA
292


87846
AGAGCTG[CG]GTTGGTAGTTCATTCTGGACAGCCCTCCCGTGAACCGTCCCTGT




ACTGGCACTTGTTGCT






cg159
CGATTAGTAAATACCAACCCATGCTAGAGAGTGAAGAGCTCTGGAGGAGAGG
293


03282
CACGGGTG[CG]CCCCTGGAGTTGCTCTAAACAGGGTAGGCAGGGTGCTCTTGT




CACAGAGAAGATGAACGA






cg159
CCCAAGCCCCGTCGATTAGACAGGTTTAGGCACTTCCGGGACTCTCAGAAGCCT
294


63417
GGGAAG[CG]AGTTCTCTGCAATTGGACTAAGCCTGCGACCGTCTGGTATAACA




ATTATATGAATAATCC






cg159
CAGGTCGGGCCAGTTGCTGGTGAGCTTATGAAGTGTGGTCTCCTCCCCGGAGC
295


66757
TCATGTG[CG]CTTCCCACCTGGTGAGCTCAGGGTCTCTCTGGAGGGATCCTGCC




TCCCACCCCTGTCTCC






cg160
TTTTCCCTTAGAGGCCAAGGCCGCCCAGGCAAAGGGGCGGTCCCACGTGTGAG
296


85042
GGGCCCG[CG]GAGCCATTTGATTGGAGAAAAGCTGCAAACCCTGACCAATCG




GAAGGAGCCACGCTTCGG






cg161
CAGGGTGAGAGCAGGTCTCACTCATCCCAATCCCAGCCAGGATTGGGTCAGGG
297


73067
CCCCCAG[CG]CTTACCTGCAGGCAAGGTGCTGCTCCACGACCTTCTCCAGCTGC




TGCCGCTGCTGAATCT






cg162
GGCTGGGCCAGGGTGGGGCGTGGCCCGGGGCGGGGGAGGGGCGGGGCTGC
298


95988
CAGGCAGGGG[CG]GGACGGAGAACACCTGGGTCCCTAGCACCAAGACTGGCT




TTTTATTCATTGCCACCGCCT






cg163
TGGTTACCCGTGAGTCACCTCGCTGTGCCCCCTGCCCAGAGCGGGAACCCTGG
299


13343
CTGCGCA[CG]CCCTCAAATATCTGCAGGTGCTGTTCACAATCGCCATAGGGCC




GGTGACATACCCAGGAA






cg163
GGGAGCTGAGTTGCTGGTAGTGCCCGTGGTGCTTGGTTCGAGGTGGCCGTTA
300


19578
GTTGACTC[CG]CGGAGTTCATCTCCCTGGTTTTCCCGTCCTAACGTCGCTCGCCT




TTCAGTCAGGATGTCT






cg163
GGCTAGGGACGTTATGTAAGTTGAGCCACGCTACGCTAAAAGTTCCACACTCA
301


40918
ATTCTAG[CG]TCTCGGCTCTGGACTACCAAGTTCCGGAGCAAGCAGACAGACC




ACCTCTTTACGTTCCCG






cg163
TTAGAAACCTCTCAGTGGGGTTTTTCGAAATGAAAGTCTAACTCCTTGTCTCTTT
302


54207
CTGAC[CG]TTTCCATGCTGAACCTCATCTTTCTAATGGCCCACTCCTCCAGGGGC




CTGCCTGACGCCC






cg163
CGCCGCCCCCCCCACCCCTCCCCCAGACAAACGATATGACGCACTTAACTATAA
303


57381
ACCCCC[CG]ACCCCCCGTGGCTTCTGGGAATTTCCCAGAAGGTTCTGCATGGGC




AGATGCTGAGGGAGT






cg163
TATTTAAAGATTGTGGCTAATAGTAGAGTAGATACCCCTGGTATTTCCCAGAGC
304


72520
AGAGCT[CG]CATTCTGGGAATCTTAGGTCCATGTGACTTCCTGAGTCAGTGATT




CACACTGAGAAAAGA






cg164
CGGAGGGGGAAACAAAACTACAGCAAGACCACCTTGAGTACCTTGGGAAGGG
305


08970
CAGCCCCG[CG]ATCCCTAATAAATGAATTAGCATCTCAAGGAGGAGATCACTG




CGGGGCTGATATTGATCA






cg164
TCTATGTTGTCTCTATGCCTTGCTGTCTTGCCTGCCTCCTTGTAGGTCCAACCTC
306


66334
GGGAG[CG]CAGCTTTTAAAGAGTGACAGTGTTTGTTTGGATCACCCGCAGCTT




GACTCATCCTTGCTT






cg165
CTTAATCCCAGGTTTGTTTATCCAAGCAGTGGTGTCAGCTGCCTGGCCAAACCA
307


43027
CACAGG[CG]CCTGGATCCTAGGAGACATAAACCAATCCTCCCACCCAAGCAAA




GCCCCGTAGCAGCCCG






cg166
GCCGCCCGGGGTCCGAATTGGGGGGGGCGGCTGTGTGACCTTGGGCGAATCG
308


12562
CCGCACTG[CG]CTGGGTCTGCGCTCCGCATCCATCACAGGCAGACTCCTCAAG




AGGCTCCAACCTTTTCTT






cg166
GGTAACTGCACAGGAGAAGGTGAACCAGTAAGTGGGCCATATGTCTCTGCAA
309


48841
AACTTGCA[CG]TAGGAATCACCTGCTGGGGAACTAAGACACTTTTATGTTTGCA




GCAGAGGCTGTGTTAGA






cg167
CCCAGGGTCCAGGCCCGCCCTCGGCTGGCAGGTGTGGGCACAGAGGCAGCTG
310


13727
GGATTGGT[CG]CAGCTGGCGGAGGCGCGTCCCAGGCTCCGGCAGACCGCTGG




AACAGCTGAGCAGAGCAGG






cg167
CCCCCCGCCTGCCGAGGGGGCTGGCGGGGGGGCATTCCTGGGTCCCTGGAAC
311


18891
TCTGAGCC[CG]CGTCCCCCACCCCTAAGGGGCGTGGGGGGGGGGCGCACCCC




TCCAACCCCCTTTCCCCAG






cg167
AGCCTGGATTCTAGTGAAGCCCAATTCACCAGCCATTTGGTCTTAGTAAGGTCA
312


28114
TTACCG[CG]CTCTAGGTTTGAGTCTCATTTGTAAAATGAAGGGAGTGGAGGGG




CTTATAGAGCTCGAAC






cg167
GTGCGCGCTATGTGACCTCTCAGGGGTCGCTGCCTTGGACGATCTGTAAAGCT
313


43289
GAGTGCG[CG]CTATGTGACCTCTCAGGGGTTGTTTCCAACCGTGTTGTTGACAT




CTTGAGCCTGCCAAGG






cg168
GAGCTAAAAGGTAGTATCCCACCCTCTCCATAAACAGACACCTAAGTTATAAAA
314


16226
CTTATG[CG]CTCGATATGCAAAAATAGCTCGTTTTATACAGAAACGATCCTTTC




CTTCTTTTCCTTATA






cg168
GGCAGCTGGGGATGGGCAGGCTGCAGCGTGGGCAAGACGAGGTGGCTGCTG
315


54606
TGACTCTGC[CG]CTGAACCCTCAGGAAGTGATCCAGGGGATGTGTAAGGCTGT




GCCCTTCGTTCAGGTGAGT






cg169
GGTCAGTCGGGGCCTGCAGACCGTGACTCCGTCACGAACCCCAAATTCGCTTC
316


33388
TCCCCAA[CG]CTCGGGCCTGACTGCTCAGGAGGGGCTTATGTAACCTTAACCT




GGTCCCTCCGCACAGGA






cg169
TTTCTTCAAATTAAATTGCTACAGCAGGAAATTACTGAACTGTGGCTCTTCTCCT
317


84944
ACGTC[CG]CCTTCCCTATGTCAATTCCCATTTCCCTTGCTTTCTCCAATAGTTAG




GACTGTAAATTCT






cg170
GGACAGATGGATGGACGCTCGCGGGCAATGAATGGGCGCTGCGCTCAACCAA
318


09433
GACACTCG[CG]CAAAGTTGTGGCTCCACCCAAGGCACCTGCTCCGCACACTTTA




AGCGGCGCCCTGGAGGC






cg170
TATGCGATGATGTTTGTTTGCCCTTGACGCACTTACTCATGGATGGTACTTCTTC
319


38116
AGCCT[CG]TTAGACAGCCTGGTGATGGAGGATGAAGAAACCATGTGCIIII CA




TTCAGTTCTGGACTT






cg171
TGTGTGGGACAGTCAGGTCGGCAGGAGTGCATGAGAACGGTGTGGGCACACG
320


29388
TAAGTGCA[CG]ATCACACATACAAGTGAGCTTGAGAGTGTGTATTCCTGTGCA




CTGTGTGCACACCTGTGA






cg171
GCAGAGTCCAATTATGTGTTTTCTGATAAAAGCATATGTTCATTGAAAACACTG
321


33388
GAAGAG[CG]GCATACTGGAATACTGGTTTATCTGGTGTATTTCGGGAGTTTAC




AGATCACGAAAGTTGC






cg173
CCCTCCCCCGCCAGCCTGGCGCATTGCGGGCCTCGGGCTCATTGCTGAGAGGG
322


24128
GGCACTG[CG]CCTGGCACCTCTGTTAAGCAATTTAGGGGCTACAACCTGAGCA




AGACAGATGAGCCCGGC






cg174
TATGTTGAGTGAAAGAAGCCAGACAAAATCAAGTACATATGGGATGATTCCAT
323


31739
TTATGGA[CG]ACTCTAGAAAATGCAAACTAAAACAGATCAGTGTTTGGGCTGC




GGATGAGTGGAGTTGGG






cg175
CCTACGAAGAGGTAGGGCTTGGCAAGGACCCACGGGGCGTGTCCTAGGACTC
324


26300
GGTGAGGG[CG]TGACCTCGGGCCAGGGGCGGGGAGAGAACCAGAGGGCGA




AGTGGGAGGGCACAGGGGAGA






cg175
CCTTCCGGTAGCTCGGTCACTAGGGTCAGTTTTATGACTCTCAGTGGACCCTAA
325


36848
ACAGCA[CG]TAATATATGTATTTTTCACCGCCAAATATATCAAACACAATAATTC




ACCCTCCGTTCCCT






cg176
