Phenyl-thiophene type vitamin d receptor modulators

Abstract
The present invention relates to novel, non-secosteroidal, phenyl-thiophene compounds with vitamin D receptor (VDR) modulating activity that are less hypercalcemic than 1α,25 dihydroxy vitamin D3. These compounds are useful for treating bone disease and psoriasis.
Description
BACKGROUND OF THE INVENTION

Vitamin D3 Receptor (VDR) is a ligand dependent transcription factor that belongs to the superfamily of nuclear hormone receptors. The VDR protein is 427 amino acids, with a molecular weight of ˜50 kDa. The VDR ligand, 1α,25-dihydroxyvitamin D3 (the hormonally active form of Vitamin D) has its action mediated by its interaction with the nuclear receptor known as Vitamin D receptor (“VDR”). The VDR ligand, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) acts upon a wide variety of tissues and cells both related to and unrelated to calcium and phosphate homeostasis.


The activity of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in various systems suggests wide clinical applications. However, use of conventional VDR ligands is hampered by their associated toxicity, namely hypercalcemia (elevated serum calcium). Currently, 1α,25(OH)2D3, marketed as Rocaltrol® pharmaceutical agent (product of Hoffmann-La Roche), is administered to kidney failure patients undergoing chronic kidney dialysis to treat hypocalcemia and the resultant metabolic bone disease. Other therapeutic agents, such as Calcipotriol® (synthetic analog of 1α,25(OH)2D3) show increased separation of binding affinity on VDR from hypercalcemic activity.


Recently, chemical modifications of 1α,25(OH)2D3 have yielded analogs with attenuated calcium mobilization effects (R. Bouillon et. al., Endocrine Rev. 1995, 16, 200-257). One such analog, Dovonex® pharmaceutical agent (product of Bristol-Meyers Squibb Co.), is currently used in Europe and the United States as a topical treatment for mild to moderate psoriasis (K. Kragballe et. al., Br. J. Dermatol. 1988, 119, 223-230).


Other vitamin D3 mimics have been described in the publication, Vitamin D Analogs: Mechanism of Action of Therapeutic Applications, by Nagpal, S.; Lu, J.; Boehm, M. F., Curr. Med. Chem. 2001, 8, 1661-1679.


Although some degree of separation between the beneficial action and calcium raising (calcemic) effects has been achieved with these VDR ligands, to date the separation has been insufficient to allow for oral administration to treat conditions such as osteoporosis, cancers, leukemias, and severe psoriasis.


One example of a major class of disorder that could benefit from VDR mediated biological efficacy in the absence of hypercalcemia is osteoporosis. Osteoporosis is a systemic disorder characterized by decreased bone mass and microarchitectural deterioration of bone tissue leading to bone fragility and increased susceptibility to fractures of the hip, spine, and wrist (World Health Organization WHO 1994). Osteoporosis affects an estimated 75 million people in the United States, Europe, and Japan. Within the past few years, several antiresorptive therapies have been introduced.


These include bisphosphonates, hormone replacement therapy (HRT), a selective estrogen receptor modulator (SERM), and calcitonins. These treatments reduce bone resorption, bone formation, and increase bone density. However, none of these treatments increase true bone volume nor can they restore lost bone architecture.


Synthetic vitamin D receptor (VDR) ligands with reduced calcemic potential have been synthesized. For example, a class of bis-phenyl compounds stated to mimic 1α, 25-dihydroxyvitamin D3 is described in U.S. Pat. No. 6,218,430 and the article; “Novel nonsecosteroidal vitamin D mimics exert VDR-modulating activities with less calcium mobilization than 1α, 25-Dihydroxyvitamin D3”, by Marcus F. Boehm, et. al., Chemistry & Biology 1999, Vol 6, No. 5, pgs. 265-275.


There remains a need for improved treatments using alternative or improved pharmaceutical agents that mimic 1α, 25-dihydroxyvitamin D3 to stimulate bone formation, restore bone quality, and treat other diseases without the attendant disadvantage of hypercalcemia.


SUMMARY OF THE INVENTION

Novel compounds having a nucleus of formula “(A)” have been found effective as Vitamin D Receptor (VDR) modulators:
embedded image

where one of the pair of ring atoms (Q1,Q2) is sulfur and the other is carbon and each asterisk mark (“*”) is a point of substitution. Compounds of the present invention with VDR modulating activities are represented by formula (I) formula I:
embedded image


wherein the variables R, R′, Q1, Q2, RP, RT, LT, LP, ZT, and ZP are as hereinafter defined. The inventors have discovered that compounds described herein display the desirable cell differentiation and antiproliferative effects of 1,25(OH)2D3 with reduced calcium mobilization (calcemic) effects.


In another aspect, the present invention is directed towards pharmaceutical compositions containing pharmaceutically effective amounts of compounds of formulae I or a pharmaceutically acceptable salt or prodrug thereof, either singly or in combination, together with pharmaceutically acceptable carriers and/or auxiliary agents.


Another aspect of the invention are novel chemical intermediates suitable for preparing the compounds of Formula I.


Another aspect of the invention is to use the compounds of the invention to treat or prevent disease states responsive to Vitamin D receptor ligands.


Another aspect of the invention is the prevention and treatment of abscess, acne, adhesion, actinic keratosis, alopecia, Alzheimer's disease, autoimmune induced diabetes, bone fracture healing, breast cancer, Crohn's disease, colon cancer, Type I diabetes, host-graft rejection, hypercalcemia, Type II diabetes, leukemia, multiple sclerosis, insufficient sebum secretion, osteomalacia, osteoporosis, insufficient dermal firmness, insufficient dermal hydration, myelodysplastic syndrome, psoriatic arthritis, prostate cancer, psoriasis, renal osteodystrophy, rheumatoid arthritis, scleroderma, seborrheic dermatitis, skin cancer, systemic lupus erythematosis, ulcerative colitis and wrinkles; by administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Formula I.


Another aspect of the invention is the use of the compounds of Formula I for treating or preventing disease states mediated by the Vitamin D receptor.







DETAILED DESCRIPTION OF THE INVENTION

I. Definitions:


In accordance with the present invention and as used herein, the following terms are defined to have the following meanings, unless explicitly stated otherwise:


The structural formula:
embedded image

is a substructure of Formula I and represents alternative thiophene substructures, namely;
embedded image

dependent on whether Q1 is sulfur when Q2 is carbon (A1) or Q1 is carbon when Q2 is sulfur (A2).


The term “alkenyl” refers to aliphatic groups wherein the point of attachment is a carbon-carbon double bond, for example vinyl, 1-propenyl, and 1-cyclohexenyl. Alkenyl groups may be straight-chain, branched-chain, cyclic, or combinations thereof, and may be optionally substituted. Suitable alkenyl groups have from 2 to about 20 carbon atoms.


The term “alkoxy” refers to —OR wherein R is an aliphatic or aromatic group which may be optionally substituted. Methoxy, ethoxy, propoxy, butoxy, and phenoxy are examples of alkoxy groups.


The term “alkyl” refers to saturated aliphatic groups including straight-chain, branched-chain, cyclic and any combinations thereof. Alkyl groups may further be divided into “primary”, “secondary”, and “tertiary” alkyl groups. In primary alkyl groups, the carbon atom of attachment is substituted with zero (methyl) or one organic radical. In secondary alkyl groups, the carbon atom of attachment is substituted with two organic radicals. In tertiary alkyl groups, the carbon atom of attachment is substituted with three organic radicals.


The term “cycloalkyl” includes organic radicals such as cyclopropanyl, cyclobutanyl, and cyclopentyl.


The term, “cycloalkenyl” includes organic radicals such as cyclopropenyl, cyclobutenyl, cyclopentenyl, and cyclohexenyl.


The term, “terminal hydroxyalkyl” is a group selected from 3-methyl-3-hydroxypentyl; 3-ethyl-3-hydroxypentyl; 3-ethyl-3-hydroxy-4-methylpentyl; 3-ethyl-3-hydroxy-4,4-dimethylpentyl; 3-methyl-3-hydroxy-4,4-dimethylpentyl; 1-hydroxycycloalkenyl; and 1-hydroxycycloalkyl.


The term, “C1-C5 fluoroalkyl” is an alkyl group containing fluorine and includes organic radicals such as —CF3, —CHF2, —CH2F, —CF2CF3, —CHFCF3, —CH2CF3, —CH2CHF2, and —CH2CH2F, with —CF3 being preferred.


The term, “Active Ingredient” refers to a compound of the invention represented by any of (i) formulae I, II, III, IV, (ii) the product of any example set out herein, or (iii) a compound identified in any row of Tables 1, 2, 3, or 4; or a salt or prodrug derivative of the preceding compound.


The abbreviation, “Me” means methyl.


The abbreviation, “Et” means ethyl.


The abbreviation, “iPr” means 1-methylethyl.


The abbreviation, “tBu” means 1,1-dimethylethyl.


The symbol “—(CH2)2— is equivalent to —CH2—CH2—.


The symbol, “*” in a structural formula identifies a chiral center (except in formula “A” where is symbolizes substitution).


The univalent symbol “—O” in any structural formula is a hydroxyl group (—OH).


The term, “3-methyl-3-hydroxypentyl” refers to the radical having the structural formula:
embedded image


The term, “3-methyl-3-hydroxypentenyl” refers to the radical having the structural formula:
embedded image


The term, “3-methyl-3-hydroxypentynyl” refers to the radical having the structural formula:
embedded image


The term, “3-ethyl-3-hydroxypentyl” refers to the radical having the structural formula:
embedded image


The term, “3-ethyl-3-hydroxypentenyl” refers to the radical having the structural formula:
embedded image


The term, “3-ethyl-3-hydroxypentynyl” refers to the radical having the structural formula:
embedded image


The term, “3-ethyl-3-hydroxy-4-methylpentyl” refers to the radical having the structural formula:
embedded image


The term, “3-ethyl-3-hydroxy-4,4-dimethylpentyl” refers to the radical having the structural formula:
embedded image


The term, “3-methyl-3-hydroxy-4,4-dimethylpentyl” refers to the radical having the structural formula:
embedded image


The term, “1-hydroxycycloalkenyl” refers to a radical selected from 1-hydroxycyclopentenyl, 1-hydroxycyclohexenyl, 1-hydroxycycloheptenyl, or 1-hydroxycyclooctenyl.


The term “hydroxycycloalkyl” refers to a radical having the general structural formula:
embedded image

where w is an integer from 1 to 6 and the hydroxyl radical is substituted on any ring carbon atom.


The term “1-hydroxycycloalkyl” refers to a radical having the general structural formula:
embedded image


Examples of 1-hydroxycycloalkyl radicals are 1-hydroxycyclopropyl, 1-hydroxycyclobutyl, 1-hydroxycyclopentyl, 1-hydroxycyclohexyl, 1-hydroxycycloheptyl, and 1-hydroxycyclooctyl.


The abbreviation, “Me” means methyl.


The abbreviation, “Et” means ethyl.


The abbreviation, “ipr” means 1-methylethyl.


The abbreviation, “tBu” means 1,1-dimethylethyl.


The abbreviation, “3Me3OH-Pentyl” means 3-methyl-3-hydroxypentyl.


The abbreviation, “3Me3OH-Pentenyl” means 3-methyl-3-hydroxypentynyl


The abbreviation, “3Me3OH-Pentynyl” means 3-methyl-3-hydroxypentynyl


The abbreviation, “3Et3OH-Pentyl” means 3-ethyl-3-hydroxypentyl.


The abbreviation, “3Et3OH-Pentenyl” means 3-ethyl-3-hydroxypentenyl


The abbreviation, “3Et3OH-Pentynyl” means 3-ethyl-3-hydroxypentynyl


The abbreviation, “3Et3OH4Me-Pentyl” means 3-ethyl-3-hydroxy-4-methylpentyl.


The abbreviation, “3Et3OH44DiMe-Pentyl” means 3-ethyl-3-hydroxy-4,4-dimethylpentyl.


The abbreviation, “3Me3OH44DiMe-Pentyl” means 3-methyl-3-hydroxy-4,4-dimethylpentyl.


The term “C1-C5 alkyl” is an alkyl substituent selected from the group consisting of: methyl; ethyl; propyl; 1-methylethyl; 1-methylpropyl; 2-methylpropyl; 1,1-dimethylethyl; 1,1-dimethylpropyl; 1,2-dimethylpropyl; and 2,2-dimethylpropyl. The preferred groups are 2-methylpropyl and 1,1-dimethylethyl, with the 1,1-dimethylethyl group being most preferred.


The symbol “—(C1-C5 alkyl)2” when included as part of a substituent group means two independently selected C1-C5 alkyl groups, for example, the generic formula:

    • —(C1-C5 alkyl)-NH-(C1-C5 alkyl)2


would be descriptive of species including;

    • —(C1-C5 alkyl)—NH—(CH3)2 or —(C1-C5 alkyl)-NH-(CH3)(C2H5)


The term “amide” refers to derivatives of acids wherein one or more hydroxyl groups is replaced with a amino groups. The amino groups are optionally substituted with one or two organic radicals which may be aliphatic or aromatic. Amides may be cyclic. The term “carboxamide” refers to an amide of a carboxylic acid. The term “aminocarbonyl” refers to carboxamide radicals wherein the point of attachment is the carbonyl carbon. The term “acylamido” refers to carboxamide radicals wherein the point of attachment is the nitrogen atom.


The term, “amine”, includes primary, secondary and tertiary amines having respectively one, two, or three organic groups that are attached to the nitrogen atom.


The symbol, “—C(O)—N-pyrrolidine” refers to the radical represented by the formula:
embedded image


The symbol, “—C(O)—N-pyrrolidin-2-one” refers to the radical represented by the formula:
embedded image


The symbol, “—C(O)—C(O)—N-pyrrolidine” refers to the radical represented by the formula:
embedded image


The symbol, “—C(O)—C(O)—N-pyrrolidin-2-one” refers to the radical represented by the formula:
embedded image


The symbol, “—CH2—C(O)—N-pyrrolidin-2-one is the organic radical represented by the structural formula:
embedded image


The dotted line symbol crossing a solid line representing a bond
embedded image


means that the bond so marked is the bond attached to the nucleus of formula “(A)” of the parent molecule or to a divalent linking group that is attached to the nucleus of the parent molecule. For example, the group;
embedded image


is attached to a parent aryl-thiophene nucleus to provide a compound of the invention as shown;
embedded image


The term, “(Acidic Group)” means an organic group that acts as a proton donor capable of hydrogen bonding. Illustrative of an (Acidic Group) is a group selected from the following:
embedded imageembedded image

or corresponding salts of the above acids (e.g., Na, K, Ca, or Mg).


The term, “mammal” includes humans.


The term, “combined group” refers to the pendent binary groups of linkers, -(L)-, and Z substituents represented in formula I by either of:
embedded image


The term “ester” refers to compounds wherein a hydroxy group of an acid is replaced with an alkoxide group. For example, a carboxylic ester is one in which the hydroxy group of a carboxylic acid is replaced with an alkoxide. Esters may derive from any acid comprising one or more hydroxy groups: for example, carbonic acid, carbamic acids, phosphonic acids, sulfonic acids, and boronic acids. The terms “alkoxycarbonyl” and “carboalkoxy” refer to carboxylic ester radicals wherein the point of attachment is the carbonyl carbon.


The term “halo” refer to fluorine, chlorine, bromine, and iodine.


The term “substituted” indicate that the group in question is substituted with from one or a plurality of independently selected conventional organic substituents such as acyl, acyloxy, alkenyl, alkoxy, alkyl, amino, aminocarbonyl, aryl, carboxy, halo, hydroxy, oxa, oxo, perhaloalkyl, perhaloaryl, phosphino, phosphinyl, phosphonyl, sulfinyl, sulfonyl, thia, thio, and combinations and protected derivatives thereof.


The term “pharmaceutically acceptable salt” includes salts of the compounds of the present invention derived from the combination of the compound and an organic or inorganic acid or base. In practice, acidic members of the compounds of formulae I and II would be combined with a base or bases, basic members of the compounds of formulae I and II would be combined with an acid or acids, and members of the compounds of formulae I and II with both acid and base functionalities would be combined with one or more acids, bases or any combination thereof. Both the neutral and salt forms fall within the scope of the present invention. Examples of cationic salts are sodium, aluminum, zinc, potassium, calcium, magnesium and ammonium.


The word “abscess” is a complication often associated with surgery, trama, or diseases that predispose the host to abscess formation from encapsulated bacteria lymphocytes, macrophages, and etc.


The word “adhesion” refers to the abnormal union of surfaces normally separate by the formulation of new fibrous tissue resulting from an inflammatory process.


The term, “combined groups” refers to the groups in Formula I represented by either of the groups
embedded image


The term, “urethane” refers to the radical:
embedded image

wherein each RU is independently hydrogen or C1-C8 alkyl, for example, methyl, ethyl, n-propyl, and isopropyl.


The term, “thiourethane refers to the radical:
embedded image

wherein RU is hydrogen or C1-C8 alkyl, for example, methyl, ethyl, n-propyl, and isopropyl.


Some of the structural formulae used herein omit depiction of hydrogen atoms. For example, the formula:
embedded image

is understood to be the equivalent of the formula:
embedded image


The term, “urethane-type radical” refers to either urethane or thiourethane radicals.


Definitions IA: Rule of Polarity and Lipophilicity for Substituents Pendant on the Compounds of the Invention:


The substituents LP, LT, ZP, and ZT pendant on the compounds of the invention are constrained both by (i) the identity of each substituent, and (ii) the polar or lipophilic nature of each substituent. The occurance of “polar” and “lipophilic” is to be done in accord with the following Rule:


RULE: The combined groups in formula I, 1, III, IV and V represented by
embedded image

may all be lipophilic, or one may be lipophilic and the other one polar; but both combined groups may not be polar. If any part of a combined group is polar, then the “combined group” itself is deemed polar. For example, in the group
embedded image

if the divalent linking group -(LP)- is the polar group, —C(O)—NH— and ZP is the lipophilic group, —CH2—CH2-(t-butyl); then the combined group is defined as “polar.”


Definitions IB: Definition of “Polar” and “Lipophilic”


The term “lipophilic group” refers to any linking group
embedded image

or any of the Z substituents
embedded image

that is hydrophobic, preferring or attracted to a hydrocarbon loving, non-aqueous environment. Lipophilic linking groups in the practice of the invention are
embedded image

where m is 0, 1, or 2, and each R40 is independently hydrogen, —CH3, —F, —CH2F, —CHF2, and —CF3. All other exemplified linking groups are polar.


Generally all linking groups containing only hydrocarbon subunit groups or hydrocarbon subunit groups in combination with ether or thioether groups are lipophilic. Moreover, fluorinated derivatives of such groups are considered lipophilic.


Lipophilic ZT or ZP groups in the practice of the invention are partially exemplified by

    • —O—CH2—C(O)—C1-C5alkyl,
    • —O—CH2—CH(OH)—C1-C5alkyl,
    • —O—CH2—C(CH3)(OH)—C1-C5alkyl,
    • —O—CH2—CH(OCH3)—C1-C5alkyl,
    • —O—CH(CH3)—C(O)—C1-C5alkyl
    • —O—CH(CH3)—CH(OH)—C1-C5alkyl,
    • —O—CH2—C(O)—C(CH3)2—C1-C5alkyl
    • —O—CH2—CH(OH)—C(CH3)2—C1-C5alkyl,
    • —O—CH2—C(O)—C1-C5alkyl,
    • —O—CH2—CH(OH)—C1-C5alkyl,
    • —O—CH2—CH(OCH3)—C1-C5alkyl,
    • —CH2—CH2—C(O)—C1-C5alkyl,
    • —CH2—CH2—CH(OH)—C1-C5alkyl,
    • —CH2—CH2—CH(OCH3)—C1-C5alkyl,
    • —CH2—C(O)—C1-C5alkyl,
    • —CH2—CH(OH)—C1-C5alkyl,
    • —CH2—C(CH3)(OH)—C1-C5alkyl,
    • —CH(CH3)—C(O)—C1-C5alkyl,
    • —CH(CH3)—CH(OH)—C1-C5alkyl,
    • —CH(CH3)—C(CH3)(OH)—C1-C5alkyl,
      embedded image
    • 1-hydroxycyclopentenyl,
    • 1-hydroxycyclohexenyl,
    • 1-hydroxycycloheptenyl,
    • 1-hydroxycyclooctenyl,
    • 1-hydroxycyclopropyl,
    • 1-hydroxycyclobutyl,
    • 1-hydroxycyclopentyl,
    • 1-hydroxycyclohexyl,
    • 1-hydroxycycloheptyl, and
    • 1-hydroxycyclooctyl.


Conversely, the term “polar group” refers to any linking group
embedded image

that is not a lipophilic group. The term “polar group” also refers to any Z substituent
embedded image

that is not a lipophilic group. The term, “polar” as used herein generally refers to chemical substituents that are hydrophilic, preferring or attracted to an aqueous environment. An example of a polar linking group is a linking group selected from the following:
embedded image

where m is 0, 1, or 2 and R40 is as previously defined.


Exemplary polar ZT or ZP groups in the practice of the invention are depicted by the following formulae:
embedded image

II. Compounds of the Invention:


The compounds of the invention are Vitamin D Receptor Modulators represented by formula I or a pharmaceutically acceptable salt or prodrug derivative thereof:
embedded image

wherein;


R and R′ are independently C1-C5 alkyl, C1-C5 fluoroalkyl, or together R and R′ form a substituted or unsubstituted, saturated or unsaturated carbocyclic ring having from 3 to 8 carbon atoms;


Ring atoms Q1 and Q2 are independently selected from carbon or sulfur, with the proviso that one atom is sulfur and the other atom is carbon;


RP and RT are independently selected from the group consisting of hydrogen, halo, C1-C5 alkyl, C1-C5 fluoroalkyl, —O—C1-C5 alkyl, —S—C1-C5 alkyl, —O—C1-C5 fluoroalkyl, —CN, —NO2, acetyl, —S—C1-C5 fluoroalkyl, C2-C5 alkenyl, C3-C5 cycloalkyl, and C3-C5 cycloalkenyl;


(LP) and (LT) are divalent linking groups independently selected from the group consisting of
embedded image

where m is 0, 1 or 2, X1 is oxygen or sulfur, and each R40 is independently hydrogen or C1-C5 alkyl or C1-C5 fluoroalkyl;


ZP and ZT are independently selected from

    • -hydrogen,
    • -phenyl,
    • -benzyl,
    • -fluorophenyl,
    • —(C1-C5 alkyl),
    • —(C2-C5 alkenyl),
    • —(C3-C5 cycloalkyl),
    • —(C3-C5 cycloalkenyl),
    • —(C1-C5 hydroxyalkyl),
    • —(C1-C5 fluoroalkyl),
    • —(C1-C5 alkyl)-phenyl,
    • —(C1-C5 alkyl)-O—(C1-C5)alkyl,
    • —(C1-C5 alkyl)-NH2,
    • —(C1-C5 alkyl)-NH—(C1-C5 alkyl),
    • —(C1-C5 alkyl)-N—(C1-C5 alkyl)2,
    • —(C1-C5 alkyl)-C(O)—NH2,
    • —(C1-C5 alkyl)-C(O)—NH—(C1-C5 alkyl),
    • —(C1-C5 alkyl)-C(O)—N—(C1-C5 alkyl)2,
    • —(C1-C5 alkyl)-C(O)—(C1-C5 alkyl),
    • —(C1-C5 alkyl)-NH—SO2—(C1-C5 alkyl),
    • —(C1-C5 alkyl)-N-pyrrolidin-2-one,
    • —(C1-C5 alkyl)-N-pyrrolidine,
    • —(C1-C5 alkyl)-(1-methylpyrrolidin-2-one-3-yl),
    • —(C1-C5 alkyl)-C(O)—(O—C1-C5 alkyl),
    • —(C1-C5 alkyl)-C(O)—OH,
    • —(C1-C5 alkyl)-5-tetrazolyl,
    • —(C1-C5 alkyl)-P(O)—(O—C1-C5 alkyl)2,
    • —(C1-C5 alkyl)-SO2—(C1-C5 alkyl),
    • —(C1-C5 alkyl)-SO2—NH2,
    • —(C1-C5 alkyl)-SO2—NH—(C1-C5 alkyl),
    • —(C1-C5 alkyl)-SO2—N—(C1-C5 alkyl)2,
    • —(C1-C5 alkyl)-SO2—(C1-C5 alkyl),
    • —(C1-C5 alkyl)-S(O)—(C1-C5 alkyl),
    • —(C1-C5 alkyl)-S(O)—NH2,
    • —(C1-C5 alkyl)-S(O)—NH—(C1-C5 alkyl),
    • —(C1-C5 alkyl)-S(O)—N—(C1-C5 alkyl)2,
    • —(C1-C5 alkyl)-S(O)—(C1-C5 alkyl),
    • —(C1-C5 alkyl)-N(C(O)(C1-C5 alkyl)CH2C(O)OH,
    • —(C1-C5 alkyl)-N(C(O)(C1-C5 alkyl)CH2C(O)—(C1-C5 alkyl),
    • —CH(OH)—(C1-C5 alkyl)
    • —CH(OH)—(C2-C5 alkenyl),
    • —CH(OH)—(C3-C5 cycloalkyl),
    • —CH(OH)—(C3-C5 cycloalkenyl),
    • —CH(OH)—(C1-C5 hydroxyalkyl),
    • —CH(OH)—(C1-C5 fluoroalkyl),
    • —CH(OH)-phenyl
    • —CH(OH)-5-tetrazolyl,
    • —CH(OH)—(1-methylpyrrolidin-2-one-3-yl),
    • —C(O)—(C1-C5 alkyl),
    • —C(O)—(C1-C5 alkyl)-C(O)OH,
    • —C(O)—(C1-C5 alkyl)-C(O)(O)—C1-C5 alkyl),
    • —C(O)—(C2-C5 alkenyl),
    • —C(O)—(C3-C5 cycloalkyl),
    • —C(O)—(C3-C5 cycloalkenyl),
    • —C(O)—(C1-C5 hydroxyalkyl),
    • —C(O)—(C1-C5 fluoroalkyl),
    • —C(O)—(C1-C5 alkyl)-phenyl
    • —C(O)—O—(C1-C5 alkyl),
    • —C(O)—O—(C2-C5 alkenyl),
    • —C(O)—O—(C3-C5 cycloalkyl),
    • —C(O)—O—(C3-C5 cycloalkenyl),
    • —C(O)—O—(C1-C5 hydroxyalkyl),
    • —C(O)—O—(C1-C5 fluoroalkyl),
    • —C(O)—O—(C1-C5 alkyl)-phenyl,
    • —C(O)—NH2,
    • —C(O)—NH(OH),
    • —C(O)—NH—(C1-C5 alkyl),
    • —C(O)—N—(C1-C5 alkyl)2,
    • —C(O)—NH—(C2-C5 alkenyl),
    • —C(O)—NH—(C3-C5 cycloalkyl),
    • —C(O)—NH—(C3-C5 cycloalkenyl),
    • —C(O)—NH—(C1-C5 fluoroalkyl),
    • —C(O)—NH—(C1-C5 alkyl)-phenyl,
    • —C(O)—NH—SO2—(C1-C5 alkyl),
    • —C(O)—NH—SO2—(C2-C5 alkenyl),
    • —C(O)—NH—SO2—(C3-C5 cycloalkyl),
    • —C(O)—NH—SO2—(C3-C5 cycloalkenyl),
    • —C(O)—NH—S(O)—(C1-C5 alkyl),
    • —C(O)—NH—S(O)—(C2-C5 alkenyl),
    • —C(O)—NH—S(O)—(C3-C5 cycloalkyl),
    • —C(O)—NH—S(O)—(C3-C5 cycloalkenyl),
    • —C(O)—NH—(C1-C5 fluoroalkyl),
    • —C(O)—NH—(C1-C5 alkyl)-phenyl
    • —C(O)—NH—(C1-C5 alkyl)-SO2—(C1-C5 alkyl),
    • —C(O)—NH—(C1-C5 alkyl)-S(O)—(C1-C5 alkyl),
    • —C(O)—NH—CH2—C(O)OH
    • —C(O)—NH—CH2—C(O)-(O—C1-C5 alkyl),
    • —C(O)—N—(C1-C5 alkyl)(C(O)OH),
    • —C(O)—N—(C1-C5 alkyl)(C(O)—(O—C1-C5 alkyl)),
    • —C(O)—NH—CH((CH2)(CO2H))(CO2H),
    • —C(O)—NH—CH((CH2)(C(O)—(C1-C5 alkyl)))(C(O)—(O—C1-C5 alkyl)),
    • —C(O)—NH—CH((CH2OH)(CO2H)),
    • —C(O)—NH—CH((CH2OH)(C(O)(O—C1-C5 alkyl)), —C(O)—NH—C((C1-C5 alkyl)(C1-C5 alkyl))(CO2H),
    • —C(O)—NH—C((C1-C5 alkyl)(C1-C5 alkyl))(C(O)—(O—C1-C5 alkyl)),
    • —C(O)—NH-5-tetrazolyl,
    • —C(O)—N-pyrrolidin-2-one,
    • —C(O)—N-pyrrolidine,
    • —C(O)-(1-methylpyrrolidin-2-one-3-yl),
    • —C(O)—(C1-C5 alkyl)-N-pyrrolidin-2-one,
    • —C(O)—(C1-C5 alkyl)-N-pyrrolidine,
    • —C(O)—(C1-C5 alkyl)-(1-methylpyrrolidin-2-one-3-yl),
    • —C(O)—N-pyrrolidin-2-(CO2H),
    • —C(O)—N-pyrrolidin-2-(C(O)—(O—C1-C5 alkyl)),
    • —C(O)—N—(C(O)—(C1-C5 alkyl))CH2)(CO2H),
    • —C(O)—N—(C(O)—(C1-C5 alkyl))CH2)(C(O)—(O—C1-C5 alkyl)),
    • —C(O)—N—(C1-C5 alkyl))CH2(CO2H),
    • —C(O)—C(O)—OH,
    • —C(O)—C(O)—(C1-C5 alkyl),
    • —C(O)—C(O)—(C2-C5 alkenyl),
    • —C(O)—C(O)—(C3-C5 cycloalkyl),
    • —C(O)—C(O)—(C3-C5 cycloalkenyl),
    • —C(O)—C(O)—(C1-C5 hydroxyalkyl),
    • —C(O)—C(O)—(C1-C5 fluoroalkyl),
    • —C(O)—C(O)—(C1-C5 alkyl)-phenyl,
    • —C(O)—C(O)—NH2,
    • —C(O)—C(O)—NH—(C1-C5 alkyl),
    • —C(O)—C(O)—N—(C1-C5 alkyl)2,
    • —C(O)—C(O)-5-tetrazolyl,
    • —C(O)—C(O)—N-pyrrolidin-2-one,
    • —C(O)—C(O)—N-pyrrolidine,
    • —C(O)—C(O)-(1-methylpyrrolidin-2-one-3-yl),
    • —O—(C1-C5 alkyl),
    • —O—(C2-C5 alkenyl),
    • —O—(C3-C5 cycloalkyl),
    • —O—(C3-C5 cycloalkenyl),
    • —O—(C1-C5 hydroxyalkyl),
    • —O—(C1-C5 fluoroalkyl),
    • —O—(C1-C5 alkyl)-phenyl,
    • —O—(C1-C5 alkyl)-(O)—(C1-C5 alkyl),
    • —O—(C1-C5 alkyl) NH2,
    • —O—(C1-C5 alkyl)-NH—(C1-C5 alkyl)2,
    • —O—(C1-C5 alkyl)-C(O)—NH2,
    • —O—(C1-C5 alkyl)-C(O)—NH—(C1-C5 alkyl),
    • —O—(C1-C5 alkyl)-C(O)—N—(C1-C5 alkyl)2,
    • —O—(C1-C5 alkyl)-C(O)—OH,
    • —O—(C1-C5 alkyl)-C(O)—NH-5-tetrazolyl,
    • —O—(C1-C5 alkyl)-C(O)—(C1-C5 alkyl),
    • —O—(C1-C5 alkyl)-C(O)—(O—C1-C5 alkyl),
    • —O—(C1-C5 alkyl)-NH2,
    • —O—(C1-C5 alkyl)-NH-(C1-C5 alkyl),
    • —O—(C1-C5 alkyl)-N—(C1-C5 alkyl)2,
    • —O—(C1-C5 alkyl)-NH—SO2—(C1-C5 alkyl),
    • —O—(C1-C5 alkyl)-N-pyrrolidin-2-one,
    • —O—(C1-C5 alkyl)-N-pyrrolidine,
    • —O—(C1-C5 alkyl)-(1-methylpyrrolidin-2-one-3-yl),
    • —O—(C1-C5 alkyl)-SO2—(C1-C5 alkyl,)
    • —O—(C1-C5 alkyl)-SO2—NH2,
    • —O—(C1-C5 alkyl)-SO2—NH—(C1-C5 alkyl),
    • —O—(C1-C5 alkyl)-SO2—N—(C1-C5 alkyl)2,
    • —O—(C1-C5 alkyl)-SO2—(C1-C5 alkyl),
    • —O—(C1-C5 alkyl)-S(O)—(C1-C5 alkyl,)
    • —O—(C1-C5 alkyl)-S(O)—NH2,
    • —O—(C1-C5 alkyl)-S(O)—NH—(C1-C5 alkyl),
    • —O—(C1-C5 alkyl)-S(O)—N—(C1-C5 alkyl)2,
    • —O—(C1-C5 alkyl)-S(O)—(C1-C5 alkyl),
    • —O—(C1-C5 alkyl)-P(O)—(O—C1-C5 alkyl)2,
    • —O—(C1-C5 alkyl)-5-tetrazolyl,
    • —O—CH2—CO2H,
    • —O—CH2-5-tetrazolyl,
    • —O—(C1-C5 alkyl),
    • —O—C(O)—NH2,
    • —O—C(O)—N—(CH3)2,
    • —O—C(S)—N—(CH3)2,
    • —C(O)—O—(C1-C5 alkyl)—O—(5-tetrazolyl),
    • —O—SO2—(C1-C5 alkyl,)
    • —O—SO2—NH2,
    • —O—SO2—NH—(C1-C5 alkyl),
    • —O—SO2—N—(C1-C5 alkyl)2,
    • —O—S(O)—(C1-C5 alkyl,)
    • —O—S(O)—NH2,
    • —O—S(O)—NH—(C1-C5 alkyl),
    • —O—S(O)—N—(C1-C5 alkyl)2,
    • —S—(C1-C5 alkyl),
    • —S—(C2-C5 alkenyl),
    • —S—(C3-C5 cycloalkyl),
    • —S—(C3-C5 cycloalkenyl),
    • —S—(C1-C5 fluoroalkyl),
    • —S—(C1-C5 hydroxyalkyl),
    • —S—(C1-C5 alkyl)-phenyl,
    • —S—(C1-C5 alkyl)-O—(C1-C5 alkyl),
    • —S—(C1-C5 alkyl)-C(O)—OH,
    • —S—(C1-C5 alkyl)-C(O)—(C1-C5 alkyl),
    • —S—(C1-C5 alkyl)-C(O)—O—(C1-C5 alkyl),
    • —S—(C1-C5 alkyl)-C(O)—NH2,
    • —S—(C1-C5 alkyl)-C(O)—NH—(C1-C5 alkyl),
    • —S—(C1-C5 alkyl)-C(O)—N—(C1-C5 alkyl)2,
    • —S—(C1-C5 alkyl) NH2,
    • —S—(C1-C5 alkyl)-NH-(C1-C5 alkyl),
    • —S—(C1-C5 alkyl)-N—(C1-C5 alkyl)2,
    • —S—(C1-C5 alkyl)-NH—SO2—(C1-C5 alkyl),
    • —S—(C1-C5 alkyl)-N-pyrrolidin-2-one,
    • —S—(C1-C5 alkyl)-N-pyrrolidine,
    • —S—(C1-C5 alkyl)-(1-methylpyrrolidin-2-one-3-yl),
    • —S—(C1-C5 alkyl)-SO2—(C1-C5 alkyl),
    • —S—(C1-C5 alkyl)-SO2—NH2,
    • —S—(C1-C5 alkyl)-SO2—NH—(C1-C5 alkyl),
    • —S—(C1-C5 alkyl)-SO2—N—(C1-C5 alkyl)2,
    • —S—(C1-C5 alkyl)-SO2—(C1-C5 alkyl),
    • —S—(C1-C5 alkyl)-P(O)—(O—C1-C5 alkyl)2,
    • —S—(C1-C5 alkyl)-5-tetrazolyl,
    • —S—(C1-C5 alkyl)-S(O)—(C1-C5 alkyl),
    • —S—(C1-C5 alkyl)-S(O)—NH2,
    • —S—(C1-C5 alkyl)-S(O)—NH—(C1-C5 alkyl),
    • —S—(C1-C5 alkyl)-S(O)—N—(C1-C5 alkyl)2,
    • —S—(C1-C5 alkyl)-S(O)—(C1-C5 alkyl),
    • —SO2—(C1-C5 alkyl),
    • —SO2—(C2-C5 alkenyl),
    • —SO2—(C3-C5 cycloalkyl),
    • —SO2—(C3-C5 cycloalkenyl),
    • —SO2—(C1-C5 hydroxyalkyl),
    • —SO2—(C1-C5 fluoroalkyl),
    • —SO2—(C1-C5)-phenyl,
    • —SO2—NH2,
    • —SO2—NH—(C1-C5 alkyl),
    • —SO2—NH—CH2—C(O)OH,
    • —SO2—NH—CH2—C(O)(O—C1-C5 alkyl),
    • —SO2—NH—(C1-C5 alkyl)-C(O)OH,
    • —SO2—NH—(C1-C5 alkyl)-C(O)(O—C1-C5 alkyl),
    • —SO2—NHC(O)—(C3-C6 cycloalkyl),
    • —SO2—NH—C(O)—(C1-C5 alkyl),
    • —SO2—N—(C1-C5 alkyl)2,
    • —SO2—(C1-C5 alkyl)-O—(C1-C5 alkyl),
    • —SO2—(C1-C5 alkyl)-C(O)—(C1-C5 alkyl),
    • —SO2—(C1-C5 alkyl)-NH2,
    • —SO2—(C1-C5 alkyl)-NH-(C1-C5 alkyl),
    • —SO2—(C1-C5 alkyl)-N—(C1-C5 alkyl)2,
    • —SO2—(C1-C5 alkyl)-C(O)—NH2,
    • —SO2—(C1-C5 alkyl)-C(O)—NH—(C1-C5 alkyl),
    • —SO2—(C1-C5 alkyl)-C(O)—N—(C1-C5 alkyl)2,
    • —SO2—(C1-C5 alkyl)-NH—SO2—(C1-C5 alkyl),
    • —SO2—(C1-C5 alkyl)-N-pyrrolidin-2-one,
    • —SO2—(C1-C5 alkyl)-N-pyrrolidine,
    • —SO2—(C1-C5 alkyl)-(1-methylpyrrolidin-2-one-3-yl),
    • —SO2—(C1-C5 alkyl)-C(O)—O—(C1-C5 alkyl),
    • —SO2—(C1-C5 alkyl)-C(O)—OH,
    • —SO2—(C1-C5 alkyl)-5-tetrazolyl,
    • —SO2—(C1-C5 alkyl)-SO2—(C1-C5 alkyl),
    • —SO2—(C1-C5 alkyl)-SO2—NH2,
    • —SO2—(C1-C5 alkyl)-SO2—NH—(C1-C5 alkyl),
    • —SO2—(C1-C5 alkyl)-SO2—N—(C1-C5 alkyl)2,
    • —SO2—(C1-C5 alkyl)-SO2—(C1-C5 alkyl),
    • —SO2—(C1-C5 alkyl)-P(O)—(O—C1-C5 alkyl)2,
    • —SO2—(C1-C5 alkyl),
    • —SO2—(C2-C5 alkenyl),
    • —SO2—(C3-C5 cycloalkyl),
    • —SO2—(C3-C5 cycloalkenyl),
    • —SO2—(C1-C5 hydroxyalkyl),
    • —SO2—(C1-C5 fluoroalkyl),
    • —SO2—(C1-C5)-phenyl,
    • —SO2—N═CHN(C1-C5 alkyl) 2,
    • —S(O)—NH2,
    • —S(O)—NH—(C1-C5 alkyl),
    • —S(O)—NH—CH2—C(O)OH
    • —S(O)—NH—(C1-C5 alkyl)-C(O)OH,
    • —S(O)—NH—CH2—C(O)(O—C1-C5 alkyl),
    • —S(O)—NH—(C1-C5 alkyl)-C(O)(O—C1-C5 alkyl),
    • —S(O)HC(O)—(C3-C6 cycloalkyl),
    • —S(O)—NH—C(O)—(C1-C5 alkyl),
    • —S(O)—N—(C1-C5 alkyl)2,
    • —S(O)—(C1-C5 alkyl)-O—(C1-C5 alkyl),
    • —S(O)—(C1-C5 alkyl)-C(O)—(C1-C5 alkyl),
    • —S(O)—(C1-C5 alkyl)-C(O)-(O—C1-C5 alkyl),
    • —S(O)—(C1-C5 alkyl)-NH-(C1-C5 alkyl),
    • —S(O)—(C1-C5 alkyl)-N—(C1-C5 alkyl)2,
    • —S(O)—(C1-C5 alkyl)-C(O)—NH2,
    • —S(O)—(C1-C5 alkyl)-C(O)—NH—(C1-C5 alkyl),
    • —S(O)—(C1-C5 alkyl)-C(O)—N—(C1-C5 alkyl)2,
    • —S(O)—(C1-C5alkyl)-NH—SO2—(C1-C5alkyl),
    • —S(O)—(C1-C5 alkyl)-NH—S(O)—(C1-C5 alkyl),
    • —S(O)—(C1-C5 alkyl)-N-pyrrolidin-2-one,
    • —S(O)—(C1-C5 alkyl)-N-pyrrolidine,
    • —S(O)—(C1-C5 alkyl)-(1-methylpyrrolidin-2-one-3-yl),
    • —S(O)—(C1-C5 alkyl)-C(O)—(O—C1-C5 alkyl),
    • —S(O)—(C1-C5 alkyl)-C(O)—OH,
    • —S(O)—(C1-C5 alkyl)-5-tetrazolyl,
    • —S(O)—(C1-C5 alkyl)-SO2—(C1-C5 alkyl),
    • —S(O)—(C1-C5 alkyl)-S(O)—(C1-C5 alkyl),
    • —S(O)—(C1-C5 alkyl)-SO2—NH2,
    • —S(O)—(C1-C5 alkyl)-S(O)—NH2,
    • —S(O)—(C1-C5 alkyl)-SO2—NH—(C1-C5 alkyl),
    • —S(O)—(C1-C5 alkyl)-S(O)—NH—(C1-C5 alkyl),
    • —S(O)—(C1-C5 alkyl)-SO2—N—(C1-C5 alkyl)2,
    • —S(O)—(C1-C5 alkyl)-S(O)—N—(C1-C5 alkyl)2,
    • —S(O)—(C1-C5 alkyl)-SO2—(C1-C5 alkyl),
    • —S(O)—(C1-C5 alkyl)-S(O)—(C1-C5 alkyl),
    • —S(O)—(C1-C5 alkyl)-P(O)—(O—C1-C5 alkyl)2,
    • —S(O)—N═CHN(C1-C5 alkyl) 2,
    • —NHC(S)NH2,
    • —NHC(S)NH—(C1-C5 alkyl),
    • —NHC(S)N—(C1-C5 alkyl)2,
    • —NHC(S)NH—(C2-C5 alkenyl),
    • —NHC(S)NH—(C3-C5 cycloalkyl),
    • —NHC(S)NH—(C3-C5 cycloalkenyl),
    • —NHC(S)NH—(C1-C5 fluoroalkyl),
    • —NHC(S)NH-C1-C5 hydroxyalkyl,
    • —NHC(S)NH—(C1-C5 fluoroalkyl)
    • —NHC(S)NH-phenyl,
    • —NHC(S)NH—(C1-C5 alkyl)-C(O)—OH,
    • —NHC(S)NH—(C1-C5 alkyl)-O—(C1-C5 alkyl),
    • —NHC(S)NH—(C1-C5 alkyl)-C(O)—(C1-C5 alkyl),
    • —NHC(S)NH—(C1-C5 alkyl)-C(O)—(O—C1-C5 alkyl),
    • —NHC(S)NH—(C1-C5 alkyl)-NH2,
    • —NHC(S)NH—(C1-C5 alkyl)-NH—(C1-C5 alkyl),
    • —NHC(S)NH—(C1-C5 alkyl)-N—(C1-C5 alkyl)2,
    • —NHC(S)NH—(C1-C5 alkyl)-C(O)—NH2,
    • —NHC(S)NH—(C1-C5 alkyl)-C(O)—NH—(C1-C5 alkyl),
    • —NHC(S)NH—(C1-C5 alkyl)-C(O)—N—(C1-C5 alkyl)2,
    • —NHC(S)NH—(C1-C5 alkyl)-NH—SO2—(C1-C5 alkyl),
    • —NHC(S)NH—(C1-C5 alkyl)-NH—S(O)—(C1-C5 alkyl),
    • —NHC(S)NH—(C1-C5 alkyl)-N-pyrrolidin-2-one,
    • —NHC(S)NH—(C1-C5 alkyl)-N-pyrrolidine,
    • —NHC(S)NH—(C1-C5 alkyl)-(1-methylpyrrolidin-2-one-3-yl),
    • —NHC(S)NH—(C1-C5 alkyl)-5-tetrazolyl,
    • —NHC(S)NH—(C1-C5 alkyl)-SO2—(C1-C5 alkyl),
    • —NHC(S)NH—(C1-C5 alkyl)-SO2—NH2,
    • —NHC(S)NH—(C1-C5 alkyl)-SO2—NH—(C1-C5 alkyl),
    • —NHC(S)NH—(C1-C5 alkyl)-SO2—N—(C1-C5 alkyl)2,
    • —NHC(S)NH—(C1-C5 alkyl)-S(O)—(C1-C5 alkyl),
    • —NHC(S)NH—(C1-C5 alkyl)-S(O)—NH2,
    • —NHC(S)NH—(C1-C5 alkyl)-S(O)—NH—(C1-C5 alkyl),
    • —NHC(S)NH—(C1-C5 alkyl)-S(O)—N—(C1-C5 alkyl)2,
    • —NHC(S)NH—(C1-C5 alkyl)-P(O)—(O—C1-C5 alkyl)2,
    • —NHC(O)NH2,
    • —NHC(O)NH—(C1-C5 alkyl),
    • —NHC(O)N—(C1-C5 alkyl)2,
    • —NHC(O)NH—(C2-C5 alkenyl),
    • —NHC(O)NH—(C3-C5 cycloalkyl),
    • —NHC(O)NH—(C3-C5 cycloalkenyl),
    • —NHC(O)NH—(C1-C5 hydroxyalkyl),
    • —NHC(O)NH—(C1-C5 fluoroalkyl),
    • —NHC(O)NH-phenyl,
    • —NHC(O)NH—(C1-C5 alkyl)-NH2,
    • —NHC(O)NH—(C1-C5 alkyl)-NH—(C1-C5 alkyl),
    • —NHC(O)NH—(C1-C5 alkyl)-N—(C1-C5 alkyl)2,
    • —NHC(O)NH—(C1-C5 alkyl)-O—(C1-C5 alkyl),
    • —NHC(O)NH—(C1-C5 alkyl)-NH2,
    • —NHC(O)NH—(C1-C5 alkyl)-NH—(C1-C5 alkyl),
    • —NHC(O)NH—(C1-C5 alkyl)-N—(C1-C5 alkyl)2,
    • —NHC(O)NH—(C1-C5 alkyl)-C(O)—NH2,
    • —NHC(O)NH—(C1-C5 alkyl)-C(O)—NH—(C1-C5 alkyl),
    • —NHC(O)NH—(C1-C5 alkyl)-C(O)—N—(C1-C5 alkyl)2,
    • —NHC(O)NH—(C1-C5 alkyl)-C(O)—(C1-C5 alkyl),
    • —NHC(O)NH—(C1-C5 alkyl)-NH—SO2—(C1-C5 alkyl),
    • —NHC(O)NH—(C1-C5 alkyl)-N-pyrrolidin-2-one,
    • —NHC(O)NH—(C1-C5 alkyl)-N-pyrrolidine,
    • —NHC(O)NH—(C1-C5 alkyl)-(1-methylpyrrolidin-2-one-3-yl),
    • —NHC(O)NH—(C1-C5 alkyl)-C(O)—OH,
    • —NHC(O)NH—(C1-C5 alkyl)-C(O)—O—(C1-C5 alkyl),
    • —NHC(O)NH—(C1-C5 alkyl)-5-tetrazolyl,
    • —NHC(O)NH—(C1-C5 alkyl)-SO2—(C1-C5 alkyl),
    • —NHC(O)NH—(C1-C5 alkyl)-SO2—NH2,
    • —NHC(O)NH—(C1-C5 alkyl)-SO2—NH—(C1-C5 alkyl),
    • —NHC(O)NH—(C1-C5 alkyl)-SO2—N—(C1-C5 alkyl)2,
    • —NHC(O)NH—(C1-C5 alkyl)-P(O)—O—(C1-C5 alkyl)2,
    • —NH2,
    • —NH—(C1-C5 alkyl),
    • —NH—CH2—C(O)OH,
    • —N—(C1-C5 alkyl)2,
    • —NH—C(O)—NH2,
    • —NH—C(O)—NH—(C1-C5 alkyl),
    • —NH—C(O)—N—(C1-C5 alkyl)2,
    • —NH—C(O)—(C1-C5 alkyl),
    • —NH—SO2—(C1-C5 alkyl),
    • —NH—S(O)—(C1-C5 alkyl),
    • —N(CH3)(OCH3),
    • —N(OH)(CH3),
    • —N-pyrrolidin-2-one,
    • —N-pyrrolidine,
    • -(1-methylpyrrolidin-2-one-3-yl),
      embedded imageembedded image
    • 1-hydroxycyclopentenyl,
    • 1-hydroxycyclohexenyl,
    • 1-hydroxycycloheptenyl,
    • 1-hydroxycyclooctenyl,
    • 1-hydroxycyclopropyl,
    • 1-hydroxycyclobutyl,
    • 1-hydroxycyclopentyl,
    • 1-hydroxycyclohexyl,
    • 1-hydroxycycloheptyl,
    • 1-hydroxycyclooctyl,
    • -5-tetrazolyl,
    • -carboxyl,
    • —OH,
    • —I,
    • —Br
    • —Cl
    • —F,
    • —CHO,
    • —NO2,
    • —CN,
    • sulfonamide,
    • sulfinamide,
    • urethane-type radical, and
    • (Acidic Group);


      provided that the combined groups of formula I represented by
      embedded image

      may both be lipophilic, or either one may be lipophilic and the other one polar; but both combined groups may not be polar.


Preferred compounds of the invention are represented by formula (II) or a pharmaceutically acceptable salt or prodrug derivative thereof:
embedded image

wherein;


R and R′ are independently methyl, ethyl, propyl, 1-methylethyl, 1-methylpropyl, 2-methylpropyl, or 1,1-dimethylethyl;


RP and RT are independently selected from the group consisting of hydrogen, fluoro, —CF3, —CH2F, —CHF2, —CH2Cl, methoxy, ethoxy, vinyl, methyl, ethyl, propyl, cyclopropyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, or 1,1-dimethylethyl;


LT and LP are independently selected from one the following divalent linking group;
embedded image


ZP is selected from
embedded imageembedded image

    • 1-hydroxycyclopentenyl,
    • 1-hydroxycyclohexenyl,
    • 1-hydroxycycloheptenyl,
    • 1-hydroxycyclooctenyl,
    • 1-hydroxycyclopropyl,
    • 1-hydroxycyclobutyl,
    • 1-hydroxycyclopentyl,
    • 1-hydroxycyclohexyl,
    • 1-hydroxycycloheptyl, and
    • 1-hydroxycyclooctyl.


      ZT is a group represented by one of the structural formulae:
      embedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded image

      provided that the combined groups of formula I represented by
      embedded image

      may both be lipophilic, or either one may be lipophilic and the other one polar; but both groups may not be polar.


Preferred compounds of the invention are also those represented by the formula III or a pharmaceutically acceptable salt or prodrug derivative thereof:
embedded image

wherein the substituents R, R′, RP, RT, Lp, LT, ZP, and ZT are the same as defined for formula II, supra., provided that the combined groups of formula I represented by
embedded image

may both be lipophilic, or either one may be lipophilic and the other one polar; but both groups may not be polar.


Preferred compounds of the invention are also those represented by the formula IV or a pharmaceutically acceptable salt or prodrug derivative thereof:
embedded image

wherein the substituents R, R′, RP, RT, LP, LT, ZP, and ZT are the same as defined for formula II, supra., provided that the combined groups of formula I represented by
embedded image

may both be lipophilic, or either one may be lipophilic and the other one polar; but both groups may not be polar.


Preferred compounds of the invention are also those represented by the formula V or a pharmaceutically acceptable salt or prodrug derivative thereof:
embedded image

wherein the substituents R, R′, RP, RT, LP, LT, ZP, and ZT are the same as defined for formula II, supra., provided that the combined groups of formula I represented by
embedded image

may both be lipophilic, or either one may be lipophilic and the other one polar; but both groups may not be polar.


Preferred Substituents of Compounds Represented by Formulae I, II, III, IV, and V:


Particularly preferred compounds of Formulae I thru V are those wherein the divalent linking group, -(LT)- is a bond, —O—, or —CH2—.


Particularly preferred compounds of Formulae I thru V are those wherein both R and R′ are ethyl.


Particularly preferred compounds of Formulae I thru V are those wherein both RP and RT are methyl.


Particularly preferred salt forms of Formulae I thru V are the potassium or sodium salts.


A particularly preferred C1-C5 alkyl group where ZP and/or ZT contain such group is 1,1-dimethylethyl.


Preferred compounds in useful in practicing the therapeutic methods of the invention as shown in the structural formulae X1 to X188, as follows:
embedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded image


Other specific compounds that are preferred embodiments of this invention and are preferred for for practicing the method of treatment of the invention are set out in the following four Tables. All numbers in the Tables cells reciting chemical species are subscripts, for example, in row, Code 11, Column, WT, the symbol, “CO2H” is to be understood as the conventional chemical nomenclature, —CO2H—. Each row of Tables 1, 2, 3, and 4 is a single compound having an identifying “Code” (e.g., “206”, “318A”) defining the specific substituents in the structural formula displayed above the Tables, as follows:

TABLE 1embedded imageCodeL]YWT1C(O)CH2—CO2Me2CHOHCH2—CO2Me3C(Me)OHCH2—CO2Me4C(O)CH(Me)—CO2Me5CHOHCH(Me)—CO2Me6C(Me)OHCH(Me)—CO2Me7C(O)CH2—CO2H8CHOHCH2—CO2H9C(Me)OHCH2—CO2H10C(O)CH(Me)—CO2H11CHOHCH(Me)—CO2H12C(Me)OHCH(Me)—CO2H13C(O)CH2—C(O)NH214CHOHCH2—C(O)NH215C(Me)OHCH2—C(O)NH216C(O)CH(Me)—C(O)NH217CHOHCH(Me)—C(O)NH218C(Me)OHCH(Me)—C(O)NH219C(O)CH2—C(O)NMe220CHOHCH2—C(O)NMe221C(Me)OHCH2—C(O)NMe222C(O)CH(Me)—C(O)NMe223CHOHCH(Me)—C(O)NMe224C(Me)OHCH(Me)—C(O)NMe225C(O)CH25-tetrazolyl26CHOHCH25-tetrazolyl27C(Me)OHCH25-tetrazolyl28C(O)CH(Me)5-tetrazolyl29CHOHCH(Me)5-tetrazolyl30C(Me)OHCH(Me)5-tetrazolyl31C(O)CH2—C(O)—NH-5-tetrazolyl32CHOHCH2—C(O)—NH-5-tetrazolyl33C(Me)OHCH2—C(O)—NH-5-tetrazolyl34C(O)CH(Me)—C(O)—NH-5-tetrazolyl35CHOHCH(Me)—C(O)—NH-5-tetrazolyl36C(Me)OHCH(Me)—C(O)—NH-5-tetrazolyl37C(O)CH2—C(O)NHCH2SO2Me38CHOHCH2—C(O)NHCH2SO2Me39C(Me)OHCH2—C(O)NHCH2SO2Me40C(O)CH(Me)—C(O)NHCH2SO2Me41CHOHCH(Me)—C(O)NHCH2SO2Me42C(Me)OHCH(Me)—C(O)NHCH2SO2Me43C(O)CH2—C(O)NHCH2CH2SO2Me44CHOHCH2—C(O)NHCH2CH2SO2Me45C(Me)OHCH2—C(O)NHCH2CH2SO2Me46C(O)CH(Me)—C(O)NHCH2CH2SO2Me47CHOHCH(Me)—C(O)NHCH2CH2SO2Me48C(Me)OHCH(Me)—C(O)NHCH2CH2SO2Me49C(O)CH2—C(O)NHSO2Me50CHOHCH2—C(O)NHSO2Me51C(Me)OHCH2—C(O)NHSO2Me52C(O)CH(Me)—C(O)NHSO2Me53CHOHCH(Me)—C(O)NHSO2Me54C(Me)OHCH(Me)—C(O)NHSO2Me55C(O)CH2—CH2—C(O)NHSO2Et56CHOHCH2—CH2—C(O)NHSO2Et57C(Me)OHCH2—CH2—C(O)NHSO2Et58C(O)CH(Me)—CH2—C(O)NHSO2Et59CHOHCH(Me)—CH2—C(O)NHSO2Et60C(Me)OHCH(Me)—CH2—C(O)NHSO2Et61C(O)CH2—CH2—C(O)NHSO2iPr62CHOHCH2—CH2—C(O)NHSO2iPr63C(Me)OHCH2—CH2—C(O)NHSO2iPr64C(O)CH(Me)—CH2—C(O)NHSO2iPr65CHOHCH(Me)—CH2—C(O)NHSO2iPr66C(Me)OHCH(Me)—CH2—C(O)NHSO2iPr67C(O)CH2—CH2—C(O)NHSO2tBu68CHOHCH2—CH2—C(O)NHSO2tBu69C(Me)OHCH2—CH2—C(O)NHSO2tBu70C(O)CH(Me)—CH2—C(O)NHSO2tBu71CHOHCH(Me)—CH2—C(O)NHSO2tBu72C(Me)OHCH(Me)—CH2—C(O)NHSO2tBu73C(O)CH2—CH2NHSO2Me74CHOHCH2—CH2NHSO2Me75C(Me)OHCH2—CH2NHSO2Me76C(O)CH(Me)—CH2NHSO2Me77CHOHCH(Me)—CH2NHSO2Me78C(Me)OHCH(Me)—CH2NHSO2Me79C(O)CH2—CH2NHSO2Et80CHOHCH2—CH2NHSO2Et81C(Me)OHCH2—CH2NHSO2Et82C(O)CH(Me)—CH2NHSO2Et83CHOHCH(Me)—CH2NHSO2Et84C(Me)OHCH(Me)—CH2NHSO2Et85C(O)CH2—CH2NHSO2iPr86CHOHCH2—CH2NHSO2iPr87C(Me)OHCH2—CH2NHSO2iPr88C(O)CH(Me)—CH2NHSO2iPr89CHOHCH(Me)—CH2NHSO2iPr90C(Me)OHCH(Me)—CH2NHSO2iPr91C(O)CH2—CH2NHSO2tBu92CHOHCH2—CH2NHSO2tBu93C(Me)OHCH2—CH2NHSO2tBu94C(O)CH(Me)—CH2NHSO2tBu95CHOHCH(Me)—CH2NHSO2tBu96C(Me)OHCH(Me)—CH2NHSO2tBu97C(O)CH2—CH2—N-pyrrolidin-2-one98CHOHCH2—CH2—N-pyrrolidin-2-one99C(Me)OHCH2—CH2—N-pyrrolidin-2-one100C(O)CH(Me)—CH2—N-pyrrolidin-2-one101CHOHCH(Me)—CH2—N-pyrrolidin-2-one102C(Me)OHCH(Me)—CH2—N-pyrrolidin-2-one103C(O)CH2—CH2-(1-methylpyrrolidin-2-one-3-yl)104CHOHCH2—CH2-(1-methylpyrrolidin-2-one-3-yl)105C(Me)OHCH2—CH2-(1-methylpyrrolidin-2-one-3-yl)106C(O)CH(Me)—CH2-(1-methylpyrrolidin-2-one-3-yl)107CHOHCH(Me)—CH2-(1-methylpyrrolidin-2-one-3-yl)108C(Me)OHCH(Me)—CH2-(1-methylpyrrolidin-2-one-3-yl)109C(O)CH2—CH2CO2Me110CHOHCH2—CH2CO2Me111C(Me)OHCH2—CH2CO2Me112C(O)CH(Me)—CH2CO2Me113CHOHCH(Me)—CH2CO2Me114C(Me)OHCH(Me)—CH2CO2Me115C(O)CH2—CH2CO2H116CHOHCH2—CH2CO2H117C(Me)OHCH2—CH2CO2H118C(O)CH(Me)—CH2CO2H119CHOHCH(Me)—CH2CO2H120C(Me)OHCH(Me)—CH2CO2H121C(O)CH2—CH2C(O)NH2122CHOHCH2—CH2C(O)NH2123C(Me)OHCH2—CH2C(O)NH2124C(O)CH(Me)—CH2C(O)NH2125CHOHCH(Me)—CH2C(O)NH2126C(Me)OHCH(Me)—CH2C(O)NH2127C(O)CH2—CH2C(O)NMe2128CHOHCH2—CH2C(O)NMe2129C(Me)OHCH2—CH2C(O)NMe2130C(O)CH(Me)—CH2C(O)NMe2131CHOHCH(Me)—CH2C(O)NMe2132C(Me)OHCH(Me)—CH2C(O)NMe2133C(O)CH2—CH2C(O)—N-pyrrolidine134CHOHCH2—CH2C(O)—N-pyrrolidine135C(Me)OHCH2—CH2C(O)—N-pyrrolidine136C(O)CH(Me)—CH2C(O)—N-pyrrolidine137CHOHCH(Me)—CH2C(O)—N-pyrrolidine138C(Me)OHCH(Me)—CH2C(O)—N-pyrrolidine139C(O)CH2—CH2-5-tetrazolyl140CHOHCH2—CH2-5-tetrazolyl141C(Me)OHCH2—CH2-5-tetrazolyl142C(O)CH(Me)—CH2-5-tetrazolyl143CHOHCH(Me)—CH2-5-tetrazolyl144C(Me)OHCH(Me)—CH2-5-tetrazolyl145C(O)CH2—C(O)C(O)OH146CHOHCH2—C(O)C(O)OH147C(Me)OHCH2—C(O)C(O)OH148C(O)CH(Me)—C(O)C(O)OH149CHOHCH(Me)—C(O)C(O)OH150C(Me)OHCH(Me)—C(O)C(O)OH151C(O)CH2—CH(OH)C(O)OH152CHOHCH2—CH(OH)C(O)OH153C(Me)OHCH2—CH(OH)C(O)OH154C(O)CH(Me)—CH(OH)C(O)OH155CHOHCH(Me)—CH(OH)C(O)OH156C(Me)OHCH(Me)—CH(OH)C(O)OH157C(O)CH2—C(O)C(O)NH2158CHOHCH2—C(O)C(O)NH2159C(Me)OHCH2—C(O)C(O)NH2160C(O)CH(Me)—C(O)C(O)NH2161CHOHCH(Me)—C(O)C(O)NH2162C(Me)OHCH(Me)—C(O)C(O)NH2163C(O)CH2—CH(OH)C(O)NH2164CHOHCH2—CH(OH)C(O)NH2165C(Me)OHCH2—CH(OH)C(O)NH2166C(O)CH(Me)—CH(OH)C(O)NH2167CHOHCH(Me)—CH(OH)C(O)NH2168C(Me)OHCH(Me)—CH(OH)C(O)NH2169C(O)CH2—C(O)C(O)NMe2170CHOHCH2—C(O)C(O)NMe2171C(Me)OHCH2—C(O)C(O)NMe2172C(O)CH(Me)—C(O)C(O)NMe2173CHOHCH(Me)—C(O)C(O)NMe2174C(Me)OHCH(Me)—C(O)C(O)NMe2175C(O)CH2—CH(OH)C(O)NMe2176CHOHCH2—CH(OH)C(O)NMe2177C(Me)OHCH2—CH(OH)C(O)NMe2178C(O)CH(Me)—CH(OH)C(O)NMe2179CHOHCH(Me)—CH(OH)C(O)NMe2180C(Me)OHCH(Me)—CH(OH)C(O)NMe2181C(O)CH2—CH2CH2CO2H182CHOHCH2—CH2CH2CO2H183C(Me)OHCH2—CH2CH2CO2H184C(O)CH(Me)—CH2CH2CO2H185CHOHCH(Me)—CH2CH2CO2H186C(Me)OHCH(Me)—CH2CH2CO2H187C(O)CH2—CH2CH2C(O)NH2188CHOHCH2—CH2CH2C(O)NH2189C(Me)OHCH2—CH2CH2C(O)NH2190C(O)CH(Me)—CH2CH2C(O)NH2191CHOHCH(Me)—CH2CH2C(O)NH2192C(Me)OHCH(Me)—CH2CH2C(O)NH2193C(O)CH2—CH2CH2C(O)NMe2194CHOHCH2—CH2CH2C(O)NMe2195C(Me)OHCH2—CH2CH2C(O)NMe2196C(O)CH(Me)—CH2CH2C(O)NMe2197CHOHCH(Me)—CH2CH2C(O)NMe2198C(Me)OHCH(Me)—CH2CH2C(O)NMe2199C(O)CH2—CH2CH2-5-tetrazolyl200CHOHCH2—CH2CH2-5-tetrazolyl201C(Me)OHCH2—CH2CH2-5-tetrazolyl202C(O)CH(Me)—CH2CH2-5-tetrazolyl203CHOHCH(Me)—CH2CH2-5-tetrazolyl204C(Me)OHCH(Me)—CH2CH2-5-tetrazolyl205C(O)CH2—CH2S(O)2Me206CHOHCH2—CH2S(O)2Me207C(Me)OHCH2—CH2S(O)2Me208C(O)CH(Me)—CH2S(O)2Me209CHOHCH(Me)—CH2S(O)2Me210C(Me)OHCH(Me)—CH2S(O)2Me211C(O)CH2—CH2CH2S(O)2Me212CHOHCH2—CH2CH2S(O)2Me213C(Me)OHCH2—CH2CH2S(O)2Me214C(O)CH(Me)—CH2CH2S(O)2Me215CHOHCH(Me)—CH2CH2S(O)2Me216C(Me)OHCH(Me)—CH2CH2S(O)2Me217C(O)CH2—CH2CH2CH2S(O)2Me218CHOHCH2—CH2CH2CH2S(O)2Me219C(Me)OHCH2—CH2CH2CH2S(O)2Me220C(O)CH(Me)—CH2CH2CH2S(O)2Me221CHOHCH(Me)—CH2CH2CH2S(O)2Me222C(Me)OHCH(Me)—CH2CH2CH2S(O)2Me223C(O)CH2—CH2S(O)2Et224CHOHCH2—CH2S(O)2Et225C(Me)OHCH2—CH2S(O)2Et226C(O)CH(Me)—CH2S(O)2Et227CHOHCH(Me)—CH2S(O)2Et228C(Me)OHCH(Me)—CH2S(O)2Et229C(O)CH2—CH2CH2S(O)2Et230CHOHCH2—CH2CH2S(O)2Et231C(Me)OHCH2—CH2CH2S(O)2Et232C(O)CH(Me)—CH2CH2S(O)2Et233CHOHCH(Me)—CH2CH2S(O)2Et234C(Me)OHCH(Me)—CH2CH2S(O)2Et235C(O)CH2—CH2CH2CH2S(O)2Et236CHOHCH2—CH2CH2CH2S(O)2Et237C(Me)OHCH2—CH2CH2CH2S(O)2Et238C(O)CH(Me)—CH2CH2CH2S(O)2Et239CHOHCH(Me)—CH2CH2CH2S(O)2Et240C(Me)OHCH(Me)—CH2CH2CH2S(O)2Et241C(O)CH2—CH2S(O)2iPr242CHOHCH2—CH2S(O)2iPr243C(Me)OHCH2—CH2S(O)2iPr244C(O)CH(Me)—CH2S(O)2iPr245CHOHCH(Me)—CH2S(O)2iPr246C(Me)OHCH(Me)—CH2S(O)2iPr247C(O)CH2—CH2CH2S(O)2iPr248CHOHCH2—CH2CH2S(O)2iPr249C(Me)OHCH2—CH2CH2S(O)2iPr250C(O)CH(Me)—CH2CH2S(O)2iPr251CHOHCH(Me)—CH2CH2S(O)2iPr252C(Me)OHCH(Me)—CH2CH2S(O)2iPr253C(O)CH2—CH2S(O)2tBu254CHOHCH2—CH2S(O)2tBu255C(Me)OHCH2—CH2S(O)2tBu256C(O)CH(Me)—CH2S(O)2tBu257CHOHCH(Me)—CH2S(O)2tBu258C(Me)OHCH(Me)—CH2S(O)2tBu259C(O)CH2—CH2CH2S(O)2tBu260CHOHCH2—CH2CH2S(O)2tBu261C(Me)OHCH2—CH2CH2S(O)2tBu262C(O)CH(Me)—CH2CH2S(O)2tBu263CHOHCH(Me)—CH2CH2S(O)2tBu264C(Me)OHCH(Me)—CH2CH2S(O)2tBu265C(O)CH2—CH2CH2S(O)2NH2266CHOHCH2—CH2CH2S(O)2NH2267C(Me)OHCH2—CH2CH2S(O)2NH2268C(O)CH(Me)—CH2CH2S(O)2NH2269CHOHCH(Me)—CH2CH2S(O)2NH2270C(Me)OHCH(Me)—CH2CH2S(O)2NH2271C(O)CH2—CH2CH2S(O)2NMe2272CHOHCH2—CH2CH2S(O)2NMe2273C(Me)OHCH2—CH2CH2S(O)2NMe2274C(O)CH(Me)—CH2CH2S(O)2NMe2275CHOHCH(Me)—CH2CH2S(O)2NMe2276C(Me)OHCH(Me)—CH2CH2S(O)2NMe2277C(O)CH2—C(O)CH2S(O)2Me278CHOHCH2—C(O)CH2S(O)2Me279C(Me)OHCH2—C(O)CH2S(O)2Me280C(O)CH(Me)—C(O)CH2S(O)2Me281CHOHCH(Me)—C(O)CH2S(O)2Me282C(Me)OHCH(Me)—C(O)CH2S(O)2Me283C(O)CH2—C(O)CH2CH2S(O)2Me284CHOHCH2—C(O)CH2CH2S(O)2Me285C(Me)OHCH2—C(O)CH2CH2S(O)2Me286C(O)CH(Me)—C(O)CH2CH2S(O)2Me287CHOHCH(Me)—C(O)CH2CH2S(O)2Me288C(Me)OHCH(Me)—C(O)CH2CH2S(O)2Me289C(O)CH2—CH2CH2CH2S(O)2NH2290CHOHCH2—CH2CH2CH2S(O)2NH2291C(Me)OHCH2—CH2CH2CH2S(O)2NH2292C(O)CH(Me)—CH2CH2CH2S(O)2NH2293CHOHCH(Me)—CH2CH2CH2S(O)2NH2294C(Me)OHCH(Me)—CH2CH2CH2S(O)2NH2295C(O)CH2—S(O)2Me296CHOHCH2—S(O)2Me297C(Me)OHCH2—S(O)2Me298C(O)CH(Me)—S(O)2Me299CHOHCH(Me)—S(O)2Me300C(Me)OHCH(Me)—S(O)2Me301C(O)CH2—S(O)2Et302CHOHCH2—S(O)2Et303C(Me)OHCH2—S(O)2Et304C(O)CH(Me)—S(O)2Et305CHOHCH(Me)—S(O)2Et306C(Me)OHCH(Me)—S(O)2Et307C(O)CH2—S(O)2iPr308CHOHCH2—S(O)2iPr309C(Me)OHCH2—S(O)2iPr310C(O)CH(Me)—S(O)2iPr311CHOHCH(Me)—S(O)2iPr312C(Me)OHCH(Me)—S(O)2iPr313C(O)CH2—S(O)2tBu314CHOHCH2—S(O)2tBu315C(Me)OHCH2—S(O)2tBu316C(O)CH(Me)—S(O)2tBu317CHOHCH(Me)—S(O)2tBu318C(Me)OHCH(Me)—S(O)2tBu319C(O)CH2—S(O)2NH2320CHOHCH2—S(O)2NH2321C(Me)OHCH2—S(O)2NH2322C(O)CH(Me)—S(O)2NH2323CHOHCH(Me)—S(O)2NH2324C(Me)OHCH(Me)—S(O)2NH2325C(O)CH2—S(O)2NMe2326CHOHCH2—S(O)2NMe2327C(Me)OHCH2—S(O)2NMe2328C(O)CH(Me)—S(O)2NMe2329CHOHCH(Me)—S(O)2NMe2330C(Me)OHCH(Me)—S(O)2NMe2331C(O)CH2—S(O)2CH2S(O)2Me332CHOHCH2—S(O)2CH2S(O)2Me333C(Me)OHCH2—S(O)2CH2S(O)2Me334C(O)CH(Me)—S(O)2CH2S(O)2Me335CHOHCH(Me)—S(O)2CH2S(O)2Me336C(Me)OHCH(Me)—S(O)2CH2S(O)2Me337C(O)CH2—S(O)2CH2S(O)2Et338CHOHCH2—S(O)2CH2S(O)2Et339C(Me)OHCH2—S(O)2CH2S(O)2Et340C(O)CH(Me)—S(O)2CH2S(O)2Et341CHOHCH(Me)—S(O)2CH2S(O)2Et342C(Me)OHCH(Me)—S(O)2CH2S(O)2Et343C(O)CH2—S(O)2CH2S(O)2iPr344CHOHCH2—S(O)2CH2S(O)2iPr345C(Me)OHCH2—S(O)2CH2S(O)2iPr346C(O)CH(Me)—S(O)2CH2S(O)2iPr347CHOHCH(Me)—S(O)2CH2S(O)2iPr348C(Me)OHCH(Me)—S(O)2CH2S(O)2iPr349C(O)CH2—S(O)2CH2S(O)2tBu350CHOHCH2—S(O)2CH2S(O)2tBu351C(Me)OHCH2—S(O)2CH2S(O)2tBu352C(O)CH(Me)—S(O)2CH2S(O)2tBu353CHOHCH(Me)—S(O)2CH2S(O)2tBu354C(Me)OHCH(Me)—S(O)2CH2S(O)2tBu355C(O)CH2—C(O)NHCH2CO2H356CHOHCH2—C(O)NHCH2CO2H357C(Me)OHCH2—C(O)NHCH2CO2H358C(O)CH(Me)—C(O)NHCH2CO2H359CHOHCH(Me)—C(O)NHCH2CO2H360C(Me)OHCH(Me)—C(O)NHCH2CO2H361C(O)CH2—SO2NHCH2CO2H362CHOHCH2—SO2NHCH2CO2H363C(Me)OHCH2—SO2NHCH2CO2H364C(O)CH(Me)—SO2NHCH2CO2H365CHOHCH(Me)—SO2NHCH2CO2H366C(Me)OHCH(Me)—SO2NHCH2CO2H367C(O)CH2—CH2—S-Me368CHOHCH2—CH2—S-Me369C(Me)OHCH2—CH2—S-Me370C(O)CH(Me)—CH2—S-Me371CHOHCH(Me)—CH2—S-Me372C(Me)OHCH(Me)—CH2—S-Me









TABLE 2















embedded image















Code
L1
Y
WP













1A
C(O)
CH2
—CO2Me


2A
CHOH
CH2
—CO2Me


3A
C(Me)OH
CH2
—CO2Me


4A
C(O)
CH(Me)
—CO2Me


5A
CHOH
CH(Me)
—CO2Me


6A
C(Me)OH
CH(Me)
—CO2Me


7A
C(O)
CH2
—CO2H


8A
CHOH
CH2
—CO2H


9A
C(Me)OH
CH2
—CO2H


10A
C(O)
CH(Me)
—CO2H


11A
CHOH
CH(Me)
—CO2H


12A
C(Me)OH
CH(Me)
—CO2H


13A
C(O)
CH2
—C(O)NH2


14A
CHOH
CH2
—C(O)NH2


15A
C(Me)OH
CH2
—C(O)NH2


16A
C(O)
CH(Me)
—C(O)NH2


17A
CHOH
CH(Me)
—C(O)NH2


18A
C(Me)OH
CH(Me)
—C(O)NH2


19A
C(O)
CH2
—C(O)NMe2


20A
CHOH
CH2
—C(O)NMe2


21A
C(Me)OH
CH2
—C(O)NMe2


22A
C(O)
CH(Me)
—C(O)NMe2


23A
CHOH
CH(Me)
—C(O)NMe2


24A
C(Me)OH
CH(Me)
—C(O)NMe2


25A
C(O)
CH2
5-tetrazolyl


26A
CHOH
CH2
5-tetrazolyl


27A
C(Me)OH
CH2
5-tetrazolyl


28A
C(O)
CH(Me)
5-tetrazolyl


29A
CHOH
CH(Me)
5-tetrazolyl


30A
C(Me)OH
CH(Me)
5-tetrazolyl


31A
C(O)
CH2
—C(O)—NH-5-tetrazolyl


32A
CHOH
CH2
—C(O)—NH-5-tetrazolyl


33A
C(Me)OH
CH2
—C(O)—NH-5-tetrazolyl


34A
C(O)
CH(Me)
—C(O)—NH-5-tetrazolyl


35A
CHOH
CH(Me)
—C(O)—NH-5-tetrazolyl


36A
C(Me)OH
CH(Me)
—C(O)—NH-5-tetrazolyl


37A
C(O)
CH2
—C(O)NHCH2SO2Me


38A
CHOH
CH2
—C(O)NHCH2SO2Me


39A
C(Me)OH
CH2
—C(O)NHCH2SO2Me


40A
C(O)
CH(Me)
—C(O)NHCH2SO2Me


41A
CHOH
CH(Me)
—C(O)NHCH2SO2Me


42A
C(Me)OH
CH(Me)
—C(O)NHCH2SO2Me


43A
C(O)
CH2
—C(O)NHCH2CH2SO2Me


44A
CHOH
CH2
—C(O)NHCH2CH2SO2Me


45A
C(Me)OH
CH2
—C(O)NHCH2CH2SO2Me


46A
C(O)
CH(Me)
—C(O)NHCH2CH2SO2Me


47A
CHOH
CH(Me)
—C(O)NHCH2CH2SO2Me


48A
C(Me)OH
CH(Me)
—C(O)NHCH2CH2SO2Me


49A
C(O)
CH2
—C(O)NHSO2Me


50A
CHOH
CH2
—C(O)NHSO2Me


51A
C(Me)OH
CH2
—C(O)NHSO2Me


52A
C(O)
CH(Me)
—C(O)NHSO2Me


53A
CHOH
CH(Me)
—C(O)NHSO2Me


54A
C(Me)OH
CH(Me)
—C(O)NHSO2Me


55A
C(O)
CH2
—CH2—C(O)NHSO2Et


56A
CHOH
CH2
—CH2—C(O)NHSO2Et


57A
C(Me)OH
CH2
—CH2—C(O)NHSO2Et


58A
C(O)
CH(Me)
—CH2—C(O)NHSO2Et


59A
CHOH
CH(Me)
—CH2—C(O)NHSO2Et


60A
C(Me)OH
CH(Me)
—CH2—C(O)NHSO2Et


61A
C(O)
CH2
—CH2—C(O)NHSO2iPr


62A
CHOH
CH2
—CH2—C(O)NHSO2iPr


63A
C(Me)OH
CH2
—CH2—C(O)NHSO2iPr


64A
C(O)
CH(Me)
—CH2—C(O)NHSO2iPr


65A
CHOH
CH(Me)
—CH2—C(O)NHSO2iPr


66A
C(Me)OH
CH(Me)
—CH2—C(O)NHSO2iPr


67A
C(O)
CH2
—CH2—C(O)NHSO2tBu


68A
CHOH
CH2
—CH2—C(O)NHSO2tBu


69A
C(Me)OH
CH2
—CH2—C(O)NHSO2tBu


70A
C(O)
CH(Me)
—CH2—C(O)NHSO2tBu


71A
CHOH
CH(Me)
—CH2—C(O)NHSO2tBu


72A
C(Me)OH
CH(Me)
—CH2—C(O)NHSO2tBu


73A
C(O)
CH2
—CH2NHSO2Me


74A
CHOH
CH2
—CH2NHSO2Me


75A
C(Me)OH
CH2
—CH2NHSO2Me


76A
C(O)
CH(Me)
—CH2NHSO2Me


77A
CHOH
CH(Me)
—CH2NHSO2Me


78A
C(Me)OH
CH(Me)
—CH2NHSO2Me


79A
C(O)
CH2
—CH2NHSO2Et


80A
CHOH
CH2
—CH2NHSO2Et


81A
C(Me)OH
CH2
—CH2NHSO2Et


82A
C(O)
CH(Me)
—CH2NHSO2Et


83A
CHOH
CH(Me)
—CH2NHSO2Et


84A
C(Me)OH
CH(Me)
—CH2NHSO2Et


85A
C(O)
CH2
—CH2NHSO2iPr


86A
CHOH
CH2
—CH2NHSO2iPr


87A
C(Me)OH
CH2
—CH2NHSO2iPr


88A
C(O)
CH(Me)
—CH2NHSO2iPr


89A
CHOH
CH(Me)
—CH2NHSO2iPr


90A
C(Me)OH
CH(Me)
—CH2NHSO2iPr


91A
C(O)
CH2
—CH2NHSO2tBu


92A
CHOH
CH2
—CH2NHSO2tBu


93A
C(Me)OH
CH2
—CH2NHSO2tBu


94A
C(O)
CH(Me)
—CH2NHSO2tBu


95A
CHOH
CH(Me)
—CH2NHSO2tBu


96A
C(Me)OH
CH(Me)
—CH2NHSO2tBu


97A
C(O)
CH2
—CH2—N-pyrrolidin-2-one


98A
CHOH
CH2
—CH2—N-pyrrolidin-2-one


99A
C(Me)OH
CH2
—CH2—N-pyrrolidin-2-one


100A
C(O)
CH(Me)
—CH2—N-pyrrolidin-2-one


101A
CHOH
CH(Me)
—CH2—N-pyrrolidin-2-one


102A
C(Me)OH
CH(Me)
—CH2—N-pyrrolidin-2-one


103A
C(O)
CH2
—CH2-(1-methylpyrrolidin-2-one-3-yl)


104A
CHOH
CH2
—CH2-(1-methylpyrrolidin-2-one-3-yl)


105A
C(Me)OH
CH2
CH2-(1-methylpyrrolidin-2-one-3-yl)


106A
C(O)
CH(Me)
—CH2-(1-methylpyrrolidin-2-one-3-yl)


107A
CHOH
CH(Me)
—CH2-(1-methylpyrrolidin-2-one-3-yl)


108A
C(Me)OH
CH(Me)
—CH2-(1-methylpyrrolidin-2-one-3-yl)