ACCCATGAGCCAATTGCAGAGGCAACAGAAGACCAGTGCACCAACCAGGCTG
326


05084
GGTCCCTC[CG]CCAGAGGGTGTCACCATCTAAGCTGAAAGTGTTTGGGGAGAT




CAGACATTGCTGTCTGGT






cg176
GGAAGCTGGGCTGTGCGTGTATGCGTCTACCATGTGGGGGTGCCTGTGAGTGT
327


27559
GCTGGGG[CG]TCTGCAGTGAAGGCCTCCTGAGACCACTCCACGGAAACACCG




GGAATCCCTGCAGCTGAG






cg176
GCGTCGCTTTCACACTCGGCGGCTGCGGATTGACGCCTCCGCCTGTTCCCCGGA
328


41104
GGAGAG[CG]AGTGCAAGAGAAAAAACACTTTTATTGAAACGATCCAACCAGC




GGCGGCGGAGAAAAGCG






cg177
TCCGGGGTTTTTACCCTCGGCAGTTTGATGTCCTTTGTGTCAAGGTCTGGCTGC
329


26022
GGAGGC[CG]GGAAAATGTGGCCCCCGTCAGTAAGGGTTGGGCAGGGAGCTT




GGCGTGGCCTGGCGGATT






cg177
GCGTTACTTGCAGGATGCAGGAGTGATGCGATCAGAGCCAGCCGGAACCGAG
330


49443
TTCCGTTA[CG]CACTACAGGACTGACCTGGGCCTGACAACCCACTGCCGGAGT




TCGGATCGCATCACTGCC






cg177
ATGGTTACATGATTTCCTTCTGTGCGATCATCAGAGTCACTCGCAGACCTGGAT
331


70886
GGTGTA[CG]GCCTACAATGCACCTAAACCACCTAGAGGAGCCTCTTGCTCGTG




GGCTACAAACCTGCCC






cg178
GCGGACTTGTCCGGATCCGAATAGAAGCGCTGTTGGATGCGGATGGGGCGCC
332


61230
GGGGTTGC[CG]CCACAGGTGCTTCGGGGCTCTGGTCATGCTGTGGCGGCCGC




GAGAGCGACTCAACCTGCT






cg178
AGGCTGGACATTTGCTACTGGTCCCTGAAGTTTTGCGGCTGCACCCACAGACA
333


96249
GCAATAG[CG]CCACGTTCCCTGGAAGGCGCACGGGACGGAAGCGGAAGCAGT




AACGCTGGCTCCGGCTGC






cg179
GGAGATGGCAACAGGGCAAGCGTCCAGCAATGGGTAAGCGGTGGGGTCGGT
334


03544
GCACGCAGG[CG]TCCAGCAATGGGTAAGCGGTGGGGTCGGTCCACCCAGGGA




GCGCTGGTCCCCCTGGAAGG






cg179
GGAGGTGCTGCGGTACCTACCATGGTATTCTTGTCCCGGAACGTAGTAGGTGG
335


23358
GGTTGCC[CG]CAATATGCAGGGAAATGAGCACCTCGCCCTGCTCCCCATCCCCT




TCCAGCTCCCCGTGGT






cg179
GCCTCTGGGAGGGCAAGACCGGGAGGGGTCGGCCTGTGTCGGGGGCTCCTG
336


40013
GAAAAGCAG[CG]CCACCGCCACCCACCTGACGACATGGAAGGCCCAAAGCAG




GCGATCTGTGCGAGGCCCGC






cg179
CTGGCAGATGTTTGTACTGGGAGATTCAGATCCATCCAGGCCCCCACTGTTAAT
337


66192
AGCCCA[CG]GGAAAGTCCCTGCAGTCTCTCAGGGAAGTCATTCTGTGTAGAAT




CTGTAATTTCACAGGC






cg180
AGCTGGGGCTCGCCTGTTGGGAGCCGCGTCCGCCGGTGTTGGTGTCTGCACTT
338


01427
GGAAGGA[CG]TAGGGAATGCGTTGTCCCTGCTAGGTACTTTTCAGTCGCAGAG




TTCTCTTCTTCTTCTTT






cg180
CTTGGTGTTCAGCACCAGCCGCCCCCCCAGCCGCATCATCTTTTCTTTCAACAAC
339


03795
AGATG[CG]CCCGTGTTTCATCTATGGATAGAGCTGAGCCGAAGAAAGACATTG




CCACAGCCAACAGCA






cg181
TGATAGTATTTTCTACTGTCCTATACACATCAGGCAAGACTTCATGGAGAGCAC
340


17393
TGAACA[CG]TACTCACTATGTGCCTAGCATTGTTGTTAATCACTTTACATGAATT




AGTTCATTTAATTC






cg182
CAAGAGCGACCCTCGTTCTTCACACGAGGAGAAGAAATGGACACGTGATTGAC
341


41647
CATTAGG[CG]CCACCAGGGCCAAACTATCTTATGGAAGGAGGAAAAGAAGCA




CAGAAAGGGCATGAAATT






cg182
GGGGCCCTGGCCCGGGACCAGCGCCGCGGCTATAAATGGGCTGCGGCGAGGC
342


67374
CGGCAGAA[CG]CTGTGACAGCCACACGCCCCAAGGCCTCCAAGATGAGCTACA




CGTTGGACTCGCTGGGCA






cg183
TCACCCCCGTCTTGGGGACATCAGGTCTGTGAGCACCCATACCCCAGCCAGGC
343


84097
ACTGTGG[CG]CCCCACTCGCCCTCCCGCACTCCCTCCTAGAGATGCCCTCTTATA




TCCCCGGAGTTCGCA






cg183
AGCAAGGGAAGTTGGATGAGAATTTGAATCCAAAGCGTGCCATGGGACCACA
344


92482
ATTGCACA[CG]ATCAATGAGTCTCACAAACTGACCACGGCTTATCTGAGGCAG




TTTAGGGTTGTGCAAGAG






cg184
AAAAGACGAGATGACAAGACACAGACAGCGAGCATGTGCCTGTGCACATTTG
345


68844
GGTCTGTG[CG]TCTCTGGATGGGGGTGAGAGAGAAAATAAAAGAAGGGGAG




TGGAGGAAAGAGAATGCCCG






cg185
AGGTTAAACGGCACTGACCATGCTGAGCCACAGCCGGTAAAGATGGCGGTGG
346


87364
CACACTGA[CG]TCACTTCCGCTCCGAGCCTCCGGCCGGGTGGGGCTCCAGGGC




TTGAGTTTCAGGCACGTA






cg186
AAGCCCACGTGAGAGGGCAGGACGCCTGAGAGCTTGAGGCCACACGAGGCTG
347


91434
TGGAGCGG[CG]TGACTCAAACGTGGCGCGCATCAGCTCGCACACTTCCAAACC




TCGCGATAGCTACTGGCC






cg186
GACCCAGGCGACTGACATGTTCCTCTCCTCTCAGCTGAAAAGCTTTGCTAGCTC
348


93704
TGTCTA[CG]CATAAAGTAAGGTTAAACACAGATTTTGCCCCGAAGGGCATTAA




TTAGGGACCAATTTAC






cg187
CTGGAGGGAGGAAGGTGTGGGGGGACCCAGGGGTCCTGTCTCCAAGCCTGGT
349


32541
TGCTCTTA[CG]CGAAAAGTTGGGACACTGAGGTGTCACAGCTTCTCTTTTGAAA




TGGAGAGGAGGTAGGAG






cg187
TGCCGTGGGGAAAACCTGCCTGCTGATGAGCTACGCCAACGACGCCTTCCCAG
350


71300
AGGAATA[CG]TGCCCACTGTGTTTGACCACTATGCAGGTAAGAAAAAGTGGGA




AACTCTCTGCATCCAGA






cg188
CTGGCAGCCAGTGGTTCGCCGGCACTGACGACTACATCTACCTCAGCCTCGTG
351


09289
GGCTCGG[CG]GGCTGCAGCGAGAAGCACCTGCTGGACAAGCCCTTCTACAAC




GACTTCGAGCGTGGCGCG






cg188
TCAGTGCGTGTTAGCGAGCAGCGCCGGGAGATAGCTGTCACCGCCGCCCGCTC
352


81501
ACAGATG[CG]TAGACTGAGGCTCAGGTGTCACCACCTGACCAAGGCTAGTTCC




GCTACAAAGCTGCCGAC






cg189
TGGGTGGAAAAGGAAAGGGCCCATTAGACGAATCTGATTCATCTTCTGTGACT
353


96776
AAGCACC[CG]CAACAGTTAGGAATTTAGGCAGAGCTGGTGATCCTGGGACAAT




AGCACTTCCTAGGTAAT






cg190
GCGCGCGTGCCGCCGCCGCGGGCACTGCGCCCGTTTGCCTGCCCCTCGTCGGG
354


08809
GATCGGG[CG]CTCCCTCTGAGACCTGAAAGGGCACCCAAGTGCCCCCTGTCTG




CGAAGTCCGGCGCGGGC






cg190
GACCCCCGGCAGGGACGTTTTTCTGCAAACTCACAGCATTTGACAAAGTTACAT
355


28160
AAACGG[CG]CCCGGCCGGCCCCGGCGCCCGCCCGCCCCCGCCCTCACTCCCGG




CGGCCCGGAGCCCACC






cg191
CGTGCGTGGCCAGGATCACATCGTTGGGGTCCATGGTGGTCTTCAGCAGGCCC
356


04072
CTGTAGA[CG]CGGTAATCGCCGCTAGCGTCCAGGACGCCTCCAGAGGCCAGC




GCGGTGCGGAGCTGCGCC






cg191
GAGCCTCAGGGGCGGAGTCTTAGTGTCCAGAGGGGAGTCAGGGCAGCTGGA
357


49785
GGTCCAGGG[CG]GGAACCATTGAGGCTGGGACCCTACGAGAACCCCCTACCC




CGTGCCCTTCGGCCTCTCTT






cg192
GGAAGCAATCCGGCCCCTTTTTGGCAGCGAGTTGGCCCGGTCTTTGGCTGCCTC358



87114
AGACCG[CG]TTGCCCTCCAGCCTCGAGGCAGAGAGCTGCCTCGGTGCCACAGC




TAAATAAGCCCGGCGC






cg192
GGCAAGCAGGTTTGGTTCCTGCCCAGCAAAGGTGAGGGAGGACGGAGGAGA
359


97232
CTCTCCCAC[CG]CATTCAGAACTTTATTCCTTTATTTTTGTCTCAATCTTGTCATA