109A
C(O)
CH2
—CH2CO2Me


110A
CHOH
CH2
—CH2CO2Me


111A
C(Me)OH
CH2
—CH2CO2Me


112A
C(O)
CH(Me)
—CH2CO2Me


113A
CHOH
CH(Me)
—CH2CO2Me


114A
C(Me)OH
CH(Me)
—CH2CO2Me


115A
C(O)
CH2
—CH2CO2H


116A
CHOH
CH2
—CH2CO2H


117A
C(Me)OH
CH2
—CH2CO2H


118A
C(O)
CH(Me)
—CH2CO2H


119A
CHOH
CH(Me)
—CH2CO2H


120A
C(Me)OH
CH(Me)
—CH2CO2H


121A
C(O)
CH2
—CH2C(O)NH2


122A
CHOH
CH2
—CH2C(O)NH2


123A
C(Me)OH
CH2
—CH2C(O)NH2


124A
C(O)
CH(Me)
—CH2C(O)NH2


125A
CHOH
CH(Me)
—CH2C(O)NH2


126A
C(Me)OH
CH(Me)
—CH2C(O)NH2


127A
C(O)
CH2
—CH2C(O)NMe2


128A
CHOH
CH2
—CH2C(O)NMe2


129A
C(Me)OH
CH2
—CH2C(O)NMe2


130A
C(O)
CH(Me)
—CH2C(O)NMe2


131A
CHOH
CH(Me)
—CH2C(O)NMe2


132A
C(Me)OH
CH(Me)
—CH2C(O)NMe2


133A
C(O)
CH2
—CH2C(O)—N-pyrrolidine


134A
CHOH
CH2
—CH2C(O)—N-pyrrolidine


135A
C(Me)OH
CH2
—CH2C(O)—N-pyrrolidine


136A
C(O)
CH(Me)
—CH2C(O)—N-pyrrolidine


137A
CHOH
CH(Me)
—CH2C(O)—N-pyrrolidine


138A
C(Me)OH
CH(Me)
—CH2C(O)—N-pyrrolidine


139A
C(O)
CH2
—CH2-5-tetrazolyl


140A
CHOH
CH2
—CH2-5-tetrazolyl


141A
C(Me)OH
CH2
—CH2-5-tetrazolyl


142A
C(O)
CH(Me)
—CH2-5-tetrazolyl


143A
CHOH
CH(Me)
—CH2-5-tetrazolyl


144A
C(Me)OH
CH(Me)
—CH2-5-tetrazolyl


145A
C(O)
CH2
—C(O)C(O)OH


146A
CHOH
CH2
—C(O)C(O)OH


147A
C(Me)OH
CH2
—C(O)C(O)OH


148A
C(O)
CH(Me)
—C(O)C(O)OH


149A
CHOH
CH(Me)
—C(O)C(O)OH


150A
C(Me)OH
CH(Me)
—C(O)C(O)OH


151A
C(O)
CH2
—CH(OH)C(O)OH


152A
CHOH
CH2
—CH(OH)C(O)OH


153A
C(Me)OH
CH2
—CH(OH)C(O)OH


154A
C(O)
CH(Me)
—CH(OH)C(O)OH


155A
CHOH
CH(Me)
—CH(OH)C(O)OH


156A
C(Me)OH
CH(Me)
—CH(OH)C(O)OH


157A
C(O)
CH2
—C(O)C(O)NH2


158A
CHOH
CH2
—C(O)C(O)NH2


159A
C(Me)OH
CH2
—C(O)C(O)NH2


160A
C(O)
CH(Me)
—C(O)C(O)NH2


161A
CHOH
CH(Me)
—C(O)C(O)NH2


162A
C(Me)OH
CH(Me)
—C(O)C(O)NH2


163A
C(O)
CH2
—CH(OH)C(O)NH2


164A
CHOH
CH2
—CH(OH)C(O)NH2


165A
C(Me)OH
CH2
—CH(OH)C(O)NH2


166A
C(O)
CH(Me)
—CH(OH)C(O)NH2


167A
CHOH
CH(Me)
—CH(OH)C(O)NH2


168A
C(Me)OH
CH(Me)
—CH(OH)C(O)NH2


169A
C(O)
CH2
—C(O)C(O)NMe2


170A
CHOH
CH2
—C(O)C(O)NMe2


171A
C(Me)OH
CH2
—C(O)C(O)NMe2


172A
C(O)
CH(Me)
—C(O)C(O)NMe2


173A
CHOH
CH(Me)
—C(O)C(O)NMe2


174A
C(Me)OH
CH(Me)
—C(O)C(O)NMe2


175A
C(O)
CH2
—CH(OH)C(O)NMe2


176A
CHOH
CH2
—CH(OH)C(O)NMe2


177A
C(Me)OH
CH2
—CH(OH)C(O)NMe2


178A
C(O)
CH(Me)
—CH(OH)C(O)NMe2


179A
CHOH
CH(Me)
—CH(OH)C(O)NMe2


180A
C(Me)OH
CH(Me)
—CH(OH)C(O)NMe2


181A
C(O)
CH2
—CH2CH2CO2H


182A
CHOH
CH2
—CH2CH2CO2H


183A
C(Me)OH
CH2
—CH2CH2CO2H


184A
C(O)
CH(Me)
—CH2CH2CO2H


185A
CHOH
CH(Me)
—CH2CH2CO2H


186A
C(Me)OH
CH(Me)
—CH2CH2CO2H


187A
C(O)
CH2
—CH2CH2C(O)NH2


188A
CHOH
CH2
—CH2CH2C(O)NH2


189A
C(Me)OH
CH2
—CH2CH2C(O)NH2


190A
C(O)
CH(Me)
—CH2CH2C(O)NH2


191A
CHOH
CH(Me)
—CH2CH2C(O)NH2


192A
C(Me)OH
CH(Me)
—CH2CH2C(O)NH2


193A
C(O)
CH2
—CH2CH2C(O)NMe2


194A
CHOH
CH2
—CH2CH2C(O)NMe2


195A
C(Me)OH
CH2
—CH2CH2C(O)NMe2


196A
C(O)
CH(Me)
—CH2CH2C(O)NMe2


197A
CHOH
CH(Me)
—CH2CH2C(O)NMe2


198A
C(Me)OH
CH(Me)
—CH2CH2C(O)NMe2


199A
C(O)
CH2
—CH2CH2-5-tetrazolyl


200A
CHOH
CH2
—CH2CH2-5-tetrazolyl


201A
C(Me)OH
CH2
—CH2CH2-5-tetrazolyl


202A
C(O)
CH(Me)
—CH2CH2-5-tetrazolyl


203A
CHOH
CH(Me)
—CH2CH2-5-tetrazolyl


204A
C(Me)OH
CH(Me)
—CH2CH2-5-tetrazolyl


205A
C(O)
CH2
—OCH2S(O)2Me


206A
CHOH
CH2
—OCH2S(O)2Me


207A
C(Me)OH
CH2
—OCH2S(O)2Me


208A
C(O)
CH(Me)
—OCH2S(O)2Me


209A
CHOH
CH(Me)
—OCH2S(O)2Me


210A
C(Me)OH
CH(Me)
—OCH2S(O)2Me


211A
C(O)
CH2
—OCH2CH2S(O)2Me


212A
CHOH
CH2
—OCH2CH2S(O)2Me


213A
C(Me)OH
CH2
—OCH2CH2S(O)2Me


214A
C(O)
CH(Me)
—OCH2CH2S(O)2Me


215A
CHOH
CH(Me)
—OCH2CH2S(O)2Me


216A
C(Me)OH
CH(Me)
—OCH2CH2S(O)2Me


217A
C(O)
CH2
—CH2S(O)2Me


218A
CHOH
CH2
—CH2S(O)2Me


219A
C(Me)OH
CH2
—CH2S(O)2Me


220A
C(O)
CH(Me)
—CH2S(O)2Me


221A
CHOH
CH(Me)
—CH2S(O)2Me


222A
C(Me)OH
CH(Me)
—CH2S(O)2Me


223A
C(O)
CH2
—CH2CH2S(O)2Me


224A
CHOH
CH2
—CH2CH2S(O)2Me


225A
C(Me)OH
CH2
—CH2CH2S(O)2Me


226A
C(O)
CH(Me)
—CH2CH2S(O)2Me


227A
CHOH
CH(Me)
—CH2CH2S(O)2Me


228A
C(Me)OH
CH(Me)
—CH2CH2S(O)2Me


229A
C(O)
CH2
—CH2CH2CH2S(O)2Me


230A
CHOH
CH2
—CH2CH2CH2S(O)2Me


231A
C(Me)OH
CH2
—CH2CH2CH2S(O)2Me


232A
C(O)
CH(Me)
—CH2CH2CH2S(O)2Me


233A
CHOH
CH(Me)
—CH2CH2CH2S(O)2Me


234A
C(Me)OH
CH(Me)
—CH2CH2CH2S(O)2Me


235A
C(O)
CH2
—OCH2S(O)2Et


236A
CHOH
CH2
—OCH2S(O)2Et


237A
C(Me)OH
CH2
—OCH2S(O)2Et


238A
C(O)
CH(Me)
—OCH2S(O)2Et


239A
CHOH
CH(Me)
—OCH2S(O)2Et


240A
C(Me)OH
CH(Me)
—OCH2S(O)2Et


241A
C(O)
CH2
—OCH2CH2S(O)2Et


242A
CHOH
CH2
—OCH2CH2S(O)2Et


243A
C(Me)OH
CH2
—OCH2CH2S(O)2Et


244A
C(O)
CH(Me)
—OCH2CH2S(O)2Et


245A
CHOH
CH(Me)
—OCH2CH2S(O)2Et


246A
C(Me)OH
CH(Me)
—OCH2CH2S(O)2Et


247A
C(O)
CH2
—CH2S(O)2Et


248A
CHOH
CH2
—CH2S(O)2Et


249A
C(Me)OH
CH2
—CH2S(O)2Et


250A
C(O)
CH(Me)
—CH2S(O)2Et


251A
CHOH
CH(Me)
—CH2S(O)2Et


252A
C(Me)OH
CH(Me)
—CH2S(O)2Et


253A
C(O)
CH2
—CH2CH2S(O)2Et


254A
CHOH
CH2
—CH2CH2S(O)2Et


255A
C(Me)OH
CH2
—CH2CH2S(O)2Et


256A
C(O)
CH(Me)
—CH2CH2S(O)2Et


257A
CHOH
CH(Me)
—CH2CH2S(O)2Et


258A
C(Me)OH
CH(Me)
—CH2CH2S(O)2Et


259A
C(O)
CH2
—CH2CH2CH2S(O)2Et


260A
CHOH
CH2
—CH2CH2CH2S(O)2Et


261A
C(Me)OH
CH2
—CH2CH2CH2S(O)2Et


262A
C(O)
CH(Me)
—CH2CH2CH2S(O)2Et


263A
CHOH
CH(Me)
—CH2CH2CH2S(O)2Et


264A
C(Me)OH
CH(Me)
—CH2CH2CH2S(O)2Et


265A
C(O)
CH2
—OCH2S(O)2iPr


266A
CHOH
CH2
—OCH2S(O)2iPr


267A
C(Me)OH
CH2
—OCH2S(O)2iPr


268A
C(O)
CH(Me)
—OCH2S(O)2iPr


269A
CHOH
CH(Me)
—OCH2S(O)2iPr


270A
C(Me)OH
CH(Me)
OCH2S(O)2iPr


271A
C(O)
CH2
—CH2S(O)2iPr


272A
CHOH
CH2
—CH2S(O)2iPr


273A
C(Me)OH
CH2
—CH2S(O)2iPr


274A
C(O)
CH(Me)
—CH2S(O)2iPr


275A
CHOH
CH(Me)
—CH2S(O)2iPr


276A
C(Me)OH
CH(Me)
—CH2S(O)2iPr


277A
C(O)
CH2
—CH2CH2S(O)2iPr


278A
CHOH
CH2
—CH2CH2S(O)2iPr


279A
C(Me)OH
CH2
—CH2CH2S(O)2iPr


280A
C(O)
CH(Me)
—CH2CH2S(O)2iPr


281A
CHOH
CH(Me)
—CH2CH2S(O)2iPr


282A
C(Me)OH
CH(Me)
—CH2CH2S(O)2iPr


283A
C(O)
CH2
—OCH2S(O)2tBu


284A
CHOH
CH2
—OCH2S(O)2tBu


285A
C(Me)OH
CH2
—OCH2S(O)2tBu


286A
C(O)
CH(Me)
—OCH2S(O)2tBu


287A
CHOH
CH(Me)
—OCH2S(O)2tBu


288A
C(Me)OH
CH(Me)
—OCH2S(O)2tBu


289A
C(O)
CH2
—CH2S(O)2tBu


290A
CHOH
CH2
—CH2S(O)2tBu


291A
C(Me)OH
CH2
—CH2S(O)2tBu


292A
C(O)
CH(Me)
—CH2S(O)2tBu


293A
CHOH
CH(Me)
—CH2S(O)2tBu


294A
C(Me)OH
CH(Me)
—CH2S(O)2tBu


295A
C(O)
CH2
—CH2CH2S(O)2tBu


296A
CHOH
CH2
—CH2CH2S(O)2tBu


297A
C(Me)OH
CH2
—CH2CH2S(O)2tBu


298A
C(O)
CH(Me)
—CH2CH2S(O)2tBu


299A
CHOH
CH(Me)
—CH2CH2S(O)2tBu


300A
C(Me)OH
CH(Me)
—CH2CH2S(O)2tBu


301A
C(O)
CH2
—OCH2S(O)2NH2


302A
CHOH
CH2
—OCH2S(O)2NH2


303A
C(Me)OH
CH2
—OCH2S(O)2NH2


304A
C(O)
CH(Me)
—OCH2S(O)2NH2


305A
CHOH
CH(Me)
—OCH2S(O)2NH2


306A
C(Me)OH
CH(Me)
—OCH2S(O)2NH2


307A
C(O)
CH2
—OCH2S(O)2NMe2


308A
CHOH
CH2
—OCH2S(O)2NMe2


309A
C(Me)OH
CH2
—OCH2S(O)2NMe2


310A
C(O)
CH(Me)
—OCH2S(O)2NMe2


311A
CHOH
CH(Me)
—OCH2S(O)2NMe2


312A
C(Me)OH
CH(Me)
—OCH2S(O)2NMe2


313A
C(O)
CH2
—CH2CH2S(O)2NH2


314A
CHOH
CH2
—CH2CH2S(O)2NH2


315A
C(Me)OH
CH2
—CH2CH2S(O)2NH2


316A
C(O)
CH(Me)
—CH2CH2S(O)2NH2


317A
CHOH
CH(Me)
—CH2CH2S(O)2NH2


318A
C(Me)OH
CH(Me)
—CH2CH2S(O)2NH2


319A
C(O)
CH2
—CH2CH2S(O)2NMe2


320A
CHOH
CH2
—CH2CH2S(O)2NMe2


321A
C(Me)OH
CH2
—CH2CH2S(O)2NMe2


322A
C(O)
CH(Me)
—CH2CH2S(O)2NMe2


323A
CHOH
CH(Me)
—CH2CH2S(O)2NMe2


324A
C(Me)OH
CH(Me)
—CH2CH2S(O)2NMe2


325A
C(O)
CH2
—C(O)CH2S(O)2Me


326A
CHOH
CH2
—C(O)CH2S(O)2Me


327A
C(Me)OH
CH2
—C(O)CH2S(O)2Me


328A
C(O)
CH(Me)
—C(O)CH2S(O)2Me


329A
CHOH
CH(Me)
—C(O)CH2S(O)2Me


330A
C(Me)OH
CH(Me)
—C(O)CH2S(O)2Me


331A
C(O)
CH2
—C(O)CH2CH2S(O)2Me


332A
CHOH
CH2
—C(O)CH2CH2S(O)2Me


333A
C(Me)OH
CH2
—C(O)CH2CH2S(O)2Me


334A
C(O)
CH(Me)
—C(O)CH2CH2S(O)2Me


335A
CHOH
CH(Me)
—C(O)CH2CH2S(O)2Me


336A
C(Me)OH
CH(Me)
—C(O)CH2CH2S(O)2Me


337A
C(O)
CH2
—OCH2CH2S(O)2NH2


338A
CHOH
CH2
—OCH2CH2S(O)2NH2


339A
C(Me)OH
CH2
—OCH2CH2S(O)2NH2


340A
C(O)
CH(Me)
—OCH2CH2S(O)2NH2


341A
CHOH
CH(Me)
—OCH2CH2S(O)2NH2


342A
C(Me)OH
CH(Me)
—OCH2CH2S(O)2NH2


343A
C(O)
CH2
—OCH2CH2S(O)2NMe2


344A
CHOH
CH2
—OCH2CH2S(O)2NMe2


345A
C(Me)OH
CH2
—OCH2CH2S(O)2NMe2


346A
C(O)
CH(Me)
—OCH2CH2S(O)2NMe2


347A
CHOH
CH(Me)
—OCH2CH2S(O)2NMe2


348A
C(Me)OH
CH(Me)
—OCH2CH2S(O)2NMe2


349A
C(O)
CH2
—CH2CH2CH2S(O)2NH2


350A
CHOH
CH2
—CH2CH2CH2S(O)2NH2


351A
C(Me)OH
CH2
—CH2CH2CH2S(O)2NH2


352A
C(O)
CH(Me)
—CH2CH2CH2S(O)2NH2


353A
CHOH
CH(Me)
—CH2CH2CH2S(O)2NH2


354A
C(Me)OH
CH(Me)
—CH2CH2CH2S(O)2NH2


355A
C(O)
CH2
—S(O)2Me


356A
CHOH
CH2
—S(O)2Me


357A
C(Me)OH
CH2
—S(O)2Me


358A
C(O)
CH(Me)
—S(O)2Me


359A
CHOH
CH(Me)
—S(O)2Me


360A
C(Me)OH
CH(Me)
—S(O)2Me


361A
C(O)
CH2
—S(O)2Et


362A
CHOH
CH2
—S(O)2Et


363A
C(Me)OH
CH2
—S(O)2Et


364A
C(O)
CH(Me)
—S(O)2Et


365A
CHOH
CH(Me)
—S(O)2Et


366A
C(Me)OH
CH(Me)
—S(O)2Et


367A
C(O)
CH2
—S(O)2iPr


368A
CHOH
CH2
—S(O)2iPr


369A
C(Me)OH
CH2
—S(O)2iPr


370A
C(O)
CH(Me)
—S(O)2iPr


371A
CHOH
CH(Me)
—S(O)2iPr


372A
C(Me)OH
CH(Me)
—S(O)2iPr


373A
C(O)
CH2
—S(O)2tBu


374A
CHOH
CH2
—S(O)2tBu


375A
C(Me)OH
CH2
—S(O)2tBu


376A
C(O)
CH(Me)
—S(O)2tBu


377A
CHOH
CH(Me)
—S(O)2tBu


378A
C(Me)OH
CH(Me)
—S(O)2tBu


379A
C(O)
CH2
—OCH2CO2H


380A
CHOH
CH2
—OCH2CO2H


381A
C(Me)OH
CH2
—OCH2CO2H


382A
C(O)
CH(Me)
—OCH2CO2H


383A
CHOH
CH(Me)
—OCH2CO2H


384A
C(Me)OH
CH(Me)
—OCH2CO2H


385A
C(O)
CH2
—OCH2-5-tetrazolyl


386A
CHOH
CH2
—OCH2-5-tetrazolyl


387A
C(Me)OH
CH2
—OCH2-5-tetrazolyl


388A
C(O)
CH(Me)
—OCH2-5-tetrazolyl


389A
CHOH
CH(Me)
—OCH2-5-tetrazolyl


390A
C(Me)OH
CH(Me)
—OCH2-5-tetrazolyl


391A
C(O)
CH2
—S(O)2NH2


392A
CHOH
CH2
—S(O)2NH2


393A
C(Me)OH
CH2
—S(O)2NH2


394A
C(O)
CH(Me)
—S(O)2NH2


395A
CHOH
CH(Me)
—S(O)2NH2


396A
C(Me)OH
CH(Me)
—S(O)2NH2


397A
C(O)
CH2
—S(O)2NMe2


398A
CHOH
CH2
—S(O)2NMe2


399A
C(Me)OH
CH2
—S(O)2NMe2


400A
C(O)
CH(Me)
—S(O)2NMe2


401A
CHOH
CH(Me)
—S(O)2NMe2


402A
C(Me)OH
CH(Me)
—S(O)2NMe2


403A
C(O)
CH2
—S(O)2CH2S(O)2Me


404A
CHOH
CH2
—S(O)2CH2S(O)2Me


405A
C(Me)OH
CH2
—S(O)2CH2S(O)2Me


406A
C(O)
CH(Me)
—S(O)2CH2S(O)2Me


407A
CHOH
CH(Me)
—S(O)2CH2S(O)2Me


408A
C(Me)OH
CH(Me)
—S(O)2CH2S(O)2Me


409A
C(O)
CH2
—S(O)2CH2S(O)2Et


410A
CHOH
CH2
—S(O)2CH2S(O)2Et


411A
C(Me)OH
CH2
—S(O)2CH2S(O)2Et


412A
C(O)
CH(Me)
—S(O)2CH2S(O)2Et


413A
CHOH
CH(Me)
—S(O)2CH2S(O)2Et


414A
C(Me)OH
CH(Me)
—S(O)2CH2S(O)2Et


415A
C(O)
CH2
—S(O)2CH2S(O)2iPr


416A
CHOH
CH2
—S(O)2CH2S(O)2iPr


417A
C(Me)OH
CH2
—S(O)2CH2S(O)2iPr


418A
C(O)
CH(Me)
—S(O)2CH2S(O)2iPr


419A
CHOH
CH(Me)
—S(O)2CH2S(O)2iPr


420A
C(Me)OH
CH(Me)
—S(O)2CH2S(O)2iPr


421A
C(O)
CH2
—S(O)2CH2S(O)2tBu


422A
CHOH
CH2
—S(O)2CH2S(O)2tBu


423A
C(Me)OH
CH2
—S(O)2CH2S(O)2tBu


424A
C(O)
CH(Me)
—S(O)2CH2S(O)2tBu


425A
CHOH
CH(Me)
—S(O)2CH2S(O)2tBu


426A
C(Me)OH
CH(Me)
—S(O)2CH2S(O)2tBu


427A
C(O)
CH2
—NHS(O)2Me


428A
CHOH
CH2
—NHS(O)2Me


429A
C(Me)OH
CH2
—NHS(O)2Me


430A
C(O)
CH(Me)
—NHS(O)2Me


431A
CHOH
CH(Me)
—NHS(O)2Me


432A
C(Me)OH
CH(Me)
—NHS(O)2Me


433A
C(O)
CH2
—NHS(O)2Et


434A
CHOH
CH2
—NHS(O)2Et


435A
C(Me)OH
CH2
—NHS(O)2Et


436A
C(O)
CH(Me)
—NHS(O)2Et


437A
CHOH
CH(Me)
—NHS(O)2Et


438A
C(Me)OH
CH(Me)
—NHS(O)2Et


439A
C(O)
CH2
—NHS(O)2iPr


440A
CHOH
CH2
—NHS(O)2iPr


441A
C(Me)OH
CH2
—NHS(O)2iPr


442A
C(O)
CH(Me)
—NHS(O)2iPr


443A
CHOH
CH(Me)
—NHS(O)2iPr


444A
C(Me)OH
CH(Me)
—NHS(O)2iPr


445A
C(O)
CH2
—NHS(O)2tBu


446A
CHOH
CH2
—NHS(O)2tBu


447A
C(Me)OH
CH2
—NHS(O)2tBu


448A
C(O)
CH(Me)
—NHS(O)2tBu


449A
CHOH
CH(Me)
—NHS(O)2tBu


450A
C(Me)OH
CH(Me)
—NHS(O)2tBu


451A
C(O)
CH2
—OS(O)2Me


452A
CHOH
CH2
—OS(O)2Me


453A
C(Me)OH
CH2
—OS(O)2Me


454A
C(O)
CH(Me)
—OS(O)2Me


455A
CHOH
CH(Me)
—OS(O)2Me


456A
C(Me)OH
CH(Me)
—OS(O)2Me


457A
C(O)
CH2
—OS(O)2Et


458A
CHOH
CH2
—OS(O)2Et


459A
C(Me)OH
CH2
—OS(O)2Et


460A
C(O)
CH(Me)
—OS(O)2Et


461A
CHOH
CH(Me)
—OS(O)2Et


462A
C(Me)OH
CH(Me)
—OS(O)2Et


463A
C(O)
CH2
—OS(O)2iPr


464A
CHOH
CH2
—OS(O)2iPr


465A
C(Me)OH
CH2
—OS(O)2iPr


466A
C(O)
CH(Me)
—OS(O)2iPr


467A
CHOH
CH(Me)
—OS(O)2iPr


468A
C(Me)OH
CH(Me)
—OS(O)2iPr


469A
C(O)
CH2
—OS(O)2tBu


470A
CHOH
CH2
—OS(O)2tBu


471A
C(Me)OH
CH2
—OS(O)2tBu


472A
C(O)
CH(Me)
—OS(O)2tBu


473A
CHOH
CH(Me)
—OS(O)2tBu


474A
C(Me)OH
CH(Me)
—OS(O)2tBu


475A
C(O)
CH2
—NHC(O)NMe2


476A
CHOH
CH2
—NHC(O)NMe2


477A
C(Me)OH
CH2
—NHC(O)NMe2


478A
C(O)
CH(Me)
—NHC(O)NMe2


479A
CHOH
CH(Me)
—NHC(O)NMe2


480A
C(Me)OH
CH(Me)
—NHC(O)NMe2


481A
C(O)
CH2
—NHC(S)NMe2


482A
CHOH
CH2
—NHC(S)NMe2


483A
C(Me)OH
CH2
—NHC(S)NMe2


484A
C(O)
CH(Me)
—NHC(S)NMe2


485A
CHOH
CH(Me)
—NHC(S)NMe2


486A
C(Me)OH
CH(Me)
—NHC(S)NMe2


487A
C(O)
CH2
—OC(O)NMe2


488A
CHOH
CH2
—OC(O)NMe2


489A
C(Me)OH
CH2
—OC(O)NMe2


490A
C(O)
CH(Me)
—OC(O)NMe2


491A
CHOH
CH(Me)
—OC(O)NMe2


492A
C(Me)OH
CH(Me)
—OC(O)NMe2


493A
C(O)
CH2
—OC(S)NMe2


494A
CHOH
CH2
—OC(S)NMe2


495A
C(Me)OH
CH2
—OC(S)NMe2


496A
C(O)
CH(Me)
—OC(S)NMe2


497A
CHOH
CH(Me)
—OC(S)NMe2


498A
C(Me)OH
CH(Me)
—OC(S)NMe2


499A
C(O)
CH2
—NHS(O)2NMe2


500A
CHOH
CH2
—NHS(O)2NMe2


501A
C(Me)OH
CH2
—NHS(O)2NMe2


502A
C(O)
CH(Me)
—NHS(O)2NMe2


503A
CHOH
CH(Me)
—NHS(O)2NMe2


504A
C(Me)OH
CH(Me)
—NHS(O)2NMe2


505A
C(O)
CH2
—C(O)NHCH2CO2H


506A
CHOH
CH2
—C(O)NHCH2CO2H


507A
C(Me)OH
CH2
—C(O)NHCH2CO2H


508A
C(O)
CH(Me)
—C(O)NHCH2CO2H


509A
CHOH
CH(Me)
—C(O)NHCH2CO2H


510A
C(Me)OH
CH(Me)
—C(O)NHCH2CO2H


511A
C(O)
CH2
—SO2NHCH2CO2H


512A
CHOH
CH2
—SO2NHCH2CO2H


513A
C(Me)OH
CH2
—SO2NHCH2CO2H


514A
C(O)
CH(Me)
—SO2NHCH2CO2H


515A
CHOH
CH(Me)
—SO2NHCH2CO2H


516A
C(Me)OH
CH(Me)
—SO2NHCH2CO2H


517A
C(O)
CH2
—CH2—S-Me


518A
CHOH
CH2
—CH2—S-Me


519A
C(Me)OH
CH2
—CH2—S-Me


520A
C(O)
CH(Me)
—CH2—S-Me


521A
CHOH
CH(Me)
—CH2—S-Me


522A
C(Me)OH
CH(Me)
—CH2—S-Me
















TABLE 3















embedded image














Code
R3
WT





1B
3Me3OH-Pentyl
—CO2Me


2B
3Me3OH-Pentenyl
—CO2Me


3B
3Me3OH-Pentynyl
—CO2Me


4B
3Et3OH-Pentyl
—CO2Me


5B
3Et3OH-Pentenyl
—CO2Me


6B
3Et3OH-Pentynyl
—CO2Me


7B
3Me3OH-Pentyl
—CO2H


8B
3Me3OH-Pentenyl
—CO2H


9B
3Me3OH-Pentynyl
—CO2H


10B
3Et3OH-Pentyl
—CO2H


11B
3Et3OH-Pentenyl
—CO2H


12B
3Et3OH-Pentynyl
—CO2H


13B
3Me3OH-Pentyl
—C(O)NH2


14B
3Me3OH-Pentenyl
—C(O)NH2


15B
3Me3OH-Pentynyl
—C(O)NH2


16B
3Et3OH-Pentyl
—C(O)NH2


17B
3Et3OH-Pentenyl
—C(O)NH2


18B
3Et3OH-Pentynyl
—C(O)NH2


19B
3Me3OH-Pentyl
—C(O)NMe2


20B
3Me3OH-Pentenyl
—C(O)NMe2


21B
3Me3OH-Pentynyl
—C(O)NMe2


22B
3Et3OH-Pentyl
—C(O)NMe2


23B
3Et3OH-Pentenyl
—C(O)NMe2


24B
3Et3OH-Pentynyl
—C(O)NMe2


25B
3Me3OH-Pentyl
5-tetrazolyl


26B
3Me3OH-Pentenyl
5-tetrazolyl


27B
3Me3OH-Pentynyl
5-tetrazolyl


28B
3Et3OH-Pentyl
5-tetrazolyl


29B
3Et3OH-Pentenyl
5-tetrazolyl


30B
3Et3OH-Pentynyl
5-tetrazolyl


31B
3Me3OH-Pentyl
—C(O)—NH-5-tetrazolyl


32B
3Me3OH-Pentenyl
—C(O)—NH-5-tetrazolyl


33B
3Me3OH-Pentynyl
—C(O)—NH-5-tetrazolyl


34B
3Et3OH-Pentyl
—C(O)—NH-5-tetrazolyl


35B
3Et3OH-Pentenyl
—C(O)—NH-5-tetrazolyl


36B
3Et3OH-Pentynyl
—C(O)—NH-5-tetrazolyl


37B
3Me3OH-Pentyl
—C(O)NHCH2SO2Me


38B
3Me3OH-Pentenyl
—C(O)NHCH2SO2Me


39B
3Me3OH-Pentynyl
—C(O)NHCH2SO2Me


40B
3Et3OH-Pentyl
—C(O)NHCH2SO2Me


41B
3Et3OH-Pentenyl
—C(O)NHCH2SO2Me


42B
3Et3OH-Pentynyl
—C(O)NHCH2SO2Me


43B
3Me3OH-Pentyl
—C(O)NHCH2CH2SO2Me


44B
3Me3OH-Pentenyl
—C(O)NHCH2CH2SO2Me


45B
3Me3OH-Pentynyl
—C(O)NHCH2CH2SO2Me


46B
3Et3OH-Pentyl
—C(O)NHCH2CH2SO2Me


47B
3Et3OH-Pentenyl
—C(O)NHCH2CH2SO2Me


48B
3Et3OH-Pentynyl
—C(O)NHCH2CH2SO2Me


49B
3Me3OH-Pentyl
—C(O)NHSO2Me


50B
3Me3OH-Pentenyl
—C(O)NHSO2Me


51B
3Me3OH-Pentynyl
—C(O)NHSO2Me


52B
3Et3OH-Pentyl
—C(O)NHSO2Me


53B
3Et3OH-Pentenyl
—C(O)NHSO2Me


54B
3Et3OH-Pentynyl
—C(O)NHSO2Me


55B
3Me3OH-Pentyl
—CH2—C(O)NHSO2Et


56B
3Me3OH-Pentenyl
—CH2—C(O)NHSO2Et


57B
3Me3OH-Pentynyl
—CH2—C(O)NHSO2Et


58B
3Et3OH-Pentyl
—CH2—C(O)NHSO2Et


59B
3Et3OH-Pentenyl
—CH2—C(O)NHSO2Et


60B
3Et3OH-Pentynyl
—CH2—C(O)NHSO2Et


61B
3Me3OH-Pentyl
—CH2—C(O)NHSO2iPr


62B
3Me3OH-Pentenyl
—CH2—C(O)NHSO2iPr


63B
3Me3OH-Pentynyl
—CH2—C(O)NHSO2iPr


64B
3Et3OH-Pentyl
—CH2—C(O)NHSO2iPr


65B
3Et3OH-Pentenyl
—CH2—C(O)NHSO2iPr


66B
3Et3OH-Pentynyl
—CH2—C(O)NHSO2iPr


67B
3Me3OH-Pentyl
—CH2—C(O)NHSO2tBu


68B
3Me3OH-Pentenyl
—CH2—C(O)NHSO2tBu


69B
3Me3OH-Pentynyl
—CH2—C(O)NHSO2tBu


70B
3Et3OH-Pentyl
—CH2—C(O)NHSO2tBu


71B
3Et3OH-Pentenyl
—CH2—C(O)NHSO2tBu


72B
3Et3OH-Pentynyl
—CH2—C(O)NHSO2IBu


73B
3Me3OH-Pentyl
—CH2NHSO2Me


74B
3Me3OH-Pentenyl
—CH2NHSO2Me


75B
3Me3OH-Pentyl
—CH2NHSO2Me


76B
3Et3OH-Pentyl
—CH2NHSO2Me


77B
3Et3OH-Pentenyl
—CH2NHSO2Me


78B
3Et3OH-Pentynyl
—CH2NHSO2Me


79B
3Me3OH-Pentyl
—CH2NHSO2Et


80B
3Me3OH-Pentenyl
—CH2NHSO2Et


81B
3Me3OH-Pentynyl
—CH2NHSO2Et


82B
3Et3OH-Pentyl
—CH2NHSO2Et


83B
3Et3OH-Pentenyl
—CH2NHSO2Et


84B
3Et3OH-Pentynyl
—CH2NHSO2Et


85B
3Me3OH-Pentyl
—CH2NHSO2iPr


86B
3Me3OH-Pentenyl
—CH2NHSO2iPr


87B
3Me3OH-Pentynyl
—CH2NHSO2iPr


88B
3Et3OH-Pentyl
—CH2NHSO2iPr


89B
3Et3OH-Pentenyl
—CH2NHSO2iPr


90B
3Et3OH-Pentynyl
—CH2NHSO2iPr


91B
3Me3OH-Pentyl
—CH2NHSO2tBu


92B
3Me3OH-Pentenyl
—CH2NHSO2tBu


93B
3Me3OH-Pentynyl
—CH2NHSO2tBu


94B
3Et3OH-Pentyl
—CH2NHSO2tBu


95B
3Et3OH-Pentenyl
—CH2NHSO2tBu


96B
3Et3OH-Pentynyl
—CH2NHSO2tBu


97B
3Me3OH-Pentyl
—CH2—N-pyrrolidin-2-one


98B
3Me3OH-Pentenyl
—CH2—N-pyrrolidin-2-one


99B
3Me3OH-Pentynyl
—CH2—N-pyrrolidin-2-one


100B
3Et3OH-Pentyl
—CH2—N-pyrrolidin-2-one


101B
3Et3OH-Pentenyl
—CH2—N-pyrrolidin-2-one


102B
3Et3OH-Pentynyl
—CH2—N-pyrrolidin-2-one


103B
3Me3OH-Pentyl
—CH2-(1-methylpyrrolidin-2-one-3-yl)


104B
3Me3OH-Pentenyl
—CH2-(1-methylpyrrolidin-2-one-3-




yl)


105B
3Me3OH-Pentynyl
—CH2-(1-methylpyrrolidin-2-one-3-




yl)


106B
3Et3OH-Pentyl
—CH2-(1-methylpyrrolidin-2-one-3-




yl)


107B
3Et3OH-Pentenyl
—CH2-(1-methylpyrrolidin-2-one-3-




yl)


108B
3Et3OH-Pentynyl
—CH2-(1-methylpyrrolidin-2-one-3-




yl)