GAGGAGCGCTTCACTT






cg193
CCGCTGCCTAGTCTGCATCTGAGTAACATGGCGGCGGCGGCGGTAGCCAGGCT
360


45165
GTGGTGG[CG]CGGGATCTTGGGGGCCTCGGCGCTGACCAGGGGTGAGCACG




GGCAGCCAGCTGAGACCGG






cg193
CAGGAACATCACTTGGTAATTAAGAGATCGCCTTGCTTCAGATCCTTGCTCTCC
361


56189
TAGCCA[CG]TGACTGTGAGCAAGTGACTTTGCTTCTCTGTGTCTGTTTCTTCAAC




TATAAAATAGGTAT






cg193
CAGACGCTTCTGAAAGGGCAAAGACGACGCCAAAGAAGACGCCGGAGACCTC
362


71795
GAATAGGG[CG]CAGGTGGACATCTCTGATTTTCAGCAGACCAGCCTGTATGTG




TCTGAAGTCTAGCAACGA






cg193
GAGGAGGGCGCTGGTGCTCAATGAGTGAGCCCACCTGGGGACTACCAGGACG
363


78133
AGGACGGG[CG]CAGGTGAAAGTCCTGGGCTCATTGCCCCAGCATCCAACTTTC




ACCCTCTGTCCCCTTTAG






cg193
AACAAACAAAGCTAAGGTTCTTACCCCACGGCTTGCACTCTCTCAGCAGAGCTG
364


98783
CAGGTG[CG]TGGATGATTCGTTGACACGGTCAGAATTGGCTGCAGGAGGGAA




TTGAATCGAGGTTTTCT






cg194
ACCGGCGCGAGTTGGAAAGTTTGCCCGAGGGCTGGTGCAGGCTTGGAGCTGG
365


39331
GGGCCGTG[CG]CTGCCCTGGGAATGTGACCCGGCCAGCGGTGAGTTGGGGCC




GGGGCAGAGGGCAGGGGTG






cg195
CGGGGCAGCCCGCCCCACCCCTCCCCCCAGGCTCCTCCCCATCCCTCCCTGCCC
366


14469
AGGCCG[CG]AGAATGACCACTCCACTTGCAGGCGAAGCCCCTGGCCGCTGTGC




TGAAGGAGGTGTGCGA






cg195
GTGTGGTGCTTCCTTCTGACCTTGGGCACCTCCGTCTTCAGTTGCCCCTCCTGTG
367


56572
AAAGG[CG]AAATGTATCGTTGGGTTCTTTGAGGCCCTTTACAGCTCTGACATCC




TATAACATTCTGTA






cg195
CGGGCACTATGCTGAGCAACTGCAGCTCAGGTCCTGCAGAGTCCCCGAGAGTA
368


60210
CTTTGCA[CG]AAGAGAGCTCGAGTTCTGTAGTCAGGCATATCTGACCTACCGA




ACAGGTGCCCTGGTCAA






cg195
TGGAGCAGGACCAACTTACCAGCTCGCGGTGCTCCCTAGAAGCTGGATTCTTC
369


66405
GCAGGTG[CG]AGCACACCCCAGATGCCAGCGTGGACCCTTGAGCAACTGGAA




GTTAAAAACCCACGAAAA






cg195
ATCATTCATTCATTCATTCATTCACCCATTCACTAATCAGTAAAATTTAAGTGTCC
370


73166
ACTA[CG]TTCCAGGACTTGCACTAGACTTTAAGGATAACAGGGTGGACAAGTT




CCACTTTGGAGACC






cg195
GGAAAAGTCATTTTAAGTAAAGACAACGAGTTAATCAGGAGGCGATGAGCCC
371


86576
AGTCCTTC[CG]CCCCGCTTTCCCGCTTCCAGCCCTCGAACGAACCCTCCTCTAAC




CCCCGGGAGGCAGGAG






cg196
TGGCTTGGGGTCTCAGGGAACCGAACCGCCCTCCCCCCAGACCTGCTACCCCA
372


15059
GGCCCCA[CG]TTGGTGCCCATTTCACAGGTGATAAAACCGAGACCCAAAGAGC




CGGTGTCCGGCCCAAGG






cg196
AAATAATCAGCAGTTCCTGGTGGCATGTAACCAAGTAAAAACCAGTTACACAG
373


32206
AGAGCCA[CG]AACCCCCAAGGCAAGAAAGCAGAATGTGAAAATGCTTTATATG




GGGGGGTGGGGAATGGT






cg196
GGCATGGGGGCTGGGGGCCGAGATGCCCAGGTTTCTGGGTGTAAGGACTCAC
374


63795
CATGACTC[CG]CCAGCCATCACTGCACCTGCCGTCTCTCCCCACTTCCTCTGGTG




GGGCAGGAAGCTGAGT






cg196
TTGTGAGACACTGTTTCTGAGAGCAGCTTTTGTGGCATCTTACAGGGCAGATTT
375


85066
CTGGTA[CG]TTCTAAAAGTTGAATTTCTAACTTTGGCTGGTTGTGGCCCCTGAC




TGTTTTTTTTTTTTT






cg196
ATTCCTTTACTTTTCTATAACTCTGTCATGACCAGTTTAAAGGCCCCAATGTCAT
376


86152
GTCCT[CG]CATTAACAACCAAGGCTACAATGCAAGCCCTGCCATGTGCGCTTCT




TTACAAAAGGTCAA






cg197
TCTGCTTACAGCTGCTTCCAAATTAAGCATATCTGGATGGTGTGACACTTTTTGT
377


22847
TAGTC[CG]AGAACTGTATGGGCATCGCAACTGGGCCTGTTCCAAGATAGACTT




GTTGGGACCTTCAAA






cg197
CATTCTTATGCGACTGTGTGTTCAGAATATAGCTCTGATGCTAGGCTGGAGGTC
378


24470
TGGACA[CG]GGTCCAAGTCCACCGCCAGCTGCTTGCTAGTAACATGACTTGTG




TAAGTTATCCCAGCTG






cg197
AGTTTGAGAGACCAGGGCTGCTGGGGCCTGGTCATGCAGGGCCCGGACAGGG
379


31122
GGCTGTCC[CG]CTGTGAGGAAGCTCTTGGCTTACCCTCCTCTGAGCCTCAGAGC




TTGTGAGGTTAGTTCCT






cg198
CCGTCTCCTCACCTGCCCCACCCGTGGCCTGGGTTTAAAATCCACATACCCGTCT
380


83905
TTCCG[CG]GCCAAAGTGATGCTGCCAGGATTGGTTATGACCCCAACTGCCCCG




ACCCCCAGAAGTGCA






cg200
AAGAAGCCCTCACCGAGAGCTGTGGGAACAAGAGCTGCCGGGAACAAGAGCT
381


66677
GCGGGAAG[CG]GCTCCTACGAATTGGTGGCAGGAGGCACAAAAACGAAATAC




CTATTTTTGGAATACGGAA






cg200
TAAACCAGAGACTTGAATTATTGGCAAATGTCCAGACAACATTCACAATGCTTA
382


90497
CTAGCA[CG]CTATTGCCATATGTACCTGGAAAGAGCAGCATAAAGAAGCCATC




TAATGATATTACACAC






cg201
GGTGCCTCCAGGCCACGTGGGCTGGCAGTCAACTCACCTGTTTCTCAGAGGAG
383


62159
TCCAGGA[CG]CACAGAAGGTGCCGGTCACTGCCCTCTGCCGGACCCATGGAG




GGGTAAGGGTGTCCGGCC






cg201
AGCCCCACCTCTCCCTTAGGGACCTCCGCCCACCCTACCCTCAAGCCAGGATGC
384


73259
CCGGAG[CG]TCCCCGGAAGTGGGTGTGGTTCAGGTGATTTAACTCATTATTTA




ATACGCCCGCAGGGTG






cg202
CAGAGTAATTTAACCCAGGATTGCTGACTTTTTAAGAGCTGAGAAAGCATAGCT
385


34170
ATGGAG[CG]CAAGGCCCCACCCAGCAGGGTCTAAGTATTCCGTCTGCAAAACT




GGCAGGCCACCAACGG






cg204
CCTGGGGTGTAAGTACTGCTTGTGGGAGAGCCCCACAGGAAATCCAGAGTATT
386


92933
GCGCATG[CG]TGCTGTCCAGAAGGCGCTTGAACTCGGCGGCTTCCGTAGCGG




GAGGGCGAAAGATGGCGG






cg205
GCTCGGTGCCCATGGCCCACTGCTGCTGGAGGAACCTGTGTCTCCCTTTGCAGC
387


50118
CTGTGG[CG]CGCCTTCCTTGCAGGGTGTGTACACTGGCTGTTTGCAGAGGGGG




TTTGTGCATCCTAGTT






cg205
GCGCCCGGAGCCGGGCTGCTTGGTTCCAGTGTTGGGCCACATACTGCTTGCGT
388


70279
GCTAGGT[CG]CCCCTCCGGGTGGCTCAGCCTCTTCCCCTCTCTCACAATCCCTG




AATCCCTCTGTCCCTT






cg205
CCTGAACACCGCTCTGCAGAATCTTGGTGGCTAAGGTGTCCAGGAGCCTCTGC
389


72838
AGCGGAC[CG]CCAGCCTGAGAGGCGCAGAGCTTGTCGGGCAGGGGCCCGCTT




GTCCCACTCCCCTGATTT






cg206
GCCCGCCCGGGGCTAGAGGCGGCCGCCGGGAGGGCGCGCGGCGCCGGAGAC
390


52640
ATGTCCAGG[CG]GAAACAGAGCAACCCCCGGCAGATCAAGCGTGAGTCAAAC




TTTGCCCGCGGTCCCCTCCG






cg206
CCTCCCAGTGGCCACGCGCCTTCTCACGCCCCTCTCCCGTGACGTCATGCTCCTC
391


74577
TCGCG[CG]GCATGATGGGAGAATCCTAATGTTTTCCAACAGATGCTCCAAGAA




CAGCTTTCAGATTAA






cg207
CACCTGGTAGTTGTCTAGCTGCTCTTCGGTGAAGATGGTCTGCTTGTTCCCCAT
392


61322
GGTGGC[CG]CCGCGCCGCCGCTCGCCCGCCCGGGCTCCGACTCCCATCAGCGG




CCGCCAGACCCGGAGC






cg208
GACTCCATATGCCCTAGGGATGTGTTGTGATGAACTTTTCCTACTGGTACTGTTT
393


28084