109B
3Me3OH-Pentyl
—CH2CO2Me


110B
3Me3OH-Pentenyl
—CH2CO2Me


111B
3Me3OH-Pentynyl
—CH2CO2Me


112B
3Et3OH-Pentyl
—CH2CO2Me


113B
3Et3OH-Pentenyl
—CH2CO2Me


114B
3Et3OH-Pentynyl
—CH2CO2Me


115B
3Me3OH-Pentyl
—CH2CO2H


116B
3Me3OH-Pentenyl
—CH2CO2H


117B
3Me3OH-Pentynyl
—CH2CO2H


118B
3Et3OH-Pentyl
—CH2CO2H


119B
3Et3OH-Pentenyl
—CH2CO2H


120B
3Et3OH-Pentyl
—CH2CO2H


121B
3Me3OH-Pentyl
—CH2C(O)NH2


122B
3Me3OH-Pentenyl
—CH2C(O)NH2


123B
3Me3OH-Pentynyl
—CH2C(O)NH2


124B
3Et3OH-Pentyl
—CH2C(O)NH2


125B
3Et3OH-Pentenyl
—CH2C(O)NH2


126B
3Et3OH-Pentynyl
—CH2C(O)NH2


127B
3Me3OH-Pentyl
—CH2C(O)NMe2


128B
3Me3OH-Pentenyl
—CH2C(O)NMe2


129B
3Me3OH-Pentynyl
—CH2C(O)NMe2


130B
3Et3OH-Pentyl
—CH2C(O)NMe2


131B
3Et3OH-Pentenyl
—CH2C(O)NMe2


132B
3Et3OH-Pentynyl
—CH2C(O)NMe2


133B
3Me3OH-Pentyl
—CH2C(O)—N-pyrrolidine


134B
3Me3OH-Pentenyl
—CH2C(O)—N-pyrrolidine


135B
3Me3OH-Pentynyl
—CH2C(O)—N-pyrrolidine


136B
3Et3OH-Pentyl
—CH2C(O)—N-pyrrolidine


137B
3Et3OH-Pentenyl
—CH2C(O)—N-pyrrolidine


138B
3Et3OH-Pentynyl
—CH2C(O)—N-pyrrolidine


139B
3Me3OH-Pentyl
—CH2-5-tetrazolyl


140B
3Me3OH-Pentenyl
—CH2-5-tetrazolyl


141B
3Me3OH-Pentynyl
—CH2-5-tetrazolyl


142B
3Et3OH-Pentyl
—CH2-5-tetrazolyl


143B
3Et3OH-Pentenyl
—CH2-5-tetrazolyl


144B
3Et3OH-Pentynyl
—CH2-5-tetrazolyl


145B
3Me3OH-Pentyl
—C(O)C(O)OH


146B
3Me3OH-Pentenyl
—C(O)C(O)OH


147B
3Me3OH-Pentynyl
—C(O)C(O)OH


148B
3Et3OH-Pentyl
—C(O)C(O)OH


149B
3Et3OH-Pentenyl
—C(O)C(O)OH


150B
3Et3OH-Pentynyl
—C(O)C(O)OH


151B
3Me3OH-Pentyl
—CH(OH)C(O)OH


152B
3Me3OH-Pentenyl
—CH(OH)C(O)OH


153B
3Me3OH-Pentynyl
—CH(OH)C(O)OH


154B
3Et3OH-Pentyl
—CH(OH)C(O)OH


155B
3Et3OH-Pentenyl
—CH(OH)C(O)OH


156B
3Et3OH-Pentynyl
—CH(OH)C(O)OH


157B
3Me3OH-Pentyl
—C(O)C(O)NH2


158B
3Me3OH-Pentenyl
—C(O)C(O)NH2


159B
3Me3OH-Pentynyl
—C(O)C(O)NH2


160B
3Et3OH-Pentyl
—C(O)C(O)NH2


161B
3Et3OH-Pentenyl
—C(O)C(O)NH2


162B
3Et3OH-Pentynyl
—C(O)C(O)NH2


163B
3Me3OH-Pentyl
—CH(OH)C(O)NH2


164B
3Me3OH-Pentenyl
—CH(OH)C(O)NH2


165B
3Me3OH-Pentynyl
—CH(OH)C(O)NH2


166B
3Et3OH-Pentyl
—CH(OH)C(O)NH2


167B
3Et3OH-Pentenyl
—CH(OH)C(O)NH2


168B
3Et3OH-Pentynyl
—CH(OH)C(O)NH2


169B
3Me3OH-Pentyl
—C(O)C(O)NMe2


170B
3Me3OH-Pentenyl
—C(O)C(O)NMe2


171B
3Me3OH-Pentynyl
—C(O)C(O)NMe2


172B
3Et3OH-Pentyl
—C(O)C(O)NMe2


173B
3Et3OH-Pentenyl
—C(O)C(O)NMe2


174B
3Et3OH-Pentynyl
—C(O)C(O)NMe2


175B
3Me3OH-Pentyl
—CH(OH)C(O)NMe2


176B
3Me3OH-Pentenyl
—CH(OH)C(O)NMe2


177B
3Me3OH-Pentynyl
—CH(OH)C(O)NMe2


178B
3Et3OH-Pentyl
—CH(OH)C(O)NMe2


179B
3Et3OH-Pentenyl
—CH(OH)C(O)NMe2


180B
3Et3OH-Pentynyl
—CH(OH)C(O)NMe2


181B
3Me3OH-Pentyl
—CH2CH2CO2H


182B
3Me3OH-Pentenyl
—CH2CH2CO2H


183B
3Me3OH-Pentyl
—CH2CH2CO2H


184B
3Et3OH-Pentyl
—CH2CH2CO2H


185B
3Et3OH-Pentenyl
—CH2CH2CO2H


186B
3Et3OH-Pentynyl
—CH2CH2CO2H


187B
3Me3OH-Pentyl
—CH2CH2C(O)NH2


188B
3Me3OH-Pentenyl
—CH2CH2C(O)NH2


189B
3Me3OH-Pentynyl
—CH2CH2C(O)NH2


190B
3Et3OH-Pentyl
—CH2CH2C(O)NH2


191B
3Et3OH-Pentenyl
—CH2CH2C(O)NH2


192B
3Et3OH-Pentynyl
—CH2CH2C(O)NH2


193B
3Me3OH-Pentyl
—CH2CH2C(O)NMe2


194B
3Me3OH-Pentenyl
—CH2CH2C(O)NMe2


195B
3Me3OH-Pentynyl
—CH2CH2C(O)NMe2


196B
3Et3OH-Pentyl
—CH2CH2C(O)NMe2


197B
3Et3OH-Pentenyl
—CH2CH2C(O)NMe2


198B
3Et3OH-Pentynyl
—CH2CH2C(O)NMe2


199B
3Me3OH-Pentyl
—CH2CH2-5-tetrazolyl


200B
3Me3OH-Pentenyl
—CH2CH2-5-tetrazolyl


201B
3Me3OH-Pentynyl
—CH2CH2-5-tetrazolyl


202B
3Et3OH-Pentyl
—CH2CH2-5-tetrazolyl


203B
3Et3OH-Pentenyl
—CH2CH2-5-tetrazolyl


204B
3Et3OH-Pentynyl
—CH2CH2-5-tetrazolyl


205B
3Me3OH-Pentyl
—CH2S(O)2Me


206B
3Me3OH-Pentenyl
—CH2S(O)2Me


207B
3Me3OH-Pentynyl
—CH2S(O)2Me


208B
3Et3OH-Pentyl
—CH2S(O)2Me


209B
3Et3OH-Pentenyl
—CH2S(O)2Me


210B
3Et3OH-Pentynyl
—CH2S(O)2Me


211B
3Me3OH-Pentyl
—CH2CH2S(O)2Me


212B
3Me3OH-Pentenyl
—CH2CH2S(O)2Me


213B
3Me3OH-Pentynyl
—CH2CH2S(O)2Me


214B
3Et3OH-Pentyl
—CH2CH2S(O)2Me


215B
3Et3OH-Pentenyl
—CH2CH2S(O)2Me


216B
3Et3OH-Pentynyl
—CH2CH2S(O)2Me


217B
3Me3OH-Pentyl
—CH2CH2CH2S(O)2Me


218B
3Me3OH-Pentenyl
—CH2CH2CH2S(O)2Me


219B
3Me3OH-Pentynyl
—CH2CH2CH2S(O)2Me


220B
3Et3OH-Pentyl
—CH2CH2CH2S(O)2Me


221B
3Et3OH-Pentenyl
—CH2CH2CH2S(O)2Me


222B
3Et3OH-Pentynyl
—CH2CH2CH2S(O)2Me


223B
3Me3OH-Pentyl
—CH2S(O)2Et


224B
3Me3OH-Pentenyl
—CH2S(O)2Et


225B
3Me3OH-Pentynyl
—CH2S(O)2Et


226B
3Et3OH-Pentyl
—CH2S(O)2Et


227B
3Et3OH-Pentenyl
—CH2S(O)2Et


228B
3Et3OH-Pentynyl
—CH2S(O)2Et


229B
3Me3OH-Pentyl
—CH2CH2S(O)2Et


230B
3Me3OH-Pentenyl
—CH2CH2S(O)2Et


231B
3Me3OH-Pentynyl
—CH2CH2S(O)2Et


232B
3Et3OH-Pentyl
—CH2CH2S(O)2Et


233B
3Et3OH-Pentenyl
—CH2CH2S(O)2Et


234B
3Et3OH-Pentynyl
—CIEI2CH2S(O)2Et


235B
3Me3OH-Pentyl
—CH2CH2CH2S(O)2Et


236B
3Me3OH-Pentenyl
—CH2CH2CH2S(O)2Et


237B
3Me3OH-Pentynyl
—CH2CH2CH2S(O)2Et


238B
3Et3OH-Pentyl
—CH2CH2CH2S(O)2Et


239B
3Et3OH-Pentenyl
—CH2CH2CH2S(O)2Et


240B
3Et3OH-Pentynyl
—CH2CH2CH2S(O)2Et


241B
3Me3OH-Pentyl
—CH2S(O)2iPr


242B
3Me3OH-Pentenyl
—CH2S(O)2iPr


243B
3Me3OH-Pentynyl
—CH2S(O)2iPr


244B
3Et3OH-Pentyl
—CH2S(O)2iPr


245B
3Et3OH-Pentenyl
—CH2S(O)2iPr


246B
3Et3OH-Pentynyl
—CH2S(O)2iPr


247B
3Me3OH-Pentyl
—CH2CH2S(O)2iPr


248B
3Me3OH-Pentenyl
—CH2CH2S(O)2iPr


249B
3Me3OH-Pentynyl
—CH2CH2S(O)2iPr


250B
3Et3OH-Pentyl
—CH2CH2S(O)2iPr


251B
3Et3OH-Pentenyl
—CH2CH2S(O)2iPr


252B
3Et3OH-Pentynyl
—CH2CH2S(O)2iPr


253B
3Me3OH-Pentyl
—CH2S(O)2tBu


254B
3Me3OH-Pentenyl
—CH2S(O)2tBu


255B
3Me3OH-Pentynyl
—CH2S(O)2tBu


256B
3Et3OH-Pentyl
—CH2S(O)2tBu


257B
3Et3OH-Pentenyl
—CH2S(O)2tBu


258B
3Et3OH-Pentynyl
—CH2S(O)2tBu


259B
3Me3OH-Pentyl
—CH2CH2S(O)2tBu


260B
3Me3OH-Pentenyl
—CH2CH2S(O)2tBu


261B
3Me3OH-Pentynyl
—CH2CH2S(O)2tBu


262B
3Et3OH-Pentyl
—CH2CH2S(O)2tBu


263B
3Et3OH-Pentenyl
—CH2CH2S(O)2tBu


264B
3Et3OH-Pentynyl
—CH2CH2S(O)2tBu


265B
3Me3OH-Pentyl
—CH2CH2S(O)2NH2


266B
3Me3OH-Pentenyl
—CH2CH2S(O)2NH2


267B
3Me3OH-Pentynyl
—CH2CH2S(O)2NH2


268B
3Et3OH-Pentyl
—CH2CH2S(O)2NH2


269B
3Et3OH-Pentenyl
—CH2CH2S(O)2NH2


270B
3Et3OH-Pentynyl
—CH2CH2S(O)2NH2


271B
3Me3OH-Pentyl
—CH2CH2S(O)2NMe2


272B
3Me3OH-Pentenyl
—CH2CH2S(O)2NMe2


273B
3Me3OH-Pentynyl
—CH2CH2S(O)2NMe2


274B
3Et3OH-Pentyl
—CH2CH2S(O)2NMe2


275B
3Et3OH-Pentenyl
—CH2CH2S(O)2NMe2


276B
3Et3OH-Pentynyl
—CH2CH2S(O)2NMe2


277B
3Me3OH-Pentyl
—C(O)CH2S(O)2Me


278B
3Me3OH-Pentenyl
—C(O)CH2S(O)2Me


279B
3Me3OH-Pentynyl
—C(O)CH2S(O)2Me


280B
3Et3OH-Pentyl
—C(O)CH2S(O)2Me


281B
3Et3OH-Pentenyl
—C(O)CH2S(O)2Me


282B
3Et3OH-Pentynyl
—C(O)CH2S(O)2Me


283B
3Me3OH-Pentyl
—C(O)CH2CH2S(O)2Me


284B
3Me3OH-Pentenyl
—C(O)CH2CH2S(O)2Me


285B
3Me3OH-Pentynyl
—C(O)CH2CH2S(O)2Me


286B
3Et3OH-Pentyl
—C(O)CH2CH2S(O)2Me


287B
3Et3OH-Pentenyl
—C(O)CH2CH2S(O)2Me


288B
3Et3OH-Pentynyl
—C(O)CH2CH2S(O)2Me


289B
3Me3OH-Pentyl
—CH2CH2CH2S(O)2NH2


290B
3Me3OH-Pentenyl
—CH2CH2CH2S(O)2NH2


291B
3Me3OH-Pentynyl
—CH2CH2CH2S(O)2NH2


292B
3Et3OH-Pentyl
—CH2CH2CH2S(O)2NH2


293B
3Et3OH-Pentenyl
—CH2CH2CH2S(O)2NH2


294B
3Et3OH-Pentynyl
—CH2CH2CH2S(O)2NH2


295B
3Me3OH-Pentyl
—S(O)2Me


296B
3Me3OH-Pentenyl
—S(O)2Me


297B
3Me3OH-Pentynyl
—S(O)2Me


298B
3Et3OH-Pentyl
—S(O)2Me


299B
3Et3OH-Pentenyl
—S(O)2Me


300B
3Et3OH-Pentynyl
—S(O)2Me


301B
3Me3OH-Pentyl
—S(O)2Et


302B
3Me3OH-Pentenyl
—S(O)2Et


303B
3Me3OH-Pentynyl
—S(O)2Et


304B
3Et3OH-Pentyl
—S(O)2Et


305B
3Et3OH-Pentenyl
—S(O)2Et


306B
3Et3OH-Pentynyl
—S(O)2Et


307B
3Me3OH-Pentyl
—S(O)2iPr


308B
3Me3OH-Pentenyl
—S(O)2iPr


309B
3Me3OH-Pentynyl
—S(O)2iPr


310B
3Et3OH-Pentyl
—S(O)2iPr


311B
3Et3OH-Pentenyl
—S(O)2iPr


312B
3Et3OH-Pentynyl
—S(O)2iPr


313B
3Me3OH-Pentyl
—S(O)2tBu


314B
3Me3OH-Pentenyl
—S(O)2tBu


315B
3Me3OH-Pentynyl
—S(O)2tBu


316B
3Et3OH-Pentyl
—S(O)2tBu


317B
3Et3OH-Pentenyl
—S(O)2tBu


318B
3Et3OH-Pentynyl
—S(O)2tBu


319B
3Me3OH-Pentyl
—S(O)2NH2


320B
3Me3OH-Pentenyl
—S(O)2NH2


321B
3Me3OH-Pentynyl
—S(O)2NH2


322B
3Et3OH-Pentyl
—S(O)2NH2


323B
3Et3OH-Pentenyl
—S(O)2NH2


324B
3Et3OH-Pentynyl
—S(O)2NH2


325B
3Me3OH-Pentyl
—S(O)2NMe2


326B
3Me3OH-Pentenyl
—S(O)2NMe2


327B
3Me3OH-Pentynyl
—S(O)2NMe2


328B
3Et3OH-Pentyl
—S(O)2NMe2


329B
3Et3OH-Pentenyl
—S(O)2NMe2


330B
3Et3OH-Pentynyl
—S(O)2NMe2


331B
3Me3OH-Pentyl
—S(O)2CH2S(O)2Me


332B
3Me3OH-Pentenyl
—S(O)2CH2S(O)2Me


333B
3Me3OH-Pentynyl
—S(O)2CH2S(O)2Me


334B
3Et3OH-Pentyl
—S(O)2CH2S(O)2Me


335B
3Et3OH-Pentenyl
—S(O)2CH2S(O)2Me


336B
3Et3OH-Pentynyl
—S(O)2CH2S(O)2Me


337B
3Me3OH-Pentyl
—S(O)2CH2S(O)2Et


338B
3Me3OH-Pentenyl
—S(O)2CH2S(O)2Et


339B
3Me3OH-Pentynyl
—S(O)2CH2S(O)2Et


340B
3Et3OH-Pentyl
—S(O)2CH2S(O)2Et


341B
3Et3OH-Pentenyl
—S(O)2CH2S(O)2Et


342B
3Et3OH-Pentynyl
—S(O)2CH2S(O)2Et


343B
3Me3OH-Pentyl
—S(O)2CH2S(O)2iPr


344B
3Me3OH-Pentenyl
—S(O)2CH2S(O)2iPr


345B
3Me3OH-Pentynyl
—S(O)2CH2S(O)2iPr


346B
3Et3OH-Pentyl
—S(O)2CH2S(O)2iPr


347B
3Et3OH-Pentenyl
—S(O)2CH2S(O)2iPr


348B
3Et3OH-Pentynyl
—S(O)2CH2S(O)2iPr


349B
3Me3OH-Pentyl
—S(O)2CH2S(O)2tBu


350B
3Me3OH-Pentenyl
—S(O)2CH2S(O)2tBu


351B
3Me3OH-Pentynyl
—S(O)2CH2S(O)2tBu


352B
3Et3OH-Pentyl
—S(O)2CH2S(O)2tBu


353B
3Et3OH-Pentenyl
—S(O)2CH2S(O)2tBu


354B
3Et3OH-Pentynyl
—S(O)2CH2S(O)2tBu


355B
3Me3OH-Pentyl
—C(O)NHCH2CO2H


356B
3Me3OH-Pentenyl
—C(O)NHCH2CO2H


357B
3Me3OH-Pentynyl
—C(O)NHCH2CO2H


358B
3Et3OH-Pentyl
—C(O)NHCH2CO2H


359B
3Et3OH-Pentenyl
—C(O)NHCH2CO2H


360B
3Et3OH-Pentynyl
—C(O)NHCH2CO2H


361B
3Me3OH-Pentyl
—SO2NHCH2CO2H


362B
3Me3OH-Pentenyl
—SO2NHCH2CO2H


363B
3Me3OH-Pentynyl
—SO2NHCH2CO2H


364B
3Et3OH-Pentyl
—SO2NHCH2CO2H


365B
3Et3OH-Pentenyl
—SO2NHCH2CO2H


366B
3Et3OH-Pentynyl
—SO2NHCH2CO2H


367B
3Me3OH-Pentyl
—CH2—S—Me


368B
3Me3OH-Pentenyl
—CH2—S—Me


369B
3Me3OH-Pentynyl
—CH2—S—Me


370B
3Et3OH-Pentyl
—CH2—S—Me


371B
3Et3OH-Pentenyl
—CH2—S—Me


372B
3Et3OH-Pentynyl
—CH2—S—Me
















TABLE 4















embedded image















Code
R4
L1
WT





1C
1-hydroxycyclopentyl
—(CH2)2—
—CO2Me


2C
1-hydroxycyclopentyl
—C≡C—
—CO2Me


3C
1-hydroxycyclopentyl
—C═C—
—CO2Me


4C
1-hydroxycyclohexyl
—(CH2)2—
—CO2Me


5C
1-hydroxycyclohexyl
—C≡C—
—CO2Me


6C
1-hydroxycyclohexyl
—C═C—
—CO2Me


7C
1-hydroxycyclopentyl
—(CH2)2—
—CO2H


8C
1-hydroxycyclopentyl
—C≡C—
—CO2H


9C
1-hydroxycyclopentyl
—C═C—
—CO2H


10C
1-hydroxycyclohexyl
—(CH2)2—
—CO2H


11C
1-hydroxycyclohexyl
—C≡C—
—CO2H


12C
1-hydroxycyclohexyl
—C═C—
—CO2H


13C
1-hydroxycyclopentyl
—(CH2)2—
—C(O)NH2


14C
1-hydroxycyclopentyl
—C≡C—
—C(O)NH2


15C
1-hydroxycyclopentyl
—C═C—
—C(O)NH2


16C
1-hydroxycyclohexyl
—(CH2)2—
—C(O)NH2


17C
1-hydroxycyclohexyl
—C≡C—
—C(O)NH2


18C
1-hydroxycyclohexyl
—C═C—
—C(O)NH2


19C
1-hydroxycyclopentyl
—(CH2)2—
—C(O)NMe2


20C
1-hydroxycyclopentyl
—C≡C—
—C(O)NMe2


21C
1-hydroxycyclopentyl
—C═C—
—C(O)NMe2


22C
1-hydroxycyclohexyl
—(CH2)2—
—C(O)NMe2


23C
1-hydroxycyclohexyl
—C≡C—
—C(O)NMe2


24C
1-hydroxycyclohexyl
—C═C—
—C(O)NMe2


25C
1-hydroxycyclopentyl
—(CH2)2—
5-tetrazolyl


26C
1-hydroxycyclopentyl
—C≡C—
5-tetrazolyl


27C
1-hydroxycyclopentyl
—C═C—
5-tetrazolyl


28C
1-hydroxycyclohexyl
—(CH2)2—
5-tetrazolyl


29C
1-hydroxycyclohexyl
—C≡C—
5-tetrazolyl


30C
1-hydroxycyclohexyl
—C═C—
5-tetrazolyl


31C
1-hydroxycyclopentyl
—(CH2)2—
—C(O)—NH-5-tetrazolyl


32C
1-hydroxycyclopentyl
—C≡C—
—C(O)—NH-5-tetrazolyl


33C
1-hydroxycyclopentyl
—C═C—
—C(O)—NH-5-tetrazolyl


34C
1-hydroxycyclohexyl
—(CH2)2—
—C(O)—NH-5-tetrazolyl


35C
1-hydroxycyclohexyl
—C≡C—
—C(O)—NH-5-tetrazolyl


36C
1-hydroxycyclohexyl
—C═C—
—C(O)—NH-5-tetrazolyl


37C
1-hydroxycyclopentyl
—(CH2)2—
—C(O)NHCH2SO2Me


38C
1-hydroxycyclopentyl
—C≡C—
—C(O)NHCH2SO2Me


39C
1-hydroxycyclopentyl
—C═C—
—C(O)NHCH2SO2Me


40C
1-hydroxycyclohexyl
—(CH2)2—
—C(O)NHCH2SO2Me


41C
1-hydroxycyclohexyl
—C≡C—
—C(O)NHCH2SO2Me


42C
1-hydroxycyclohexyl
—C═C—
—C(O)NHCH2SO2Me


43C
1-hydroxycyclopentyl
—(CH2)2—
—C(O)NHCH2CH2SO2Me


44C
1-hydroxycyclopentyl
—C≡C—
—C(O)NHCH2CH2SO2Me


45C
1-hydroxycyclopentyl
—C═C—
—C(O)NHCH2CH2SO2Me


46C
1-hydroxycyclohexyl
—(CH2)2—
—C(O)NHCH2CH2SO2Me


47C
1-hydroxycyclohexyl
—C≡C—
—C(O)NHCH2CH2SO2Me


48C
1-hydroxycyclohexyl
—C═C—
—C(O)NHCH2CH2SO2Me


49C
1-hydroxycyclopentyl
—(CH2)2—
—C(O)NHSO2Me


50C
1-hydroxycyclopentyl
—C≡C—
—C(O)NHSO2Me


51C
1-hydroxycyclopentyl
—C═C—
—C(O)NHSO2Me


52C
1-hydroxycyclohexyl
—(CH2)2—
—C(O)NHSO2Me


53C
1-hydroxycyclohexyl
—C≡C—
—C(O)NHSO2Me


54C
1-hydroxycyclohexyl
—C═C—
—C(O)NHSO2Me


55C
1-hydroxycyclopentyl
—(CH2)2—
—CH2—C(O)NHSO2Et


56C
1-hydroxycyclopentyl
—C≡C—
—CH2—C(O)NHSO2Et


57C
1-hydroxycyclopentyl
—C═C—
—CH2—C(O)NHSO2Et


58C
1-hydroxycyclohexyl
—(CH2)2—
—CH2—C(O)NHSO2Et


59C
1-hydroxycyclohexyl
—C≡C—
—CH2—C(O)NHSO2Et


60C
1-hydroxycyclohexyl
—C═C—
—CH2—C(O)NHSO2Et


61C
1-hydroxycyclopentyl
—(CH2)2—
—CH2—C(O)NHSO2iPr


62C
1-hydroxycyclopentyl
—C≡C—
—CH2—C(O)NHSO2iPr


63C
1-hydroxycyclopentyl
—C═C—
—CH2—C(O)NHSO2iPr


64C
1-hydroxycyclohexyl
—(CH2)2—
—CH2—C(O)NHSO2iPr


65C
1-hydroxycyclohexyl
—C≡C—
—CH2—C(O)NHSO2iPr


66C
1-hydroxycyclohexyl
—C═C—
—CH2—C(O)NHSO2iPr


67C
1-hydroxycyclopentyl
—(CH2)2—
—CH2—C(O)NHSO2tBu


68C
1-hydroxycyclopentyl
—C≡C—
—CH2—C(O)NHSO2tBu


69C
1-hydroxycyclopentyl
—C═C—
—CH2—C(O)NHSO2tBu


70C
1-hydroxycyclohexyl
—(CH2)2—
—CH2—C(O)NHSO2tBu


71C
1-hydroxycyclohexyl
—C≡C—
—CH2—C(O)NHSO2tBu


72C
1-hydroxycyclohexyl
—C═C—
—CH2—C(O)NHSO2tBu


73C
1-hydroxycyclopentyl
—(CH2)2—
—CH2NHSO2Me


74C
1-hydroxycyclopentyl
—C≡C—
—CH2NHSO2Me


75C
1-hydroxycyclopentyl
—C═C—
—CH2NHSO2Me


76C
1-hydroxycyclohexyl
—(CH2)2—
—CH2NHSO2Me


77C
1-hydroxycyclohexyl
—C≡C—
—CH2NHSO2Me


78C
1-hydroxycyclohexyl
—C═C—
—CH2NHSO2Me


79C
1-hydroxycyclopentyl
—(CH2)2—
—CH2NHSO2Et


80C
1-hydroxycyclopentyl
—C≡C—
—CH2NHSO2Et


81C
1-hydroxycyclopentyl
—C═C—
—CH2NHSO2Et


82C
1-hydroxycyclohexyl
—(CH2)2—
—CH2NHSO2Et


83C
1-hydroxycyclohexyl
—C≡C—
—CH2NHSO2Et


84C
1-hydroxycyclohexyl
—C═C—
—CH2NHSO2Et


85C
1-hydroxycyclopentyl
—(CH2)2—
—CH2NHSO2iPr


86C
1-hydroxycyclopentyl
—C≡C—
—CH2NHSO2iPr


87C
1-hydroxycyclopentyl
—C═C—
—CH2NHSO2iPr


88C
1-hydroxycyclohexyl
—(CH2)2—
—CH2NHSO2iPr


89C
1-hydroxycyclohexyl
—C≡C—
—CH2NHSO2iPr


90C
1-hydroxycyclohexyl
—C═C—
—CH2NHSO2iPr


91C
1-hydroxycyclopentyl
—(CH2)2—
—CH2NHSO2tBu


92C
1-hydroxycyclopentyl
—C≡C—
—CH2NHSO2tBu


93C
1-hydroxycyclopentyl
—C═C—
—CH2NHSO2tBu


94C
1-hydroxycyclohexyl
—(CH2)2—
—CH2NHSO2tBu


95C
1-hydroxycyclohexyl
—C≡C—
—CH2NHSO2tBu


96C
1-hydroxycyclohexyl
—C═C—
—CH2NHSO2tBu


97C
1-hydroxycyclopentyl
—(CH2)2—
—CH2—N-pyrrolidin-2-one


98C
1-hydroxycyclopentyl
—C≡C—
—CH2—N-pyrrolidin-2-one


99C
1-hydroxycyclopentyl
—C═C—
—CH2—N-pyrrolidin-2-one


100C
1-hydroxycyclohexyl
—(CH2)2—
—CH2—N-pyrrolidin-2-one


101C
1-hydroxycyclohexyl
—C≡C—
—CH2—N-pyrrolidin-2-one


102C
1-hydroxycyclohexyl
—C═C—
—CH2—N-pyrrolidin-2-one


103C
1-hydroxycyclopentyl
—(CH2)2—
—CH2-(1-methylpyrrolidin-2-one-3-yl)


104C
1-hydroxycyclopentyl
—C≡C—
—CH2-(1-methylpyrrolidin-2-one-3-yl)


105C
1-hydroxycyclopentyl
—C═C—
—CH2-(1-methylpyrrolidin-2-one-3-yl)


106C
1-hydroxycyclohexyl
—(CH2)2—
—CH2-(1-methylpyrrolidin-2-one-3-yl)


107C
1-hydroxycyclohexyl
—C≡C—
—CH2-(1-methylpyrrolidin-2-one-3-yl)


108C
1-hydroxycyclohexyl
—C═C—
—CH2-(1-methylpyrrolidin-2-one-3-yl)


109C
1-hydroxycyclopentyl
—(CH2)2—
—CH2CO2Me


110C
1-hydroxycyclopentyl
—C≡C—
—CH2CO2Me


111C
1-hydroxycyclopentyl
—C═C—
—CH2CO2Me


112C
1-hydroxycyclohexyl
—(CH2)2—
—CH2CO2Me


113C
1-hydroxycyclohexyl
—C≡C—
—CH2CO2Me


114C
1-hydroxycyclohexyl
—C═C—
—CH2CO2Me


115C
1-hydroxycyclopentyl
—(CH2)2—
—CH2CO2H


116C
1-hydroxycyclopentyl
—C≡C—
—CH2CO2H


117C
1-hydroxycyclopentyl
—C═C—
—CH2CO2H


118C
1-hydroxycyclohexyl
—(CH2)2—
—CH2CO2H


119C
1-hydroxycyclohexyl
—C≡C—
—CH2CO2H


120C
1-hydroxycyclohexyl
—C═C—
—CH2CO2H


121C
1-hydroxycyclopentyl
—(CH2)2—
—CH2C(O)NH2


122C
1-hydroxycyclopentyl
—C≡C—
—CH2C(O)NH2


123C
1-hydroxycyclopentyl
—C═C—
—CH2C(O)NH2


124C
1-hydroxycyclohexyl
—(CH2)2—
—CH2C(O)NH2


125C
1-hydroxycyclohexyl
—C≡C—
—CH2C(O)NH2


126C
1-hydroxycyclohexyl
—C═C—
—CH2C(O)NH2


127C
1-hydroxycyclopentyl
—(CH2)2—
—CH2C(O)NMe2


128C
1-hydroxycyclopentyl
—C≡C—
—CH2C(O)NMe2


129C
1-hydroxycyclopentyl
—C═C—
—CH2C(O)NMe2


130C
1-hydroxycyclohexyl
—(CH2)2—
—CH2C(O)NMe2


131C
1-hydroxycyclohexyl
—C≡C—
—CH2C(O)NMe2


132C
1-hydroxycyclohexyl
—C═C—
—CH2C(O)NMe2


133C
1-hydroxycyclopentyl
—(CH2)2—
—CH2C(O)—N-pyrrolidine


134C
1-hydroxycyclopentyl
—C≡C—
—CH2C(O)—N-pyrrolidine


135C
1-hydroxycyclopentyl
—C═C—
—CH2C(O)—N-pyrrolidine


136C
1-hydroxycyclohexyl
—(CH2)2—
—CH2C(O)—N-pyrrolidine


137C
1-hydroxycyclohexyl
—C≡C—
—CH2C(O)—N-pyrrolidine


138C
1-hydroxycyclohexyl
—C═C—
—CH2C(O)—N-pyrrolidine


139C
1-hydroxycyclopentyl
—(CH2)2—
—CH2-5-tetrazolyl


140C
1-hydroxycyclopentyl
—C≡C—
—CH2-5-tetrazolyl


141C
1-hydroxycyclopentyl
—C═C—
—CH2-5-tetrazolyl


142C
1-hydroxycyclohexyl
—(CH2)2—
—CH2-5-tetrazolyl


143C
1-hydroxycyclohexyl
—C≡C—
—CH2-5-tetrazolyl


144C
1-hydroxycyclohexyl
—C═C—
—CH2-5-tetrazolyl


145C
1-hydroxycyclopentyl
—(CH2)2—
—C(O)C(O)OH


146C
1-hydroxycyclopentyl
—C≡C—
—C(O)C(O)OH


147C
1-hydroxycyclopentyl
—C═C—
—C(O)C(O)OH


148C
1-hydroxycyclohexyl
—(CH2)2—
—C(O)C(O)OH


149C
1-hydroxycyclohexyl
—C≡C—
—C(O)C(O)OH


150C
1-hydroxycyclohexyl
—C═C—
—C(O)C(O)OH


151C
1-hydroxycyclopentyl
—(CH2)2—
—CH(OH)C(O)OH


152C
1-hydroxycyclopentyl
—C≡C—
—CH(OH)C(O)OH


153C
1-hydroxycyclopentyl
—C═C—
—CH(OH)C(O)OH


154C
1-hydroxycyclohexyl
—(CH2)2—
—CH(OH)C(O)OH


155C
1-hydroxycyclohexyl
—C≡C—
—CH(OH)C(O)OH


156C
1-hydroxycyclohexyl
—C═C—
—CH(OH)C(O)OH


157C
1-hydroxycyclopentyl
—(CH2)2—
—C(O)C(O)NH2


158C
1-hydroxycyclopentyl
—C≡C—
—C(O)C(O)NH2


159C
1-hydroxycyclopentyl
—C═C—
—C(O)C(O)NH2


160C
1-hydroxycyclohexyl
—(CH2)2—
—C(O)C(O)NH2


161C
1-hydroxycyclohexyl
—C≡C—
—C(O)C(O)NH2


162C
1-hydroxycyclohexyl
—C═C—
—C(O)C(O)NH2


163C
1-hydroxycyclopentyl
—(CH2)2—
—CH(OH)C(O)NH2


164C
1-hydroxycyclopentyl
—C≡C—
—CH(OH)C(O)NH2


165C
1-hydroxycyclopentyl
—C═C—
—CH(OH)C(O)NH2


166C
1-hydroxycyclohexyl
—(CH2)2—
—CH(OH)C(O)NH2


167C
1-hydroxycyclohexyl
—C≡C—
—CH(OH)C(O)NH2


168C
1-hydroxycyclohexyl
—C═C—
—CH(OH)C(O)NH2


169C
1-hydroxycyclopentyl
—(CH2)2—
—C(O)C(O)NMe2


170C
1-hydroxycyclopentyl
—C≡C—
—C(O)C(O)NMe2


171C
1-hydroxycyclopentyl
—C═C—
—C(O)C(O)NMe2


172C
1-hydroxycyclohexyl
—(CH2)2—
—C(O)C(O)NMe2


173C
1-hydroxycyclohexyl
—C≡C—
—C(O)C(O)NMe2


174C
1-hydroxycyclohexyl
—C═C—
—C(O)C(O)NMe2


175C
1-hydroxycyclopentyl
—(CH2)2—
—CH(OH)C(O)NMe2


176C
1-hydroxycyclopentyl
—C≡C—
—CH(OH)C(O)NMe2


177C
1-hydroxycyclopentyl
—C═C—
—CH(OH)C(O)NMe2


178C
1-hydroxycyclohexyl
—(CH2)2—
—CH(OH)C(O)NMe2


179C
1-hydroxycyclohexyl
—C≡C—
—CH(OH)C(O)NMe2


180C
1-hydroxycyclohexyl
—C═C—
—CH(OH)C(O)NMe2


181C
1-hydroxycyclopentyl
—(CH2)2—
—CH2CH2CO2H


182C
1-hydroxycyclopentyl
—C≡C—
—CH2CH2CO2H


183C
1-hydroxycyclopentyl
—C═C—
—CH2CH2CO2H


184C
1-hydroxycyclohexyl
—(CH2)2—
—CH2CH2CO2H


185C
1-hydroxycyclohexyl
—C≡C—
—CH2CH2CO2H


186C
1-hydroxycyclohexyl
—C═C—
—CH2CH2CO2H


187C
1-hydroxycyclopentyl
—(CH2)2—
—CH2CH2C(O)NH2


188C
1-hydroxycyclopentyl
—C≡C—
—CH2CH2C(O)NH2


189C
1-hydroxycyclopentyl
—C═C—
—CH2CH2C(O)NH2


190C
1-hydroxycyclohexyl
—(CH2)2—
—CH2CH2C(O)NH2


191C
1-hydroxycyclohexyl
—C≡C—
—CH2CH2C(O)NH2


192C
1-hydroxycyclohexyl
—C═C—
—CH2CH2C(O)NH2


193C
1-hydroxycyclopentyl
—(CH2)2—
—CH2CH2C(O)NMe2


194C
1-hydroxycyclopentyl
—C≡C—
—CH2CH2C(O)NMe2


195C
1-hydroxycyclopentyl
—C═C—
—CH2CH2C(O)NMe2


196C
1-hydroxycyclohexyl
—(CH2)2—
—CH2CH2C(O)NMe2


197C
1-hydroxycyclohexyl
—C≡C—
—CH2CH2C(O)NMe2


198C
1-hydroxycyclohexyl
—C═C—
—CH2CH2C(O)NMe2


199C
1-hydroxycyclopentyl
—(CH2)2—
—CH2CH2-5-tetrazolyl


200C
1-hydroxycyclopentyl
—C≡C—
—CH2CH2-5-tetrazolyl


201C
1-hydroxycyclopentyl
—C═C—
—CH2CH2-5-tetrazolyl


202C
1-hydroxycyclohexyl
—(CH2)2—
—CH2CH2-5-tetrazolyl


203C
1-hydroxycyclohexyl
—C≡C—
—CH2CH2-5-tetra.zolyl


204C
1-hydroxycyclohexyl
—C═C—
—CH2CH2-5-tetrazolyl


205C
1-hydroxycyclopentyl
—(CH2)2—
—CH2S(O)2Me


206C
1-hydroxycyclopentyl
—C≡C—
—CH2S(O)2Me


207C
1-hydroxycyclopentyl
—C═C—
—CH2S(O)2Me


208C
1-hydroxycyclohexyl
—(CH2)2—
—CH2S(O)2Me


209C
1-hydroxycyclohexyl
—C≡C—
—CH2S(O)2Me


210C
1-hydroxycyclohexyl
—C═C—
—CH2S(O)2Me


211C
1-hydroxycyclopentyl
—(CH2)2—
—CH2CH2S(O)2Me


212C
1-hydroxycyclopentyl
—C≡C—
—CH2CH2 S(O)2Me


213C
1-hydroxycyclopentyl
—C═C—
—CH2CH2S(O)2Me


214C
1-hydroxycyclohexyl
—(CH2)2—
—CH2CH2S(O)2Me


215C
1-hydroxycyclohexyl
—C≡C—
—CH2CH2S(O)2Me


216C
1-hydroxycyclohexyl
—C═C—
—CH2CH2S(O)2Me


217C
1-hydroxycyclopentyl
—(CH2)2—
—CH2CH2CH2S(O)2Me


218C
1-hydroxycyclopentyl
—C≡C—
—CH2CH2CH2S(O)2Me


219C
1-hydroxycyclopentyl
—C═C—
—CH2CH2CH2S(O)2Me


220C
1-hydroxycyclohexyl
—(CH2)2—
—CH2CH2CH2S(O)2Me


221C
1-hydroxycyclohexyl
—C≡C—
—CH2CH2CH2S(O)2Me


222C
1-hydroxycyclohexyl
—C═C—
—CH2CH2CH2S(O)2Me


223C
1-hydroxycyclopentyl
—(CH2)2—
—CH2S(O)2Et


224C
1-hydroxycyclopentyl
—C≡C—
—CH2S(O)2Et


225C
1-hydroxycyclopentyl
—C═C—
—CH2S(O)2Et


226C
1-hydroxycyclohexyl
—(CH2)2—
—CH2S(O)2Et


227C
1-hydroxycyclohexyl
—C≡C—
—CH2S(O)2Et


228C
1-hydroxycyclohexyl
—C═C—
—CH2S(O)2Et


229C
1-hydroxycyclopentyl
—(CH2)2—
—CH2CH2S(O)2Et


230C
1-hydroxycyclopentyl
—C≡C—
—CH2CH2S(O)2Et


231C
1-hydroxycyclopentyl
—C═C—
—CH2CH2S(O)2Et


232C
1-hydroxycyclohexyl
—(CH2)2—
—CH2CH2S(O)2Et


233C
1-hydroxycyclohexyl
—C≡C—
—CH2CH2S(O)2Et


234C
1-hydroxycyclohexyl
—C═C—
—CH2CH2S(O)2Et


235C
1-hydroxycyclopentyl
—(CH2)2—
—CH2CH2CH2S(O)2Et


236C
1-hydroxycyclopentyl
—C≡C—
—CH2CH2CH2S(O)2Et


237C
1-hydroxycyclopentyl
—C═C—
—CH2CH2CH2S(O)2Et


238C
1-hydroxycyclohexyl
—(CH2)2—
—CH2CH2CH2S(O)2Et


239C
1-hydroxycyclohexyl
—C≡C—
—CH2CH2CH2S(O)2Et


240C
1-hydroxycyclohexyl
—C═C—
—CH2CH2CH2S(O)2Et


241C
1-hydroxycyclopentyl
—(CH2)2—
—CH2S(O)2iPr


242C
1-hydroxycyclopentyl
—C≡C—
—CH2S(O)2iPr


243C
1-hydroxycyclopentyl
—C═C—
—CH2S(O)2iPr


244C
1-hydroxycyclohexyl
—(CH2)2—
—CH2S(O)2iPr


245C
1-hydroxycyclohexyl
—C≡C—
—CH2S(O)2iPr


246C
1-hydroxycyclohexyl
—C═C—
—CH2S(O)2iPr


247C
1-hydroxycyclopentyl
—(CH2)2—
—CH2CH2S(O)2iPr


248C
1-hydroxycyclopentyl
—C≡C—
—CH2CH2S(O)2iPr


249C
1-hydroxycyclopentyl
—C═C—
—CH2CH2S(O)2iPr


250C
1-hydroxycyclohexyl
—(CH2)2—
—CH2CH2S(O)2iPr


251C
1-hydroxycyclohexyl
—C≡C—
—CH2CH2S(O)2iPr


252C
1-hydroxycyclohexyl
—C═C—
—CH2CH2S(O)2iPr


253C
1-hydroxycyclopentyl
—(CH2)2—
—CH2S(O)2tBu


254C
1-hydroxycyclopentyl
—C≡C—
—CH2S(O)2tBu


255C
1-hydroxycyclopentyl
—C═C—
—CH2S(O)2tBu


256C
1-hydroxycyclohexyl
—(CH2)2—
—CH2S(O)2tBu


257C
1-hydroxycyclohexyl
—C≡C—
—CH2S(O)2tBu


258C
1-hydroxycyclohexyl
—C═C—
—CH2S(O)2tBu


259C
1-hydroxycyclopentyl
—(CH2)2—
—CH2CH2S(O)2tBu


260C
1-hydroxycyclopentyl
—C≡C—
—CH2CH2S(O)2tBu


261C
1-hydroxycyclopentyl
—C═C—
—CH2CH2S(O)2tBu


262C
1-hydroxycyclohexyl
—(CH2)2—
—CH2CH2S(O)2tBu


263C
1-hydroxycyclohexyl
—C≡C—
—CH2CH2S(O)2tBu


264C
1-hydroxycyclohexyl
—C═C—
—CH2CH2S(O)2tBu


265C
1-hydroxycyclopentyl
—(CH2)2—
—CH2CH2S(O)2NH2


266C
1-hydroxycyclopentyl
—C≡C—
—CH2CH2S(O)2NH2


267C
1-hydroxycyclopentyl
—C═C—
—CH2CH2S(O)2NH2


268C
1-hydroxycyclohexyl
—(CH2)2—
—CH2CH2S(O)2NH2


269C
1-hydroxycyclohexyl
—C≡C—
—CH2CH2S(O)2NH2


270C
1-hydroxycyclohexyl
—C═C—
—CH2CH2S(O)2NH2


271C
1-hydroxycyclopentyl
—(CH2)2—
—CH2CH2S(O)2NMe2


272C
1-hydroxycyclopentyl
—C≡C—
—CH2CH2S(O)2NMe2


273C
1-hydroxycyclopentyl
—C═C—
—CH2CH2S(O)2NMe2


274C
1-hydroxycyclohexyl
—(CH2)2—
—CH2CH2S(O)2NMe2


275C
1-hydroxycyclohexyl
—C≡C—
—CH2CH2S (O)2NMe2


276C
1-hydroxycyclohexyl
—C═C—
—CH2CH2S(O)2NMe2


277C
1-hydroxycyclopentyl
—(CH2)2—
—C(O)CH2 S(O)2Me


278C
1-hydroxycyclopentyl
—C≡C—
—C(O)CH2S(O)2Me


279C
1-hydroxycyclopentyl
—C═C—
—C(O)CH2S(O)2Me


280C
1-hydroxycyclohexyl
—(CH2)2—
—C(O)CH2S(O)2Me


281C
1-hydroxycyclohexyl
—C≡C—
—C(O)CH2S(O)2Me


282C
1-hydroxycyclohexyl
—C═C—
—C(O)CH2S(O)2Me


283C
1-hydroxycyclopentyl
—(CH2)2—
—C(O)CH2CH2S(O)2Me


284C
1-hydroxycyclopentyl
—C≡C—
—C(O)CH2CH2S(O)2Me


285C
1-hydroxycyclopentyl
—C═C—
—C(O)CH2CH2S(O)2Me


286C
1-hydroxycyclohexyl
—(CH2)2—
—C(O)CH2CH2S(O)2Me


287C
1-hydroxycyclohexyl
—C≡C—
—C(O)CH2CH2S(O)2Me


288C
1-hydroxycyclohexyl
—C═C—
—C(O)CH2CH2S(O)2Me


289C
1-hydroxycyclopentyl
—(CH2)2—
—CH2CH2CH2S(O)2NH2


290C
1-hydroxycyclopentyl
—C≡C—
—CH2CH2CH2S(O)2NH2


291C
1-hydroxycyclopentyl
—C═C—
—CH2CH2CH2S(O)2NH2


292C
1-hydroxycyclohexyl
—(CH2)2—
—CH2CH2CH2S(O)2NH2


293C
1-hydroxycyclohexyl
—C≡C—
—CH2CH2CH2S(O)2NH2


294C
1-hydroxycyclohexyl
—C═C—
—CH2CH2CH2S(O)2NH2


295C
1-hydroxycyclopentyl
—(CH2)2—
—S(O)2Me


296C
1-hydroxycyclopentyl
—C≡C—
—S(O)2Me


297C
1-hydroxycyclopentyl
—C═C—
—S(O)2Me


298C
1-hydroxycyclohexyl
—(CH2)2—
—S(O)2Me


299C
1-hydroxycyclohexyl
—C≡C—
—S(O)2Me


300C
1-hydroxycyclohexyl
—C═C—
—S(O)2Me


301C
1-hydroxycyclopentyl
—(CH2)2—
—S(O)2Et


302C
1-hydroxycyclopentyl
—C≡C—
—S(O)2Et


303C
1-hydroxycyclopentyl
—C═C—
—S(O)2Et


304C
1-hydroxycyclohexyl
—(CH2)2—
—S(O)2Et


305C
1-hydroxycyclohexyl
—C≡C—
—S(O)2Et


306C
1-hydroxycyclohexyl
—C═C—
—S(O)2Et


307C
1-hydroxycyclopentyl
—(CH2)2—
—S(O)2iPr


308C
1-hydroxycyclopentyl
—C≡C—
—S(O)2iPr


309C
1-hydroxycyclopentyl
—C═C—
—S(O)2iPr


310C
1-hydroxycyclohexyl
—(CH2)2—
—S(O)2iPr


311C
1-hydroxycyclohexyl
—C≡C—
—S(O)2iPr


312C
1-hydroxycyclohexyl
—C═C—
—S(O)2iPr


313C
1-hydroxycyclopentyl
—(CH2)2—
—S(O)2tBu


314C
1-hydroxycyclopentyl
—C≡C—
—S(O)2tBu


315C
1-hydroxycyclopentyl
—C═C—
—S(O)2tBu


316C
1-hydroxycyclohexyl
—(CH2)2—
—S(O)2tBu


317C
1-hydroxycyclohexyl
—C≡C—
—S(O)2tBu


318C
1-hydroxycyclohexyl
—C═C—
—S(O)2tBu


319C
1-hydroxycyclopentyl
—(CH2)2—
—S(O)2NH2


320C
1-hydroxycyclopentyl
—C≡C—
—S(O)2NH2


321C
1-hydroxycyclopentyl
—C═C—
—S(O)2NH2


322C
1-hydroxycyclohexyl
—(CH2)2—
—S(O)2NH2


323C
1-hydroxycyclohexyl
—C≡C—
—S(O)2NH2


324C
1-hydroxycyclohexyl
—C═C—
—S(O)2NH2


325C
1-hydroxycyclopentyl
—(CH2)2—
—S(O)2NMe2


326C
1-hydroxycyclopentyl
—C≡C—
—S(O)2NMe2


327C
1-hydroxycyclopentyl
—C═C—
—S(O)2NMe2


328C
1-hydroxycyclohexyl
—(CH2)2—
—S(O)2NMe2


329C
1-hydroxycyclohexyl
—C≡C—
—S(O)2NMe2


330C
1-hydroxycyclohexyl
—C═C—
—S(O)2NMe2


331C
1-hydroxycyclopentyl
—(CH2)2—
—S(O)2CH2S(O)2Me


332C
1-hydroxycyclopentyl
—C≡C—
—S(O)2CH2S(O)2Me


333C
1-hydroxycyclopentyl
—C═C—
—S(O)2CH2S(O)2Me


334C
1-hydroxycyclohexyl
—(CH2)2—
—S(O)2CH2S(O)2Me


335C
1-hydroxycyclohexyl
—C≡C—
—S(O)2CH2 S(O)2Me


336C
1-hydroxycyclohexyl
—C═C—
—S(O)2CH2S(O)2Me


337C
1-hydroxycyclopentyl
—(CH2)2—
—S(O)2CH2S(O)2Et


338C
1-hydroxycyclopentyl
—C≡C—
—S(O)2CH2S(O)2Et


339C
1-hydroxycyclopentyl
—C═C—
—S(O)2CH2S(O)2Et


340C
1-hydroxycyclohexyl
—(CH2)2—
—S(O)2CH2S(O)2Et


341C
1-hydroxycyclohexyl
—C≡C—
—S(O)2CH2S(O)2Et


342C
1-hydroxycyclohexyl
—C═C—
—S(O)2CH2S(O)2Et


343C
1-hydroxycyclopentyl
—(CH2)2—
—S(O)2CH2S(O)2iPr


344C
1-hydroxycyclopentyl
—C≡C—
—S(O)2CH2S(O)2iPr


345C
1-hydroxycyclopentyl
—C═C—
—S(O)2CH2S(O)2iPr


346C
1-hydroxycyclohexyl
—(CH2)2—
—S(O)2CH2S(O)2iPr


347C
1-hydroxycyclohexyl
—C≡C—
—S(O)2CH2S(O)2iPr


348C
1-hydroxycyclohexyl
—C═C—
—S(O)2CH2S(O)2iPr


349C
1-hydroxycyclopentyl
—(CH2)2—
—S(O)2CH2S(O)2tBu


350C
1-hydroxycyclopentyl
—C≡C—
—S(O)2CH2S(O)2tBu


351C
1-hydroxycyclopentyl
—C═C—
—S(O)2CH2S(O)2tBu


352C
1-hydroxycyclohexyl
—(CH2)2—
—S(O)2CH2S(O)2tBu


353C
1-hydroxycyclohexyl
—C≡C—
—S(O)2CH2S(O)2tBu


354C
1-hydroxycyclohexyl
—C═C—
—S(O)2CH2S(O)2tBu


355C
1-hydroxycyclopentyl
—(CH2)2—
—C(O)NHCH2CO2H


356C
1-hydroxycyclopentyl
—C≡C—
—C(O)NHCH2CO2H


357C
1-hydroxycyclopentyl
—C═C—
—C(O)NHCH2CO2H


358C
1-hydroxycyclohexyl
—(CH2)2—
—C(O)NHCH2CO2H


359C
1-hydroxycyclohexyl
—C≡C—
—C(O)NHCH2CO2H


360C
1-hydroxycyclohexyl
—C═C—
—C(O)NHCH2CO2H


361C
1-hydroxycyclopentyl
—(CH2)2—
—SO2NHCH2CO2H


362C
1-hydroxycyclopentyl
—C≡C—
—SO2NHCH2CO2H


363C
1-hydroxycyclopentyl
—C═C—
—SO2NHCH2CO2H


364C
1-hydroxycyclohexyl
—(CH2)2—
—SO2NHCH2CO2H


365C
1-hydroxycyclohexyl
—C≡C—
—SO2NHCH2CO2H


366C
1-hydroxycyclohexyl
—C═C—
—SO2NHCH2CO2H


367C
1-hydroxycyclopentyl
—(CH2)2—
—CH2—S—Me


368C
1-hydroxycyclopentyl
—C≡C—
—CH2—S—Me


369C
1-hydroxycyclopentyl
—C═C—
—CH2—S—Me


370C
1-hydroxycyclohexyl
—(CH2)2—
—CH2—S—Me


371C
1-hydroxycyclohexyl
—C≡C—
—CH2—S—Me


372C
1-hydroxycyclohexyl
—C═C—
—CH2—S—Me









Particularly preferred chemical species of the invention are represented by structural formulae P101 to P106 and P200 to P206 a pharmaceutically acceptable salt solvate or prodrug derivative thereof:


For treatment of psoriasis, preferred compounds are those defined by structural formulae P100 to P106 as follows:
embedded imageembedded image


For treatment of osteoporosis, preferred compounds are those defined by structural formulae P101 and P200 to P206, as follows:
embedded imageembedded image


The salts of the Active Ingredients are an additional aspect of the invention. The skilled artisan will also appreciate that the family of compounds include acidic and basic members and that the present invention includes pharmaceutically acceptable salts thereof.


In those instances where the compounds of the invention possess acidic or basic functional groups various salts may be formed which are more water soluble and physiologically suitable than the parent compound. Representative pharmaceutically acceptable salts, include but are not limited to, the alkali and alkaline earth salts such as lithium, sodium, potassium, ammonium, calcium, magnesium, aluminum, zinc, and the like. Sodium and potassium salts are particularly preferred. Salts are conveniently prepared from the free acid by treating the acid in solution with a base or by exposing the acid to an ion exchange resin. For example, a carboxylic acid substituent on the compound of Formula I may be selected as —CO2H and salts may be formed by reaction with appropriate bases (e.g., NaOH, KOH) to yield the corresponding sodium and potassium salt.


Included within the definition of pharmaceutically acceptable salts are the relatively non-toxic, inorganic and organic base addition salts of compounds of the present invention, for example, ammonium, quaternary ammonium, and amine cations, derived from nitrogenous bases of sufficient basicity to form salts with the compounds of this invention (see, for example, S. M. Berge, et al., “Pharmaceutical Salts,” J. Phar. Sci., 66: 1-19 (1977)). Moreover, the basic group(s) of the compound of the invention may be reacted with suitable organic or inorganic acids to form salts such as acetate, benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, camsylate, carbonate, chloride, choline, clavulanate, citrate, chloride, chloroprocaine, choline, diethanolamine, dihydrochloride, diphosphate, edetate, edisylate, estolate, esylate, ethylenediamine, fluoride, fumarate, gluceptate, gluconate, glutamate, glycolylarsanilate, hexylresorcinate, hydrabamine, bromide, chloride, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isothionate, lactate, lactobionate, laurate, malate, maleate, malseate, mandelate, meglumine, mesylate, mesviate, methylbromide, methyInitrate, methylsulfate, mucate, napsylate, nitrate, oleate, oxalate, palmitate, pamoate, pantothenate, phosphate, polygalacturonate, procane, salicylate, stearate, subacetate, succinate, sulfate, tannate, tartrate, teoclate, tosylate, trifluoroacetate, trifluoromethane sulfonate, and valerate.


Certain compounds of the invention may possess one or more chiral centers and may thus exist in optically active forms. Likewise, when the compounds contain an alkenyl or alkenylene group there exists the possibility of cis- and trans-isomeric forms of the compounds. The R- and S-isomers and mixtures thereof, including racemic mixtures as well as mixtures of cis- and trans-isomers, and all tautomers are contemplated by this invention. Additional asymmetric carbon atoms can be present in a substituent group such as an alkyl group. All such isomers as well as the mixtures thereof are intended to be included in the invention. If a particular stereoisomer is desired, it can be prepared by methods well known in the art by using stereospecific reactions with starting materials which contain the asymmetric centers and are already resolved or, alternatively by methods which lead to mixtures of the stereoisomers and subsequent resolution by known methods. For example, a chiral column may be used such as those sold by Daicel Chemical Industries identified by the trademarks:


CHIRALPAK AD, CHIRALPAK AS, CHIRALPAK OD, CHIRALPAK OJ, CHIRALPAK OA, CHIRALPAK OB, CHIRALPAK OC, CHIRALPAK OF, CHIRALPAK OG, CHIRALPAK OK, and CHIRALPAK CA-1.


By another conventional method, a racemic mixture may be reacted with a single enantiomer of some other compound. This changes the racemic form into a mixture of diastereomers. These diastereomers, because they have different melting points, different boiling points, and different solubilities can be separated by conventional means, such as crystallization.


The present invention is also embodied in mixtures of Active Ingredients.


Prodrugs are derivatives of the compounds of the invention which have chemically or metabolically cleavable groups and become by solvolysis or under physiological conditions the compounds of the invention which are pharmaceutically active in vivo.


Derivatives of the compounds of this invention have activity in both their acid and base derivative forms, but the acid derivative form often offers advantages of solubility, tissue compatibility, or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs, pp. 7-9, 21-24, Elsevier, Amsterdam 1985). Prodrugs include acid derivatives well known to practitioners of the art, such as, for example, esters prepared by reaction of the parent acidic compound with a suitable alcohol, or amides prepared by reaction of the parent acid compound with a suitable amine. Simple aliphatic or aromatic esters derived from acidic groups pendent on the compounds of this invention are preferred prodrugs. In some cases it is desirable to prepare double ester type prodrugs such as (acyloxy) alkyl esters or ((alkoxycarbonyl)oxy)alkyl esters. Particularly preferred esters as prodrugs are methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, morpholinoethyl, and N,N-diethylglycolamido.


Prodrugs may be prepared by methods as follows
embedded image


Prodrug of formula I is prepared by the following: treatment of
embedded image

with
embedded image

Reaction of the sodium salt of I with
embedded image

and NaI; treatment with TFA; and methylation with Mel and K2CO3. for example, to provide a combined group
embedded image

in Formula I typlified by;
embedded image

Pharmaceutical Formulations containing the Novel Compounds of the Invention:


Pharmaceutical formulations of the invention are prepared by combining a therapeutically effective amount of Active Ingredient together with a pharmaceutically acceptable carrier or diluent. The present pharmaceutical formulations are prepared by known procedures using well-known and readily available ingredients.


In making the compositions of the present invention, the Active Ingredient will usually be admixed with a carrier, or diluted by a carrier, or enclosed within a carrier which may be in the form of a capsule, sachet, paper or other container. When the carrier serves as a diluent, it may be a solid, semi-solid or liquid material which acts as a vehicle, or can be in the form of tablets, pills, powders, lozenges, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), or ointment, containing, for example, up to 10% by weight of the compound. The Active Ingredient is preferably formulated prior to administration.


The Active Ingredient may also be delivered by suitable formulations contained in a transderm patch. Alternatively, the Active Ingredient may be delived to a patient by sublingual administration.


For the pharmaceutical formulations any suitable carrier known in the art can be used. In such a formulation, the carrier may be a solid, liquid, or mixture of a solid and a liquid. Solid form formulations include powders, tablets and capsules. A solid carrier can


be one or more substances which may also act as flavoring agents, lubricants, solubilisers, suspending agents, binders, tablet disintegrating agents and encapsulating material.


Tablets for oral administration may contain suitable excipients such as calcium carbonate, sodium carbonate, lactose, calcium phosphate, together with disintegrating agents, such as maize, starch, or alginic acid, and/or binding agents, for example, gelatin or acacia, and lubricating agents such as magnesium stearate, stearic acid, or talc.


In powders the carrier is a finely divided solid which is in admixture with finely divided Active ingredient. In tablets the Active Ingredient is mixed with a carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain from about 1 to about 99 weight percent of Active Ingredient. Suitable solid carriers are magnesium carbonate, magnesium stearate, talc, sugar lactose, pectin, dextrin, starch, gelatin, tragacanth, methyl cellulose, sodium carboxymethyl cellulose, low melting waxes, and cocoa butter.


Sterile liquid form formulations include suspensions, emulsions, syrups and elixirs.


The Active Ingredient may be dissolved or suspended in a pharmaceutically acceptable carrier, such as sterile water, sterile organic solvent or a mixture of both. The Active Ingredient may often be dissolved in a suitable organic solvent, for instance aqueous propylene glycol. Other compositions can be made by dispersing the finely divided Active Ingredient in aqueous starch or sodium carboxymethyl cellulose solution or in a suitable oil.


Ointment Formulation for Treatment of Psoriasis:


Treatment of psoriasis is preferably done with topical application by a formulation in the form of a cream, oil, emulsion, paste or ointment containing a therapeutically effective amount of Active Ingredient. The formulation for topical treatment contains from 0.5 to 0.00005 weight percent, preferably from 0.05 to 0.0005 weight percent, and most preferably from 0.025 to 0.001 of Active Ingredient.


For example, two semisolid topical preparations useful as vehicles for VDR modulators in treatment and prevention of psoriasis are as follows:


Polyethylene Glycol Ointment USP (R. 2495)


Prepare Polyethylene Glycol Ointment as follows:

Polyethylene Glycol 3350400 g.Polyethylene Glycol 400600 g.To make1000 g. 
    • Heat the two ingredients on a water bath to 65C. Allow to cool, and stir until congealed. If a firmer preparation is desired, replace up to 100 g of the polyethylene glycol 400 with an equal amount of polyethylene glycol 3350.


Hydrophilic Ointment USP (p. 1216)


Prepare Hydrophilic Ointment as follows:

Methylparaben0.25 g. Propylparaben0.15 g. Sodium Lauryl Sulfate 10 g.Propylene Glycol120 g.Stearyl Alcohol250 g.White Petrolatum250 g.Purified Water370 g.To make about1000 g. 


The Stearyl Alcohol and White Petrolatum are melted on a steam bath, and warmed to about 75C. The other ingredients, previously dissolved in the water are added, warmed to 75C, and the mixture stirred until it congeals.


For each of the above formulations Active Ingredient is added during the heating step in an amount that is from 0.5 to 0.00005 weight percent, preferably from 0.05 to 0.0005 weight percent, and most preferably from 0.025 to 0.001 weight percent of the total ointment weight. (Source: —United States Pharmacopoeia 24, United States Pharmacopeial Convention, 1999) Combination Therapy for Osteoporosis:


Conventional therapy for osteoporosis includes; (i) estrogens, (ii) androgens, (iii) calcium supplements, (iv) vitamin D metabolites, (v) thiazide diuretics, (vi) calcitonin, (vii) bisphosphonates, (viii) SERMS, and (ix) fluorides (see, Harrison's Principles of Internal Medicine, 13th edition, 1994, published by McGraw Hill Publ., ISBN 0-07-032370-4, pgs. 2172-77; the disclosure of which is incorporated herein by reference.). Any one or combination of these conventional therapies may be used in combination with the method of treatment using Active Ingredient as taught herein. For example, in a method of treating osteoporosis, the vitamin D receptor modulator compounds of the invention may be administered separately or simultaneously with a conventional therapy. Alternatively, the Active Ingredient may be combined with conventional therapeutic agents in a formulation for treatment of osteoporosis such as set out below:


A formulation for treating osteoporosis comprising:

    • Ingredient (A1):
      • Active Ingredient,
    • Ingredient (B1):
      • one or more co-agents that are conventional for treatment osteoporosis selected from the group consisting of:
        • a. estrogens,
        • b. androgens,
        • c. calcium supplements,
        • d. vitamin D metabolites,
        • e. thiazide diuretics,
        • f. calcitonin,
        • g. bisphosphonates,
        • h. SERMS, and
        • i. fluorides.
    • Ingredient (C1):
      • optionally, a carrier or diluent.


        Typically useful formulations are those wherein the weight ratio of (A1) to (B11) is from 10:1 to 1:1000 and preferably from 1:1 to 1:100.


        Combination Therapy for Psoriasis:


Conventional therapy for psoriasis includes topical glucocorticoids, salicylic acid, crude coal tar, ultraviolet light, and methotrexate (see, Harrison's Principles of Internal Medicine, 13th edition, 1994, published by McGraw Hill Publ., ISBN 0-07-032370-4, pgs. 2172-77). Any one or combination of these conventional therapies may be used in combination with the method of treatment using Active Ingredient as taught herein. For example, in a method of treating osteoporosis, the vitamin D receptor modulator compounds of the invention may be topically administered separately or simultaneously with a conventional therapy. Alternatively, the Active Ingredient may be combined with conventional therapeutic agents in a topically applied formulation for treatment of osteoporosis such as set out below:


A formulation for treating osteoporosis comprising:

    • Ingredient (A2):
      • Active Ingredient;
    • Ingredient (B2):
      • one or more co-agents that are conventional for treatment psoriasis selected from the group consisting of:
        • a. topical glucocorticoids,
        • b. salicylic acid, or
        • c. crude coal tar.
    • Ingredient (C2):
      • optionally, a carrier or diluent.


        Typically useful formulations are those wherein the weight ratio of (A2) to (B2) is from 1:10 to 1:1000000 and preferably from 1:100 to 1:10000.