CCTCC[CG]CGAGGGAATGTCTAGACCAGCCGCACCTTCTTGCTTTGACCCTTCA




GAACTTTGGCCTGT






cg208
TCTGCCGTACTGTAACTGAAACACAGGTTCAGTTGCTCACTGCTTGCAGAGTCC
394


91917
AGTTAA[CG]AGAGCGGGATCTGTTATAAAGAAAGTGATTTATTCCAAAGCTTA




GCTTATGAGAAGAAAT






cg209
AGGGAAGAAATCAACTCCGACTTCTTTGCAAAACTGAAATCTCTGTGAAATAGC
395


67028
CAGATG[CG]CACACCAAATAAGGGTTTCTAAAGAGAACCCAAGTTACTTTTCA




ATTAAAAAAATAAAAT






cg210
ATAAACCCGACTCAAAATCTGTCTTTTCCTGGGCAGATTGCAAAGGATTTTGCA
396


06686
TCTCCC[CG]TTGCTGTTGCTGCTGCTCACACAGTCTTGGGAAAACGGGGGAAA




ATCAAGGAAAGAGAGG






cg210
CCGGAGGCAGCAGACAAAGACTGGGCAGCACCGGGCACGTTCCCGCTCCTGG
397


53529
CCCCTCCC[CG]GGCCGCACTTCCAGAATGGGAGTGAATTGCCTCCCAATTAAA




GAAGCAATTTTTTAAAAA






cg210
GTCTTTCCAAAAGGCATAGGAAATCAGCAAGTTTCCACCAAATATACCAAAACC
398


81971
CTAAGA[CG]CGAGCCAGCCCAAGGGTGCAAGGTTCTGCGGCTGCAGGTGATG




TGCGTGTGTGCGAGTGT






cg210
GGTGTGGTTGGTGCGCAGGTCGGCGGGTGACGCGCGGTCTTTGCACACTGGG
399


99326
CAGGTGGG[CG]ACACCTGCACCTCCCAGCAGCGGCTCACGCACCCGCGGCAG




AAGTTGTGGCCGCAGCGCA






cg211
AGGACAAATGGGTGCAGAGATTCAGGCTGGCCAAGGCTGGCACAAGGACATT
400


20249
CCCAGTGG[CG]AGAGCATGAGCAAGGGTCACGGATGTGCCAGGAGGGGAGG




CGGAGAGATGCCTGGGACCA






cg211
TCATCTATCAACGTAGTAGGCACTGTCCTAGGCGCTAGGGATTCCATGCAGAG
401


37706
CAAAAAA[CG]TCACAGTCCATGCCTTCACATGGCCTTCATGGACCACCGCGGG




TGTTCTTTTTCCCCCGA






cg211
CTCTGAAACGGACAAGATGGCTGCCACCTCTTCGCGCCTCTTAGTCCCACCCAC
402


84495
TCAGGG[CG]GAGGTCTGCGTCATGTGACCCTCCCCTTCTTGGCTCCGCCTCCTA




CCGCAGTGCTTGACG






cg212
CACTTAATTCTTGCAAATACCTCTCGGTGCTGACTTCAAGGAACTTGGCTGGCT
403


00703
TTGGGC[CG]CAGAAGTGAAAAACACAAAGCTCTCCACAATGTTCAAGTTGTTTT




CTTCTTAATGTTACG






cg212
AGCCTAACATCAACTCTTTTAATTGTCATGACAATTCTATGAGATGGGCACTTAT
404


01109
CGCCC[CG]TTTCACAGACAGGGGATGCAGAGGGTACAGAAAGGTACAGTGGC




TTCCTCGGGGTCACTG






cg212
CTCGGCCCACACAGCCTCCGGGTGGACCTGCAGGGGCCTGTTTGTGCTGTAGG
405


07418
CTTGACA[CG]TCCAGGTATCTCTGTGTGTCTGTGTATCTCAGTGTGAGTGTGTG




TGTGTGTGCACACTTG






cg212
GGTGCGTTGTTCGCGGGGGTGAATTGTGAAGAACCATCGCGGGGTCCTTCCTG
406


96230
CTGAGGC[CG]CGGACACCGTGACCTCGCTGCTCTGGGTCTGCAGGGAAACGTA




GGAAAAAAAGTTGTCAG






cg213
TTGCATTCAGGTAGATTATTTGGAAGATGATTTAAGGACGTACCAGTGCAGGA
407


63706
GTTGTCG[CG]GGACAGTGAGACCAGGGCAGTTTGACAATCAATAAAGGGTGC




ATCATTGGCAAGCTACCT






cg216
CCAATGGGGAAAGGCAGTGTCGGGACTAAGCAATGAATGGCTCTTCAATGGC
408


49520
CAGCTGCC[CG]CCCAATAGGATAAAAGAAAACCCCACATAATACTTCCCTTTGT




CTCCAAAAAAATTTATA






cg217
TGGAGCCCGAAGGCGCCGGGCAGCCTGAAAGGGAGAGGTGGGTCCGGAACC
409


12685
ACACCCAGG[CG]GGTAGCCTGGGGCATCCTCAGACGGACTTCAAAAGCCGCTT




CACTTTCCCCTGGTGGCCT






cg217
AGTCTTTCTTCTTGAAAGCATTGTTGATCCAAATCCAAGTGTCAAGGTGCGCCC
410


62589
CAGAAA[CG]CTGCTTCCCAGACAGTCGTGTCTGGTCTTGCGGGAAAGGAGGA




GGCGTCCCGCCAAGGAA






cg218
CCACGAAGAGCTTGATGGCGTCGTGGTCCTTCATGGGTACGGCGGGACCGGG
411


01378
GTTTAGCC[CG]CTCATGCCGACGCCGCTGTCCGCGGTGCTGAAACCCAGGCGC




GGGCCGGGGCCAGCGGGC






cg218
CGCCTGTTTCCCGCCTGCTCTCAGGAGCGACCGCCAGGGGGCGCCCGAGATGG
412


35643
CAGGGGG[CG]TGGGAAGCCCACATCTGCCCAGCAGGTGCGCCCACCCCGAGC




AAACAGGGGGCCGGGGCC






cg219
AAATATTACTGTTTATTACCAGGCATACCCCAGTAAAATAAAGAGGCAACCAG
413


07579
GCGATAG[CG]ACTATCTCACCAGCCGCTGCACCTATAGGACTTGGAGACGTCA




CGAGTCACGCAACCGGC






cg219
AGCTGCCAAACATCTGGATCAACCTGGGCACTACGAGGGGTTGAATTTCTACC
414


26612
ATTATCG[CG]CCTTTTGATATTTTTTTCCAGACCTCCTGCTCACATCCGTAAAGC




CCACTGATTCTTTTA






cg219
AAGAAAGCTCAAAGGTACCCTGCAGACACTCAAAACTTGAGGGCACGCAACTC
415


93406
TCAGTTA[CG]AGTGGTGGCAATCATAATGACAGAATGAAGTACCAGTGCAAGA




AACTGGAAGCGTGTGGA






cg220
CCATGGTGCCCTGGGGCCCTGCTACAGGTGCTCAGGTAGGGAGGTAGGGTGC
416


90592
CTGCTGTA[CG]CTGGACCTGGACCTACTGGGCCCCAGGCAGGACATCCTTTAG




ACCCTCTGGGAGGCTCCA






cg221
AACACAGGGTAGGACTTCAAAACACCAGCGTGAGCGAGGCAGGCACACACGG
417


79082
ACTCGCGG[CG]GTCTGTTTGCAACAGCGCTGGGAATGCACATTGGAAAATCAC




ATCTTGCATGCTGAAAAC






cg221
CCCGGTTGGTGAGGGAGGGAGTCCCAACCCAGGGTTATGGGTGGCTGGACAC
418


94129
ACAACACC[CG]ACACTGGACAGATAAGACTGACAGCAGTTCAGCTGCATGTAC




TCACGGCCTGAGGCAGGA






cg221
GAAGGCTCCTGGGCCTTTCTGGCTCTGGGAATGAAGCGTGGAAAACCCTCCTT
419


97830
AGGCGGG[CG]CAGTGCTTCAAGTAGCCAAGCTCTGACTTCCGAGGGAAGAAA




GGAGGCCATGGGCCTCTG






cg222
AACTCAGTCCCGTCCCTTTTGTTGACAGGTTGCCAGGATACATCCAGGCAACAA
420


82672
AGACTG[CG]GTTCCTGTTACTCAGCAGCCTCAAAAACTCACACCAGCTCCTGCA




AGGAATGTGAATCTT






cg223
CTCGCCAGGCGGCGCTGTGCCTGGGAGGACTTTCCCGCTCATCGCGGGGGCTG
421


95019
CACGTGG[CG]CTGAAGCCGGGGTCCCACCCCCAATGTGCTCGTCCTACCACAG




CCAAGGCTGGGATTCCA






cg223
TGTGCGGAGCCATTCGCTGCGCTGAAGCAGTGCGCATGCGCACTGGACGCTTC
422


96353
TTACCAG[CG]TCCTGACTACAATACCCAGGACGCACCCAGCCCGCCGCCTCTCG




GAGCCCTTTTCAAACC






cg224
GCGGCGGAGCGGCGGGTTGGGGCGTCGCACGGTGAGAAAGGCCGGGGCCTG
423


07458
AGAACAAAC[CG]CCGCGGTCGCCGGGGCAACGGGACGGGGCACGTGCCCCCC




CCGCCAGAGCCGGAAGCGGC






cg224
GTAGTTGCGGGGACCTGGGAGGCCGGGCTCTTTCCTCCTTGGCCTGCCTTCCG
424


73095
CTGGCTG[CG]TGGGGCAGCCAAGAACAAAGCCTGCGAGCTTCCATCAATTGTA




AAGCAAAGCACCCTTTA






cg224
GGCAGGCAGGCTCCATAGTGCCAGGCATCTGGCTGGCTCAGCAGCAGGGGGC
425


84793
GATGGCAT[CG]TCTTCCTGCCCACCTGGGAGCCAATGTTTCGGCTGGGCAAGG




ACAAGCCTCCTCTGGGTC






cg224
GAAGGCCCTGACCCTGCTGAGCAGTGTCTTTGCTGTCTGTGGCTTGGGCCTCCT
426


95124
GGGTAT[CG]CGGTCAGCACCGACTACTGGCTGTACCTGGAGGAGGGTGTGAT




TGTGCCCCAGAACCAGA






cg225