        Methods of Using the Compounds of the Invention:


        Generic disease states benefited by treatment with t Active Ingredient include, but are not limited to:
    • disease states characterized by abnormal calcium regulation
    • disease states characterized by abnormal cell proliferation
    • disease states characterized by abnormal immune response
    • disease states characterized by abnormal dermatological conditions
    • disease states characterized by neurodegenerative condition
    • disease states characterized by inflammation
    • disease states characterized by vitamin D sensitivity
    • disease states characterized by hyperproliferative disorders


      Specific disease states benefited by treatment with Active Ingredient include, but are not limited to:
    • Abscess
    • Acne
    • Adhesion
    • Actinic keratosis
    • Alopecia
    • Alzheimer's disease
    • Bone maintenance in zero gravity
    • Bone fracture healing
    • Breast cancer
    • Skin cancer
    • Crohn's disease
    • Colon cancer
    • Type I diabetes
    • Host-graft rejection
    • Hypercalcemia
    • Type II diabetes
    • Leukemia
    • Multiple sclerosis
    • Myelodysplastic syndrome
    • Insufficient sebum secretion
    • Osteomalacia
    • Osteoporosis
    • Insufficient dermal firmness
    • Insufficient dermal hydration
    • Psoriatic arthritis
    • Prostate cancer
    • Psoriasis
    • Renal osteodystrophy
    • Rheumatoid arthritis
    • Scleroderma
    • Systemic lupus erythematosus
    • Ulcerative colitis
    • Wrinkles


Particularly preferred is the treatment of psoriasis and osteoporosis by administration to a mammal (including a human) of a therapeutically effective amount of Active Ingredient. By “therapeutically effective amount” it is meant that quantity of a compound of the invention prevents, removes or significantly reduces the deleterious effects of a disease state in mammals, including humans.


The specific dose of Active Ingredient administered according to this invention to obtain therapeutic or prophylactic effects will, of course, be determined by the particular circumstances surrounding the case, including, for example, the compound administered, the route of administration and the condition being treated. Typical daily doses will contain a pharmaceutically effective amount typically in the range of from about 0.0001 mg/kg/day to about 50 mg/kg/day of body weight of an active compound of this invention. Preferably the dose of compounds of the invention will be from 0.0001 to 5 mg/kg/day of body weight.


Preferably the Active Ingredient or pharmaceutical formulations containing Active Ingredient are in unit dosage form for administration to a mammal. The unit dosage form can be a capsule or tablet itself, or the appropriate number of any of these. The quantity of Active Ingredient in a unit dose of composition may be varied or adjusted from about 0.0001 to about 1000 milligrams or more according to the particular treatment involved. It may be appreciated that it is necessary to make routine variations to the dosage depending on the age and condition of the patient. The compounds of the invention may be administered by a variety of routes including oral, aerosol, rectal, transdermal, sublingual, subcutaneous, intravenous, intramuscular, and intranasal. The dosage will also depend on the route of administration.


EXAMPLES

General Experimental Conditions:


The starting material/intermediate is the compound from the immediate preceding experimental unless otherwise indicated.


All reactions are performed under nitrogen/argon atmosphere, in a stirred reaction vessel, and at room temperature unless indicated otherwise.


Unless otherwise indicated, the organic layer is MgSO4/Na2SO4 dried is defined as stirring the solution with a dessicant for 5-15 m and filtering off the dessicant to give an anhydrous filtrate.


For analogous multi-step reaction procedures, the yield is given either for the ultimate step or overall multi-steps as indicated.


Solutions are “concentrated” at a range of 25-75° C. with reduced pressure. in-vacuo—25-75° C.; 0.05 to 1 mm


Unless otherwise indicated, “the residue is chromatographed” is defined as silica gel chromatography of residue with moderate nitrogen pressure (flash chromatography) or a medium pressure chromatography systems using a silica gel to crude product ratio of ˜10-100.


Thin layer chromatography is performed with silica gel plates with UV and/or appropriate staining solution.


NMR spectra are obtained with either 300 or 400 mHz spectrometer.


NMR—denotes NMR spectrum is consistent with assigned structure.


HRMS—high resolution mass spectrum


ES-MS—electrospray mass spectrum


Abbreviations:






    • Aq—aqueous

    • d—day

    • eq—equivalent

    • h—hour

    • m—minute

    • satd—saturated

    • disp—dispersion

    • quant—quantitative

    • rt for retention time (both small caps to minimize confusion with RT)

    • RT—room temperature





Chemical Definitions:

    • BBr3—boron tribromide
    • BF3-OEt2—boron trifluoride etherate
    • BnBr—benzyl bromide
    • CH2Cl2-dichloromethane
    • CH3CN—acetonitrile
    • CO-carbon monoxide
    • Dess-Martin reagent—1,1,1-tris(acetyloxy)-1,1-dihydro-1,2-benziodoxol-3-(1H)-one
    • DIBA1H—Diisobutyl Aluminum Hydride
    • DMAP—4-(dimethylamino)pyridine
    • DMF—N,N-dimethylformamide
    • DMSO—dimethylsulfoxide
    • DPPB—-1,4-bis(diphenylphosphino)butane
    • DPPF—dichloro[1,1′-bis(diphenylphosphino)ferrocene
    • EDCl—3-Ethyl-1-[3-(dimethylamino)propyl]carbodiimide hydrochloride
    • Et3N—triethylamine
    • EtMgBr—ethyl magnesium bromide
    • EtOAc—ethyl acetate
    • EtOH—ethanol
    • H2NCH2CO2Me—methyl glycinate
    • Hept—heptane
    • Hex—hexanes
    • HN(OMe)Me—N-methyl-O-methyl hydroxylamine
    • HNMe2—dimethyl amine
    • HATU—O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate
    • HOAT—7-aza-1-hydroxybenzotriazole
    • HOBT—1-hydroxybenzotriazole
    • K2CO3—potassium carbonate
    • KOH—potassium hydroxide
    • LAH—lithium aluminum hydride
    • LiHMDS—lithium hexamethyldisilazide
    • mCPBA—meta-chloroperbenzoic acid
    • MeI—methyl iodide
    • MeOH—methanol
    • NaBH4—sodium borohydride
    • MgSO4—magnesium sulfate
    • NaH—sodium hydride
    • NaHCO3-sodium bicarbonate
    • NaI—sodium iodide
    • Na2SO4—sodium sulfate
    • NH4C1—ammonium chloride
    • NMO—4-methylmorpholine N-oxide
    • NMP—N-methylpyrrolidin-2-one
    • Na—S—R3—sodium alkylmercaptide
    • PBr3—phosphorus tribromide
    • Pd(DPPF)—palladium dichloro[1,1′-bis(diphenylphosphino)ferrocene
    • Pd(OAc)2—palladium (II) acetate
    • Pd(TPP)4—palladium tetrakistriphenylphosphine
    • Pd—C—palladium on carbon
    • (PhO)2P(O)N3—diphenyl phosphorus azide
    • pTSA—para-toluenesulfonic acid
    • Pyr—pyridine
    • Red-A1 —sodium bis(2-methoxyethoxy)aluminum hydride
    • R2MgBr—alkyl magnesium bromide
    • R3MgBr—alkyl magnesium bromide
    • R5MgBr—alkyl magnesium bromide
    • R2S(O)2NH2—alkylsulfonamide
    • TBAF—tetrabutylammonium fluoride
    • TBSCl—tert-butyldimethylsilyl chloride
    • tBuC(O)CH2Br-1-bromopinacolone
    • Tf2O—triflic anhydride
    • TFA—trifluoroacetic acid
    • THF—tetrahydrofuran
    • TPAP—tetrapropylammonium perruthenate
    • Zn(OTf)2—zinc trifluoromethane sulfonate.


Example 1
Preparation of 3′-[4-(2-Oxo-3,3-dimethylbutoxy-3-methylphenyl)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane



embedded image


A. 2-(t-Butyldimethylsilyloxy)-5-bromotoluene



embedded image


To a 0° C. mixture of 2-hydroxy-5-bromotoluene(48.63 g, 260 mmol), DMF (260 ml), imidazole (18.58 g, 273 mmol) is added t-butyldimethylsilyl chloride (41.15 g, 273 mol) in portions. After stirring for 30 m, the reaction is warmed to RT and stirred for 16 h. The reaction mixture is poured into ice/water (1.25 l) and extracted with Et2O. The organic layer is washed with water (2×100 ml), 1N NaOH (2×5 ml), water, brine, MgSO4 dried, concentrated, chromatographed (hex), and azeotroped with toluene to give the title compound as an oil (75.7 g, 97%)



1NMR (400 MHz, DMSO-d6) δ ppm: 0.21 (s, 6H), 0.99 (s, 9H), 2.15 (s, 3H), 6.77 (d, J=8.3 Hz, 1H), 7.25 (dd, J=6.8, 8.3 Hz, 1H), 7.37 (s, 1H).


EI-MS: 300,302


B. 3′-[4-(t-Butyldimethylsilyloxy)-3-methylphenyl]pentan-3-ol



embedded image


Magnesium turnings (6 g, 248 mmol) is vigorously stirred under nitrogen for 18 h. To the magnesium turnings is added THF (600 ml) and I2 (100 mg, 0.39 nunol). This is followed by dropwise addition of 2-(t-butyldimethylsilyloxy)-5-bromotoluene (60 g, 200 mmol) in THF (500 ml) and at the same time the reaction is gradually heated by setting the oil bath to 70° C. After half of the addition of the 2-(t-butyldimethylsilyloxy)-5-bromotoluene/THF is complete, the mixture is heated to 90° C. for 2.5 h. The mixture is allowed to cool to RT and then cooled to 0° C. To this mixture is added 3-pentanone (21.2 ml, 200 mmol), warmed to RT, and then heated to 50° C. for 3 h. After cooling, the reaction is diluted with Et2O and water, and quenched with 1N HCl to pH 7. The mixture is partitioned and the organic layer is washed with water, Na2SO4 dried, concentrated, chromatographed (1.25 kg silica gel, 40% CH2Cl2/Hex to 70% CH2Cl2/Hex; rf. 0.3) to give the title compound as an oil (44.3 g, 72%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.20 (s, 6H), 0.64 (t, J=7.8 Hz, 6H), 1.00 (s, 9H), 1.67 (m, 4H), 2.15 9s, 3H), 4.38 (s, 1H), 6.70 (d, J=8.8 Hz, 1H), 7.04 (dd, J=8.3, 2.0 Hz, 1H), 7.14 (d, J=2.0 Hz, 1H).


EI-MS: 308.37


C. 3′-[4-(Hydroxy)-3-methylphenyl]-3′-[4-methylthiophen-2-yl]pentane



embedded image


To a −78° C. mixture of 3′-[4-(t-butyldimethylsilyloxy)-3-methylphienyl]pentan-3-ol (44 g, 142 mmol) and 3-methylthiophene (83 ml, 854 mmol) is added BF3-Et2O (180 ml, 1.42 mol). After stirring for 45 m, the reaction is placed in a 0° C. bath, allowed to warm to RT and stirred for 6 h. The reaction is poured into Et2O/water and washed with 5N HCl. The organic layer is washed with water, Na2SO4 dried, concentrated, and chromatographed (1.5 kg SiO2, 70% CHCl3/hex) to give the title compound (37 g, 95%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.63 (t, J=7.3 Hz, 3H), 2.01 (m, 4H), 2.08 (s, 3H), 2.16 (s, 3H), 6.67 (m, 2H), 6.88 (m, 2H), 6.93 (d, J=1.9 Hz, 1H), 9.10 (s, 1H).


High Res. EI-MS: 274.1389; calc. for C17H22OS: 274.1391


D. 3′-[4-(Benzyloxy)-3-methylphenyl]-3′-[4-methylthiophen-2-yl]pentane



embedded image



To a 0° C. mixture of 3′-[4-(hydroxy)-3-methylphenyl]-3′-[4-methylthiophen-2-yl]pentane (7.1 g, 25.9 mmol) and DMF (60 ml) is added 60% NaH disp (1.1 g, 28.5 mmol) and stirred for 15 m. The reaction is added benzyl bromide (3.4 ml, 28.5 mmol), warmed to RT and stirred overnight. The reaction is concentrated in-vacuo and partitioned between Et2O/1N HCl. The organic layer is washed with water, dried with Na2SO4, concentrated, and chromatographed (20% CHCl3/hex to 30% CHCl3/hex) to give the title compound (8.7 g, 92%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.61 (t, J=7.3 Hz, 6H), 1.95-2.07 (m, 4H), 2.13 (s, 6H), 5.05 (s, 2H), 6.65 (d, J=1.5 Hz, 1H), 6.86 (m, 2H), 7.01 (m, 2H), 7.31 (d, J=7.3 Hz, 1H), 7.38 (m, 2H), 7.44 (d, J=6.8 Hz, 2H).


High Res. EI-MS: 364.1878; calc. for C24H28OS: 364.1861


E. 3′-[4-(Benzyloxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane



embedded image



concentrated, and chromatographed (10% EtOAc/hex) to give the title To a −78° C. mixture of 3′-[4-(benzyloxy)-3-methylphenyl]-3′-[4-methylthiophen-2-yl]pentane (7.7 g, 21 mmol) and THF (50 ml) is added 1.6 M n-BuLi/hex (1.6 ml, 25.3 mmol) and warmed to 0° C. for 2 m. The reaction is cooled to −78° C., added methyl chloroformate (1.7 ml, 25 mmol) and warmed to RT over 2 h. The reaction is added Et2O, quenched with 1N HCl, and partitioned. The organic layer is washed with brine, Na2SO4 dried, compound (4.8 g, 54%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.62 (t, J=7.3 Hz, 6H), 2.02-2.07 (m, 4H), 2.14 (s, 3H), 2.40 (s, 3H), 3.69 (s, 3H), 5.06 (s, 2H), 6.82 (s, 1H), 6.92 (d, J=8.8 Hz, 1H), 7.03 (m, 2H), 7.31 (d, J=7.3 Hz, 1H), 7.38 (t, J=7.3 Hz, 2H), 7.44 (t, J=7.3 Hz, 2H).


High Res. ES-MS: 423.2011; calc. for C26H30O3S+H: 423.1994


F. 3′-[4-(Hydroxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]entane



embedded image


A mixture of 3′-[4-(benzyloxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane (290 mg, 0.686 mmol), 10% Pd/C (1.6 g, 1.5 mmol), EtOH (3 ml), and EtOAc (3 ml) is hydrogenated overnight at atmospheric pressure. The reaction is filtered through diatomaceous earth with EtOH/EtOAc wash, concentrated, and chromatographed (CH2C2 to 10% EtOAc/CH2Cl2) to give the title compound (220 mg, quant).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.61 (t, J=7.3 Hz, 6H), 1.98-2.07 (m, 4H), 2.05 (s, 3H), 2.39 (s, 3H), 3.69 (s, 3 h), 6.66 (d, J=8.3 Hz, 1H), 6.79 (s, 1H), 6.86 (dd, J=8.3, 2.4 Hz, 1H), 6.91 (d, J=2.0 Hz, 1H), 9.15 (s, 1H).


High Res. ES-MS: 333.1528; calc. for C19H24O3S+H: 333.1524


G. 3′-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane



embedded image


To a mixture of 3′-[4-(hydroxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane (210 mg, 0.63 mmol) and DMF (2 ml) is added 60% NaH disp (25 mg, 0.63 mmol) and warmed to RT. The reaction is cooled to 0° C., added 3,3-dimethyl-1-bromo-2-butanone (85 ul, 0.63 mmol), warmed to RT, and stirred overnight. The mixture is concentrated and partitioned between Et2O/1N HCl. The organic layer is washed with water, dried with Na2SO4, and chromatographed (10% EtOAc/hex to 20% EtOAc/hex) to give the title compound (230 mg, 85%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.61 (t, J=7.3 Hz, 6H), 1.15 (s, 9H), 2.01-2.08 (m, 4H), 2.14 (s, 3H), 2.40 (s, 3H), 3.69 (s, 3H), 5.08 (s, 2H), 6.60 (d, J=8.3 Hz, 1H), 6.82 (s, 1H), 6.97 (d, J=8.8 Hz, 1H), 7.00 (s, 1H).


High Res. ES-MS: 453.2072; calc. for C25H34O4S+Na: 453.2076


Example 2
Preparation of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane



embedded image


To a 0° C. mixture of 3′-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane (215 mg, 0.5 mmol) and MeOH (2 ml) is added NaBH4 (28 mg, 0.75 mmol) and warmed to RT. The reaction is concentrated and partitioned between Et2O/1N HCl. The organic layer is washed with water, dried with Na2SO4, and concentrated to give the title compound (220 mg, quant).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.62 (t, J=7.3 Hz, 6H), 0.90 (s, 9H), 1.99-2.08 (m, 4H), 2.11 (s, 3H), 2.40 (s, 3H), 3.44 (m, 1H), 3.69 (s, 3H), 3.75 (dd, J=7.3, 10.2 Hz, 1H), 4.03 (dd, J=3.4, 10.2 Hz, 1H), 4.79 (d, J=5.4 Hz, 1H), 6.81 (s, 1H), 6.83 (d, J=8.8 Hz, 1H), 6.98 (s, 1H), 7.01 (d, J=8.8 Hz, 1H).


High Res. ES-MS: 450.2674; calc. for C25H36O4S+NH4: 450.2678


Example 3
Preparation of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-carboxyl-4-methylthiophen-2-yl]pentane



embedded image


To a mixture of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane (200 mg, 0.46 mmol), EtOH (1.5 ml), and water (0.5 ml) is added KOH (200 mg, 3.56 mmol). The reaction is heated to 70° C. for 4 h. The mixture is concentrated, partitioned between 1:1 Et2O:EtOAc and



1N HCl. The organic layer is washed with 1N HCl, Na2SO4 dried, and concentrated to give the title compound (200 mg, quant). INMR (400 MHz, DMSO-d6) δ ppm: 0.62 (t, J=7.3 Hz, 6H), 0.90 (s, 9H), 1.97-2.09 (m, 4H), 2.11 (s, 3H), 2.37 (s, 3 h), 3.44 (m, 1H), 3.74 (dd, J=7.3, 10.2 Hz, 1H), 4.01 (dd, J=3.4, 10.2 Hz, 1H), 4.78 (d, J=5.4 Hz, 1H), 6.76 (s, 1H), 6.82 (d, J=8.3 Hz, 1H), 6.98 (s, 1H), 7.01 (d, J=8.8 Hz, 1H), 12.58 (br s, 1H).


High Res. ES-MS: 436.2518; calc. for C25H36O4S+NH4: 436.2521


Example 4
Preparation of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-(dimethylaminocarbonyl)-4-methylthiophen-2-yl]pentane



embedded image


To a 0° C. mixture of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-carboxyl-4-methylthiophen-2-yl]pentane (175 mg, 0.42 mmol) and Et3N (61 ul, 0.44 mmol) is added (PhO)2P(O)N3 (92 ul, 0.43 mmol). The reaction is warmed to RT and stirred for 30 m. After cooling to 0° C., the reaction is added DMAP (56 mg, 0.46 mmol) and 2M HNMe2/THF (0.46 ml, 0.92 mmol). The mixture is warmed to RT and stirred for 2 h. The reaction is concentrated and partitioned between Et2O/1N HCl. The organic layer is washed with 1N HCl, Na2SO4 dried, and chromatographed (CH2Cl2 to 15% EtOAc/CH2C12) to give the title compound (110 mg, 59%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.62 (t, J=7.3 Hz, 6H), 1.96-2.06 (m, 4H), 2.09 (s, 3H), 2.11 (s, 3H), 2.90 (s, 6H), 3.44 (m, 1H), 3.73 (dd, J=7.3, 10.2 Hz, 1H), 4.01 (dd, J=3.4, 10.2 Hz, 1H), 4.79 (br s, 1H), 6.65 (s, 1H), 6.82 (d, J=8.8 Hz, 1H), 7.02 (m, 2H).


High Res. ES-MS: 446.2738; calc. for C26H39NO3S+H: 446.2729


Example 5
Preparation of 3′-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl] pentane



embedded image


A. 2-(3-Hydroxy-3-pentyl)thiophene



embedded image


To a stirred 0° C. mixture of ethyl thiophene-2-carboxylate (3.12 g, 20.0 mmol) in diethyl ether (100 ml) is added 1M ethylmagnesium bromide (60 ml, 60 mmol). The reaction is allowed to warm to RT and stirred for 3 d. The reaction is partitioned between Et2O and 1N NaHCO3. The organic layer was Na2SO4 dried and concentrated to give the title compound (3.4 g, 99%).


H-NMR (ppm, CDC3): 7.98 (1H, d, 4.2 Hz), 6.95 (1H, m), 6.85 (1H, d, 3.0 Hz), 1.86 (4H, q, 7.5 Hz), 0.86 (6H, t, 7.5 Hz).


B. 5-(3-Hydroxy-3-pentyl)thiophene-2-carboxylic acid



embedded image


To a −78° C. mixture of 2-(3-hydroxy-3-pentyl)thiophene (0.34 g, 2.0 mmol) in THF (2 ml) is added of 1.6 M n-butyllithium in Hex (2.75 ml, 4.4 mmol). The mixture is allowed to warm to RT and powderized dry ice (CO2) is added. After one h, the mixture is partitioned between diethyl ether and 1N NaHCO3. The aqueous layer is washed with ether, acidified with conc. HCl and extracted with ether. The organic layer is Na2SO4 dried, filtered, and concentrated to give the title compound (0.236 g, 53%). H-NMR (ppm, CDC3): 7.75 (1H, d, 3.0 Hz), 6.87 (1H, d, 3.0 Hz), 1.86 (4H, q, 5.7 Hz), 0.86 (6H, t, 5.7 Hz).


C. Methyl, 5-(E/Z-2-penten-3-yl)thiophene-2-carboxylate



embedded image


To a mixture of 5-(3-hydroxy-3-pentyl)thiophene-2-carboxylic acid 0.236 g (1.05 mmol) and methanol (15 ml) is bubbled HCl gas for a few minutes. The mixture is heated at reflux for 2 h and then concentrated under vacuum. The residue is partitioned between Et2O and 1N NaHCO3. The organic layer is Na2SO4 dried and concentrated to give the title compound (0.106 g, 62%).


D. 3′-[4-(Hydroxy)-3-metliylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane



embedded image


To a mixture of methyl 5-(E/Z-2-penten-3-yl)thiophene-2-carboxylate (0.106 g, 0.65 mmol) and o-cresol (0.282 g, 2.61 mmol) in a few drops of methylene chloride is added of BF3 etherate (37 mg, 0.26 mmol). The mixture is stirred overnight and partitioned between Et2O and 1N NaHCO3. The organic layer is Na2SO4 dried, concentrated, and excess o-cresol is distilled off (73° C./0.10 mm). The residue is chromatographed (7.5% to 10% EtOAc/hex) to give the title compound (0.104 g, 50%). H-NMR (ppm, CDC3): 7.62 (1H, d, 3.0 Hz), 6.96 (1H, s), 6.94 (1H, d, 6.0 Hz), 6.78 (1H, d, 3.0 Hz), 6.65 (]H, d, 6.0 Hz), 4.60 (1H, s), 3.82 (3H, s), 2.19 (3H, s), 2.10 (4H, q, 5.7 Hz), 0.69 (6H, t, 5.7 Hz). LC/MS: 319.2 (M+1).


E. 3′-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane



embedded image


To a stirred 0° C. mixture of 60% disp NaH (15.7 mg, 0.39 mmol, hex washed) is added 3′-[4-(hydroxy)-3-methylphenyl]-3′-[5-metboxycarbonyl-4-methylthiophen-2-yl]pentane (100 mg, 0.31 mmol) in DMF (2.0 ml). The resulting mixture is added 1-chloropinacolone (46 mg, 0.34 mmol) with a crystal of KI. The reaction is allowed to warm to RT and stirred overnight. The mixture is partitioned between Et2O and 1N NaHCO3. The organic layer is Na2SO4 dried, filtered, concentrated, and chromatographed (on 4 g of silica gel with 5% EtOAc/hex) to give the title compound (0.114 g, 87%).


H-NMR (ppm, CDC3): 7.62 (1H, d, 3.0 Hz), 6.99 (1H, s), 6.97 (1H, d, 6.0 Hz), 6.77 (1H, d, 3.0 Hz), 6.50 (1H, d, 6.0 Hz), 4.83 (2H, s), 3.82 (3H, s), 2.24 (3H, s), 2.10 (4H, q, 5.7 Hz), 1.24 (9H, s), 0.68 (6H, t, 5.7 Hz). LC/MS: 417.3 (M+1).


F. 3′-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane



embedded image


To a mixture of 3′-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane (28 mg, 0.067 mmol) and 95% EtOH (1 ml) is added NaBH4 (3.8 mg, 0.1 mmol). After stirring overnight, the reaction is added acetone (several drops) and partitioned between CH2Cl2 and 1N NaHCO3. The organic layer is washed with water, Na2SO4 dried, and concentrated to give the title compound (23 mg, 82%).


H-NMR (ppm, CDC13): 7.62 (1H, d, 2.7 Hz), 7.02 (1H, d, 6.0 Hz), 6.98 (1H, s), 6.78 (1H, d, 2.6 Hz), 6.71 (1H, d, 6.0 Hz), 4.06 (1H, d, 8.2 Hz), 3.86 (1H, d, 8.4 Hz), 3.82 (3H, s), 3.70 (1H, d, 8.2 Hz), 2.18 (3H, s), 2.10 (4H, q, 6.0 Hz), 1.00 (9H, s), 0.69 (6H, t, 5.8 Hz).


LC/MS: 418.2 (M+).


Example 6A and Example 6B
Preparation of enantiomers of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane



embedded image


A mixture of racemic 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane (1.4 g, 3.25 mmol) is chromatographed with a ChiralPak AD column to give enantiomer 1, Example 6A (666 mg, 48%) and enantiomer 2, Example 6B (686 mg, 49%).


Enantiomer 1, Example 6A


HPLC: ChiralPak AD (4.6×250 mm); 15% IPA/85% heptane; 1 ml/m (flow rate);


rt=5.8m



1NMR (300 MHz, DMSO-d6) equivalent to Example 2.


High Res. ES-MS: 455.2231; calc. for C25H36o4S+Na: 455.2232


Enantiomer 2, Example 6B


HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/85% beptane; 1 ml/m (flow rate); rt=9.8m



1NMR (300 MHz, DMSO-d6) equivalent to Example 2.


High Res. ES-MS: 433.2427; calc. for C25H36O4S+H: 433.2413


Example 7
Preparation of enantiomer 1 of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-carboxy-4-methylthiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 3, enantiomer 1 of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane (Example 6A) gives the title compound as a white foamy solid (440 mg, quant.).



1NMR (300 MHz, DMSO-d6) equivalent to Example 3.


High Res. ES-MS: 441.2073; calc. for C24H34O4S+Na: 441.2076


Example 8
Preparation of enantiomer 2 of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-carboxy-4-methylthiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 3, enantiomer 2 (Example 6B) of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane gives the title compound as a white foamy solid (440 mg, quant.).



1NMR (300 MHz, DMSO-d6) equivalent to Example 3.


High Res. ES-MS: 441.2074; calc. for C24H34O4S+Na: 441.2076


Example 9
Preparation of 3′-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methylsulfonylmethyl-4-methylthiophen-2-yl]pentane



embedded image


A. 3′-[4-(Benzyloxy)-3-methylphenyl]-3′-[4-methyl-5-(hydroxymethyl)thiophen-2-yl]pentane



embedded image


To a 0° C. mixture of 3′-[4-(benzyloxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane (1.55 g, 3.66 mmol) and THF (15 ml) is added LAH (417 mg, 11 mmol) and warmed to RT. The reaction is heated to 45° C. overnight and then cooled to 0° C. The mixture is quenched with sat'd Na2SO4, diluted with Et2O, dried with Na2SO4 and filtered. After concentration, the residue is chromatographed (CHC3) to give the title compound (1.1 g, 76%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.64 (t, J=7.3 Hz, 6H), 1.96-2.05 (m, 4H), 2.06 (s, 3H), 2.15 (s, 3H), 4.43 (s, 2H), 5.06 (m, 3H), 6.55 (s, 1H), 6.89 (d, J=9.3 Hz, 1H), 7.26 (br s, 2H), 7.31 (m, 1H), 7.37 (m, 2H), 7.44 (d, J=7.8 Hz, 2H).


High Res. ES-MS: 377.1950; calc. for C25H30O2S+H−H2O: 377.1939


B. 3′-[4-(Benzyloxy)-3-methylphenyl]-3′-[4-methyl-5-(methylmercaptylmethyl)thiophen-2-yl]pentane



embedded image


To a 0° C. mixture of 3′-[4-(benzyloxy)-3-methylphenyl]-3′-[4-methyl-5-(hydroxymethyl)thiophen-2-yl]pentane (450 mg, 1.1 mmol) and Et2O (3 ml) is added PBr3 (113 ul, 1.2 mmol) and stirred for 1 h. The reaction is diluted with Et2O, washed with water (1×5 ml), brine (1×5 ml), Na2SO4 dried, and concentrated. The resulting solid is dissolved in DMF, cooled to 0° C., added NaSMe (330 mg, 4.8 mmol), and allowed to warmed RT. After stirring for 2 h, the reaction is concentrated and chromatographed (5% EtOAc/hex) to give the title compound (280 mg, 60%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.63 (t, J=7.3 Hz, 6H), 1.94-2.05 (m, 4H), 1.97 (s, 3H), 2.07 (s, 3H), 2.15 (s, 3H), 3.75 (s, 2H), 5.06 (s, 2H), 6.56 (s, 1H), 6.90 (d, J=9.3 Hz, 1H), 7.01 (m, 2H), 7.31 (m, 1H), 7.38 (m, 2H), 7.44 (d, J=6.8 Hz, 2H).


High Res. ES-MS: 425.1964; calc. for C26H32OS2+H: 425.1973


C. 3′-[4-(Benzyloxy)-3-methylphenyl]-3′-[4-methyl-5-(methylsulfonylmethyl)thiophen-2-yl]pentane



embedded image


To a 0° C. mixture of 3′-[4-(benzyloxy)-3-methylphenyl]-3′-[4-methyl-5-(methylmercaptylmethyl)thiophen-2-yl]pentane (260 mg, 0.611 mmol) and CHC3 (3 ml) is added 50% m-CPBA (465 mg, 1.35 mmol) and stirred for 1.5 h. The reaction is diluted with CHCl3, washed with satd Na2CO3, Na2SO4 dried, concentrated, and chromatographed (CHCl3 to 5% EtOAc/CHCl3) to give the title compound as a white foamy solid (250 mg, 90%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.64 (t, J=7.3 Hz, 6H), 1.99-2.07 (m, 4H), 2.14 (s, 3H), 2.15 (s, 3H), 2.90 (s, 3H), 4.53 (s, 2H), 5.06 (s, 2H), 6.67 (s, 1H), 6.91 (d, J=9.3 Hz, 1H), 7.03 (m, 2H), 7.31 (m, 1H), 7.38 (m, 2H), 7.44 (d, J=7.3 Hz, 2H). High Res. ES-MS: 474.2126; calc. for C26H32O3S2+NH4: 474.2137


D. 3′-[4-(Hydroxy)-3-methylphenyl]-3′-[4-methyl-5-(methylsulfonylmethyl)thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 1F, 3′-[4-(benzyloxy)-3-methylphenyl]-3′-[4-methyl-5-(methylsu]fonylmethyl)thiophen-2-yl]pentane gives the title compound as a white foamy solid (160 mg, 81%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.63 (t, J=7.3 Hz, 6H), 1.94-2.03 (m, 4H), 2.06 (s, 3H), 2.14 (s, 3H), 2.89 (s, 3H), 4.52 (s, 2H), 6.65 (m, 2H), 6.85 (dd, J=2.4, 8.3 Hz, 1H), 6.92 (d, J=2.0 Hz, 1H), 9.09 (s, 1H). High Res. ES-MS: 384.1648; calc. for C19H26O3S2+NH4: 384.1667


E. 3′-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methylsulfonylmethyl-4-methylthiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 1G, 3′-[4-(hydroxy)-3-methylphenyl]-3′-[4-methyl-5-(methylsulfonylmethyl)thiophen-2-yl]pentane gives the title compound (160 mg, 84%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.63 (t, J=7.3 Hz, 6H), 1.16 (s, 9H), 2.00-2.08 (m, 4H), 2.14 (s, 3H), 2.15 (s, 3H), 2.90 (s, 3H), 4.53 (s, 2H), 5.07 (s, 2H), 6.60 (d, J 8.3 Hz, 1H), 6.67 (s, 1H), 6.97 (d, J=8.3 Hz, 1H), 7.01 (s, 1H).


High Res. ES-MS: 482.2397; calc. for C25H26O4S2+NH4: 482.2399


Example 10
Preparation of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methylsulfonylmethyl-4-methylthiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 2, 3′-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methylsulfonylmethyl-4-metliylthiophen-2-yl]pentane gives the title compound as a white foamy solid (440 mg, quant.).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.62 (t, J=7.3 Hz, 6H), 0.92 (s, 9H), 1.97-2.08 (m, 4H), 2.12 (s, 3H), 2.14 (s, 3H), 2.89 (s, 3H), 3.45 (m, 1H), 3.76 (dd, J=7.3, 9.8 Hz, 1H), 4.02 (dd, J=2.9, 9.8 Hz, 1H), 4.52 (s, 2H), 4.78 (d, J=5.4 Hz, 1H), 6.66 (s, 1H), 6.82 (d, J=8.3 Hz, 1H), 7.01 (m, 2H).


High Res. ES-MS: 484.2553; calc. for C25H38O4S2+NH4: 484.2555


Example 11A and 11B
Preparation of enantiomers of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methylsulfonylmethyl-4-methylthiophen-2-yl]pentane



embedded image


A racemic mixture of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methylsulfonylmethyl-4-methylthiophen-2-yl]pentane is chromatographed with a Chiralcel AD column to give enantiomer 1, Example 11A (205 mg, ˜50%) and enantiomer 2, Example 11B (150 mg, 38%).


Enantiomer 1, Example 11A


HPLC: Chiralcel AD (4.6X250 mm); 40% IPA/60% hept; 1 ml/m (flow rate); rt=9.86 m; 260 nm.



1NMR equivalent to Example 10.


High Res. ES-MS: 489.2127; calc. for C25H38O4S2+Na: 489.2109.


Enantiomer 2, Example 11B


HPLC: Chiralcel AD (4.6X250 mm); 40% IPA/60% hept; 1 ml/m (flow rate); rt=12.64 m; 260 nm.



1NMR equivalent to Example 10.


High Res. ES-MS: 489.2132; calc. for C25H38O4S2+Na: 489.2109.


Example 12
Alternative preparation of 3′-[4-(2-oxo-3,3-dimethylbutoxy-3-methylphenyl)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane (Example 1)



embedded image


A. 4-Hydroxy-3-methylbenzoic acid methyl ester



embedded image


To a mixture of 3-methyl-4-hydroxybenzoic acid (342 g, 2.24 mol) in MeOH (3.5 I) is bubbled HCl (g) for 5 m. The mixture is stirred for 12 h at RT. The reaction is concentrated to give the title compound (372 g, quant).


H-NMR (ppm, CDCl3): 7.82 (1H, s), 7.78 (1H, dd,), 6.80 (1H, d), 3.86 (3H, s), 2.22 (3H, s).


B. 3′-[4-hydroxy-3-methylphenyl]pentan-3-ol]



embedded image


To a 0° C. mixture of 4-hydroxy-3-methylbenzoic acid methyl ester (373 g, 2.24 mol) in TBF (6 l) is added 3.0 M EtMgBr/Et2O (2.3 l, 6.93 mol) over 3 h. The mixture is warmed to 40° C. for 2 h and cooled to 0° C. Saturated NaHCO3 is added slowly until gas evolution ceases and the reaction is partitioned between EtOAc/water. The organic layer is washed with brine, water, MgSO4 dried and concentrated. The residue is dissolved in CH2Cl2, dried with Na2SO4 and concentrated to give the title compound (440 g, quant).


H-NMR (ppm, CDCl3): 7.06 (1H, s), 7.02 (1H, dd), 6.78 (1H, d), 4.60 (1H, s), 2.24 (3H, s), 1.80 (4H, m), 0.77 (6H, t).


C. 3′-[4-(Hydroxy)-3-methylphenyl]-3′-[4-methylthiophen-2-yl]pentane



embedded image



To a −78° C. mixture of 3′-[4-hydroxy-3-methylphenyl]pentan-3-ol] (415 g, 2.13 mol), 3-methylthiophene (627 g, 6.39 mol) and CH2Cl2 (6 l) is added BF3-Et2O (1.81 kg, 12.8 mol), maintaining the temperature below −75° C. The reaction is warmed to RT for 3 h and cooled to 0° C. Saturated NaHCO3 is added until the gas evolution ceases and the mixture is partitioned with water. The organic layer is dried with Na2SO4, concentrated and chromatographed (EtOAc/hex) to give the title compound (425 g, 73%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.63 (t, J=7.3 Hz, 3H), 2.01 (m, 4H), 2.08 (s, 3H), 2.16 (s, 3H), 6.67 (m, 2H), 6.88 (m, 2H), 6.93 (d, J=1.9 Hz, 1H), 9.10 (s, 1H).


High Res. EI-MS: 274.1389; calc. for C17H22OS: 274.1391


D. 3′-[4-(t-Butyldimethylsilyloxy)-3-methylphenyl]-3′-[4-methylthiophen-2-yl]pentane



embedded image


To a mixture of 3′-[4-(iydroxy)-3-methylphenyl]-3′-[4-methylthiophen-2-yl]pentane (5.00 g, 187.2 mmol) and t-butyldimethylsilyl chloride (2.75 g, 18.2 mmol) in CH2Cl2 (100 ml) is added imidazole (1.24 g, 18.2 mmol). The reaction is stirred for 24 h at RT. The mixture is diluted with Hex (100 ml), filtered and concentrated. The concentrate is suspended in Hex (100 ml), filtered and concentrated to give the title compound as an oil (6.91 g, 98%).


H-NMR (ppm, CDCl3): 7.05 (1H, d, 2.0 Hz), 6.97 (1H, d, 9.0 Hz), 6.72 (1H, d, 1.1 Hz), 6.68 (1H, d, 8.3 Hz), 6.62 (1H, d, 1.3 Hz), 2.23 (3H, s), 2.20 (3H, s), 2.10 (4H, m), 1.03 (9H, s), 0.72 (6H, t, 7.3 Hz), 0.23 (6H, s).


E. 3′-[4-(t-Butyldimethylsilyloxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane



embedded image


To a −78° C. mixture of 3′-[4-(t-butyldimethylsilyloxy)-3-methylphenyl]-3′-[4-methylthiophen-2-yl]pentane. (6.75 g, 17.4 mmol) and THF (100 ml) is added 2.5 M n-BuLi/hex (7.64 ml, 19.1 mmol). The mixture is stirred for 25 m and warmed to 0° C. over 15 m. The reaction is cooled to −78° C., added methyl chloroformate (1.48 ml, 19.1 mmol) and warmed to RT overnight. To the reaction is added water (25 ml). The mixture is concentrated and partitioned with CH2Cl2/water. The organic layer is concentrated to yield the title compound (7.8 g, quant.).


H-NMR (ppm, CDCl3): 6.99 (1H, d, 2.0 Hz), 6.94 (1H, dd, 2.3, 8.5 Hz), 6.67 (1H, d, 8.5 Hz), 6.62 (1H, s), 3.77 (3H, s), 2.49 (3H, s), 2.17 (3H, s), 2.09 (4H, m), 1.01 (9H, s), 0.70 (6H, t, 7.3 Hz), 0.22 (6H, s).


F. 3′-[4-Hydroxy-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane



embedded image


To a 0° C. mixture of 3′-[4-(t-butyldimethylsilyloxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane (130 g, 292 mmol) and THF (1 L) is added 1.0 M TBAF/THF (292 ml, 292 mmol) over 20 m. The reaction is warmed to RT and stirred for 1 d. The mixture is concentrated and partitioned with CH2Cl2/water. The organic layer is concentrated and chromatographed (EtOAc/hex) to give the title compound (40.2 g, 41%).


H-NMR (ppm, CDCl3): 6.97 (1H, s), 6.95 (1H, d, 7.5 Hz), 6.69 (1H, d, 8.2 Hz), 6.61 (1H, s), 4.95 (1H, br s), 3.80 (3H, s), 2.47 (3H, s), 2.21 (3H, s), 2.08 (4H, m), 0.91 (3H, s), 0.70 (6H, t, 7.3 Hz).


G. 3′-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane



embedded image


To a mixture of 3′-[4-hydroxy-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane (14.5 g, 43.6 mmol), acetone (200 ml) and K2CO3 (12.1 g, 87.2 mmol) is added 3,3-dimethyl-1-chloro-2-butanone (5.73 ml, 43.6 mmol). The mixture is stirred overnight, refluxed for 9 h and cooled to RT overnight. The reaction is filtered and concentrated to give the title compound (18.8 g, quant.).


H-NMR (ppm, CDC3): 6.99 (2H, m), 6.60 (1H, s), 6.51 (1H, d, 8.5 Hz), 4.84 (2H, s), 3.79 (3H, s), 2.47 (3H, s), 2.25 (3H, s), 2.08 (4H, m), 1.25 (9H, s), 0.70 (6H, t, 7 Hz).


Example 13
Preparation of 3′-[5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methylsulfonylmethyloxy)-3-methylphenyl]pentane



embedded image


H. 3′-[5-(3-Oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-benzyloxy-3-methylphenyl]pentane



embedded image


To a 0° C. mixture of 3′-[4-(benzyloxy)-3-methylphenyl]-3′-[4-methyl-5-(hydroxymethyl)thiophen-2-yl]pentane (900 mg, 2.3 mmol) and Et2O (7 ml) is added PBr3 (240 ul, 2.5 mmol) and stirred for 1.5 h. The reaction is diluted with Et2O, washed with water (10 ml), brine (10 ml), Na2SO4 dried, and concentrated. The resulting residue is dissolved in THF (4 ml) and cooled to −78° C. to afford the bromide/THF solution. In a separate flask is charged with 1M LiHMDS (4.6 ml, 4.6 mmol), cooled to −78 C, and added pinacolone (570 ul, 4.6 mmol). The reaction is stirred for 1.5 h, warmed to −50 C and transferred (via syringe) to the −78° C. solution of bromide/THF. The reaction is warmed to RT with a cold water bath. After stirring for 15 m, the reaction is diluted with Et2O and washed with 1N HCl. The organic layer is Na2SO4 dried and chromatographed (30% CHCl3/hex to 80% CHCl3/hex) to give the title compound (900 mg, 82%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.62 (t, J=7.3 Hz, 6H), 1.00 (s, 9H), 1.93-2.04 (m, 4H), 2.15 (s, 3H), 2.71 (m, 2H), 2.80 (m, 2H), 5.08 (s, 2H), 6.55 (s, 1H), 6.90 (d, J=8.3 Hz, 1H), 7.01 (m, 2H), 7.34 (d, J=7.3 Hz, 1H), 7.41 (m, 2H), 7.46 (d, J=7.8 Hz, 2H).


High Res. ES-MS: 477.2830; calc. for C31H40O2S+H: 477.2827.


I. 3′-[5-(3-Oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-hydroxy-3-methylphenyl]pentane



embedded image


Using a procedure analogous to Example 1F, 3′-[5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-benzyloxy-3-methylphenyl]pentane gives the title compound (600 mg, 97%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.59 (t, J=7.3 Hz, 6H), 0.99 (s, 9H), 1.91-1.98 (m, 4H), 2.03 (s, 3H), 2.04 (s, 3H), 2.71 (m, 2H), 2.75 (m, 2H), 6.49 (s, 1H), 6.62 (d, J=8.3 Hz, 1H), 6.82 (d, J=8.3 Hz, 1H), 6.86 (s, 1H), 9.04 (s, 1H).


High Res. ES-MS: 409.2167; calc. for C24H34O2S+Na: 409.2177.


J. 3′-[5-(3-Oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methylmercaptylmethyloxy)-3-methylphenyl]pentane



embedded image


Using a procedure analogous to Example 1D, 3′-[5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-hydroxy-3-methylphenyl]pentane and methylmercaptylmethyl chloride give the title compound (440 mg, 73%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.61 (t, J=7.3 Hz, 6H), 0.98 (s, 9H), 1.93-2.01 (m, 4H), 2.04 (s, 3H), 2.11 (s, 3H), 2.17 (s, 3H), 2.71 (m, 2H), 2.76 (m, 2H), 5.23 (s, 2H), 6.86 (d, J=8.3 Hz, 1H), 6.98 (m, 2H).


High Res. ES-MS: 469.2230; calc. for C26H38O2S2+Na: 469.2211.


K. 3′-[5-(3-Oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methylsulfonylmethyloxy)-3-methylphenyl]pentane



embedded image


Using a procedure analogous to Example 9C, 3′-[5-(3-Oxo-4,4-dimethylpentyl)-4-methylthiopben-2-yl]-3′-[4-(methylmercaptylmethyloxy)-3-methylphenyl]pentane gives the title compound (140 mg, 33%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.61 (t, J=7.3 Hz, 6H), 0.99 (s, 9H), 1.95-2.02 (m, 4H), 2.04 (s, 3H), 2.17 (s, 3H), 2.71 (m, 2H), 2.76 (m, 2H), 3.04 (s, 3H), 5.24 (s, 2H), 6.53 (s, 1H), 7.01 (m, 3H).


High Res. ES-MS: 501.2129; calc. for C26H38O4S2+Na: 501.2109.


Example 14
Preparation of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methylsulfonylmethyloxy)-3-methylphenyl]pentane



embedded image


Using a procedure analogous to Example 2, 3′-[5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methylsulfonylmethyloxy)-3-methylphenyl]pentane gives the title compound (100 mg, quant.).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.62 (t, J=7.3 Hz, 6H), 0.77 (s, 9H), 1.11-1.38 (m, 1H), 1.56-1.63 (m, 1H), 1.94-2.01 (m, 4H), 2.04 (s, 3H), 2.18 (s, 3H), 2.52-2.60 (m, 1H), 2.77-2.83 (m, 1H), 2.94-2.97 (m, 1H), 3.04 (s, 3H), 4.38 (d, J=5.9, 1H), 5.25 (s, 2H), 6.53 (s, 1H), 7.01 (m, 3H).


High Res. ES-MS: 503.2268; calc. for C26H40O4S2+Na: 503.2266.


Example 15A and 15B
Preparation of enantiomers of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methylsulfonylmethyloxy)-3-methylphenyl]pentane



embedded image


A mixture of racemic 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methylsulfonylmethyloxy)-3-methylphenyl]pentane is chromatographed with a Chiralcel OD column to give enantiomer 1


Example 3A (54 mg, 43%) and enantiomer 2, Example 3B (55 mg, 44%).