TATTAGTAAAGCGTTTACTAAATTACCGAATCAAACCGAACTGGCTTAGGTTCT
427


11262
CAATAG[CG]TGGAAATCCACTGAAAATAAATGAAGAGGGCAAACTACAGGGG




CTCCGCAGGTTCGGGTC






cg225
CAATGGCTAAGGAGTATAGAAAGGATCATTATAGTGTGTGTCTCTGTGGGTCC
428


12531
TATGTTA[CG]GCAAGATGAAACAAGCTTATTAGGCTCTGTCTTTTAAGGGCATA




CCAGTTGAAAGAGCAT






cg225
ACTTGCCCAACATGAGCCCTGGTCTTGTCTGACCCCAAAGCCCATGGGAAGTTT
429


80353
AGGCTG[CG]TGGAAGGACAGCCTGGTGGGCTCAGGATCTGTCCCATCACGAG




TTGGAACCTCAGCTCTG






cg225
ACCTAGGAAGTAAGATAATTTTAAAAAGAGAGCACTTTGGCAGTGGTGAAGCA
430


82569
GGTGAAA[CG]GTTGAATACAACACCTGTGGTTTCAAAGAAAAGTTCCCACAGA




GCGGATACACTACTCGT






cg225
GGACGGCAAGGACGCGTGGCTGGCGACGGTTTCGCAGGGGCGCCCGTTCCCC
431


94309
TGGGGGCG[CG]AAGTCCCCGCTCCACCGCTGCCCCAACTCGGCTCCGAAGTGC




CTTTGCCGCAAGACTTGC






cg227
TGCGCCAGGGCGGCCACGCAGGCCAGGCAGACCACGTGGCCGCAGGACAGGT
432


36354
TGCGCGGG[CG]CCGCTGCTGCCGGTGGCCAAACTTCTCAAAGCACACCTTGCA




CTCGAGCAGGCTGATCTC






cg228
TCACATCTGTCATCTCTCAGGTCATATCCAACACACTGGGCCACCCACGCACAG
433


09047
GGACGA[CG]CGACAGCCCTGTGGCTCCACCGCACAGGACAGCCACGACTGGC




AATCCTGTGCCGGCCCT






cg229
TAGCTATGACACATGGCTTGGAAATTAACCTTTAACCAAACATCTTATAAGTAA
434


47000
CGCCAG[CG]CAGCTTCCCTTGTGAATGTAAAGAGATCCAGGGCTCTTGGAGAG




GGACAAGTGAGAGCCA






cg229
AGGGGGATTCCAAGAGAGATTTTTGTAAATGTCAAATAGTCGACCTCATGCTG
435


71191
GGCAGAA[CG]CTGTATTTCAGTATACAGGGAAGATAAAGAAAGAGGTAGAGA




AGAGATTGTCCTGTTTTC






cg229
GACGAGGACAGGACCTCCTGGATGCACTGGAAAGTCGAAGAGACATGGTATC
436


83092
AGGGCAAA[CG]CGTTGCAGAGCTGTATTTGTGAAAGCCAGAATGGAGTGCCTT




CTTGTCTAAAAGGTTTGG






cg229
GAGGCCCAGCAGGTAAGCACTTGTGGAGGCCCCGGTGGCTGCTGGTTAGCTCT
437


91148
TGAAGCT[CG]TCCCCACCCTGCGTGCGTTCTAAAGAGCCGCGTTTCTATTGCAA




CTGCCTGCCCTGCGCT






cg231
TCAGTCTCCCCATATTTACAATAAAAGGGGAGCGAGGTGGGATGGCGCTGAG
438


24451
GATCCCTA[CG]TCCGATCCTAATCTCCAGCTCAGGCAGGCTCGGCCGCCACTAG




CATCCTGGAGCGACAAC






cg231
AGCTGTAATTCCATTGACAGTGAATTGGAGTAATAGCCCTCCCCCGTCTCCCAA
439


27998
GCTCTG[CG]TCCAGTCCACACAAAGCCCACGGCAGCTGCAGGCTGAGCTTGTC




CTGCTTCAGATCACTC






cg231
AAACGGAGACTCAGCAACGGGGCTGATTTGTCTGTGGACACACAGCGAACTGT
440


52772
AAGTCCC[CG]CCTCCCTCTGCACCCGCGTGCACCAGGGGGCTGCTGGGGGTGC




GGGGACGCGGGAGACCT






cg231
TCCTTGAGCACACACCTTCTCTCAACAAATGACAATACTTGGCAAACTGAACTC
441


59337
CTCCCA[CG]AGTCGCCCTCTGCTAGGAGGAATTGCTGGCTGCTCCCTGCTTATT




GCATTCTCTCAGAGC






cg231
CCGGGGCTGCCTGGCCTCCTGGGTGCGGGAGGTGCCTCCAGATTGGCCTGGCT
442


73910
TCTGTGA[CG]CTGGCCCAGATCACACACCAGAGCCCTTGGTGGGCAGCGGCAC




CTGCAAGCATACTGCAG






cg231
TTCCGTGTCTCAGATGGGGCCTGGGTCAAGTCCTGGGAGTTGATGGAGCGTTT
443


91950
CCCAAAT[CG]CAAAAGGAGAGGAGCTAGACTTACCTCCCCCTCCTGGGAAGTA




ATGCGCGACAAGAATTT






cg232
ATAAATTAACAGTCAGATCTAGGGGCTCGATCAGATTTGTGTGTGTGTGTGTG
444


13217
CCGTGTG[CG]CGTGCACAGCATGTTCTTTGACTAGGAGGCACACCTGCTTTGG




TTATCTTCTTTTTGTAA






cg232
GAGGCCTGCCCCAGCCTCAGGAGGAGGAGCCTGGCCCAGTCCGTTGCCAAGC
445


34999
CGAAGCAG[CG]GCATTTGGACAAAGCAGATCATCTGCAGGTATTATATACATG




GGCAGTGCAAGGAGGGGG






cg232
TGGAGGTGCTGGGCAGGGGCGGCGCCCCCTTCCCTGGCCGCGGTGCGCCCTT
446


39039
GCGCCCGG[CG]CTTGGGTCCTGCGAGATGAGGGTCTAGAAATACACAGCACC




ACCCGACCCCCGCATCGGG






cg233
CAATATTCATTTTATTAGGCCATTGTGAGAGATCTCAGCTCAGCATAATGGGCA
447


38195
ACTTCC[CG]TGACTCTGGGCCACTGGGTTATTCTGGGACTTAACTACTCTGAGT




TTTCTCACTAGAAAG






cg233
CTTCCGGCGGACTTGGCCTTTGCGGTGCGAGCTCTGTGCTGCAAAAGGGCTCT
448


76526
TCGAGCT[CG]CGCCCTGGCCGCGGCTGCCGCCGACCCGGAAGGTCCCGAGGG




GGGCTGCAGCCTGGCCTG






cg235
TTTATCACCCTTTCGGTAAATAGTGGTCCCACGGCTCGGCCTGCTTTTGGAATG
449


68913
AAGCTA[CG]CTTGGTAAGTTCAACTCTCTTTCACAGCCCTCTCCACAGAAAGAA




CTCTGGAGTTCGTTC






cg236
AGAGGGAACTCAGCAGGACAGTGAGGTGACCTTCGCTGTGGCTGTTCCTGGG
450


68631
GACTCTGC[CG]CCACCTCTTCCCCTAACGCCTCCGCGTGTGAATCCTCTGGCAC




CACCACTTGCCCCATAT






cg237
GCTGACCCCGGGGAGCGTGGACTACGAGTTGGCGCCCAAGTCCAGAATCCGC
451


10218
GCGCACCG[CG]GTAAGCTGCGCCTTTTGAAAAGGCTATCTGTACTCCTTGGAA




CAAACCACCCCGGGCAAA






cg238
TGTGCTCTGGAAAACACATCCCATCAGAGCTGAATCACCCACATGGACTGTTAG
452


18978
CTCAGG[CG]GGGAAACATTCAAGTCATTCAGGCCCAAGGAATAATCTATAGAA




GTCAAAGGCAAGAGGA






cg238
GAGAGCGGGTAGCGGGGAGGGCCGCCCACGACGGAGGTTTCTCTGTGGTTAC
453


32061
CTCAGCGG[CG]CTCTTCGCAATCTGAAAGTTGGGGCAGCTGAAGAGCCCCACC




ACCTTCACCTGCAGCGGC






cg241
CTGGGGCCTGGGGTCACCTCCCCTCTCTGGGCCAATCACCTGTTGAGTCTGGA
454


10063
GCACTGG[CG]GCTATTCTTAGGGGTTTCTATATTTAAAATGGGGCCTGACTGG




CTTGAGGTCATCTCCAG






cg241
GGGACTATTCCTAGTTTATGAGGTGGTTAAGGATATCGGTGGGGTGGGCTGG
455


25648
AGCGGTGT[CG]GGTTAGGTCTGAGAGAAGGCCTCGCACAAAACACTGTACAA




ACCCGAAAGGAAGTCTGAG






cg242
AAAATAAAATCCCGCCATCCTCCCCCCTCCCCGCCCCACCCCCGCCAGGTTTCAA
456


08206
CAGCA[CG]GACTCCAGTCCAGTGCAGTGCCGCCACACCAGAGACAACAGGTGT




TTCGGGAAAAGACCC






cg243
AGGCGCCATGTCAGCCCGGGAAGTGGCCGTGCTGCTGCTGTGGCTGAGCTGCT
457


04712
ATGGCTC[CG]CCCTTTGGAGGTAGAGAGACGCCAGTCGCAGGCGAGCGACTA




GGCGGGGATTACCCCCGG






cg243
CCCGCACACGTGGCCCTCCCGCCTCCGGGCCCCGCCCCCTTGGCCGCAACTGGC
458


32433
AACTCC[CG]CCTGAAGAATAGATTCTCTGGTTCACAGCCGTCTGCAGGCTCAG




GAACAGATCTGGGCGG






cg244
GTCGCGCAGCCCTGGCCCGAGGGTTCCCGGGGCACGGCCGCTGGGCCCCCGG
459


07308
TGGAGGAG[CG]TTTCCGCCAGCTGCACCTACGAAAGCAGGTGTCTTACAGGTA




AGGAGGACGTGGGCAGAG






cg244
CCACAAAGCGAGGAAGGGCAGGGGCTACGGAGTGGGGGCACCCCGAAAGCC
460


93940
TTGAGCCCC[CG]AGTTTGCTCGGTTGAGGGTGTTGGGGGCACAGGGATGCTG




GCCCCCAGCTCCCCACTGGA






cg245
AATGGAAACTGCTAATTTTTGAAGCAGAAGGTTGACAGCTTCAGTAAGATCTC
461


05122
AAGAGAG[CG]AGAAGACTGGAATCAGGTGAGGCCATAACTTCTTATCTAAACT




TAGTTTCTGGGGTGGAA






cg245
GTGGGGGCTGGGCAGCGTGTTTGTCCCACCTGTGTAAACTCTGATTCCAGCAA
462


05341
CTTATTC[CG]CATGCGCCCAGTCTAATTAAAATAAAAGTGAATCAAATTTTGAA




TGGATTGGTGTTTCGA






cg245
GTGTGAATTGATGACCAAGGCATGGCAGAGCCTCTCTCATCTTTATAATCAGTT
463


56026
CAGCGG[CG]GCCTCCACTACAGGGAACTCCCAGCCAGTCCCGAGGCCTAGGG




ACATCCAGGGAGAAACG






cg246
CAGGCGCTTCCCACCAGCTACAGTCGGAGATTTGGAGCGCTTGTGTCTGAGGC
464


51706
TCAATCC[CG]TCAGGTGCCGCGCAACTCAGCGGCGCATTCTCTTTGGACCCGA




GGCACCACCATACTTTC






cg246
GCCTGCTCCCCGTCCCACCCCTCCCTGAGCACGCCACCCCGCCCTCTCCCTCTCT
465


74703
GAGAG[CG]AGATACCCGGCCAGACACCCTCACCTGCGGTGCCCAGCTGCCCAG




GCTGAGGCAAGAGAA






cg249
CTCTGCGGTGGCCCGAGCCCCAGCGGCCTCAGGTGAGCGGGCAGCATCCCGA
466


21089
TTCCCTGG[CG]GCCTAGAATGGAATCGCAAGGTTTAGAGAAATTAAGGGACCT




GGGACTTGCCACCCTGGG






cg250
ATACACATTTTTGGCCCCAACCTGCATCGACCAAGTCAGAAATTCTGCAGTGTG
467


22327
TGTTTT[CG]TAAGTCCTCCAGGTGACTCTGATGTACTCTCAGGGTTCAGAACCA




TTGAGAGAGAGCAGT






cg250
TGACAGCCGGAGGTTCCAGCTGCGCGCCCACAGCCCCTCGGTAGCGCCGCCGA
468


92328
CTCGTGG[CG]TCTATAGGCTGTTTCTGCGTCACTCATGCATGGAAGACCAATCA




GAGAGCGTACTTGTCT






cg251
GTGCCCCCTCCTCTTTGCTGCTGCAGTGTCTGCGCCGGGCCATTTAATGAGATT
469


36687
TATTCA[CG]CACGGCTCTTCTCAGCTTTGCGAGGGGTTGGCAGATCCAGTGCAC




AGGGATTTCCCACTA






cg252
GCACAGCTGCCCTTTGAAGTACGGTCTATTATATCTCTTTTACAGACCCAGAAA
470


29964
CTGAGG[CG]CAGAAGTTAGGGTCAGCCCCAGGTCACACAGCTAACAAGAGCT




GGCCTAGGCACCCAGGG






cg252
GGGGCGTGGGTGGGTCAGCGTTCCTTGGGGACCCGTGAAGCCTGGGCTTAGG
471


51635
GCTCACAG[CG]TGGGTCCCCAGCACAGACAGGAGGCGGACAGCTTCCCGTGA




ACTGCAGGGGAGTCCCGGG






cg252
CAAACTAGTGACTGTTTTACTGCAGGTGAAGAAGGGGCAGAGATCAGAGGCT
472


56723
CTAGCAGG[CG]GGACAATGCCCAGGGATTCATGAGCCGGACAAAGCTGTATC




CCTCCATTTCCACCTGCCA






cg254
GGAGCCCCTGGGATGACCCATCCCAAGGTCCCAGCCTAAGTCTGAGGTTCCAG
473


28451
GGCTGGT[CG]CAGGCCGTCCTTGCAGCCCTCGCCAGAGCGTTGTCTGCACCTC




CGACACTAGGTGGCGCC






cg254
GAGGGATGGTTGTCCTCACCCCTGTGAGGCAATATGCTGTCCATTAGTATCCAC
474


59323
TGAATG[CG]TGAAATTTTTTTCTAATGGGCAAACTGAGGCTCAGAGAAGTTCCT




GTCTGGCTCAAGGTT






cg255
TCCCGGGCGCGGAGGATGGAAACCTGGCGGTAACCTCTGCAGGTCGTGCCAC
475


36676
TCGGTGTG[CG]CAAGGTCTCCAGAGGCATCTTTTCATTTTTAGGGGGCACTTTC




CACGAATTCATTTGAGC






cg257
GCGCTTCCAGAAGGCTGCAAATGGGAATTCCAGACAAACCCACTTGGGTGAAT
476


13185
CCCAGCA[CG]CGGGCTGCGGCGTAGGGGGAGAGCTCCTCACGCGGCTCAGAG




TGTAGCCCAGGCCCGCAG






cg257
GGGAAAGTCTCAAAACTGTCAACTCTGATAGAAAGCTCATGTCAGAGACCTGA
477


69980
AGCTCAG[CG]ATGTAGTTCTGAGACATATCTAAGACTTTGGTTTTCAGCGGTAG




GTCTTTTGGAACATGA






cg258
TCTACCTAGTAACAGCTGAGAAATAAGGCTCGAGACACCATTGGTTGGTTCAG
478


81193
CCTCACT[CG]GCCAATCCTGGGCTCTAAACTGCTCAGTGGAAATCTTGGGACTT




TTTGGACACCCAGAGA






cg258
CAGCCCACGTGACTACAGGGGCACTTGATGGGAATCATGGCAGCATCCAGGCC
479


98500
ATTGTCC[CG]CTTCTGGGAGTGGGGAAAGAACATCGTCTGCGTGGGGAGGAA




CTACGCGGACCACGTCAG






cg260
AGGAGGATCTCTGTAAATTGTTTTCTTAGGGAGAAGGATAGGGTGAAGGAGT
480


22315
AGAATCGA[CG]ACTGTAGATTTGTGAGTAGAATCCCATTTGTAGTTAAACTTGG




GTAAATGGGAGAAAGGG






cg260
GCCTCTCTGTGGTTCTGCCTGGAAGACGGAAGGCAGGTGGTTGGCTCTAGTCA
481


91688
TCCACGA[CG]GGCTGGCACCTCTCCAGCTGCGGCCAGTCTAACCCCAGGGCCT




GCTGGGAAATGTAGTTC






cg260
GCGCCCCTGGCGTCCGGGCAGGTGCCAGGTGAGGAAAGAAATGGGGGCCGCT
482


96837
CCATGAAG[CG]GTTCCTGCCAATAAAGAAAACGACATCCAGAGAATACCCAGG




CGGGGAATAAAGGGGTCC






cg261
CAGCACGGGCGGGGGGCAGGGGCTGGGGCCGACCGGGAGGCCGGTGCCAA
483


04204
GGATGGGGGC[CG]CCCGGCTGCCCCGCGCGTGAGGAGGCCGAGGGGCGCGC




CACCCCGGCCCGGGGCGGCCGC






cg261
TAATCTCTTCTTTGGACGTTTGGCAGCTCCATTTCACCTCCCCTTAACTCTGTTTG
484


09803
GGAT[CG]CTTACACACCAAGGAAGTTGGGCTTTGAGAATTCCATCCCACTGGC




ACTGAGGAGAATAT






cg262
CAGCCTTTCCCCGGGCCTGGGGTTCCTGGACTAGGCTGCGCTGCAGTGACTGT
485


01213
GGACTGG[CG]TGTGGCGGGGGTCGTGGCAGCCCCTGCCTTACCTCTAGGTGCC




AGCCCCAGGCCCGGGCC






cg262
GGCTTTCCCGAATGGCGCGCCCAGGACGGCTCTTGCGGCTGGCTGTCCAAACT
486


12924
GGGCCCG[CG]TCCTGAAGTGACCCCAGCCTGATCTCGGCCAGCTGCTTGTGAC




CTTGGCCTGTCCCAGCA






cg262
CCTGGCCGGCCGGCTCGCTAGGCGCGGGGTCTAGGCCAGGCTGGGGCTGCTT
487


19051
GGAGGCTG[CG]CCCTCCCCTGCCCGCGGCGCCCCGGCCCCCGCCGTCGAGAGT




GGACGCCCCTCTGGGGTA






cg263
CTCTAAAAAGTGACATTGATGCCAACTGCCAGAGCTGGTACCCATGCCATCTGC
488


12920
TAGTGA[CG]TCACAGGGCAGAGAGAGCCATGTGATCCTCTCTCTTGGGACCTT




CATTCTGCACTGATCA






cg263
GTTTGCACTGAAAGTTGTGTTGGCTCAGGAGCTGCTTTTCCGGGGATCTGCAGT
489


50286
TGCCCC[CG]CCACCTCCTGGCTGCGGTTGGCAGGTCCCTCCCTCAGCAGTTCGT




CCTCCGCCTGCGCCG






cg263
CAAGGAGGGAGCAGGAGCATTCGAACGCGGAAATCGAGGTGCTAGTCCAAAC
490


57744
TGCTCGGT[CG]GCTTTAGTCATAGCTGGATAATGCCCGGCTCAGGTCTACCACA




AGCCATACAGCTGCTTT






cg263
TTGTTACGGGCGCGGTGGTGCAGGGGCAAATCGGGACTGGGATTTGGTCCTT
491


82071
ACCCTTAA[CG]TGGCTCTAAGACCAGAAGGGAACACCTGACTTGTGTTGACCT




CTTCAGTTAGCTGCAGGT






cg263
TGAAAACACAGCAAGGGCCCCACTAGCTGAAACCAAGTTGCAGAGTTTTGAGG
492


94737
GTCCCAC[CG]CCGACCGCCGGCCCGCCGCGAGCCCTGCCCCCTGCGCGGCCAC




GCCCCCTTGCTCCCCGC






cg263
TAAATAAATAAGGGCTTTTGTTTGTTTGCCGGCTCCTGCACATGGCTGCTGGGA
493


94940
CTCAAG[CG]CTCGTGTTGTCTGCGCCTCTGTGGGACTCTGGGGACGGGAGGCA




GGGGAGGCCCCCGCAG






cg265
GAGGCTCTGAGGCTGCAACAGTCTCCCTCCTATTGAAGCTAGAACAGCACCCC
494


81729