Enantiomer 1, Example 3A]


HPLC: Chiralcel OD (4.6X250 mm); 40% IPA/60% heptane; 1 ml/m (flow rate); rt 8.9 m; 225 nm.



1NMR equivalent to Example Yee-2.


High Res. ES-MS: 503.2269; calc. for C26H40O4S2+Na: 503.2266.


Enantiomer 2, Example 3B


HPLC: Chiralcel OD (4.6X250 mm);); 40% IPA/60% heptane; I mi/m (flow rate); rt=11.3m; 225 nm.



1NMR equivalent to Example 2.


High Res. ES-MS: 503.2280; calc. for C26H40O4S2+Na: 503.2266.


Example 16
Preparation of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methylsulfinylmethyloxy)-3-methylphenyl]pentane



embedded image


To a 0° C. mixture of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methylmercaptylmethyloxy)-3-methylphenyl]pentane (725 mg, 1.67 mmol) and CHCl3 (7 ml) is added 50% m-CPBA (1.3 g, 3.77 mmol). The stirred reaction is allowed to warm to RT over 1 h. The resulting suspension is added more CHCl3 (7 ml) and stirred for 1 h. The mixture is diluted with CHCl3 and washed with satd Na2CO3. The organic layer is concentrated and chromatographed (CHCl3 to 50% EtOAc/CHCl3, TLC Rf: 0.05) to give the title compound (175 mg, 23%).



1NMR (300 MHz, DMSO-d6) δ ppm: 0.62 (t, J=7.3 Hz, 6H), 0.77 (s, 9H), 1.95-2.01 (m, 4H), 2.04 (s, 3H), 2.15 (s, 3H), 2.58 (m, 1H), 2.61 (s, 3H), 2.79 (m, 1H), 3.04 (m, 1H), 4.38 (m, 1H), 5.02 (d, J=10.2 Hz, 1H), 5.20 (d, J=10.7 Hz, 1H), 6.53 (s, 1H), 7.02 (m, 3H).


High Res. ES-MS: 465.2483; calc. for C26H40O3S2+H: 465.2497.


Example 17
Preparation of 3′-[5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methylsulfonyloxy)-3-methylphenyl]pentane



embedded image


Using a procedure analogous to Example 1D, 3′-[5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(hydroxy)-3-methylphenyl]pentane gives the title compound (425 mg, 65%).


TLC: CHCl3; Rf=0.4.



1NMR (400 MHz, DMSO-d6) δ ppm: 0.62 (t, J=7.3 Hz, 6H), 0.98 (s, 9H), 1.93-2.15 (m, 4H), 2.05 (s, 3H), 2.24 (s, 3H), 2.72 (m, 2H), 2.77 (m, 2H), 3.40 (s, 3H), 6.57 (s, 1H), 7.11 (d, J=2.5 Hz, 1H), 7.19 (m, 2H).


High Res. ES-MS: 487.1940; calc. for C25H36O4S2+Na: 487.1940.


Example 18
Preparation of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methylsulfonyloxy)-3-methylphenyl]pentane



embedded image


Using a procedure analogous to Example 2, 3′-[5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methylsulfonyloxy)-3-methylphenyl]pentane gives the title compound (300 mg, 96%).


TLC: 5% EtOAc/CHCl3; Rf 0.35.



1NMR (300 MHz, DMSO-d6) δ ppm: 0.62 (t, J=7.3 Hz, 6H), 0.77 (s, 9H), 1.35 (m, 1H), 1.62 (m, 1H), 1.95-2.12 (m, 4H), 2.04 (s, 3H), 2.25 (s, 3H), 2.60 (m, 1H), 2.81 (m, 1H), 2.98 (m, 1H), 3.42 (s, 3H), 4.37 (d, J=6.2 Hz, 1H), 6.59 (s, 1H), 7.13 (dd, J=2.2, 8.8 Hz, 1H), 7.22 (m, 2H).


High Res. ES-MS: 484.2539; calc. for C25H38O4S2+NH4: 484.2555.


Example 19A and 19B
Preparation of enantiomers of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methylsulfonyloxy)-3-methylphenyl]pentane



embedded image


A mixture of racemic 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methylsulfonyloxy)-3-methylphenyl]pentane is chromatographed with a Chiralcel AD column to give enantiomer 1, Example 19A (108 mg, 43%) and enantiomer 2, Example 19B (109 mg, 44%).


Enantiomer 1, Example 19A


HPLC: Chiralcel AD (4.6X250 mm); 10% IPA/heptane; 1 ml/m (flow rate); rt=6.85 m; 250 nm.



1NMR equivalent to Example 18.


High Res. ES-MS: 489.2106; calc. for C25H38O4S2+Na: 489.2109.


Enantiomer 2, Example 19B.


HPLC: Chiralcel AD (4.6X250 mm); 10% IPA/heptane; 1 ml/m (flow rate); rt=8.00 m; 250 nm.



1NMR equivalent to Example 18.


High Res. ES-MS: 489.2112; calc. for C25H38O4S2+Na: 489.2109.


Example 20
Preparation of 3′-[5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-methoxycarbonyl-3-methylphenyl]pentane



embedded image


A. 3′-[5-(3-Oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(trifluoromethylsulfonyloxy)-3-methylphenyl]pentane.
embedded image


To a 0° C. mixture of 3′-[5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-hydroxy-3-methylphenyl]pentane (2.7 g, 7.0 mmol) and pyridine (8 ml) is added Tf2O (1.3 ml, 7.7 mmol). The reaction is warmed to RT and stirred overnight. The reaction is diluted with Et2O, washed with 1N HCl and brine, Na2SO4 dried, and concentrated. The residue is chromatographed (30/hex) to give the title compound (2.9 g, 80%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.61 (t, J=7.3 Hz, 6H), 0.97 (s, 9H), 1.95-2.11 (m, 4H), 2.04 (s, 3H), 2.28 (s, 3H), 2.70 (m, 2H), 2.77 (m, 2H), 6.59 (s, 1H), 7.19 (dd, J=2.4, 8.8 Hz, 1H), 7.24 (d, J=8.8 Hz, 1H), 7.30 (d, J=2.0 Hz, 1H).


High Res. ES-MS: 519.1838; calc. for C25H33F3O4S2+H: 519.1851.


B. 3′-[5-(3-Oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-methoxycarbonyl-3-methylphenyl]pentane

A mixture of 3′-[5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(trifluoromethylsulfonyloxy)-3-methylphenyl]pentane (2.65 g, 5.1 mmol), DPPF (554 mg, 1.0 mmol), Pd(OAc)2 (120 mg, 0.51 mmol), DMF (10 ml), MeOH (2.1 ml) and Et3N (2.1 ml, 15.3 mmol) is heated in an autoclave at 110 C under CO pressure (1000 psi). After 48 h, the reaction is cooled to RT and diluted with Et2O. The mixture is washed with 5N HCl, water, and Na2SO4 dried and concentrated. The residue is chromatographed (10% EtOAc/hex) to give the title compound (1.86 g, 85%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.61 (t, J=7.3 Hz, 6H), 0.98 (s, 9H), 1.96-2.12 (m, 4H), 2.04 (s, 3H), 2.47 (s, 3H), 2.71 (m, 2H), 2.78 (m, 2H), 3.79 (s, 3H), 6.56 (s, 1H), 7.15 (m, 2H), 7.71 (d, J=7.8 Hz, 1H).


High Res. ES-MS: 446.2741; calc. for C26H36O3S+NH4: 446.2729.


Example 21
Preparation of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-methoxycarbonyl-3-methylphenyl]pentane



embedded image


Using a procedure analogous to Example 2, 3′-[5-(3-Oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-methoxycarbonyl-3-methylphenyl]pentane gives the title compound (785 mg, 98%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.63 (t, J=7.3 Hz, 6H), 0.77 (s, 9H), 1.35 (m, 1H), 1.54 (m, 1H), 1.98-2.13 (m, 4H), 2.04 (s, 3H), 2.48 (s, 3H), 2.56 (m, 1H), 2.79 (m, 1H), 2.95 (m, 1H), 3.79 (s, 3H), 4.37 (br s, d, 1H), 6.57 (s, 1H), 7.17 (m, 2H), 7.72 (d, J=7.8 Hz, 1H).


High Res. ES-MS: 431.2630; calc. for C26H38O3S+H: 431.2620.


Example 22
Preparation of 3′-[5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-carboxyl-3-methylphenyl]pentane



embedded image


Using a procedure analogous to Example 3, 3′-[5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-methoxycarbonyl-3-methylphenyl]pentane gives the title compound (800 mg, 92%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.62 (t, J=7.3 Hz, 6H), 0.98 (s, 9H), 1.96-2.11 (m, 4H), 2.04 (s, 3H), 2.47 (s, 3H), 2.71 (m, 2H), 2.77 (m, 2H), 6.56 (s, 1H), 7.11 (m, 2H), 7.71 (d, J=8.3 Hz, 1H), 12.64 (s, 1H).


High Res. ES-MS: 415.2297; calc. for C251134O3S+H: 415.2307.


Example 23
Preparation of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-carboxyl-3-methylphenyl]pentane



embedded image


Using a procedure analogous to Example 3, 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-methoxycarbonyl-3-methylphenyl]pentane gives the title compound (700 mg, 99%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.62 (t, J=7.3 Hz, 6H), 0.77 (s, 9H), 1.36 (m, 1H), 1.58 (m, 1H), 1.96-2.11 (m, 4H), 2.04 (s, 3H), 2.48 (s, 3H), 2.55 (m, 1H), 2.60 (m, 1H), 4.37 (d, J=6.2 Hz, 1H), 6.58 (s, 1H), 7.17 (m, 2H), 7.73 (d, J=8.1 Hz, 1H), 12.65 (br s, 1H).


High Res. ES-MS: 439.2322; calc. for C25H36O3S+Na: 439.2283.


Example 24
Preparation of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methoxycarbonylmethylaminocarbonyl)-3-methylphenyl]pentane



embedded image


To a mixture of DMAP (256 mg, 2.1 mmol), methyl glycinate hydrochloride (123 mg, 1.01 mmol), EDCI (193 mg, 1.01 mmol) and CH2C2 (4 ml) is added 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-carboxyl-3-methylphenyl]pentane (350 mg, 0.84 mmol). The reaction is added CH2Cl2 (2 ml) and DMF (1 ml). The mixture is stirred for 16 h and concentrated. The residue is diluted with Et2O, 1N HCl (3×), brine and Na2SO4 dried. The organic solution is concentrated and chromatograpbed (20% EtOAc/CHCl3 to 50% EtOAc/CHCl3) to give the title compound (320 mg, 78%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.64 (t, J=7.3 Hz, 6H), 0.77 (s, 9H), 1.35 (m, 1H), 1.57 (m, 1H), 1.98-2.12 (m, 4H), 2.32 (s, 3H), 2.53-2.61 (m, 1H), 2.77-2.84 (m, 1H), 2.95 (m, 1H), 3.65 (s, 3H), 3.94 (d, J=5.9 Hz, 2H), 4.39 (br s, 1H), 6.56 (s, 1H), 7.11 (m, 2H), 7.26 (d, J=8.3 Hz, 1H), 8.62 (t, J=5.9 Hz, 1H). ES-MS: 488.2 (M+H).


Example 25A and 25B
Preparation of enantiomers of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methoxycarbonylmethylaminocarbonyl)-3-methylphenyl]pentane



embedded image


A racemic mixture of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(metboxycarbonylmethylaminocarbonyl)-3-methylphenyl]pentane is chromatographed with a Chiralcel AD column to give enantiomer 1, Example 25A (110 mg, 37%) and enantiomer 2, Example 25B (102 mg, 34%).


Enantiomer 1, Example 25A


HPLC: Chiralcel AD (4.6X250 mm); 10% IPA/heptane; 1 ml/m (flow rate); rt=16.90 m; 240 nm.



1NMR equivalent to Example 24.


High Res. ES-MS: 488.2812; calc. for C28H41NO4S+H: 488.2835.


Enantiomer 2, Example 25B.


HPLC: Chiralcel AD (4.6X250 mm); 10% IPA/heptane; 1 ml/m (flow rate); rt=20.00 m; 240 nm.



1NMR equivalent to Example 24.


High Res. ES-MS: 488.2831; calc. for C28H41NO4S+H: 488.2835.


Example 26
Preparation of isomer 1 of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(carboxylmethylaminocarbonyl)-3-methylphenyl]pentane



embedded image


Using a procedure analogous to Example 3 but reacted at 50° C., isomer I of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methoxycarbonylmethylaminocarbonyl)-3-methylphenyl]pentane (Example 13A) gives the title compound (95 mg, 98%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.64 (t, J=7.3 Hz, 6H), 0.77 (s, 9H), 1.34 (m, 1H), 1.58 (m, 1H), 1.97-2.12 (m, 4H), 2.04 (s, 3H), 2.32 (s, 3H), 2.57 (m, 1H), 2.80 (m, 1H), 2.95 (m, 1H), 3.84 (d, J=6.3 Hz, 1H), 4.38 (br s, 1H), 6.56 (s, 1H), 7.10 (m, 2H), 7.26 (d, J=8.8 Hz, 1H), 8.48 (t, J=6.3 Hz, 1H), 12.47 (br s, 1H).


High Res. ES-MS: 474.2689; calc. for C27H39NO4S+H: 474.2678.


Example 27
Preparation of isomer 2 of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(carboxylmethylaminocarbonyl)-3-methylphenyl]pentane



embedded image


Using a procedure analogous to Example 3 except using LiOH at 60° C., isomer 2 of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methoxycarbonylmethylaminocarbonyl)-3-methylphenyl]pentane gives the title compound (79 mg, 94%).



1NMR equivalent to Example 26.


High Res. ES-MS: 474.2672; calc. for C27H39NO4S+H: 474.2678.


Example 28
Preparation of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-ethylthiophen-2-yl]-3′-[4-(ethoxycarbonylethyl)-3-methylphenyl]pentane



embedded image


3′-[5-(3-Hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(trifluoromethylsulfonyloxy)-3-methylphenyl]pentane



embedded image


Using a procedure analogous to Example 8A, isomer 1 of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-hydroxy-3-methylphenyl]pentane gives the title compound (1.1 g, 64%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.63 (t, J=7.3 Hz, 6H), 0.77 (s, 9H), 1.35 (m, 1H), 1.59 (m, 1H), 1.97-2.12 (m, 4H), 2.04 (s, 3H), 2.29 (s, 3H), 2.58 (m, 1H), 2.80 (m, 1H), 2.94 (m, 1H), 4.38 (br s, 1H), 6.59 (s, 1H), 7.21 (dd, J=2.4, 8.8 Hz, 1H), 7.26 (m, 2H), 7.33 (d, J=2.0 Hz, 1H).


High Res. EI-MS: 520.1927; calc. for C25H35F3O4S2: 520.1929.


A. 3′-[5-(3-Hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(ethoxycarbonylethyl)-3-methylphenyl]pentane

To a 0° C. mixture of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(trifluoromethylsulfonyloxy)-3-methylphenyl]pentane (1.08 g, 2.07 mmol), Pd(Dppf)2Cl2 (170 mg, 0.207 mmol), LiCl (350 mg, 8.3 mmol) and THF (1 ml) is added 0.5M of 2-(ethoxycarbonyl)ethylzinc bromide/THF (12.4 ml, 6.21 mmol). The reaction is heated to 60° C. for 1 h and concentrated (to ˜8 ml of volume) with a stream of nitrogen. The reaction is heated under nitrogen for another 15 h. After cooling, the reaction is diluted with Et2O, quenched with 2.5N HCl, washed with water, Na2SO4 dried, and concentrated. The residue is chromatographed (70% CHC3/hex to 100% CHCl3) to give the title compound (550 mg, 56%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.61 (t, J=7.3 Hz, 6H), 0.77 (s, 9H), 1.14 (t, J=6.8 Hz, 3H), 1.33 (m, 1H), 1.58 (m, 1H), 1.93-2.19 (m, 4H), 2.04 (s, 3H), 2.22 (s, 3H), 2.51-2.59 (m, 3H), 2.75-2.83 (m, 3H), 2.95 (m, 1H), 4.02 (q, J=7.3 Hz, 2H), 4.38 (br s, 1H), 6.53 (s, 1H), 6.98 (m, 3H).


High Res. ES-MS: 495.2926; calc. for C29H44O3S+Na: 495.2909.


Example 29
Preparation of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiopben-2-yl]-3′-[4-(2-carboxylethyl)-3-methylphenyl]pentane



embedded image


Using a procedure analogous to Example 3 but reacted at RT for 45 m, 3′-[5-10, (3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(2-ethoxycarbonylethyl)-3-methylphenyl]pentane gives the title compound (450 mg, 95%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.62 (t, J=7.3 Hz, 6H), 0.77 (s, 9H), 1.34 (m, 1H), 1.59 (m, 1H), 1.97-2.19 (m, 4H), 2.04 (s, 3H), 2.21 (s, 3H), 2.45 (t, J=7.3 Hz, 2H), 2.54 (m, 1H), 2.74 (t, J=8.3 Hz, 2H), 2.79 (m, 1H), 2.96 (m, 1H), 4.38 (br s, 1H), 6.53 (s, 1H), 6.99 (m, 3H), 12.09 (br s, 1H). ES-MS: 445.3 (M+H).


Example 30A and 30B
Preparation of enantiomers of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(2-carboxylethyl)-3-methylphenyl]pentane



embedded image


A racemic mixture of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(2-carboxylethyl)-3-methylphenyl]pentane is chromatographed with a Chiralcel AD column to give enantiomer 1, Example 30A (108 mg, 43%) and enantiomer 2, Example 30B (109 mg, 44%).


Enantiomer 1, Example 30A


HPLC: Chiralcel AD (4.6X250 mm); 0.1% TFA in 5% EtOH/hept; 1 ml/m (flow rate); rt=8.20 m; 210 nm.



1NMR (300 MHz, DMSO-d6) δ ppm: 0.62 (t, J=7.3 Hz, 6H), 0.77 (s, 9H), 1.35 (m, 1H), 1.61 (m, 1H), 1.97-2.10 (m, 4H), 2.04 (s, 3H), 2.22 (s, 3H), 2.47 (m, 2H), 2.56 (m, 1H), 2.77 (m, 3H), 2.95 (m, 1H), 4.37 (d, J=6.2 Hz, 1H), 6.54 (s, 1H), 7.02 (m, 3H), 12.12 (br s, 1H).


High Res. ES-MS: 462.3054; calc. for C27H4ONO3S+NH4: 462.3042.


Enantiomer 2, Example 30B.


HPLC: Chiralcel AD (4.6X250 mm); 0.1% TFA in 5% EtOH/hept; 1 ml/m (flow rate); rt=10.09 m; 210 nmn.



1NMR equivalent to Example 29.


High Res. ES-MS: 462.3057; calc. for C27H4ONO3S+NH4: 462.3042.


Example 31
Preparation of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methoxycarbonylmethoxy)-3-methylphenyl]pentane



embedded image


A. 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-hydroxy-3-methylphenyl]pentane



embedded image


Using a procedure analogous to Example 2, 3′-[5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-hydroxy-3-methylphenyl]pentane gives the title compound (4.6 g, 98%).



1NMR (300 MHz, DMSO-d6) δ ppm: 0.61 (t, J=7.3 Hz, 6H), 0.78 (s, 9H), 1.35 (m, 1H), 1.57 (m, 1H), 1.87-2.11 (m, 4H), 2.04 (s, 3H), 2.06 (s, 3H), 2.58 (m, 1H), 2.96 (dd, J=6.2, 9.1 Hz, 1H), 4.36 (d, J=6.2 Hz, 1H), 6.51 (s, 1H), 6.65 (d, J=8.1 Hz, 1H), 6.85 (dd, J=2.2, 8.4 Hz, 1H), 6.90 (s, 1H), 9.03 (s, 1H).


High Res. ES-MS: 389.2502; calc. for C24H36O2S+H: 389.2514.


B. 3′-[5-(3-Hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methoxycarbonylmethoxy)-3-methylphenyl]pentane



embedded image


Using a procedure analogous to Example 1D, 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-hydroxy-3-methylphenyl]pentane is reacted with NaH and methyl chloroacetate to give the title compound (1.85 g, 92%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.62 (t, J=7.3 Hz, 6H), 0.78 (s, 9H), 1.35 (m, 1H), 1.58 (m, 1H), 1.92-2.02 (m, 4H), 2.04 (s, 3H), 2.14 (s, 3H), 2.55 (m, 1H), 2.78 (m, 1H), 2.95 (m, 1H), 3.69 (s, 3H), 4.38 (br s, 1H), 4.78 (s, 2H), 6.53 (s, 1H), 6.69 (d, J=8.3 Hz, 1H), 6.98 (m, 2H).


High Res. ES-MS: 461.2738; calc. for C27H40O4S+H: 461.2726.


Example 32
Preparation of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(carboxylmethoxy)-3-methylphenyl]pentane



embedded image


Using a procedure analogous to Example 3, 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(methoxycarbonylmethoxy)-3-methylphenyl]pentane gives the title compound (1.4 g, 80%).



1NMR (300 MHz, DMSO-d6) δ ppm: 0.62 (t, J=7.3 Hz, 6H), 0.78 (s, 9H), 1.59 (m, 1H), 1.61 (m, 1H), 1.90-2.07 (m, 4H), 2.04 (s, 3H), 2.14 (s, 3H), 2.58 (m, 1H), 2.78 (m, 1H), 2.96 (m, 1H), 4.37 (d, J=6.2 Hz, 1H), 4.64 (s, 2H), 6.53 (s, 1H), 6.68 (d, J=9.1 Hz, 1H), 7.00 (m, 2H), 12.92 (br s, 1H).


High Res. ES-MS: 469.2392; calc. for C26H38O4S+Na: 469.2389.


Example 33A & 33B
Preparation of enantiomers of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(carboxylmethoxy)-3-methylphenyl]pentane



embedded image


A racemic mixture of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(carboxylmethoxy)-3-methylphenyl]pentane is chromatographed with a Chiralcel OJ column to give enantiomer 1, Example 33A (600 mg, 46%) and enantiomer 2, Example 33B (600 mg, 46%).


Enantiomer 1, Example 33A


HPLC: Chiralcel OJ (4.6X250 mm); 0.1% TFA in (2% MeOH and 5% EtOH in hept); 0.6 ml/m (flow rate); rt=7.10 m; 240 nmn.



1NMR equivalent to Example 32.


High Res. ES-MS: 469.2393; calc. for C26H38O4S+Na: 469.2389.


Enantiomer 2, Example 33B.


HPLC: Chiralcel OJ (4.6X250 mm); 0.1% TFA in (2% MeOH and 5% EtOH in hept);


0.6 ml/m (flow rate); rt=10.50 m; 240 mm.



1NMR equivalent to Example 32.


High Res. ES-MS: 469.2385; calc. for C26H38O4S+Na: 469.2389.


Example 34
Preparation of isomer 1 of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3-[4-(tetrazol-5-yl-aminocarbonylmethoxy)-3-methylphenyl]pentane



embedded image


Using a procedure analogous to Example 24 and crystallization from Et2O/hex, enantiomer 1 of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(carboxylmethoxy)-3-methylphenyl]pentane (Example 33A) and 5-aminotetrazole give the title compound as a white solid (45 mg, 20%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.62 (t, J=7.3 Hz, 6H), 0.77 (s, 9H), 1.33 (m, 1H), 1.57 (m, 1H), 1.92-2.00 (m, 4H), 2.04 (s, 3H), 2.19 (s, 3H), 2.56 (m, 1H), 2.78 (m, 1H), 2.95 (m, 1H), 4.38 (d, J=6.3 Hz, 1H), 4.86 (s, 2H), 6.52 (s, 1H), 6.72 (d, J=8.8 Hz, 1H), 6.99 (m, 2H), 12.21 (br s, 1H), 15.97 (br s, 1H).


High Res. ES-MS: 536.2677; calc. for C27H39O3N5S+Na: 536.2671.


Example 35
Preparation of isomer 2 of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(tetrazol-5-yl-aminocarbonylmethoxy)-3-methylphenyl]pentane



embedded image


Using a procedure analogous to Example 24 with crystallization from Et2O/hex, enantiomer 2 of 3′-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3′-[4-(carboxylmethoxy)-3-methylphenyl]pentane (Example 33B) and 5-aminotetrazole give the title compound as a white solid (70 mg, 32%).



1NMR equivalent to Example 34.


High Res. ES-MS: 536.2690; calc. for C27H39O3N5S+Na: 536.2671.


Add Preparation of racemic 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-(tetrazol-5-yl-aminocarbonyl)-4-methylthiophen-2-yl]pentane.


Example 36
Preparation of isomer 1 of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-(tetrazol-5-yl-aminocarbonyl)-4-methylthiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 24 and crystallization from CH2Cl2, enantiomer 1 of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-carboxyl-4-methylthiophen-2-yl]pentane (Example 7) and 5-aminotetrazole give the title compound as a white solid (335 mg, 77%).



1NMR (300 MHZ, DMSO-4) δ ppm: 0.67 (t, J=7.3 Hz, 6H), 0.93 (s, 9H), 2.00-2.15 (m, 4H), 2.13 (s, 3H), 2.46 (s, 3H), 3.46 (m, 1H), 3.77 (dd, J=7.3, 9.9 Hz, 1H), 4.04 (dd, J=2.9, 10.2 Hz, 1H), 4.80 (d, J=5.5 Hz, 1H), 6.87 (m, 2H), 7.04 (m, 2H), 11.80 (s, 1H), 15.92 (br s, 1H).


High Res. ES-MS: 486.2556; calc. for C25H35O3N5S+H: 486.2539.


Example 37
Preparation of isomer 2 of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-(tetrazol-5-yl-aminocarbonyl)-4-methylthiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 24 and crystallization from CH2Cl2, enantiomer 2 of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-carboxyl-4-methylthiophen-2-yl]pentane (Example 8) and 5-aminotetrazole give the title compound as a white solid (335 mg, 77%).



1NMR (300 MHz, DMSO-d6) δ ppm: 0.67 (t, J=7.3 Hz, 6H), 0.93 (s, 9H), 2.00-2.15 (m, 4H), 2.13 (s, 3H), 2.46 (s, 3H), 3.46 (m, 1H), 3.77 (dd, J=7.3, 9.9 Hz, 1H), 4.04 (dd, J=2.9, 10.2 Hz, 1H), 4.80 (d, J=5.1 Hz, 1H), 6.87 (m, 2H), 7.04 (m, 2H), 11.80 (s, 1H), 15.92 (br s, 1H).


High Res. ES-MS: 486.2545; calc. for C25H35O3N5S+H: 486.2539.


Example 38
Preparation of 5-[1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methylphenyl]propyl]-3-methylthiophene-2-carboxylic acid (2-methylsulfonyl-ethyl) amide



embedded image


To a mixture of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butyoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (0.6344 g, 1.52 mmol) and CH2Cl2 (10 mL) is added Et3N (0.85 mL, 6.07 mmol), followed by hydrochloride salt of 2-aminoethylmethylsulfone (0.2416 g, 1.52 mmol), EDCl (0.320 g, 1.67 mmol), and HOBT (0.226 g, 1.67 mmol). The resulting solution is stirred at RT overnight, diluted with CH2C2 (30 mL), washed with 1.0 M HCl (3×20 mL), brine (20 mL), dried over MgSO4, and concentrated. The resulting residue is purified by chromatography (50% EtOAc/Hex) to give the titled compound (0.4042 g, 0.77 mmol, 51%). 1H NMR (CDC3), δ 0.71 (t, J=7.3 Hz, 6H), 1.03 (s, 9H), 2.09 (q, J=7.3 Hz, 4H), 2.21 (s, 3H), 2.42 (d, J=3.0 Hz, 1H), 2.46 (s, 3H), 2.98 (s, 3H), 3.32 (t, J=6.4 Hz, 2H), 3.71 (dt, J=8.9, 2.9 Hz, 1H), 3.84-3.94 (m, 3H), 4.10 (dd, J=9.3, 2.5 Hz, 1H), 6.44 (t, J=5.8 Hz, 1H), 6.59 (s, 1H), 6.73 (d, J=8.4 Hz, 1H), 6.99 (d, J=1.7 Hz, 1H), 7.03 (dd, J=8.7, 2.5 Hz, 1H). LC/MS (m/z): calcd for C27H42NO5S2 (M+H)+:524.8; found: 524.2.


Example 39 and Example 40
Preparation of enantiomers of 5-[1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methylphenyl]propyl]-3-methylthiophene-2-carboxylic acid (2-methylsulfonyl-ethyl) amide



embedded image


A racemic mixture of 5-[1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methylphenyl]propyl]-3-methylthiophene-2-carboxylic acid (2-methylsulfonyl-ethyl) amide (247 mg) is chromatographed (CHIRALPAK AD column, 40% i-PrOH/Hept) to give enantiomer 1, Example 39 (100 mg, 40%) and enantiomer 2, Example 40 (80 mg, 32%).


Example 39, Enantiomer 1:


rt=6.0m


NMR & LC/MS: Identical to the racemic material, Example 38.


Example 40, Enantiomer 2:


rt=10.2 m


NMR & LC/MS: Identical to the racemic material, Example 38.


Example 41
Preparation of 5-{1-[4-(3,3-Dimethyl-2-oxo-butyoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-carbolic acid (2-methanesulfonyl-ethyl]-amide



embedded image


To a solution of 5-[1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methylphenyl]propyl]-3-methylthiophene-2-carboxylic acid (2-methylsulfonyl-ethyl) amide, Example 38 (0.1096 g, 0.21 mmol) in CH2Cl2 (10 mL) is added NMO (37 mg, 0.31 mmol), and TPAP (3.7 mg, 0.01 mmol). The resulting solution is stirred at RT for 5 m, then it is filtered through a silica gel column, and washed with excess amount of EtOAc. Concentration of the solvent resulted in the title compound (62 mg, 0.12 mmol, 57%).



1H NMR (CDCl3), δ 0.70 (t, J=8.0 Hz, 6H), 1.27 (s, 9H), 1.99 (m, 4H), 2.18 (s, 3H), 2.38 (s, 3H), 2.90 (s, 3H), 3.24 (t, J=6.0 Hz, 2H), 3.82 (m, 2H), 6.36 (t, J=5.8 Hz, 1H), 6.42 (d, J=8.4 Hz, 1H), 6.50 (s, 1H), 6.85-6.95 (m, 2H). LC/MS (m/z): 522.1 (M+H)+.


Example 42
Preparation of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimetliyl-butyoxy)-3-methyl-phenyl]-propyl}-3methyl-thiophene-2-carboxylic acid methoxy-methyl-amide



embedded image


Using the procedure analogous to Example 38, from 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butyoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (0.34 g, 0.81 mmol) and N-methoxy-N-methylamine hydrochloride salt (0.087 g, 0.89 mmol) furnished the titled compound (0.2083 g, 0.45 mmol, 56%).



1H NMR (CD3OD), δ 0.65 (t, J=7.4 Hz, 6H), 0.95 (s, 9H), 2.07 (q, J=7.4 Hz, 4H), 2.14 (s, 3H), 2.35 (s, 3H), 3.25 (s, 3H), 3.57 (dd, J=7.8, 2.9 Hz, 1H), 3.58 (s, 3H), 3.82 (dd, J=9.7, 7.8 Hz, 1H), 4.07 (dd, J=9.7, 2.9 Hz, 1H), 6.62 (s, 1H), 6.73 (d, J=8.9 Hz, 1H), 6.94 (d, J=2.4 Hz, 1H), 7.01 (dd, J=8.9, 2.4 Hz, 1H). LC/MS (m/z): calcd for C26H40NO4S (M+H)+:462.2; found: 462.2.


Example 43 and Example 44
Preparation of enantiomers of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butyoxy)-3-methyl-phenyl]-propyl}-3methyl-thiophene-2-carboxylic acid methoxy-methyl-amide



embedded image


A racemic mixture of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butyoxy)-3-methyl-phenyl]-propyl}-3methyl-thiophene-2-carboxylic acid methoxy-methyl-amide (92 mg) is chromatographed (CHIRALPAK AD column, 40% i-PrOH/Hept) to give enantiomer 1, Example 43 (42 mg, 46%) and enantiomer 2, Example 44 (34.5 mg, 38%).


Example 43, Enantiomer 1:


rt=4.4m


NMR & LC/MS: Identical to the racemic material, Example 42.


Example 44, Enantiomer 2:


rt=7.3m


NMR & LC/MS: Identical to the racemic material, Example 42.


Example 45
Preparation of 5-{1-[4-(3,3-dimethyl-2-oxo-butyoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3methyl-thiophene-2-carboxylic acid methoxy-methyl-amide



embedded image


Using a procedure analogous to Example 41, from 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butyoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid methoxy-methyl-amide (Example 42) (110 mg, 0.245 mmol) yielded the titled compound (107.9 mg, 98%). 1H NMR (CDC3), δ 0.71 (t, J=6.4 Hz, 6H), 1.27 (s, 9H), 2.09 (q, J=6.4 Hz, 4H), 2.27 (s, 3H), 2.48 (s, 3H), 3.30 (s, 3H), 3.67 (s, 3H), 4.85 (s, 2H), 6.52 (d, J=8.6 Hz, 1H), 6.57 (s, 1H), 7.00 (d, J=8.6 Hz, 1H), 7.02 (s, 1H). LC/MS (m/z): calcd for C26H38NO4S (M+H)+:460.2; found: 460.2.


Example 46
Preparation of 2-[5-{1-Ethyl-1-{4-(2-hydroxy-3,3-dimethyl-butyoxy)-3-methyl-phenyl-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid methyl ester



embedded image


Using the procedure analogous to Example 38, from 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butyoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (0.4307 g, 1.03 mmol) and glycine methyl ester hydrochloride (0.129 g, 1.03 mmol) furnished the titled compound (0.2535 g, 50%). 3H NMR (CDCl3), δ 0.71 (t, J=6.8 Hz, 6H), 1.03 (s, 9H), 2.09 (q, J=6.8 Hz, 4H), 2.21 (s, 3H), 2.44 (d, J 2.5 Hz, 1H), 2.48 (s, 3H), 3.72 (dt, J=8.3, 2.5 Hz, 1H), 3.78 (s, 3H), 3.87 (t, J=8.8 Hz, 1H), 4.11 (dd, J=9.2, 2.5 Hz, 1H), 4.17 (d, J=5.4 Hz, 2H), 6.20 (s, 1H), 6.61 (s, 1H), 6.73 (d, J=8.8 Hz, 1H), 6.99-7.01 (m, 1H), 7.04 (dd, J=8.8, 2.4 Hz, 1H).


LC/MS (m/z): 490.2 (M+H)+.


Example 47
Preparation of 2-[5-{1-Ethyl-1-{4-(2-hydroxy-3,3-dimethyl-butyoxy)-3-methyl-phenyl-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid



embedded image


2-[5-{1-Ethyl-1-{4-(2-hydroxy-3,3-dimethyl-butyoxy)-3-methyl-phenyl-propyl}-3-methyl-thiophene-2-carbonyl)-amino)-acetic acid methyl ester (Example 46) (0.24 g, 0.49 mmol) is dissolved in THF (5 mL), treated with H2O (1 mL) and LiOH (59 mg, 2.46 mmol) and the resulting mixture is stirred at RT overnight. The solution is diluted with H2O (10 mL), the pH value is adjusted to ca. 3-4 using 1 M HCl, it is extracted with EtOAc (2×40 mL), dried with MgSO4, filtered and concentrated to yield the titled compound (0.233 g, 0.49 mmol, 99%). 1H NMR (CD3OD), δ 0.75 (t, J=7.4 Hz, 6H), 1.05 (s, 9H), 2.17 (q, J=7.4 Hz, 4H), 2.23 (s, 3H), 2.48 (s, 3H), 3.66 (dd, J=7.8 2.9 Hz, 1H), 3.91 (dd, J=9.6, 7.8 Hz, 1H), 4.01 (s, 2H), 4.16 (dd, J=9.6, 2.9 Hz, 1H), 6.74 (s, 1H), 6.84 (d, J=8.8 Hz, 1H), 7.03-7.06 (m, 1H), 7.11 (dd, J=8.2, 2.5 Hz, 1H). LC/MS (m/z): calcd for C26H38NO5S (M+H)+:476.2; found: 476.2.


Example 48 and Example 49
Preparation of enantiomers of 2-[5-{1-Ethyl-1-{4-(2-hydroxy-3,3-dimethyl-butyoxy)-3-methyl-phenyl-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid



embedded image


A racemic mixture of 2-[5-{1-Ethyl-1-{4-(2-hydroxy-3,3-dimethyl-butyoxy)-3-methyl-phenyl-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid, Example 47 (130 mg) is chromatographed (CHIRALPAK AD column, 20% i-PrOH/Hept, 0.2% TFA) to give enantiomer 1, Example 48 (47.9 mg, 37%) and enantiomer 2, Example 49 (39 mg, 30%).


Example 48. Enantiomer 1:


rt=6.5m


NMR & LC/MS: Identical to the racemic material, Example 47.


Example 49, Enantiomer 2:


rt=15.2m


NMR & LC/MS: Identical to the racemic material, Example 47.


Example 50
Preparation of 2-[5-{1-[4-(3,3-Dimethyl-2-oxo-butyoxy)-3-methyl-phenyl)-1-ethyl-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid



embedded image


2-[5-{1-Ethyl-1-{4-(2-hydroxy-3,3-dimethyl-butyoxy)-3-methyl-phenyl-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid (Example 47) (99 mg, 0.21 mmol) is dissolved in CH2Cl2 (4 mL), treated with Dess-Martin reagent (97 mg, 0.23 mmol). The resulting mixture is stirred at RT 2 h. It is diluted with EtOAc (25 mL), washed with 10% Na2SO3 (2×20 mL) along with 0.1 M HCl (20 mL); dried with MgSO4, filtered and concentrated. Purification of the resulting crude product by flash chromatography, eluted with 15% CH3OH/EtOAc with 0.5% HOAc yielded the titled compound (56.2 mg, 0.11 mmol, 53/O). 1H NMR (CD3OD), δ 0.75 (t, J=7.2 Hz, 6H), 1.29 (s, 9H), 2.19 (q, J=7.2 Hz, 4H), 2.25 (s, 3H), 2.47 (s, 3H), 4.02 (s, 2H), 5.05 (s, 2H), 6.66 (d, J=7.6 Hz, 1H), 6.74 (s, 1H), 7.00-7.11 (m, 2H), 7.96 (bs, 1H). LC/MS (m/z): calcd for C26H36NO5S (M+H)+:474.2; found: 474.2.


Example 51
Preparation of (5-{1-ethyl-1-[4-(2-ethyl-2-hydroxy-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid



embedded image


A. 2-{4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-acetic acid methyl ester



embedded image


4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenol (10.66 g, 38.9 mmol) is reacted with methyl bromoacetate (4.4 ml, 46.7 mmol) and K2CO3 (10.70 g, 77.81 mmol) in acetone (100 m) at refluxing temperature overnight. The reaction is cooled to RT, filtered and washed with Et2O and concentrated. The crude product is purified by chromatography to give the titled compound (12.15 g, 35.1 mmol, 90%). 1H NMR (CD3Cl3), δ 0.70 (t, J=7.2 Hz, 6H), 2.04-2.12 (m, 4H), 2.21 (s, 3H), 2.26 (s, 3H), 3.81 (s, 3H), 4.63 (s, 2H), 6.57-6.61 (m, 2H), 6.69-6.71 (m, 1H), 7.02-7.06 (m, 2H). LC/MS (m/z): calcd for C20H27O3S (M+H)+:347.5; found: 347.1.


B. 3-{4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxymethyl}-pentan-3-ol



embedded image


{4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}acetic acid methyl ester (5.52 g, 15.95 mmol) is dissolved in THF (50 mL). The solution is cooled to 0° C., and treated with Ethyl magnesiumbromide (3.0 M, 13.3 mL) in a dropwise fashion. The reaction is stirred at 0° C. for 10 m, and refluxed for 3 h. It is cooled to 0° C., quenched with sat. NH4Cl (50 mL), then 1.0 M HCl (30 mL) is added. It is extracted with EtOAc (2×100 mL), dried and concentrated. The crude product is purified by chromatography to give the titled compound (5.22 g, 13.96 mmol, 87%). 1H NMR (CD3Cl3), δ 0.71 (t, J=7.4 Hz, 6H), 0.95 (t, J=7.1 Hz, 6H), 1.62-1.73 (m, 4H), 2.04-2.14 (m, 4H), 2.21 (s, 6H), 3.81 (s, 2H), 6.59-6.61 (m, 1H), 6.69-6.74 (m, 2H), 7.02-7.08 (m, 2H). LC/MS (m/z): calcd for C23H35O2S (M+H)+:375.6; found: 375.3.


C. 5-{1-Ethyl-1-[4-(2-ethyl-2-hydroxy-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid methyl ester



embedded image


3-{4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxymethyl}-pentan-3-ol, Example 51B (0.50 g, 1.34 mmol) is dissolved in THF (10 mL). The solution is cooled to 0° C., treated with YiBuLi (1.6 M, 1.8 mL, 2.95 mmol). It is stirred at 0° C. for 20 min, and methyl chloroformate (113 μL, 1.47 mmol) is added. The reaction is stirred at 0° C. for 10 min and RT for 20 m before it is quenched with satd NH4Cl (5 mL). It is diluted with H2O (10 mL), treated with 0.1 M HCl (10 ml) and extracted with EtOAc (3×15 mL), dried and concentrated. The crude product is purified by chromatography to give the titled compound (0.24 g, 0.56 mmol, 41%). 1H NMR (CD3C3), δ 0.71 (t, J=7.1 Hz, 6H), 0.95 (t, J=7.9 Hz, 6H), 1.64-1.72 (m, 4H), 2.11 (q, J=7.1 Hz, 4H), 2.21 (s, 3H), 2.49 (s, 3H), 3.81 (s, 3H), 6.61 (s, 1H), 6.72 (d, J=8.4 Hz, 1H), 6.85-7.01 (m, 2H). LC/MS (m/z): calcd for C25H40NO4S (M+NH4)+: 450.3; found: 450.3.


D. 5-{1-Ethyl-1-[4-(2-ethyl-2-hydroxy-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid



embedded image


Using a procedure analogous to Example 47, 5-{1-Ethyl-1-[4-(2-ethyl-2-hydroxy-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid methyl ester (0.23 g, 0.53 mmol) gives the title compound (0.20 g, 0.48 mmol, 91%). 1H NMR (CD3Cl3), δ 0.72 (t, J=7.6 Hz, 6H), 0.95 (t, J=7.1 Hz, 6H), 1.64-1.72 (m, 4H), 2.11 (q, J=7.6 Hz, 4H), 2.22 (s, 3H), 2.49 (s, 3H), 3.82 (s, 3H), 6.62 (s, 1H), 6.73 (d, J=8.3 Hz, 1H), 6.99-7.06 (m, 2H). LC/MS (m/z): calcd for C24H33O4S (M−H)+: 417.6; found: 417.2.


Example 52
Preparation of 2-[(5-{1-Ethyl-1-[4-(2-ethyl-2-hydroxy-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid methyl ester



embedded image



Using a procedure analogous to Example 38, 5-{1-Ethyl-1-[4-(2-ethyl-2-hydroxy-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 51) (0.3 g, 0.72 mmol), glycine methyl ester hydrochloride, and DMF (2 mL) as reaction solvent to give the title compound (0.34 g, 0.69 mmol, 97%). 1H NMR (CDC3), δ 0.71 (t, J=7.1 Hz, 6H), 0.95 (t, J=7.1 Hz, 6H), 1.63-1.72 (m, 4H), 2.04-2.14 (m, 4H), 2.21 (s, 3H), 2.48 (s, 3H), 3.78 (s, 3H), 3.81 (s, 3H), 4.15 (d, J=5.2 Hz, 2H), 6.20 (t, J=5.2 Hz, 1H), 6.63 (s, 1H), 6.72 (d, J=8.4 Hz, 1H), 6.98-7.01 (m, 1H), 7.01-7.06 (m, 1H). LC/MS (m/z): calcd. for C27H38NO5S (M−H): 488.7; found: 488.5.


Example 53
Preparation of 2-[(5-{1-Ethyl-1-[4-(2-ethyl-2-hydroxy-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid



embedded image


2-[(5-{1-Ethyl-1-[4-(2-ethyl-2-hydroxy-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid methyl ester (Example 52) (0.34 g, 0.69 mmol) is dissolved in MeOH (2 mL), treated with H2O (0.5 mL) and NaOH (0.14 g, 3.47 mmol) and the resulting mixture is heated at a reflux for two hours cooled to at ambient temperature and stirred overnight. The solution is diluted with H2O (10 mL), the pH value is adjusted to about 3-4 using 1 M HCl, it is extracted with EtOAc (40 mL). The EtOAc layer is washed with brine (20 mL), dried with MgSO4, filtered and concentrated to yield the titled compound (0.244 g, 0.51 mmol, 74%). 1H NMR (CD3OD), δ 0.72 (t, J=7.4 Hz, 6H), 0.94 (t, J=7.4 Hz, 6H), 1.64-1.74 (m, 4H), 2.03-2.20 (m, 4H), 2.18 (s, 3H), 2.44 (s, 3H), 3.79 (s, 2H), 3.97-3.99 (m, 2H), 6.71 (s, 1H), 6.79 (d, J=8.2 Hz, 1H), 6.99-7.02 (m, 1H), 7.06-7.10 (m, 1H), 7.88-7.94 (t, J=5.7 Hz, 1H). LC/MS (m/z): calcd. for C26H36NO5S (M−H): 475.6; found: 474.3


Example 54
Preparation of epimer 2 of L-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)amino]propionic acid methyl ester



embedded image


Using a procedure analogous to Example 52, enantiomer 2 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 8) (0.50 g, 1.2 mmol) and L-alanine methyl ester hydrochloride salt (0.18 g, 1.3 mmol) to give the titled compound (0.44 g, 0.87 mmol, 73%). 1H NMR (CDC3), 30.71 (t, J=7.2 Hz, 6H), 1.02 (s, 9H), 1.47 (d, J=7.2 Hz, 3H), 2.04-2.14 (m, 4H), 2.21 (s, 3H), 2.47 (s, 3H), 3.71 (dd, J=8.6, 2.5 Hz, 1H), 3.77 (s, 3H), 3.88 (t, J=8.6 Hz, 1H), 4.10 (dd, J=9.2, 2.5 Hz, 1H), 4.67-4.75 (m, 1H), 6.26 (d, J=7.1 Hz, 1H), 6.60 (s, 1H), 6.73 (d, J=7.6 Hz, 1H), 6.97-7.06 (m, 2H). LC/MS (m/z): calcd. for C28H42NO5S (M+H)+: 504.7; found: 504.4.