GAGCCTG[CG]CCATAAGTGCCCCCAGAACTTCAGCGCCCACCATGGCGCACAA




GGCCGGTGCCCAGCGCC






cg266
CTTGGGCAACGTAGGAGACCTCCGTCTCCACAAGTAAAATTAATTAGCCGGCT
495


14073
GTGGTGG[CG]CGCACCTGTGGTCCCAGCTACTCAGGAGGCTGAGGTAGGAGG




ATCACCTGAGCCCGGGAG






cg266
GAGGCTGAGGCAGGAGAATGGCGTGAACCCGGGAGAATGGTGTGCCCCGAG
496


65419
CCTACTTCC[CG]CGCAGTCCTCCAAGACGCGGCCTCCAGCAGGGGTCGCTGCTT




CGCTGCCGCCCTGGCCTC






cg267
GCCAGGACCAAATGCCCCCGGAAGCGGGGAGCGACAGCAGCGGAGAGGAAC
497


11820
ATGTCCTGG[CG]CCCCCGGGCCTGCAGCCTCCACACTGCCCCGGCCAGTGTCT




GATCTGGGCTTGCAAGACC






cg267
GCTTGGACACTTGCAGCATGTTGCCTCTGCCAACTGCCTAGAATTTAAGCCTGA
498


46469
CTTTGC[CG]CCTTACTGACCCCAGCAACTTAACCTGTCTGTGCCTTAATTTTCTT




ATCTACAGAATGGA






cg268
AAAGTTAAGTACTAAGTATGTGGTGAACAAATAAATCCACCCTTCTGAAACACA
499


15229
TCTAAA[CG]AGGTCCTGTATTTGAAAGTGTCTGGAAGATTAAAAGGCACTACA




CCAAAGCTGCTAGCAC






cg268
GGACTGGTACAGGACAGGCATCTTTGAACCTATTTCTGGGAGTTCTGAAACTAC
500


24091
TGTTCT[CG]TGGGCCTTGGCGACTGATTTGGGAAAGCTGACCCTGGGTTGGCC




TGGCTTCCAGCCACCG






cg268
CGACGACGACCTCAACAGCGTGCTGGACTTCATCCTGTCCATGGGGCTGGATG
501


42024
GCCTGGG[CG]CCGAGGCCGCCCCGGAGCCGCCGCCGCCGCCCCCGCCGCCTG




CGTTCTATTACCCCGAAC






cg268
ACAAAGTGATCTGGCACAGCTGCAGGGTGGCATTGAGTCTGAGGCTTATGGTG
502


66325
CAGAAGC[CG]AAGTTAAAGATGTTTCTAGAGCCTGAAGACTTCCTCTTGAGGG




TGAGTTGCTGCCTACAA






cg268
CGCGGGTGGAAGGTGAAGGTCGAGGGAGGTCAGGCTGCTTCTGCGTGTCCTG
503


98166
ACGGCTGG[CG]TGTTCTCTTGAGATGGGCTCGGGCTACTTGGCCAGCTTCAAT




TTAAGCCACAGTGTCTCC






cg269
CCCAGCCCACGGCGGCCCGCGAGGGACAAAACGCGCCGCGCCTGGTTCCCCG
504


32976
CCCACGGA[CG]CGGTGACTTTCCAGAACGTCTTAAAGGCAACGCACTCTGACT




CAAGGCCCAGGGAGGCTG






cg270
TGTTTTTGTGGGAGGCCTTCTGCATGGTCCCGGGAGGTCAGGCAGCCCGGGAG
505


15931
GGCCTCC[CG]GAGCAGAGGCTGGAGTCAGTCCCAATGCCAACAGTTTCGAACC




TTGCCCGCGGGCACTGC






cg271
CCTGTCTTCAGCAGCATCGCTCTGGACTCAGCTTCCGAGGACCTGACCAGATCT
506


87881
GGTCTG[CG]TGTATCAGCTGTATGTGTTGGGCTCTGGAAGCTAAGAAACGTCT




GAAAAGCACTGGGGTC






cg272
TGCCCCGGTAACTGCCTCCCCAACACCTGCCTGCCTTCCACTGCGAAACCTGCTC
507


44482
TCGGA[CG]CCCTGACCATACCGCACACAATACTGCAAGCCTGTGTGGGCCTGG




GGGTGGGATGGACCC






cg273
GATGGCCCTTTAAGAGGCACTGTCCAGCTCTGGTTGCCATGGAGACAGCTGGA
508


67952
CACAGAC[CG]GGTAGAGGCAGGCCCACAGCATGTCCTCCAAGGTTTACTCCAC




AGGTGGGAAGAGGACTG






cg274
CTGGGATTACAGGCGTGAGCCACTGCGCCTGGCCTTTGCAAGGTTTTGAGGAA
509


40834
AGTGAAG[CG]TTCTGTTGAAGCAGGGCTTGAGTTCTGTTGTAAGTGTTTCATG




AAGCCCTGGAGACCTCT






cg274
TCAGGTTCTGGAACCAAGACAAGTCCAGGGACAACCCCAAAGCTGGCCTGGGC
510


93997
TCCCGCG[CG]GACAGCTTTTATACCCTGTACGGAACCGCCCCTGCCCAGGATTG




AAGTGGCCCCGCCTCC






cg275
AGGTGGAAATACTTTCGGGCGATGGTGGGGGCCTGGTGCTTCTTGGACTCGG
511


14224
AAGATGAC[CG]CTTGGCATTCTGGTACAGCACCACCAGGCAGGCCAAGGTGG




CCAGCAGAGACCAATAGGC






cg276
GAACCAGGGCCCTTGGCGAGAGTTGGGGTGGGAATCGCGTAAGAAAAGCAAT
512


26102
TTCTAGAG[CG]GAAAGGTGACCCCACATTACAAAAAGAAATGGAGTAGAAAA




ATAGGCTTGACTATTCTAA






cg276
CTATCAGCCTAACGATTAAGTCAACATGCTAAGCAGCCACACGGGGGCTACTA
513


55905
AGTGACT[CG]CACGGGGGAAGCAGGCAGGGAGACAGATGGGCAGGGGAGG




GAATCTGGGGCAATGCACAA





Note:


This application references a number of different publications as indicated throughout the specification by reference numbers. A list of these different publications ordered according to these reference numbers can be found above.






All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited (e.g. U.S. Patent Publication 20150259742). Publications cited herein are cited for their disclosure prior to the filing date of the present application. Nothing here is to be construed as an admission that the inventors are not entitled to antedate the publications by virtue of an earlier priority date or prior date of invention. Further, the actual publication dates may be different from those shown and require independent verification.


CONCLUSION

This concludes the description of the preferred embodiment of the present invention. The foregoing description of one or more embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching.

Claims
  • 1. A method of obtaining information on a phenotypic age of an individual, the method comprising observing methylation of genomic DNA obtained from the individual, wherein: methylation is observed in at least 10 CpG methylation markers in polynucleotides having SEQ ID NO: 1-SEQ ID NO: 513;said observing comprises performing a bisulfite conversion process on the genomic DNA so that cytosine residues in the genomic DNA are transformed to uracil, while 5-methylcytosine residues in the genomic DNA are not transformed to uracil; and/orsaid observing comprises hybridizing genomic DNA from the individual to a methylation array comprising the polynucleotides having sequences of SEQ ID NO: 1-SEQ ID NO: 513 coupled to a matrix;such that information on the phenotypic age of the individual is obtained.
  • 2. The method of claim 1, wherein the method comprises observing a clinical variable in the individual comprising at least one of: concentrations of albumin in the individual, concentrations of creatine in the individual, concentrations of glucose in the individual, concentrations of c-reactive protein in the individual, concentrations of alkaline phosphatase in the individual lymphocyte percentage in the individual, mean cell volume in the individual, red blood cell distribution width in the individual, white blood cell count in the individual, and age of the individual at the time of assessment.
  • 3. The method of claim 1, wherein methylation is observed in genomic DNA obtained from leukocytes or epithelial cells obtained from the individual.
  • 4. The method of claim 1, further comprising comparing the chronological age of the individual at the time of assessment and the phenotypic age so as to obtain information on life expectancy of the individual.
  • 5. The method of claim 4, further comprising using information on the phenotypic age obtained by the method to predict an age at which the individual may suffer from one or more age related diseases or conditions.
  • 6. The method of claim 1, wherein the phenotypic age of the individual is estimated using a weighted average of methylation markers within the set of 513 methylation markers.
  • 7. The method of claim 6, further comprising assessing a plurality of methylation markers in a regression analysis.
  • 8. The method of claim 1, wherein methylation is observed by a process comprising hybridizing genomic DNA obtained from the individual with at least 100, 200, 300, 400 or 500 polynucleotides comprising SEQ ID NO: 1-SEQ ID NO: 513 disposed in an array.
  • 9. The method of claim 1, further comprising: comparing the CG locus methylation observed in the individual to the CG locus methylation of genomic DNA having SEQ ID NO: 1-SEQ ID NO: 513 present in white blood cells or epithelial cells derived from a group of individuals of known ages; andcorrelating the CG locus methylation observed in the individual with the CG locus methylation and known ages in the group of individuals.
  • 10. A method of observing a phenotypic age of an individual, the method comprising observing methylation of genomic DNA obtained from the individual, wherein: methylation is observed in 513 CpG methylation markers in polynucleotides having SEQ ID NO: 1-SEQ ID NO: 513; andsaid observing comprises hybridizing genomic DNA from the individual to a methylation array comprising the polynucleotides of SEQ ID NO: 1-SEQ ID NO: 513 coupled to a matrix;such that the phenotypic age of the individual is observed.
  • 11. The method of claim 10, wherein the method comprises observing a clinical variable in the individual comprising at least one of: concentrations of albumin in the individual, concentrations of creatine in the individual, concentrations of glucose in the individual, concentrations of c-reactive protein in the individual, concentrations of alkaline phosphatase in the individual lymphocyte percentage in the individual, mean cell volume in the individual, red blood cell distribution width in the individual, white blood cell count in the individual, and age of the individual at the time of assessment.
  • 12. The method of claim 11, wherein at least 3, 4, 5, 6, 7 or 8 clinical variables are observed.
  • 13. The method of claim 11, further comprising observing at least one factor selected from individual diet history, individual smoking history and individual exercise history.
  • 14. The method of claim 10, further comprising using the observed phenotypic age to assess a risk of a cancer mortality in the individual.
  • 15. The method of claim 14, wherein the cancer is a breast cancer.
  • 16. The method of claim 14, wherein the cancer is a lung cancer.
  • 17. The method of claim 10, further comprising using the observed phenotypic age to assess a risk of diabetes mortality in the individual.
  • 18. The method of claim 10, further comprising using the observed phenotypic age to assess a risk of dementia in the individual.
  • 19. The method of claim 11, wherein methylation is observed by a process comprising treatment of genomic DNA from the population of cells from the individual with bisulfite to transform unmethylated cytosines of CpG dinucleotides in the genomic DNA to uracil.
  • 20. A tangible computer-readable medium comprising computer-readable code that, when executed by a computer, causes the computer to perform operations comprising: a) receiving information corresponding to methylation levels of a set of methylation markers in a biological sample, wherein the set of methylation markers comprises 513 methylation markers having SEQ ID NO: 1-SEQ ID NO: 513;b) applying a statistical prediction algorithm to methylation data obtained from the set of methylation markers; andc) determining a phenotypic age using a weighted average of the methylation levels of the 513 methylation markers.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under Section 119(e) from U.S. Provisional Application Ser. No. 62/618,422, filed Jan. 17, 2018, entitled “PHENOTYPIC AGE AND DNA METHYLATION BASED BIOMARKERS FOR LIFE EXPECTANCY AND MORBIDITY” the contents of each which are incorporated herein by reference.

STATEMENT OF GOVERNMENT INTEREST

This invention was made with Government support under Grant Numbers AG051425 and AG052604, awarded by the National Institutes of Health. The Government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/014053 1/17/2019 WO 00
Provisional Applications (1)
Number Date Country
62618422 Jan 2018 US