Example 55
Preparation of epimer 2 of L-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid



embedded image


Using a procedure analogous to Example 53, epimer 2 of L-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid methyl ester (0.42 g, 1.0 mmol) gives the title compound (0.37 g, 0.76 mmol, 73%). 1H NMR (CDC3), δ 0.71 (t, J=7.4 Hz, 6H), δ 1.02 (s, 9H), 1.51 (d, J=7.7 Hz, 3H), 2.04-2.14 (m, 4H), 2.20 (s, 3H), 2.47 (s, 3H), 3.72 (dd, J=8.7, 2.5 Hz, 1H), 3.87 (t, J-=8.7, 1H), 4.10 (dd, J=9.3, 2.8 Hz, 1H), 4.64-4.72 (m, 1H), 6.22 (d, J=7.4, 1H), 6.62 (s, 1H), 6.73 (d, J=8.4 Hz, 1H), 6.97-7.06 (m, 2H). LC/MS (m/z): calcd. for C27H4ONO5S (M+H)+: 490.7; found: 490.4.


Example 56
Preparation of epimer 2 of D-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid methyl ester



embedded image


Using a procedure analogous to Example 52, enantiomer 2 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 8) (0.40 g, 0.96 mmol) and D-alanine methyl ester hydrochloride salt (0.15 g, 1.05 mmol) to give the title compound (0.48 g, 0.95 mmol, 71%). 1H NMR (CDC3), δ 0.71 (t, J=7.5 Hz, 6H), 1.02 (s, 9H), 1.47 (d, J=7.0 Hz, 3H), 2.04-2.15 (m, 4H), 2.21 (s, 3H), 2.47 (s, 3H), 3.71 (d, J=8.6 Hz, 1H), 3.77 (s, 3H), 3.87 (t, J=9.2, 1H) 4.10 (dd, J=9.1, 2.7 Hz, 1H), 4.66-4.76 (m, 1H), 6.26 (d, J=7.6, 1H), 6.60 (s, 1H), 6.73 (d, J=8.6 Hz, 1H), 6.98-7.07 (m, 2H). LC/MS (m/z): calcd. for C28H42NO5S (M+H)+: 504.7; found: 504.4.


Example 57
Preparation of epimer 2 of D-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid



embedded image


Using a procedure analogous to Example 53, epimer 2 of D-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid methyl ester (0.34 g, 0.68 mmol) gives the title compound (0.33 g, 0.66 mmol, 79%). 1H NMR (CDC3), δ 0.71 (t, J=7.5 Hz, 6H), 1.02 (s, 9H), 1.52 (d, J=7.1 Hz, 3H), 2.04-2.14 (m, 4H), 2.21 (s, 3H), 2.47 (s, 3H), 3.71 (dd, J=8.8, 2.7 Hz, 1H), 3.88 (t, J=8.8, 1H), 4.10 (dd, J=9.2, 2.7 Hz, 1H), 4.64-4.73 (m, 1H), 6.21 (d, J=6.9, 1H), 6.62 (s, 1H), 6.73 (d, J=8.6 Hz, 1H), 6.98-7.06 (m, 2H). LC/MS (m/z): calcd. for C27H40NO5S (M+H)+: 490.7; found: 490.2.


Example 58
Preparation of L-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-succinic acid dimethyl ester



embedded image


Using a procedure analogous to Example 52, enantiomer 2 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 8) (0.4 g, 0.96 mmol) and L-aspartic acid dimethyl ester hydrochloride salt (0.21 g, 1.05 mmol) to give the title compound (0.42 g, 0.758 mmol, 78%). 1H NMR (CDCl3), δ 0.71 (t, J=7.7 Hz, 6H), 1.02 (s, 9H), 2.04-2.14 (m, 4H), 2.20 (s, 3H), 2.47 (s, 3H), 2.93 (dd, J=17.2, 4.5 Hz, 1H), 3.10 (dd, J=17.2, 4.3 Hz, 1H), 3.69-3.73 (m, 4H), 3.78 (s, 3H), 3.87 (t, J=9.1, 1H), 4.10 (dd, J=9.1, 2.6, 1H), 4.96-5.01 (m, 1H), 6.58 (s, 1H), 6.72 (d, J=7.7, 1H), 6.78 (d, J=7.8, 1H), 7.00 (d, J=1.7, 1H), 7.04 (dd, J=2.7, 8.5, 1H). LC/MS (m/z): calcd. for C30H44NO7S (M+H)+: 562.7; found: 562.4.


Example 59
Preparation of epimer 2 of L-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-succinic acid



embedded image


Using a procedure analogous to Example 53, L-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-succinic acid dimethyl ester, gives to the title compound (0.29 g, 0.54 mmol, 78%). 1H NMR (CDC3), δ 0.70 (t, J=7.4 Hz, 6H), 1.01 (s, 9H), 2.04-2.14 (m, 4H), 2.19 (s, 3H), 2.45 (s, 3H), 2.89-3.01 (m, 1H), 3.09-3.19 (m, 1H), 3.72 (d, J=8.0 Hz, 1H), 3.87 (t, J=8.8 Hz, 1H), 4.09 (d, J-=8.2 Hz, 1H), 4.98-5.05 (m, 1H), 6.60 (s, 1H), 6.71 (d, J=8.8 Hz, 1H), 6.78 (d, J=7.9 Hz, 1H), 6.98-7.05 (m, 2H), 7.30-7.60 (bs, 2H). LC/MS (m/z): calcd. for C28H40NO7S (M+H)+: 534.7; found: 534.4.


Example 60
Preparation of epimer 2 of D-2-[(5-{1′-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-succinic acid dimethyl ester



embedded image


Using a procedure analogous to Example 52, enantiomer 2 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 8) (0.4 g, 0.96 mmol) and D-aspartic acid dimethyl ester hydrochloride salt (0.21 g, 1.05 mmol) to give the title compound (0.42 g, 0.75 mmol, 78%). 1H NMR (CDCl3), δ 0.71 (t, J=7.4 Hz, 6H), 1.02 (s, 9H), 2.04-2.14 (m, 4H), 2.21 (s, 3H), 2.47 (s, 3H), 2.94 (dd, J=17.0, 4.6 Hz, 1H), 3.10 (dd, J=17.0, 4.6 Hz, 1H), 3.69-3.74 (m, 4H), 3.78 (s, 3H), 3.87 (t, J=9.1 Hz, 1H), 4.10 (dd, J=9.1, 3.0 Hz, 1H), 4.96-5.02 (m, 1H), 6.59 (s, 1H), 6.73 (d, J=8.4 Hz, 1H), 6.78 (d, J=7.2 Hz, 1H), 7.00 (d, J=2.3 Hz, 1H), 7.04 (dd, J=2.7, 8.4 Hz, 1H). LC/MS (m/z): calcd. for C30H44NO7S (M+H)+: 562.7; found: 562.4.


Example 61
Preparation of epimer 2 of D-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-succinic acid



embedded image


Using the procedure analogous to Example 53, epimer 2 of D-2-[(5-{1-Ethyl-1-[4-2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-succinic acid dimethyl ester (0.40 g, 0.71 mmol) gives the titled compound (0.30 g, 0.56 mmol, 79%). 1H NMR (CDC3), δ 0.70 (t, J=7.4 Hz, 6H), 1.01 (s, 9H), 2.04-2.14 (m, 4H), 2.19 (s, 3H), 2.45 (s, 3H), 2.89-3.01 (m, 1H), 3.09-3.19 (m, 1H), 3.72 (d, J=8.0 Hz, 1H), 3.87 (t, J=8.8 Hz, 1H), 4.09 (d, J=8.2 Hz, 1H), 4.98-5.05 (m, 1H), 6.60 (s, 1H), 6.71 (d, J=8.8 Hz, 1H), 6.78 (d, J=7.9 Hz, 1H), 6.98-7.05 (m, 2H), 7.30-7.60 (bs, 2H). LC/MS (m/z): calcd. for C28H40N7S (M+H)+: 534.7; found: 534.4.


Example 62
Preparation of epimer 2 of L-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-hydroxy-propionic acid methyl ester



embedded image


Using a procedure analogous to Example 52, enantiomer 2 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 8) (0.4 g, 0.96 mmol) and L-serine methyl ester hydrochloride salt (0.16 g, 1.05 mmol) to give the title compound (0.41 g, 0.79 mmol, 82%). 1H NMR (CDC3), δ 0.71 (t, J=7.7 Hz, 6H), 1.02 (s, 9H), 2.04-2.14 (m, 4H), 2.21 (s, 3H), 2.49 (s, 3H), 3.71 (dd, J=8.6, 2.6 Hz, 2H), 3.81 (s, 3H), 3.87 (t, J=8.7 Hz, 1H), 4.01 (d, J=3.5 Hz, 2H), 4.09 (dd, J=5.0, 2.7 Hz, 1H), 4.77-4.81 (m, 1H), 6.61 (s, 1H), 6.65 (d, J=6.6 Hz, 1H), 6.73 (d, J=8.9 Hz, 1H), 6.99 (d, J=1.8 Hz, 1H), 7.04 (dd, J=8.9, 2.6 Hz, 1H). LC/MS (m/z): calcd. for C28H42NO6S (M+H)+: 520.7; found: 520.2.


Example 63
Preparation of epimer 2 of L-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-hydroxy-propionic acid



embedded image


Using a procedure analogous to Example 53, epimer 2 of L-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-hydroxy-propionic acid methyl ester (0.40 g, 0.77 mmol) gives the titled compound (0.33 g, 0.66 mmol, 85%). 1H NMR (CDC3) δ 0.69 (t, J=7.2 Hz, 6H), 1.01 (s, 9H), 2.00-2.14 (m, 4H), 2.18 (s, 3H), 2.44 (s, 3H), 3.50 (dd, J=13.9, 6.8 Hz, 1H), 3.71 (d, J=8.0 Hz, 1H), 3.88 (t, J=8.6 Hz, 1H), 4.02 (d, J=9.2 Hz, 1H), 4.06-4.12 (m, 1H), 4.62-4.71 (m, 1H), 5.53 (bs, 2H), 6.60 (s, 1H), 6.70 (d, J=8.7 Hz, 1H), 6.79 (d, J=6.6 Hz, 1H), 6.95-7.05 (m, 2H). LC/MS (m/z): calcd. for C27H40NO6S (M+H)+: 506.7; found: 506.2.


Example 64
Preparation of epimer 1 of L-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid methyl ester



embedded image


Using a procedure analogous to Example 52, enantiomer 1 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 1) (0.50 g, 1.19 mrnmol) and L-alanine methyl ester hydrochloride salt (0.18 g, 1.31 mmol) to give the title compound (0.3 g, 0.60 mmol, 50%). 1H NMR and LC/MS: identical to (D-epimer-2), Example 56.


Example 65
Preparation of epimer 1 of L-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid



embedded image


Using a procedure analogous to 53, epimer 1 of L-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid methyl ester (0.3 g, 0.60 mmol) gives the title compound (0.27 g, 0.55 mmol, 93%). 1H NMR and LC/MS: identical to (D-epimer-2), Example 57.


Example 66
Preparation of epimer 1 of D-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid methyl ester



embedded image


Using a procedure analogous to Example 52, enantiomer 1 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 7) (0.5 g, 1.19 mmol) and D-alanine methyl ester hydrochloride salt (0.18 g, 1.31 mmol) to give the title compound (0.4 g, 0.79 mmol, 66%). 1H NMR and LC/MS: identical to 2133006 (L-Epimer-2), Example 54.


Example 67
Preparation of epimer 1 of D-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid



embedded image


Using a procedure analogous to Example 53, epimer 1 of D-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid methyl ester (0.4 g, 0.79 mmol) gives the title compound (0.33 g, 0.67 mmol, 85%). 1H NMR and LC/MS: identical to (L-epimer-2), Example 55.


Example 68
Preparation of epimer 1 of L-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-methyl-pentanoic acid methyl ester



embedded image


Using a procedure analogous to Example 52, enantiomer 1 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl)-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 7) (0.20 g, 048 mmol) and L-isoleucine methyl ester hydrochloride salt (0.095 g, 0.53 mmol) to give the title compound (0.20 g, 0.37 mmol, 76%). 1H NMR (CDC3), δ 0.71 (t, J=7.4 Hz, 6H), 0.91-0.98 (m, 6H), 1.02 (s, 9H), 1.16-1.29 (m, 1H), 1.43-1.55 (m, 1H), 1.90-2.00 (m, 1H), 2.02-2.16 (m, 4H), 2.21 (s, 3H), 2.49 (s, 3H), 3.71 (dd, J=8.7, 2.6 Hz, 1H), 3.74 (s, 3H), 3.87 (t, J=8.7 Hz, 1H), 4.10 (dd, J=9.2, 2.6 Hz, 1H), 4.74 (dd, J=8.4, 4.9 Hz, 1H), 6.21 (d, J=8.4, 1H), 6.59 (s, 1H), 6.73 (d, J=8.8 Hz, 1H), 7.00 (d, J=2.3 Hz, 1H), 7.04 (dd, J=8.6, 2.3 Hz, 1H). LC/MS (m/z): calcd. for C31H48NO5S (M+H)+: 546.8; found: 546.2.


Example 69
Preparation of epimer 1 of L-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-methyl-pentanoic acid



embedded image


Using a procedure analogous to Example 53, epimer 1 of L-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-methyl-pentanoic acid methyl ester (0.2 g, 0.37 mmol) gives the title compound (0.16 g, 0.30 mmol, 84%). 1H NMR (CDC3), δ 0.71 (t, J-7.5 Hz, 6H), 0.94-1.02 (m, 6H), 1.03 (s, 9H), 1.21-1.32 (m, 1H), 1.48-1.62 (m, 1H), 1.98-2.16 (m, 5H), 2.21 (s, 3H), 2.47 (s, 3H), 3.72 (dd, J=8.5, 2.6 Hz, 1H), 3.88 (t, J=8.5 Hz, 1H), 4.10 (dd, J=9.3, 2.7 Hz, 1H), 4.73 (dd, J=7.8, 4.8 Hz, 1H), 6.18 (d, J=8.7, 1H), 6.60 (s, 1H), 6.73 (d, J=8.4 Hz, 1H), 7.00 (d, J=2.2 Hz, 1H), 7.04 (dd, J=8.4, 2.2 Hz, 1H). LC/MS (m/z): calcd. for C30H46NO5S (M+H)+: 531.8; found: 532.1.


Example 70
Preparation of enantiomer 1 of 2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid methyl ester



embedded image


Using the procedure analogous to Example 52, enantiomer 1 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dirnethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 7) (0.2 g, 0.48 mmol) and 2-amino-2-methyl-propionic acid ethyl ester hydrochloride salt (0.018 g, 0.53 mmol) to give the title compound (0.20 g, 0.39 mmol, 71%). 1HNMR (CDC3), δ 0.69 (t, J=7.0 Hz, 6H), 1.01 (s, 9H), 1.60 (s, 6H), 2.02-2.13 (m, 4H), 2.19 (s, 3H), 2.44 (s, 3H), 3.70 (dd, J=8.9, 2.6 Hz, 1H), 3.76 (s, 3H), 3.86 (t, J=8.7, 1H), 4.09 (dd, J=9.4, 2.6 Hz, 1H), 6.28 (s, 1H), 6.59 (s, 1H), 6.73 (d, J=8.4 Hz, 1H), 6.99 (d, J=2.2 Hz, 1H), 7.04 (dd, J=8.4, 2.2 Hz, 1H). LC/MS (m/z): calcd. for C29H44NO5S (M+H)+: 518.7; found: 518.2.


Example 71
Preparation of enantiomer 1 of 2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid



embedded image


Using a procedure analogous to Example 53, enantiomer 1 of 2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid methyl ester (0.20 g, 0.39 mmol) gives the title compound (0.17 g, 0.34 mmol, 84%). 1H NMR (CDCl3), δ 0.71 (t, J=7.5 Hz, 6H), 1.02 (s, 9H), 1.65 (s, 6H), 2.03-2.14 (m, 4H), 2.21 (s, 3H), 2.47 (s, 3H), 3.71 (dd, J=8.6, 2.5 Hz, 1H), 3.87 (t, J=8.6, 1H), 4.09 (dd, J=9.2, 2.5 Hz, 1H), 6.11 (s, 1H), 6.63 (s, 1H), 6.73 (d, J=8.3 Hz, 1H), 6.73 (d, J=8.4 Hz, 1H), 6.98 (d, J=2.2 Hz, 1H), 7.04 (dd, J=8.4, 2.2 Hz, 1H). LC/MS (m/z): calcd. for C28H42NO5S (M+H)+: 504.7; found: 504.2.


Example 72
Preparation of epimer 1 of L-1-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)pyrrolidine-2-carboxylic acid methyl ester



embedded image


Using a procedure analogous to Example 52, enantiomer 1 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 7) (0.20 g, 0.4778 mmol) and L-proline methyl ester hydrochloride salt (0.09 g, 0.53 mmol) to give the title compound (0.14 g, 0.26 mmol, 56%). 1H NMR (CDC3), δ 0.69 (t, J=7.4 Hz, 3H), 0.70 (t, J=7.1 Hz, 3H), 1.00 (s, 9H), 1.85-2.14 (m, 7H), 2.19 (s, 3H), 2.21-2.36 (m, 4H), 3.60-3.78 (m, 6H), 3.86 (t, J=9.3, 1H), 4.09 (dd, J=9.3, 2.8 Hz, 1H), 4.53-4.65 (m, 1H), 6.53 (s, 1H), 6.71 (d, J=8.9 Hz, 1H), 6.96-7.06 (m, 2H). LC/MS (m/z): calcd. for C30H44NO5S (M+H)+: 530.8; found: 530.2.


Example 73
Preparation of epimer 1 of L-1-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)pyrrolidine-2-carboxylic acid



embedded image



Using a procedure analogous to Example 53, epimer 1 of L-1-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)pyrrolidine-2-carboxylic acid methyl ester (0.20 g, 0.39 mmol) gives the title compound (0.17 g, 0.34 mmol, 84%). 1HNMR (CDCl3), δ 0.71 (t, J=7.5 Hz, 6H), 1.02 (s, 9H), 1.91-2.15 (m, 8H), 2.20 (s, 3H), 2.36 (s, 3H), 2.42 (bs, 1H), 3.63-3.76 (m, 3H), 3.87 (t, J=9.2, 1H), 4.09 (dd, J=9.2, 2.6 Hz, 1H), 4.68-4.75 (m, 1H), 6.60 (s, 1H), 6.72 (d, J=8.3 Hz, 1H), 6.99 (d, J=2.2 Hz, 1H), 7.03 (dd, J=8.3, 2.2 Hz, 1H). LC/MS (m/z): calcd. for C29H42NO5S (M+H)+: 516.7; found: 516.2.


Example 74
Preparation of epimer 2 of L-1-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-pyrrolidine-2-carboxylic acid methyl ester



embedded image


Using the procedure analogous to Example 52, enantiomer 2 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 8) (0.50 g, 1.19 mmol) and L-proline methyl ester hydrochloride salt (0.22 g, 1.3 mmol) to give the title compound (0.31 g, 0.59 mmol, 49%). 1H NMR (CDC3), δ 0.70 (t, J=7.1 Hz, 3H), 0.71 (t, J=7.5 Hz, 1H), 1.02 (s, 9H), 1.87-2.15 (m, 7H), 2.20 (s, 3H), 2.22-2.38 (m, 4H), 3.60-3.78 (m, 6H), 3.87 (t, J=9.3, 1H), 4.09 (dd, J=9.3, 2.7 Hz, 1H), 4.53-4.65 (m, 1H), 6.54 (s, 1H), 6.71 (d, J=8.9 Hz, 1H), 6.96-7.06 (m, 2H). LC/MS (m/z): calcd. for C30H44NO5S (M+H)+: 530.8; found: 530.2.


Example 75
Preparation of epimer 2 of L-1-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-pyrrolidine-2-carboxylic acid



embedded image


Using the procedure analogous to Example 53, epimer 2 of 2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl)-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid methyl ester, (0.31 g, 0.59 mmol) gives the title compound (0.29 g, 0.56 mmol, 97%). 1H NMR (CDCl3), δ 0.71 (t, J=7.5 Hz, 6H), 1.02 (s, 9H), 1.92-2.15 (m, 8H), 2.20 (s, 3H), 2.36 (s, 3H), 2.41 (bs, 1H), 3.63-3.76 (m, 3H), 3.90 (t, J=8.9, 1H), 4.10 (dd, J=8.9, 2.5 Hz, 1H), 4.68-4.75 (m, 1H), 6.60 (s, 1H), 6.72 (d, J=8.5 Hz, 1H), 6.99 (d, J=2.3 Hz, 1H), 7.03 (dd, J=8.5, 2.3 Hz, 1H). LC/MS (m/z): calcd. for C29H42NO5S (M+H)+: 516.7; found: 516.3.


Example 76
Preparation of enantiomer 2 of 2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid methyl ester



embedded image


Using the procedure analogous to Example 52, enantiomer 2 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl)-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 8) (0.5 g, 1.19 mmol) and 2-amino-2-methyl-propionic acid methyl ester hydrochloride salt (0.2 g, 1.31 mmol) to give the title compound (0.44 g, 0.85 mmol, 71%). 1H NMR and LC/MS: identical to (enantiomer-1), Example 70.


Example 77
Preparation of enantiomer of 2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid



embedded image


Using the procedure analogous to Example 53, enantiomer 2 of 2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid methyl ester (0.44 g, 0.85 mmol) gives the title compound (0.35 g, 0.69 mmol, 81%). 1H NMR and LC/MS: identical to (enantiomer-1), Example 71.


Example 78
Preparation of D-1-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-pyrrolidine-2-carboxylic acid methyl ester



embedded image


Using a procedure analogous to Example 52, a racemic mixture of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (0.6 g, 1.39 mmol) and D-proline methyl ester hydrochloride salt (0.28 g, 1.53 mmol) give the title compound (0.54 g, 1.02 mmol, 73%). 1H NMR (CDC3), δ 0.70 (t, J=7.1 Hz, 3H), 0.71 (t, J=7.5 Hz, 3H) 1.02 (s, 9H), 1.88-2.16 (m, 7H), 2.20 (s, 3H), 2.22-2.38 (m, 4H), 3.61-3.79 (m, 6H), 3.87 (t, J=8.8, 1H), 4.09 (dd, J=9.1, 2.6 Hz, 1H), 4.56-4.65 (m, 1H), 6.54 (s, 1H), 6.71 (d, J=8.4 Hz, 1H), 6.98-7.06 (m, 2H). LC/MS (m/z): calcd. for C30H44NO5S (M+H)+: 530.8; found: 530.2.


Example 79 and 80
Preparation of epimers of D-1-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-pyrrolidine-2-carboxylic acid methyl ester



embedded image


A racemic mixture of D-1-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-pyrrolidine-2-carboxylic acid methyl ester (0.54 g) is chromatographed (CHIRALPAK AD column, 40% i-PrOH/Hept) to give epimerl, Example 79 (0.244 g, 45%) and epimer 2, Example 80 (0.283 g, 52%).


Example 79, Epimer1 rt=10.2 m


NMR & LC/MS: identical to 2158904 (L-epimer-2), Example 78.


Example 80, Epimer 2 rt=18.1 m


NMR & LC/MS: identical to (L-epimer-1), Example 78.


Example 81
Preparation of epimer 1 of D-1-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-pyrrolidine-2-carboxylic acid



embedded image


Using the procedure analogous to Example 53, epimer 1 of D-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid methyl ester (Example 79) (0.24 g, 0.46 mmol) gives the title compound (0.15 g, 0.29 mmol, 63%). 1H NMR and LC/MS: identical to (L-enantiomer-2), Example 75.


Example 82
Preparation of epimer 2 of D-1-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-pyrrolidine-2-carboxylic acid



embedded image



Using a procedure analogous to Example 53, epimer-2 of D-1-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-pyrrolidine-2-carboxylic acid methyl ester (Example 80) (0.28 g, 0.53 mmol) gives the title compound (0.22 g, 0.43 mmol, 79%). 1H NMR and LC/MS: identical to (L-epimer-1), Example 73.


Example 83
Preparation of D-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-methyl-butyric acid methyl ester



embedded image


Using a procedure analogous to Example 52, a racemic mixture of 5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 3) (0.60 g, 1.39 mmol) and D-valine methyl ester hydrochloride salt (0.29 g, 1.53 mmol) to give the title compound (0.54 g, 1.02 mmol, 73%). LC/MS (m/z): calcd. for C3OH46NO5S (M+H)+: 532.8; found: 532.2.


Example 84 and 85
Preparation of epimers of D-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-methyl-butyric acid methyl ester



embedded image


A racemic mixture of D-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-methyl-butyric acid methyl ester (Example 83) (0.54 g) is chromatographed (CHIRALPAK AD column, 40% i-PrOH/Hept) to give epimer 1, Example 84 (0.36 g, 48%) and epimer 2,


Example 85 (0.33 g, 45%).


Example 84, Epimer 1


rt=6.8m



1H NMR (CDC3), δ 0.71 (t, J=7.2 Hz, 6H), 0.96 (d, J=6.6 Hz, 3H), 0.99 (d, J=7.1H, 3H), 1.02 (s, 9H), 2.04-2.15 (m, 4H), 2.18 (s, 3H), 2.20-2.21 (m, 2H), 2.47 (s, 3H), 3.71 (dd, J=8.8, 2.6 Hz, 1H), 3.76 (s, 3H), 3.88 (t, J=8.8 Hz, 1H), 4.11 (dd, J=9.2, 2.6 Hz, 1H), 4.69 (dd, J=8.4, 4.9 Hz, I H), 6.19 (d, J=8.4 Hz, 1H), 6.60 (s, 1H), 6.73 (d, J=8.3 Hz, 1H), 6.90-7.06 (m, 2H). LC/MS (m/z): calcd. for C30H46NO5S (M+H)+: 532.8; found: 532.2.


Example 85, Epimer 2


rt=10.6 m



1H NMR and LC/MS: identical to (D-enantiomer-1), example 33.


Example 86
Preparation of epimer 1 of D-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-methyl-butyric acid



embedded image


Using the procedure analogous to Example 53, epimer I of D-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid methyl ester (Example 84) (0.28 g, 0.53 mmol) gives the title compound (0.22 g, 0.43 mmol, 79%). 1H NMR (CDC3), δ 0.71 (t, J=7.4 Hz, 6H), 1.00 (d, J=6.6 Hz, 3H), 1.03 (s, 9H), 1.04 (d, J=6.6 Hz, 3H), 2.04-2.14 (m, 4H), 2.21 (s, 3H), 2.25-2.35 (m, 1H), 2.47 (s, 3H), 3.72 (dd, J=8.4, 2.6 Hz, 1H), 3.88 (t, J=9.2 Hz, 1H), 4.10 (dd, J=9.2, 2.6 Hz, 1H), 4.69 (dd, J=8.0, 4.4 Hz, 1H), 6.19 (d, J=8.0 Hz), 6.60 (s, 1H), 6.73 (d, J=8.4 Hz, 1H), 7.00 (dd, J=2.2 Hz, 1H), 7.04 (dd, J=8.4, 2.6 Hz, 1H). LC/MS (m/z): calcd. for C29H44NO5S (M+H)+: 518.7; found: 518.2.


Example 87
Preparation of epimer 2 of D-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-methyl-butyric acid



embedded image



Using a procedure analogous to Example 53, epimer 2 of D-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid methyl ester (Example 85) (0.33 g, 0.62 mmol) gives the title compound (0.23 g, 0.44 mmol, 79%). 1H NMR and LC/MS: equivalent to (D-epimer-1), Example 86.


Example 88
Preparation of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 3, 3′-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane (0.23 g, 0.55 mmol) and 5N sodium hydroxide (220 ul, 1.1 mmol) give the title compound (0.18 g, 81%).


H-NMR (ppm, CDC3): 7.68 (1H, d, 4.0 Hz), 7.03 (1H, d, 8.2 Hz), 6.98 (1H, s), 6.79 (1H, d, 4.0 Hz), 6.72 (1H, d, 8.2 Hz), 4.09 (1H, d, 9.3 Hz), 3.85 (1H, t, 9.3 Hz), 3.73 (1H, d, 9.3 Hz), 2.19 (3H, s), 2.13 (4H, q, 7.0 Hz), 1.02 (9H, s), 0.71 (6H, t, 7.0 Hz).


ES/MS: 403.2 (M+1) 422.2 (M+NH4).


Example 89 and 90
Preparation of enantiomers of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane



embedded image


A mixture of racemic 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane (166 mg) is chromatographed with a ChiralPak AD column (10% IPA/hept to 15% IPA/hept) to give enantiomer 1 (63 mg), Example 89 and enantiomer 2 (67 mg), Example 90.


Enantiomer 1, Example 89


HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/85% heptane; I ml/m (flow rate); rt=4.9 m; 225 nm.


Enantiomer 2, Example 90


HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/85% heptane; 1 ml/m (flow rate); rt=6.9 m; 225 nm.


Example 91
Preparation of 3′-[4-(2-oxo-3,3-dimethylbutoxy)-3-(1-methylethyl)phenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane



embedded image


A. 3′-[4-(Hydroxy)-3-(1-methylethyl)phenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane.
embedded image


Methyl, 5-(E/Z-2-penten-3-yl)thiophene-2-carboxylate (Example 5C) (0.21 g, 1.0 mmol), o-isopropylphenol (1.09 g, 4.0 mmol), and BF3-etherate (58 mg, 0.2 mmol) are reacted and purified as described in Example 5D to give the title compound (0.28 g, 81%).


H-NMR (ppm, CDC3): 7.62 (1H, d, 4.0 Hz), 7.05 (1H, s), 6.90 (1H, d, 8.8 Hz), 6.78 (1H, d, 4.0 Hz), 6.63 (1H, d, 8.8 Hz), 4.58 (1H, s), 3.83 (3H, s), 3.15 (1H, m), 2.11 (4H, q, 7.2 Hz), 1.21 (6H, d, 6.8 Hz), 0.71 (6H, t, 7.4 Hz). ES/MS: 347.2 (M+1).


B. 3′-[4-(2-Oxo-3,3-dimethylbutoxy)-3-(1-methyletbyl)phenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane



embedded image


3′-[4-(Hydroxy)-3-(1-methylethyl)phenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane (0.18 g, 0.52 mmol), sodium hydride 60% (23 mg, 0.56 mmol), and 1-chloropinacolone (71 mg, 0.52 mmol) with a catalytic amount of potassium iodide (7 mg, 0.04 mmol) are reacted and purified as described in Example SE to give the title compound (0.13 g, 56%).


H-NMR (ppm, CDC3): 7.61 (1H, d, 4.0 Hz), 7.08 (1H, s), 6.93 (1H, d, 6.0 Hz), 6.77 (1H, d, 4.0 Hz), 6.52 (1H, d, 6.0 Hz), 4.84 (2H, s), 3.83 (3H, s), 3.38 (1H, m), 2.11 (4H, q, 7.2 Hz), 1.26 (9H, s), 1.19 (6H, d, 7.2 Hz), 0.71 (6H, t, 7.4 Hz). ES/MS: 445.2 (M+H) 462.2 (M+NH4).


Example 92
3′-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-(1-methylethyl)phenyl]-3′-[5-carboxy-thiophen-2-yl]pentane



embedded image


A. 3′-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-(1-methylethyl)phenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane



embedded image


3′-[4-(2-Oxo-3,3-dimethylbutoxy)-3-(1-methylethyl)phenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane 1 (16 mg 0.26 mmol) and sodium borohydride (9.8 mg, 0.26 mmol) are reacted in methanol and purified as described in Example SF to give the title compound (93 mg, 80%).


H-NMR (ppm, CDC3): 7.63 (1H, d, 4.0 Hz), 7.08 (1H, s), 6.99 (1H, d, 9.0 Hz), 6.78 (1H, d, 4.0 Hz), 6.74 (1H, d, 9.0 Hz), 4.09 (1H, d, 8.2 Hz), 3.85 (1H, t, 8.2 Hz), 3.83 (3H, s), 3.72 (1H, d, 8.2 Hz), 3.25 (1H, m), 2.40 (1H, s), 2.12 (4H, q, 7.2 Hz), 1.17 (6H, d, 6.8 Hz), 1.02 (9H, s), 0.71 (6H, t, 7.2 Hz).


ES/MS: 447.2 (M+1).


B. 3′-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-(1-methylethyl)phenyl]-3′-[5-carboxy-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 3, 3′-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-(1-methylethyl)phenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane (93 mg, 0.21 mmol) and 5N sodium hydroxide (1 ml, 5 mmol) are reacted and purified to give the title compound (66 mg, 73%).


H-NMR (ppm, CDC3): 7.69 (1H, d, 4.0 Hz), 7.08 (1H, s), 6.99 (1H, d, 6.0 Hz), 6.80 (1H, d, 4.0 Hz), 6.74 (1H, d, 6.0 Hz), 4.08 (1H, d, 8.0 Hz), 3.84 (1H, t, 8.0 Hz), 3.73 (1H, d, 8.0 Hz), 3.25 (1H, m), 2.13 (4H, q, 6.8 Hz), 1.17 (6H, d, 6.0 Hz), 1.02 (9H, s), 0.72 (6H, t, 7.0 Hz).


ES/MS: 431.2 (M-1) 450.2 (M+NH4).


Example 93
Preparation of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-n-propylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane



embedded image


A. 3′-(4-hydroxy-3-n-propylphenyl)-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane



embedded image


To a mixture of o-propylphenol (1.09 g, 8.0 mol) and methyl, 5-(z/e-2-penten-3-yl)thiophene-2-carboxylate (0.21 g, 1.0 mmol) in methylene chloride (1 ml) is added BF3-etherate (56 mg, 0.2 mmol) under nitrogen and stirred for 16 h. The mixture is partitioned between satd NaHCO3 and diethylether. The organic layer is washed with water, Na2SO4 dried, and concentrated. The excess phenol is removed from the residue by vacuum distillation at 70° C./0.04 mm. The residue is chromatographed (4% EtOAc/hex) to give the title compound as an oil (0.27 g, 78%). NMR (CDC13): 7.62 (d, 1H, J=3.6 Hz); 6.96 (s, 1H); 6.94 (d, 1H, J=7.3 Hz); 6.77 (d, 1H, J=3.6 Hz); 6.66 (d, 1H, J=8.0 Hz); 4.61 (s, 1H); 3.83 (s, 3H); 2.55 (t, 2H, J=7.3 Hz); 2.11 (q, 4H, J=7.2 Hz); 1.60 (m, 2H); 0.93 (t, 3H, J=7.3 Hz); 0.71 (t, 6H, J=7.2 Hz). FAB/MS: 347 M+1.


B. 3′-[4-(2-Oxo-3,3-dimethylbutoxy)-3-n-propylphenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 91B, 3′-(4-hydroxy-3-n-propylphenyl)-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane (0.27 g, 0.78 mmol) give the title compound as an oil (0.21 g, 60%).


NMR (CDCl3): 7.61 (d, 1H, J=4.4 Hz); 6.97 (s, 1H); 6.95 (d, 1H, J=7.3 Hz); 6.77 (d, 1H, J=4.4 Hz); 6.50 (d, 1H, J=7.3 Hz); 4.83 (s, 2H); 3.83, (s, 3H); 2.61 (t, 2H, J=7.3 Hz); 2.10 (q, 4H, J=7.3 Hz); 1.59 (m, 2H); 1.26 (s, 9H); 0.90 (t, 3H, 7.3 Hz); 0.70 (t, 6H, 7.3 Hz).


FAB-MS: 444.3 molecular ion.


C. 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-n-propylphenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane



embedded image


To a mixture of 3′-[4-(2-oxo-3,3-dimethylbutoxy)-3-n-propylphenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane (0.199 g, 0.45 mmol) and MeOH (5 ml) is added NaBH4 (17 mg, 0.45 mmol) in portions. After stirring for 4.5 h at room temperature, the reaction is concentrated and partitioned between satd NaHCO3 and diethylether. The organic layer is washed with water, Na2SO4 dried, and concentrated to give the title compound as an oil (0.18 g, 90%).


NMR(CDC13): 7.62 (d, 1H, J=3.6 Hz); 7.02 (1H, d, J=7.5 Hz); 6.98 (s, 1H); 6.78 (d, 1H, 3.6 Hz); 6.73 (d, 1H, 7.5 Hz); 4.08 (1H, d, J=9.0); 3.85 (t, 1H, J=9.0); 3.83 (s, 3H); 3.71 (d, 1H, J=9.0 Hz); 2.55 (t, 2H, 7.5 Hz); 2.40 (s, 1H); 2.12 (q, 4H, J=7.6 Hz); 1.55 (m, 2H); 1.02 (s, 9H); 0.90 (t, 3H, J=7.6 Hz); 0.71 (t, 6H, J=7.2 Hz).


LC/MS: 447.2 M+1.


D. 3′-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-n-propylphenyl]-3′-[5-carboxy-tbiophen-2-yl]pentane

A mixture of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-n-propylphenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane (0.18 g, 0.4 mmol), methanol (3 ml) and 5N NaOH (161 uL, 0.8 mmol) is heated to 50° C. for 16 h. The reaction mixture is concentrated and the residue dissolved in water (4 mL). The solution is added conc. HCl, filtered with water wash, and air dried to give the title compound (0.16 g, 92%).


NMR(CDCl3): 7.69 (d, 1H, J=4.0 Hz); 7.02 (d, 1H, J=7.5 Hz); 6.98 (s, 1H); 6.79 (d, 1H, J=4.0 Hz); 6.75 (d, 1H, J=7.5 Hz); 5.29 (s, 1H); 4.08 (d, 1H, J=9.0); 3.85 (t, 1H, J=9.0 Hz); 3.70 (d, 1H, J=9.0 Hz); 2.55 (t, 2H, J=7.5 Hz); 2.13 (q, 4H, J=7.2 Hz); 1.55 (m, 1H); 1.02 (s, 9H); 0.90 (t, 3H, H=7.4 Hz); 0.72 (t, 6H, J=7.4 Hz).


LC/MS: 413.2 M-1.


Example 94 and 95
Preparation of enantiomers of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-n-propylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane



embedded image


A mixture of racemic 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-n-propylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane (200 mg) is chromatographed on a ChiralPak AD column with IPA/heptane. Enantiomer 1 is further chromatographed on 4 g of Silica Gel from 0% EtOAc/Hex to 50% EtOAc/Hex over 38 min at 12 ml/min to give pure enantiomer 1 (66 mg), Example 94. Enantiomer 2 from ChiralPak is further chromatographed on 4 g of Silica Gel from 0% EtOAc/Hex to 50% EtOAc/Hex over 38 min at 12 ml/min. to give pure enantiomer 2 (66 mg), Example 95.


Enantiomer 1, Example 94


HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/85% heptane; 1 ml/m (flow rate);


rt=6.22 m; 225 nmn.


Enantiomer 2, Example 95


HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/85% heptane; 1 ml/m (flow rate); rt=9.0 m; 225 nm.


Example 96
Preparation of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-i-propylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane



embedded image


A. 3′-(4-hydroxy-3-i-propylphenyl)-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane



embedded image


Using a a procedure analogous to Example 93A, o-isopropylphenol (1.09 g, 8 mol) and methyl, 5-(E/Z-2-penten-3-yl)thiophene-2-carboxylate (0.21 g, 1.0 mol) give the title compound as an oil (0.28 g, 81%).


NMR (CDC13): 7.62 (d, 1H, J=4.0 Hz); 7.05 (s, 1H); 6.90 (d, 1H, J=8.4 Hz); 6.78 (d, 1H, J=4.0 Hz); 6.63 (d, 1H, J=8.8 Hz); 4.58 (s, 1H); 3.83 (s, 3H); 3.15 (m, 1H); 2.11 (q, 4H, J=7.2 Hz); 1.21 (d, 6H, J=6.1 Hz); 0.71 (t, 6H, J=7.4 Hz).


LC/MS: 347.2 M+1.


B. 3′-[4-(2-Oxo-3,3-dimethylbutoxy)-3-i-propylphenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 91B, 3′-(4-hydroxy-3-i-propylphenyl)-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane (0.28 g, 0.81 mmol) gives the title compound as an oil (0.13 g, 56%).


NMR (CDC13): 7.61 (d, 1H, J=4.4 Hz); 7.09 (s, 1H); 6.94 (d, 1H, J=8.4 Hz); 6.77 (d, 1H, J=4.4 Hz); 6.53 (d, 1H, J=8.4 Hz); 4.84 (s, 2H); 3.83, (s, 3H); 3.38 (m, 2H); 2.11 (q, 4H, J=7.2 Hz); 1.26 (s, 9H); 1.19 (d, 6H, J=7.2 Hz); 0.70 (t, 6H, 7.2 Hz).


FAB-MS: 444.3 molecular ion.


LC/MS: 445.2 M+1 and 462.2 M+NH4.


C. 3′-[4-(2-Hydroxy-3,3-dimetliylbutoxy)-3-i-propylphenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 2, 3′-[4-(2-Oxo-3,3-dimethylbutoxy)-3-i-propylphenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane gives the title compound as an oil (0.09 g, 80%).


NMR(CDC13): 7.62 (d, 1H, J=3.6 Hz); 7.08 (s, 1H); 6.99 (1H, d, J=8.8 Hz); 6.78 (d, 1H, 3.6 Hz); 6.73 (d, 1H, 8.8 Hz); 4.08 (1H, d, J=8.8); 3.85 (t, 1H, J=8.8); 3.83 (s, 3H); 3.71 (d, 1H, J=8.8 Hz); 3.28 (m, 1H); 2.12 (q, 4H, J=7.2 Hz); 1.17 (d, 6H, J=6.8 Hz); 1.02 (s, 9H); 0.71 (t, 6H, J=7.2 Hz).


LC/MS: 447.2 M+1.


D. 3′-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-i-propylphenyl]-3′-[5-carboxyl-thiophen-2-yl]pentane

Using a procedure analogous to Example 3, 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-i-propylphenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane (0.93 g , 0.21 mmol) and 5N NaOH aq (1 mL, 5 mmol) give the title compound as an oil (66 mg, 73%).


NMR(CDC13): 7.69 (d, 1H, J=3.6 Hz); 7.08 (s, 1H); 6.98 (d, 1H, J=8.1 Hz); 6.79 (d, 1H, J=3.6 Hz); 6.74 (d, 1H, J=8.1 Hz); 4.08 (d, 1H, J=7.4); 3.85 (t, 1H, J=7.4 Hz); 3.72 (d, 1H, J=7.4 Hz); 3.25 (m, 1H); 2.13 (q, 4H, J=6.8 Hz); 1.17 (d, 6H, J=6.0 Hz); 1.02 (s, 9H); 0.72 (t, 6H, J=6.8 Hz).


LC/MS: 450.2 M+NH4.


Example 97 and Example 98
Preparation of enantiomers of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-i-propylphenyl]3′-[5-carboxy-thiophen-2-yl]pentane



embedded image


A mixture of racemic 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-i-propylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane (22 mg) is chromatographed on a ChiralPak AD column with IPA/beptane) to give enantiomer 1 (8 mg), Example 97 and enantiomer 2 (7 mg), Example 98.


Enantiomer 1, Example 97


HPLC: ChiralPak AD (4.6×250 mm); 15% IPA/85% heptane; 1 ml/m (flow rate); rt


Enantiomer 2, Example 98


HPLC: ChiralPak AD (4.6×250 mm); 15% IPA/85% heptane; 1 ml/m (flow rate); rt 6.53 m; 225 nm.


Example 99
Preparation of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-ethylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane



embedded image


A. 3′-(4-hydroxy-3-ethylphenyl)-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 93A, o-ethylphenol (0.98 g, 8.0 mol) and methyl, 5-(E/Z-2-penten-3-yl)thiophene-2-carboxylate (0.21 g, 1.0 mol) give the title compound as an oil (0.26 g, 78%).


NMR (CDC13): 7.62 (d, 1H, J=4.0 Hz); 6.98 (s, 1H); 6.94 (d, 1H, J=7.2 Hz); 6.78 (d, 1H, J=4.0 Hz); 6.66 (d, 1H, J=7.2 Hz); 4.60 (s, 1H); 3.83 (s, 3H); 2.59 (q, 2H, J=7.7 Hz); 2.11 (q, 4H, J=7.2 Hz); 1.19 (t, 3H, J=7.6 Hz); 0.71 (t, 6H, J=7.2 Hz). FAB/MS: 333 M+1.


B. 3′-[4-(2-Oxo-3,3-dimethylbutoxy)-3-ethylphenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 91B, 3′-(4-hydroxy-3-ethylphenyl)-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane (0.26 g, 0.78 mmol) gives the title compound as an oil (0.24 g, 71%).


NMR (CDC13): 7.61 (d, 1H, J=3.6 Hz); 7.02 (s, 1H); 6.96 (d, 1H, J=7.3 Hz); 6.77 (d, 1H, J=3.6 Hz); 6.52 (d, 1H, J=7.3 Hz); 4.83 (s, 2H); 3.83, (s, 3H); 2.66 (q, 2H, J=7.3 Hz); 2.12 (q, 4H, J=7.6 Hz); 1.21 (s, 9H); 1.18 (t, 3H, 7.3 Hz); 0.70 (t, 6H, 7.6 Hz).


LC/MS:431.2M+1.


C. 3′-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-ethylphenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 2, 3′-[4-(2-Oxo-3,3-dimethylbutoxy)-3-ethylphenyl]-3′-[5-methoxycarbonyl-thiophen-2-yl]pentane (0.22 g, 0.5 mmol) gives the title compound as an oil (0.16 g, 75%).


NMR(CDC13): 7.62 (d, 1H, J=3.2 Hz); 7.01 (1H, d, J=7.4 Hz); 7.00 (s, 1H); 6.78 (d, 1H, 3.2 Hz); 6.73 (d, 1H, 7.4 Hz); 4.08 (1H, d, J=8.1); 3.85 (t, 1H, J=8.1); 3.83 (s, 3H); 3.70 (d, 1H, J=8.1 Hz); 2.60 (t, 2H, 7.6 Hz); 2.40 (s, 1H); 2.12 (q, 4H, J=7.2 Hz); 1.49 (t, 3H, J=7.2 Hz); 1.02 (s, 9H); 0.71 (t, 6H, J=7.2 Hz).


LC/MS showed a 433.2 M+1.


D. 3′-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-ethylphenyl]-3′-[5-carboxyl-thiophen-2-yl]pentane

Using a procedure analogous to Example 3, 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-ethylphenyl]-3′-[5-methoxycarbonyl-tliiophen-2-yl]pentane, methanol, and 5N NaOH at 50° C. for 16 h to give the title compound (0.15 g, 94%).


NMR(DMS0-D6): 7.53 (d, 1H, J=3.6 Hz); 7.01 (d, 1H, J=8.8 Hz); 7.00 (s, 1H); 6.90 (d, 1H, J=3.6 Hz); 6.85 (d, 1H, J=8.8 Hz); 4.04 (d, 1H, J=9.4); 3.86 (t, 1H, J=9.4 Hz); 3.44 (d, 1H, J=9.4 Hz); 2.56 (m, 2H); 2.09 (m, 4H); 1.08 (t, 3H, J=8.0 Hz); 0.93 (s, 9H); 0.65 (t, 6H, J=7.4 Hz).


LC/MS: 417.2 M−1.


Example 100 and Example 101
Preparation of enantiomers of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-ethylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane



embedded image


A mixture of racemic 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-ethylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane (140 mg) is chromatographed on a ChiralPak AD column with IPA/heptane to give enantiomer 1 (59 mg), Example 100 and enantiomer 2 (51 mg), Example 101.


Enantiomer 1, Example 100


HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/85% heptane; 1 ml/m (flow rate);


rt=4.42 m; 225 nm.


Enantiomer 2, Example 101


HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/85% heptane; 1 ml/m (flow rate);


rt=6.61 m; 225 nm.


Example 103
Preparation of 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane



embedded image


A. 3′-[4-Hydroxy-3-methylphenyl]pentan-3-ol.
embedded image


To a mixture of methyl, 4-hydroxy-3-methylbenzoate (21.8 g (0.13 mol) and 200 ml of THF is added 1 M ethylmagnesium bromide/THF (432 mL (0.43 mol) under nitrogen. The mixture is stirred for 60 h and quenched with satd NaHCO3. The mixture is triturated five times with ether and the combined organic layers is washed with satd NaHCO3 and brine. The organic layer is Na2SO4 dried, filtered, and concentrated to give 27 g (99%) of the title compound.


NMR (CDC13): 7.12 (s, 1H); 7.03 (d, 1H, 8.0 Hz); 6.72 (d, 1H, J=8.0 Hz); 4.69 (s, 1H); 2.26 (s, 3H); 1.80 (m, 4H); 0.79 (t, 6H, 7.4 Hz).


ES/MS: 193 (M-1).


B. 3′-[4-Hydroxy-3-methylphenyl]-3′-(thiophen-2-yl)pentane



embedded image


To a mixture of thiophene (6 mL) and 3′-[4-hydroxy-3-methylphenyl]pentan-3-ol (0.92 g, 5 mmol) is added boron trifluoride etherate (100 ul, 0.8 mmol). The mixture is stirred for 96 h and partitioned between diethyl ether and satd NaHCO3. The organic layer is washed with satd NaHCO3, brine, Na2SO4 dried, and concentrated. The residue is chromatographed (12 g of SiO2, Hex to 8% EtOAc/Hex) to give the title compound (0.53 g (41%).


[ES/MS 259.1 (M-1)].


C. 3′-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3′-(thiophen-2-yl)pentane



embedded image


Using a procedure analogous to Example 91B, 3′-[4-hydroxy-3-methylphenyl]-3′-(thiophen-2-yl)pentane (0.53 g, 2.2 mmol) gives the title compound as an oil (0.47 g, 64%).


NMR (CDC13): 7.14 (d, 1H, J=6.3 Hz); 7.03 (s, 1H); 6.98 (d, 1H, J=9.0 Hz); 6.90 (m, 1H), 6.79 (d, 1H, J=6.3 Hz), 6.52 (d, 1H, J=9.0 Hz), 4.83 (s, 2H); 2.26 (s, 3H); 2.09 (m, 4H); 1.24 (s, 9H), 0.68 (t, 6H, 7.0 Hz).


ES/MS: 359.2 (M+1) 376.2 (M+NH4).


D. 3′-[4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3′-(thiophen-2-yl)pentane



embedded image


To a mixture of 3′-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3′-(thiophen-2-yl)pentane (0.47 g (1.3 mmol) and diethyl ether (15 mL) is added 3 M methylmagnesium iodide/THF (1.3 ml, 3.9 mmol). After stirring for 2 h, the mixture is quenched with satd NaHCO3 and triturated five times with diethyl ether. The combined organic layers is washed with water, brine, Na2SO4 dried, and concentrated to give the title compound (0.6 g, 99%).


NMR (CDCl3): 7.13 (d, 1H, J=5.0 Hz); 7.02 (s, 1H); 7.03 (d, 1H, J=8.4 Hz); 6.90 (m, 1H), 6.80 (d, 1H, J=5.0 Hz), 6.70 (d, 1H, J=8.4 Hz), 4.00 (d, 1H, J=8.8 Hz); 3.83 (d, 1H, J=8.8 Hz); 2.27 (s, 1H); 2.21 (s, 3H); 2.11 (m, 4H); 1.32 (s, 3H); 1.05 (s, 9H), 0.70 (t, 6H, 7.2 Hz).


ES-MS: 375.2 (M+1) 357.2 (M−H2O).


E. 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane



embedded image


To a 0° C. mixture of 3′-[4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3′-(thiophen-2-yl)pentane (0.6 g, 1.3 mmol) and cycloHex (20 ml) and ether (2 ml) is added 1.4 M sec-butyl lithium/cycloHex (2.85 ml, 3.2 mmol). The mixture is allowed to warm to RT and excess CO2 gas is bubbled in. After two h, the mixture is partitioned between satd NaHCO3 and diethyl ether. The aq phase is acidified with conc. perchloric acid and extracted into diethyl ether. The organic phase is washed with water, brine, Na2SO4 dried and concentrated. The residue is chromatographed (2% EtOAc/Hex to 50% EtOAc/Hex) to give of the title compound (0.3 g (44%).


NMR (CDC3): 7.69 (d, 1H, J=3.6 Hz); 6.99 (s, 1H); 7.03 (d, 1H, J=8.4 Hz); 6.80 (d, 1H, J=3.6 Hz), 6.72 (d, 1H, J=8.4 Hz), 4.00 (d, 1H, J=8.8 Hz); 3.83 (d, 1H, J=8.8 Hz); 2.22 (s, 3H); 2.13 (q, 4H, J=7.2 Hz); 1.33 (s, 3H); 1.04 (s, 9H), 0.72 (t, 6H, 7.2 Hz).


ES-MS: 417.3 (M-1) 436.3 (M+NH4).


Example 104 and Example 105
Preparation of enantiomers of 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane

A mixture of racemic 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane (˜290 mg) is chromatographed on a ChiralPak AD column with IPA/heptane to give enantiomer 1 (125 mg, 43), Example 104 and enantiomer 2 (140 mg, 48%), Example 105.


Enantiomer 1, Example 104


HPLC: ChiralPak AD (4.6X250 mm); 20% IPA/80% heptane; 1 ml/m (flow rate);


rt=6.09 m; 225 nm.


Enantiomer 2, Example 105


HPLC: ChiralPak AD (4.6X250 mm); 20% IPA/80% heptane; 1 ml/m (flow rate);


rt=8.00 m; 225 nm.


Example 106
Preparation of enantiomer 1 of 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3′-[5-(carboxymethylamino)carbonyl-thiophen-2-yl]pentane



embedded image


A. of 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3′-[5-(methylcarbonyl-methylamino)carbonyl-thiophen-2-yl]pentane

To a mixture of enantiomer 1 of 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane and DMSO (1 ml) is added EDCl (55 mg, 0.29 mmol), 0.5 M HOAT (523 uL, 0.26 mmol), methyl, aminoacetic acid hydrochloride (33 mg, 0.26 mmol), and triethylamine (136 uL, 1 mmol). The mixture is stirred for 72 h at RT, partitioned between diethyl ether and satd NaHCO3. The organic layer is washed with water, 2M HCl, water, satd NaHCO3, then Na2SO4 dried, and concentrated. The residue is chromatographed (Hex to 30% EtOAc/Hex) to give the title compound (60 mg, 51%).


NMR (CDC3): 7.40 (d, 1H, J=3.6 Hz); 7.04 (d, 1H, J=8.8 Hz); 6.98 (s, 1H); 6.77 (d, 1H, J=3.6 Hz), 6.71 (d, 1H, J=8.8 Hz), 4.00 (d, 1H, J=8.8 Hz); 6.53 (m, 1H); 4.18 (d, 1H, J=4.8 Hz); 4.00 (d, 1H, J=8.8 Hz); 3.84 (d, 1H, J=8.8 Hz); 3.78 (s, 3H); 2.21 (s, 3H); 2.11 (q, 4H, J=7.2 Hz); 1.33 (s, 3H); 1.04 (s, 9H), 0.70 (t, 6H, 7.2 Hz).


ES-MS: 490.4 (M+1) 488.4 (M-1).


B. 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3′-[5-(carboxymethyl-amino)carbonyl-thiophen-2-yl]pentane, enantiomer 1



embedded image


To a mixture of enantiomer 1 of 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3′-[5-(methylcarbonyl-methylamino)carbonyl-thiophen-2-yl]pentane (60 mg, 0.12 mmol) and 50% methanol/water (0.5 ml) is added lithium hydroxide (6 mg, 0.24 mmol). The mixture is heated to 40° C. for one h and concentrated. The residue is added ice and acidified with conc. HCl (pH˜1). The suspension is filtered, washed with water, and air dried to give the title compound as a solid (50 mg, 86%).


NMR (CDCl3): 7.45 (d, 1H, J=4.0 Hz); 7.04 (d, 1H, J=8.4 Hz); 6.97 (s, 1H); 6.79 (d, 1H, J=4.0 Hz), 6.70 (d, 1H, J=8.4 Hz), 4.00 (d, 1H, J3=8.8 Hz); 6.59 (m, 1H); 4.17 (s, 1H); 4.00 (d, 1H, J=8.8 Hz); 3.83 (d, 1H, J=8.8 Hz); 3.02 (m, 1H); 2.20 (s, 3H); 2.11 (q, 4H, J=7.2 Hz); 1.33 (s, 3H); 1.01 (s, 9H), 0.70 (t, 6H, 7.2 Hz).


ES/MS: 476.3 (M+1) 474.3 (M-1).


Example 107
Preparation of 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane



embedded image


A. 3′-[4-Hydroxy-3-ethylphenyl]pentan-3-ol



embedded image


Using a procedure analogous to Example 103A, methyl, 4-hydroxy-3-ethylbenzoate (7.7 g, 43 mmol) gives the title compound as an oil (9.2 g, 99%).


NMR (CDC13): 7.13 (s, 1H); 7.04 (d, 1H, 8.0 Hz); 6.71 (d, 1H, J=8.0 Hz); 4.65 (s, 1H); 2.64 (q, 2H. J=7.2 Hz); 1.81 (m, 4H); 1.23 (m, 3H); 0.77 (t, 6H, 7.2 Hz).


ES/MS: 207.1 (M-1).


B. 3′-[4-(2-oxo-3,3-dimethylbutoxy)-3-ethylphenyl]pentan-3-ol



embedded image


Using a procedure analogous to Example 91B, 3′-[4-hydroxy-3-ethylphenyl]pentan-3-ol (9.2 g, 43 mmol) gives the title compound (11.9 g, 91%).


NMR (CDCl3): 7.14 (s, 1H); 7.10 (d, 1H, J=8.0 Hz); 6.58 (d, 1H, 3 =8.0 Hz); 4.85 (s, 2H); 2.71 (q, 2H. J=7.6 Hz); 1.80 (m, 4H); 1.25 (s, 9H); 1.23 (t, 3H, J=7.6 Hz); 0.76 (t, 6H, 7.2 Hz).


ES/MS: 289.1 (M+H−H2O).


C. 3′-[4-(2-Oxo-3,3-dimethylbutoxy)-3-ethylphenyl]-3′-(thiophen-2-yl)pentane



embedded image


Using a procedure analogous to Example 103B, 3′-[4-(2-oxo-3,3-dimethylbutoxy)-3-ethylphenyl]pentan-3-ol (10.9 g, 36 mmol) gives the title compound (6.1 g, 46%).


NMR (CDC13): 7.14 (d, 1H, J=1.2 Hz); 7.06 (s, 1H); 6.96 (d, 1H, J=8.4 Hz); 6.90 (t, 1H, J=5.2 Hz); 6.80 (d, 1H, J=1.2 Hz); 6.52 (d, 1H, J=8.4 Hz); 4.83 (s, 2H); 2.67 (q, 2H, J=7.2 Hz); 2.10 (q, 4H, J=7.4); 1.25 (s, 9H); 1.20 (t, 3H, J=7.2 Hz); 0.70 (t, 6H, 7.4 Hz).


ES/MS: 373.2 (M+1) 390.2 (M+NH4).


D. 3′-[4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl]-3′-(thiophen-2-yl)pentane



embedded image


Using a procedure analogous to Example 103D, 3′-[4-(2-Oxo-3,3-dimethylbutoxy)-3-ethylphenyl]-3′-(thiophen-2-yl)pentane (3.7 g, 10 mmol) gives the title compound after silica gel chromatography (1.8 g, 46%).


NMR (CDC3): 7.15 (d, 1H, J=6.3 Hz); 7.04 (s, 1H); 7.03 (d, 1H, underlying); 6.90 (t, 1H, J=5.2 Hz); 6.81 (m, 1H); 6.53 (d, 1H, J=8.4 Hz); 4.00 (d, 1H, J=8.4 Hz); 3.84 (d, 1H, J=8.4 Hz); 2.62 (q, 2H, J=7.6 Hz); 2.11 (q, 4H, J=7.6); 1.33 (s, 3H); 1.16 (t, 3H, J=7.6 Hz); 1.04 (s, 9H); 0.71 (t, 6H, 7.6 Hz).


ES/MS: 371.2 (M−H2O+1) 389.2 (M+1).


E. 3′-[4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 103E, 3′-[4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl]-3′-(thiophen-2-yl)pentane (1.45 g, 3.7 mmol) gives the title compound (0.75 g, 46%).


NMR (CDC13): 7.70 (d, 1H, J=3.6 Hz); 7.02 (s, 1H); 7.03 (d, 1H, underlying); 6.80 (d, 1H, J=3.6 Hz); 6.73 (d, 1H, J=8.4 Hz); 4.00 (d, 1H, J=8.8 Hz); 3.85 (d, 1H, J 8.8 Hz); 2.62 (q, 2H, J=7.6 Hz); 2.14 (q, 4H, J=7.2); 1.33 (s, 3H); 1.17 (t, 3H, J=7.6 Hz); 1.04 (s, 9H); 0.72 (t, 6H, 7.2 Hz).


ES/MS: 431.5 (M-1).


Example 108 and Example 109
Preparation of enantiomers of 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane





    • enantiomer 1

    • enantiomer 2





A mixture of racemic 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane (0.93 g) is chromatographed (ChiralPak AD column;


5% ethyl alcohol/95% Hept to give enantiomer 1 (453 mg), Example 108 and enantiomer 2 (438 mg), Example 109.


Enantiomer 1, Example 108


HPLC: ChiralPak AD (4.6X250 mm); 5% IPA/95% heptane; 1 ml/m (flow rate); rt=10.2 m; 225 nm.


Enantiomer 2, Example 109


HPLC: ChiralPak AD (4.6X250 mm); 5% IPA/95% heptane; 1 ml/m (flow rate); rt=13.0 m; 225 nm.


Example 110
Preparation of enantiomer 1 of d-3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyll-3′-[5-(carboxy-1-ethylamino)carbonyl-thiophen-2-yl]pentane



embedded image


A. Enantiomer 1 of d-3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl)-3′-[5-(methoxycarbonyl-1-ethylamino)carbonyl-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 106A, enantiomer 1 of 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane (310 mg, 0.71 mmol) and d-alanine methylester HCl give the title compound (173 mg, 47%). NMR (CDC13): 7.39 (d, 1H, J=4.0 Hz); 7.01 (s, 1H); 7.02 (d, 1H, underlying); 6.78 (d, 1H, J=4.0 Hz); 6.64 (d, 1H, J=8.0 Hz); 6.38 (d, 1H, J=6.5 Hz); 4.74 (m, 1H); 4.00 (d, 1H, J=7.2 Hz); 3.85 (d, 1H, J=7.2 Hz); 3.77 (s, 3H); 2.62 (q, 2H, J=7.6 Hz); 2.22 (s, 1H); 2.11 (q, 4H, J=7.6); 1.48 (d, 3H, J=7.2 Hz); 1.33 (s, 3H); 1.17 (t, 3H, J=7.6 Hz); 1.04 (s, 9H); 0.71 (t, 6H, 7.2 Hz).


B. Enantiomer 1 of d-3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl]-3′-[5-(carboxy-1-ethyl amino)carbonyl-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 106B, enantiomer 1 of 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl]-3′-[5-(methoxycarbonyl-1-ethylamino)carbonyl-thiophen-2-yl]pentane (173 mg, 0.33 mmol) gives the title compound as a solid (147 mg, 87%).


NMR (CDC3): 7.43 (d, 1H, J=3.6 Hz); 7.01 (s, 1H); 7.02 (d, 1H, underlying); 6.79 (d, 1H, J=3.6 Hz); 6.73 (d, 1H, J=8.0 Hz); 6.35 (d, 1H, J=8.0 Hz); 4.70 (m, 1H); 4.00 (d, 1H, J=8.8 Hz); 3.84 (d, 1H, J=8.8 Hz); 2.61 (q, 2H, J=7.6 Hz); 2.10 (q, 4H, J=7.2); 1.52 (d, 3H, J=7.6 Hz); 1.32 (s, 3H); 1.15 (t, 3H, J=7.6 Hz); 1.03 (s, 9H); 0.70 (t, 6H, 7.2 Hz).


ES/MS: 504.2 (M+1) 502.3 (M-1).


Example 111
Preparation of 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane



embedded image


A. 3′-[4-Hydroxy-3-n-propylphenyl]pentan-3-ol.
embedded image


Using a procedure analogous to Example 103A, ethyl, 4-hydroxy-3-n-propylbenzoate (5.0, 24 mmol) gives the title compound as an oil (5.7 g, 99%).


NMR (CDC13): 7.09 (s, 1H); 7.04 (d, 1H, 8.4 Hz); 6.71 (d, 1H, J=8.4 Hz); 4.62 (s, 1H); 3.75 (m, 1H); 2.59 (t, 2H. J=7.4 Hz); 1.80 (m, 4H); 1.64 (m, 2H); 0.94 (t, 3H, J=7.4 Hz); 0.76 (t, 6H, 7.6 Hz).


ES/MS: 205.1 (M+H−H2O).


B. 3′-[4-(2-oxo-3,3-dimethylbutoxy)-3-n-propylphenyl]pentan-3-ol



embedded image


Using a procedure analogous to Example 91B, 3′-[4-hydroxy-3-n-propylphenyl]pentan-3-ol (5.7 g, 24 mmol) gives the title compound (7.1 g, 93%). NMR (CDC13): 7.11 (s, 1H); 7.09 (d, 1H, J=8.0 Hz); 6.57 (d, 1H, J=8.0 Hz); 4.84 (s, 2H); 2.66 (t, 2H. J=7.6 Hz); 1.80 (m, 4H); 1.65 (m, 2H); 1.26 (s, 9H); 0.95 (t, 3H, J=7.2 Hz); 0.76 (t, 6H, 7.4 Hz).


ES/MS: 303.1 (M−H2O+1).


C. 3′-[4-(2-Oxo-3,3-dimetliylbutoxy)-3-n-propylphenyl]-3′-(thiophen-2-yl)pentane



embedded image


Using a procedure analogous to Example 103B, 3′-[4-(2-oxo-3,3-dimethylbutoxy)-3-n-propylphenyl]pentan-3-ol (7.1 g, 22 mmol) gives the title compound after silica gel chromatography (4.0 g, 47%).


NMR (CDC13): 7.12 (d, 1H, J=1.2 Hz); 7.03 (s, 1H); 6.97 (d, 1H, J=8.0 Hz); 6.90 (t, 1H, J=5.2 Hz); 6.80 (d, 1H, J=1.2 Hz); 6.51 (d, 1H, J=8.0 Hz); 4.82 (s, 2H); 2.62 (t, 2H, J=7.8 Hz); 2.09 (q, 4H, J=7.6); 1.59 (m, 2H); 1.25 (s, 9H); 0.90 (m, 3H); 0.71 (t, 6H, 7.6 Hz).


ES/MS: 387.2 (M+1) 404.2 (M+NH4).


D. 3′-[4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3′-(thiophen-2-yl)pentane



embedded image


Using a procedure analogous to Example 103D, 3′-[4-(2-oxo-3,3-dimethylbutoxy)-3-n-propylphenyl)-3′-(thiophen-2-yl)pentane (1.3 g, 3.4 mmol) gives the title compound (1.2 g, 86%).


NMR (CDC13): 7.13 (d, 1H, J=6.0 Hz); 7.03 (s, 1H); 7.04 (d, 1H, underlying); 6.90 (t, 1H, J=5.2 Hz); 6.8 (d, 1H, J=6.0 Hz); 6.73 (d, 1H, J=8.4 Hz); 3.99 (d, 1H, J=8.4 Hz); 3.84 (d, 1H, J=8.4 Hz); 2.57 (q, 2H, J=7.6 Hz); 2.32 (s, 1H); 2.11 (q, 4H, J=7.6); 1.56 (m, 2H); 1.32 (s, 3H); 1.04 (s, 9H); 0.90 (t, 3H, J=7.4 Hz); 0.71 (t, 6H, 7.6 Hz).


ES/MS: 403.2 (M+1).


E. 3′-[4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 103E, 3′-[4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3′-(thiophen-2-yl)pentane (1.2 g, 2.9 mmol) gives the title compound (0.53 g, 41%).


NMR (CDC13): 7.70 (d, 1H, J=3.6 Hz); 7.03 (d, 1H, J=8.0 Hz); 6.98 (s, 1H); 6.80 (d, 1H, J=3.6 Hz); 6.74 (d, 1H, J=8.0 Hz); 4.00 (d, 1H, J=8.8 Hz); 3.84 (d, 1H, J 8.8 Hz); 2.57 (t, 2H, J=8.0 Hz); 2.13 (q, 4H, J=7.0); 1.57 (m, 2H); 1.33 (s, 3H); 1.05 (s, 9H); 0.92 (t, 3H, J=7.2 Hz); 0.72 (t, 6H, 7.0 Hz). ES/MS: 445.5 (M-1).


Example 114
Preparation of enantiomer 1 of d-3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3′-[5-(carboxy-1-ethylamino)carbonyl-thiophen-2-yl]pentane



embedded image


A. Enantiomers of 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane.
embedded image

    • enantiomer 2


A racemic mixture of 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane (0.265 g) is chromatographed (ChiralPak AD column; 0.1% TFA in IPA/heptane to give enantiomer 1 (130 mg; TFA occluded, 49%), Example 112 and enantiomer 2 (105 mg; TFA occluded, ˜40%), Example 113.


Enantiomer 1, Example 112


HPLC: ChiralPak AD (4.6X250 mm); 20% IPA/80% heptane; 1 ml/m (flow rate); rt=5.3 m; 225 nm.


Enantiomer 2, Example 113


HPLC: ChiralPak AD (4.6X250 mm); 20% IPA/80% heptane; 1 ml/m (flow rate); rt=6.7 m; 225 nm.


B. Enantiomer 1 of d-3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3′-[5-(methoxycarbonyl-1-ethylamino)carbonyl-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 106A, enantiomer 1 of 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane (130 mg, 0.3 mmol) and d-alanine methylester HCl give the title compound (49 mg, 32%). NMR (CDC13): 7.39 (d, 1H, J=3.6 Hz); 6.99 (s, 1H); 7.02 (d, 1H, J=8.4 Hz); 6.76 (d, 1H, J=3.6 Hz); 6.73 (d, 1H, J=8.4 Hz); 6.38 (d, 1H, J=7.0 Hz); 4.73 (m, 1H); 4.00 (d, 1H, J=7.6 Hz); 3.85 (d, 1H, J=7.6 Hz); 3.77 (s, 3H); 2.55 (t, 2H, J=8.0 Hz); 2.21 (s, 1H); 2.11 (q, 4H, J=7.2); 1.56 (m, 2H); 1.47 (d, 3H, J=6.8 Hz); 1.33 (s, 3H); 1.03 (s, 9H); 0.91 (t, 3H, J=7.6 Hz); 0.71 (t, 6H, 7.4 Hz). ES/MS: 532.2 (M+1) 530.3 (M-1).


C. Enantiomer 1 of d-3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3′-[5-(carboxy-1-ethyl amino)carbonyl-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 106B, enantiomer 1 of 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3′-[5-(methoxycarbonyl-1-ethylamino)carbonyl-thiophen-2-yl]pentane (48 mg, 0.1 mmol) gives the title compound as a solid (38 mg, 81%).


NMR (CDC13): 7.43 (d, 1H, J=4.0 Hz); 6.97 (s, 1H); 7.02 (d, 1H, J=8.4 Hz); 6.79 (d, 1H, J=4.0 Hz); 6.73 (d, 1H, J=8.4 Hz); 6.28 (d, 1H, J=7.0 Hz); 4.70 (m, 1H); 3.99 (d, 1H, J=8.8 Hz); 3.84 (d, 1H, J=8.8 Hz); 2.56 (t, 2H, J=7.8 Hz); 2.11 (q, 4H, J=8.0); 1.56 (m, 2H); 1.53 (d, 3H, J=7.6 Hz); 1.33 (s, 3H); 1.04 (s, 9H); 0.91 (t, 3H, J=7.8 Hz); 0.71 (t, 6H, 8.0 Hz).


ES/MS: 518.2 (M+1) 516.2 (M-1).


Example 115
Preparation of d-3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl]-3′-[5-(carboxy-1-ethylamino)carbonyl-thiophen-2-yl]pentane



embedded image


A. 3′-[4-Hydroxy-3-methoxyphenyl]pentan-3-ol



embedded image



Using a procedure analogous to Example 103A, methyl, 4-hydroxy-3-methoxybenzoate (7.3, 40 mmol) gives the title compound as an oil (7.7 g, 91%). NMR (CDC13): 6.96 (s, 1H); 6.86 (d, 1H, 8.4 Hz); 6.98 (d, 1H, J=8.4 Hz); 5.51 (s, 1H); 3.90 (s, 3H); 1.81 (m, 4H); 0.78 (t, 6H, 7.6 Hz).


ES/MS: 193.0 (M+H−H2O).


B. 3′-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methoxyphenyl]pentan-3-ol



embedded image


Using a procedure analogous to Example 91B, 3′-[4-hydroxy-3-methoxyphenyl]pentan-3-ol (7.7 g, 36 mmol) gives the title compound (10 g, 89%). NMR (CDC3): 6.97 (s, 1H); 6.78 (d, 1H, J=8.4 Hz); 6.66 (d, 1H, J=8.4 Hz); 4.93 (s, 2H); 3.88 (s, 3H); 1.80 (m, 4H); 1.23 (s, 9H); 0.76 (t, 6H, 7.2 Hz).


ES/MS: 291.1 (M+H−H2O).


C. 3′-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methoxyphenyl]-3′-(thiophen-2-yl)pentane



embedded image


Using a procedure analogous to Example 103B, 3′-[4-(2-oxo-3,3-dimethylbutoxy)-3-metboxyphenyl]pentan-3-ol (4.9 g, 16 mmol) gives the title compound (1.5 g, 25%).


NMR (CDCl3): 7.13 (d, 1H, J=5.2 Hz); 6.89 (t, 1H, J=4.2 Hz); 6.80 (d, 1H, J=4.8 Hz); 6.76 (m, 2H); 6.60 (d, 1H, J=9.2 Hz); 4.91 (s, 2H); 3.78 (s, 3H); 2.10 (q, 4H, J 7.2); 1.28 (s, 9H); 0.70 (t, 6H, 7.2 Hz).


ES-MS: 375.2 (M+1) 393.2 (M+NH4).


D. 3′-[4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl]-3′-(thiophen-2-yl)pentane



embedded image


Using a procedure analogous to Example 103D, 3′-[4-(2-oxo-3,3-dimethylbutoxy)-3-metboxyphenyl]-3′-(tbiopben-2-yl)pentane (1.5 g, 4 mmol) gives the title compound (1.4 g, 89%).


NMR (CDC13): 7.13 (d, 1H, J=5.0 Hz); 6.90 (t, 1H, J=8.4 Hz) 8.81 (m, 3H); 6.76 (s, 1H); 3.98 (d, 1H, J=8.8 Hz); 3.90 (d, 1H, J=8.8 Hz); 3.75 (s, 3H); 2.76 (s, 1H); 2.11 (q, 4H, J=7.2); 1.85 (m, 1H); 1.31 (s, 3H); 1.02 (s, 9H); 0.70 (t, 6H, 7.2 Hz).


ES/MS: 373.2 (M+H−H2O).


E. 3′-[4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 103E, 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl]-3′-(thiophen-2-yl)pentane (1.4 g, 3.5 mmol) gives the title compound (1.2 g, 77%).


NMR (CDCl3): 7.70 (d, 1H, J=3.6 Hz); 6.81 (m, 3H); 6.72 (d, 1H, J=3.6 Hz); 3.99 (d, 1H, J=9.2 Hz); 3.91 (d, 1H, J=9.2 Hz); 3.76 (s, 3H); 2.13 (q, 4H, J=7.2); 1.32 (s, 3H); 1.02 (s, 9H); 0.73 (t, 6H, 7.2 Hz).


ES/MS: 433.2 (M-1).


F. d-3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl]-3′-[5-(methoxycarbonyl-1-ethylamino)carbonyl-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 106A, 3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl]-3′-[5-carboxy-thiophen-2-yl]pentane (600 mg, 1.4 mmol) and d-alanine methylester HCl give the title compound (206 mg, 28%). NMR (CDC13): 7.39 (d, 1H, J=3.6 Hz); 6.81 (s, 2H); 6.77 (d, 1H, J=3.6 Hz); 6.72 (s, 1H); 6.40 (d, 1H, J=7.6 Hz); 4.75 (m, 1H); 3.99 (d, 1H, J=7.6 Hz); 3.90 (d, 1H, J=7.6 Hz); 3.77 (s, 3H); 3.75 (s, 3H); 2.72 (s, 1H); 2.11 (q, 4H, J=7.2); 1.48 (d, 3H, J=7.6 Hz); 1.31 (s, 3H); 1.02 (s, 9H); 0.71 (t, 6H, 7.2 Hz).


ES/MS: 520.2 (M+1) 518.2 (M-1).


G. d-3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl]-3′-[5-(carboxy-1-ethylamino)carbonyl-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 106B, d-3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl]-3′-[5-(methoxycarbonyl-1-etbylamino)carbonyl-thiophen-2-yl]pentane (140 mg, 0.3 mmol) gives the title compound as a solid (134 mg, 98%).


NMR (CDC3): 7.44 (d, 1H, J=4.0 Hz); 6.80 (m, 3H); 6.71 (s, 1H); 6.38 (d, 1H, J=7.0 Hz); 4.70 (m, I H); 3.99 (d, 1H, J=9.2 Hz); 3.91 (d, I H, J=9.2 Hz); 2.11 (q, 4H, J=7.4); 1.54 (d, 3H, J=6.8 Hz); 1.32 (s, 3H); 1.02 (s, 9H); 0.72 (t, 6H, 7.4 Hz).


ES/MS: 504.2 (M-1).


Example 116 and 117
Preparation of enantiomers of d-3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl]-3′-[5-(carboxy-1-ethylamino)carbonyl-thiophen-2-yl]pentane





    • enantiomer 1

    • enantiomer 2





A racemic mixture of d-3′-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl]-3′-[5-(carboxy-1-ethylamino)carbonyl-thiopben-2-yl]pentane (0.133 g) is chromatographed (ChiralPak AD column; 0.1% TFA in IPA/Hept) to give enantiomer 1 (72 mg, quant), Example 116 and enantiomer 2 (78 mg, quant), Example 117.


Enantiomer 1, Example 116


HPLC: ChiralPak AD (4.6X250 mm); 40% IPA/60% heptane; 1 ml/m (flow rate);


rt=5.1 m; 225 nm.


Enantiomer 2, Example 117


HPLC: ChiralPak AD (4.6X250 mm); 40% IPA/60% heptane; 1 ml/m (flow rate);


rt=6.2 m; 225 nm.


Example 118
Preparation of N-methyl-2-[(5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid



embedded image


A. 5-[ ]-Ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-3-methyl-thiophene-2-carboxylic acid



embedded image


Using a procedure analogous to Example 47, 5-[1-Ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-3-methyl-thiophene-2-carboxylic acid methyl ester, (Example 1F) (6.68 g, 20.12 mmol) gives the title compound (6.30 g, 19.81 mmol, 90%). 1H NMR (CDCl3), δ 0.71 (t, J=6.9 Hz, 6H), 2.11 (q, J=6.9 Hz, 4H), 2.23 (s, 3H), 2.48 (s, 3H), 6.61 (s, 1H), 6.69 (d, J=7.9 Hz, 1H), 6.94-7.00 (m, 2H). LC/MS (m/z): calcd for C18H22O3S: 318.1; found: 318.1.


B. N-methyl-2-{5-[1-Ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-3-methyl-thiophene-2-carbonyl}-methylamino)-acetic acid methyl ester



embedded image


Using a procedure analogous to Example 38, from [1-ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-3-methyl-thiophene-2-carboxylic acid (1.90 g, 5.96 mmol) and sarcosine methyl ester hydrochloride (0.89 g, 6.55 mmol) gives the title compound (1.99 g, 4.94 mmol, 83%). 1H NMR (CDCl3), d 0.70 (t, J=7.1 Hz, 6H), 2.01-2.09 (m, 4H), 2.21 (s, 3H), 2.24 (s, 3H), 3.10 (s, 3H), 3.74 (s, 3H), 4.20 (bs, 2H), 6.52 (s, 1H), 6.63 (d, J=8.4 Hz, I H), 6.90-7.01 (m, 2H). LC/MS (m/z): calcd for C22H30NO4S (M+H)+: 404.2; found: 404.2.


C. N-methyl-2-[(5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-]-ethyl-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid methyl ester



embedded image


Using a procedure analogous to Example 1G, from 2-({5-[1-Ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-3-methyl-thiophene-2-carbonyl}-methylamino)-acetic acid methyl ester (1.99 g, 4.94 mmol) gives the title compound (1.14 g, 2.28 mmol, 46%). 1H NMR (CDC3), d 0.70 (t, J=7.4 Hz, 6H), 1.27 (s, 9H), 2.00-2.14 (m, 4H), 2.24 (s, 3H), 2.26 (s, 3H), 3.01 (s, 3H), 3.75 (s, 3H), 4.16-4.24 (bs, 2H), 4.84 (s, 2H), 6.49-6.53 (m, 2H), 6.90-7.03 (m, 2H). LC/MS (m/z): calcd for C28H4ONO5S (M+H)+: 502.7; found: 502.2.


D. N-methyl-2-[(5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid



embedded image


To a mixture of 2-[(5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid methyl ester (0.16 g, 0.32 mmol) and THF (2 mL) is added and H2O (2 mL) and 1.0 M NaOH (0.35 mL, 0.35 mmol). The reaction is stirred at RT overnight, acidified with 0.1 M HCl to pH 34 and extracted with EtOAc (2×30 mL). The organic layer is MgSO4 dried and concentrated to give the title compound (0.14 g, 90%). 1H NMR (CDCl3), δ 0.71 (t, J=7.2 Hz, 6H), 1.27 (s, 9H), 2.02-2.10 (m, 4H), 2.24 (s, 3H), 2.26 (s, 3H), 3.12 (s, 3H), 4.21 (bs, 2H), 4.86 (s, 2H), 6.49-6.55 (m, 2H), 6.96-7.03 (m, 2H). LC/MS (m/z): calcd for C27H38NO5S (M+H)+: 488.7; found: 488.2.


Example 119
Preparation of N-methyl-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid methyl ester



embedded image


Using a procedure analogous to Example 2, N-methyl-2-[(5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid methyl ester (0.96 g, 1.92 mmol) gives the title compound (0.75 g, 1.49 mmol, 78%). 3H NMR (CDC3), d 0.71 (t, J=7.0 Hz, 6H), 1.03 (s, 9H), 2.04-2.14 (m, 4H), 2.21 (s, 3H), 2.24 (s, 3H), 3.09 (s, 3H), 3.71 (dd, J=8.4, 2.6 Hz, 1H), 3.75 (s, 3H), 3.87 (t, J=8.9 Hz, 1H), 4.10 (dd, J=9.2, 2.6 Hz, 1H), 4.20 (bs, 2H), 6.52 (s, 1H), 6.72 (d, J=8.7 Hz, 1H), 7.00-7.07 (m, 2H). LC/MS (m/z): calcd for C28H42NO5S (M+H)+: 504.7; found: 504.2.


Example 120 and 121
Preparation of enantiomers of N-methyl-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid methyl ester



embedded image


embedded image


A racemic mixture of N-methyl-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid methyl ester (740 mg) is chromatographed (CHIRALPAK AD column, 40% i-PrOH/Hept) to give enantiomer I of the title compound (Example 120) (205 mg, 28%) and enantiomer 2 of the title compound (Example 121) (179 mg, 24%).


Enantiomer 1, Example 120:


rt=7.1 m


NMR & LC/MS: Identical to the racemic material,1 Example 119.


Enantiomer 2, Example 121


rt=22.8m


NMR & LC/MS: Identical to the racemic material, Example 119.


Example 122
Preparation of enantiomer 1 of N-methyl-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid



embedded image


Using a procedure analogous to Example 47, enantiomer 1 of N-methyl-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid methyl ester (200 mg) yields the title compound (189 mg, 97%). 1H NMR (CDC3), d 0.71 (t, J=7.2 Hz, 6H), 1.02 (s, 9H), 2.01-2.13 (m, 4H), 2.20 (s, 3H), 2.24 (s, 3H), 3.12 (s, 3H), 3.72 (dd, J=8.8, 2.7 Hz, 1H), 3.88 (t, J=8.9 Hz, 1H), 4.12 (dd, J=9.1, 2.7 Hz, 1H), 4.21 (s, 2H), 6.53 (s, 1H), 6.72 (d, J=8.6 Hz, 1H), 7.00-7.06 (m, 2H). LC/MS (m/z): calcd for C27H40NO5S (M+H)+: 490.7; found: 490.3.


Example 123
Preparation of enantiomer 2 of N-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid



embedded image


Using a procedure analogous to Example 47, enantiomer 2 of N-methyl-2-[(5-{1-ethyl-]-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid methyl ester (172 mg, 0.34 mmol) yields the title compound (168.8 mg, 98%). 1H NMR and LC/MS (m/z): identical to Example 122.


Example 124
Preparation of 2-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-yl-methoxy)acetic acid



embedded image


A. 5-(1-{4-[2-(tert-Butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-carboxylic acid methyl ester



embedded image


To a mixture of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid methyl ester (Example 2) (1.15 g, 2.66 mmol), imidazole (0.27 g, 4.00 mmol), and DMF (15 mL) is added TBSCl (0.54 g, 2.80 mmol). The reaction is stirred for 24 h. The reaction is diluted with Et2O (120 mL) and washed with 0.1 M HCl (3×40 ml). The organic layer is MgSO4 dried and concentrated. The resulting residue is chromatographed to give the title compound (0.94 g, 64%). 1H NMR (CDCl3), δ 0.01 (s, 3H), 0.06 (s, 3H), 0.65 (t, J=7.4 Hz, 6H), 0.85 (s, 9H), 0.91 (s, 9H), 2.00-2.14 (m, 4H), 2.14 (s, 3H), 2.43 (s, 3H), 3.67 (dd, J=5.8, 3.4 Hz, 1H), 3.74 (s, 3H), 3.85 (dd, J=9.8, 5.8 Hz, 1H), 3.98 (dd, J=9.8, 3.4 Hz, 1H), 6.56 (s, 1H), 6.68 (d, J=8.3 Hz, 1H), 6.96-7.03 (m, 2H). LC/MS (m/z): calcd for C31H51O4SSi (M+H)+: 547.9; found: 547.2.


B. 5-(1-{4-[2-(tert-Butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophen-2-yl-methanol



embedded image


To a 0° C. solution of 5-(1-{4-[2-(tert-Butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-ph enyl}-]-ethyl-propyl)-3-methyl-thiophene-2-carboxylic acid methyl ester (0.94 g, 1.71 mmol) and THF (50 mL)is added LAH (71 mg, 1.89 mmol). The mixture is stirred for 10 m, warmed to RT and stirred for 2 h. The reaction is quenched with H2O (70 ul), 15% NaOH (70 uL) and H2O (210 uL) and diluted with EtOAc (50 mL). The mixture is filtered through diatomaceous earth and concentrated to give the title compound (0.89 g, 1.72 mmol, 100%). 1H NMR (CDC3), B 0.07 (s, 3H), 0.12 (s, 3H), 0.72 (t, J=7.4 Hz, 6H), 0.91 (s, 9H), 0.98 (s, 9H), 2.01-2.14 (m, 4H), 2.19 (s, 3H), 2.21 (s, 3H), 3.68 (dd, J=5.3, 3.4 Hz, 1H), 3.86 (dd, J=9.0, 5.3 Hz, 1H), 3.98 (dd, J=9.0, 3.4 Hz, 1H), 4.67 (s, 22H), 6.54 (s, 1H), 6.67 (d, J=8.1 Hz, 1H), 7.00-7.06 (m, 2H). LC/MS (m/z): calcd for C30H50O3SSi M+: 518.9; found: 518.0.


C. 2-[5-(1-{4-[2-(tert-Butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophen-2-ylmethoxy]-acetic acid methyl ester



embedded image


T a 0° C. solution of 5-(1-{4-[2-(tert-butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophen-2-yl-methanol (0.96 g, 1.85 mmol) in THF (10 mL) is added 60% NaH (81 mg, 2.0 mmol) and stirred for 20 m. The mixture is added methyl bromoacetate (0.21 mL, 2.22 mmol)warmed to RT, and stirred overnight. The reaction is quenched with satd NH4Cl (10 mL), diluted with H2O (10 mL), and extracted with EtOAc (2×20 mL). The combined organic layers is MgSO4 dried and concentrated. The resulting residue is chromatographed to give the title compound (0.33 g, 0.57 mmol, 31%). 1H NMR (CDC3), δ 0.06 (s, 3H), 0.12 (s, 3H), 0.70 (t, J=7.3 Hz, 6H), 0.91 (s, 9H), 0.97 (s, 9H), 2.01-2.10 (m, 4H), 2.19 (s, 3H), 2.20 (s, 3H), 3.67 (dd, J=5.8, 3.4 Hz, I H), 3.76 (s, 3H), 3.85 (dd, J=9.8, 5.8 Hz, 1H), 3.98 (dd, J=9.8, 3.4 Hz, 1H), 4.09 (s, 2H), 4.64 (s, 2H), 6.53 (s, 1H), 6.67 (d, J=8.3 Hz, I H), 7.00-7.06 (m, 2H). LC/MS (m/z): calcd for C 10 33H58NO5SSi (M+NH4)+: 608.9; found: 608.3.


D. 2-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-yl-methoxy)-acetic acid



embedded image


A solution of 2-[5-(1-{4-[2-(tert-butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophen-2-ylmethoxy]-acetic acid methyl ester (0.33 g, 0.57 mmol), 1.0 M TBAF/THF (0.62 m L, 0.62 mmol) and THF (4 mL) is refluxed for 3 h. The mixture filtered through silica gel, washed with EtOAc and concentrated. The resulting residue is hydrolyzed using a procedure analogous to Example 47 to give the title compound (0.13 g, 0.28 mmol) in an overall yield of 49%. 1H NMR (CDC3), δ 0.71 (t, J=7.4 Hz, 6H), 1.02 (s, 9H), 2.01-2.10 (m, 4H), 2.19 (s, 3H), 2.20 (s, 3H), 2.21 (bs, 2H), 3.72 (dd, J=8.8, 2.9 Hz, 1H), 3.87 (t, J=8.8 Hz, 1H), 4.08-4.12 (m, 2H), 4.16 (s, 1H), 4.66 (s, 1H), 5.24 (s, 1H), 6.54 (d, J=3.4 Hz, 1H), 6.62 (d, J=8.3 Hz, 1H), 7.01-7.08 (m, 2H). LC/MS (m/z): calcd for C26H37O5S (M−H): 461.7; found: 461.2.


Example 125
Preparation of 1-{4-[1-ethyl-1-(5-hydroxymethyl-4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol



embedded image


A solution of 1-{4-[1-ethyl-1-(5-hydroxymethyl-4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol, Example B (71.5 mg, 0.14 mmol) in THF (3 mL) is treated with 1.0 M TBAF (0.15 mL, 0.15 mmol). The reaction is refluxed for 14 h, diluted with EtOAc (20 mL), washed with H2O (10 mL), MgSO4 dried, and concentrated. The resulting residue is chromatographed to give the title compound (41.1 mg, 0.10 mmol, 71%). %). 1H NMR (CDCl3), δ0.71 (t, J=6.8 Hz, 6H), 1.02 (s, 9H), 2.02-2.11 (m, 4H), 2.19 (s, 3H), 2.21 (s, 3H), 2.44 (d, J=2.9 Hz, 1H), 3.71 (dt, J=8.9, 2.4 Hz, 1H), 3.87 (t, J=8.9 Hz, 1H), 4.10 (dd, J=8.9, 2.4 Hz, 1H), 4.66 (d, J=5.4 Hz, 2H), 6.53 (s, 1H), 6.72 (d, J=8.3 Hz, 1H), 7.02-7.08 (m, 2H). LC/MS (n/z): calcd for C24H36NaO3S (M+Na)+: 427.6; found: 427.2.


Example 126 and 127
Preparation of enantiomers of 1-{4-[1-ethyl-1-(5-hydroxymethyl-4-methyl-thiopben-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol



embedded image


A racemic mixture of 1-{4-[1-ethyl-1-(5-hydroxymethyl-4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol (37.5 mg) is chromatographed (CHIRALPAK AD column, 40% i-PrOH/Hept) to give enantiomer 1 of the title compound, Example 126 (3.6 mg, 10%) and enantiomer 2 of the title compound, Example 127 (2.8 mg, 7%).


Example 126, Enantiomer 1


rt=5.3m


NMR & LC/MS: Identical to the racemic material, Example 125.


Example 127, Enantiomer 2


rt=8.5 m


NMR & LC/MS: Identical to the racemic material, Example 125.


Example 128
Preparation of sodium salt of enantiomer 1 of 2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid



embedded image


A solution of enantiomer 1 of 2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid, Example 48 (597 mg, 1.26 mmol) in CH3OH (5 mL) is treated with 0.5 M NaOCH3 (2.7 mL, 1.4 mmol) and stirred for 5 m. The mixture is concentrated to give the title compound (626 mg. 1.26 mmol, 100%). 1H NMR (CD3OD), δ 0.75 (t, J=7.1 Hz, 6H), 1.05 (s, 9H), 2.10-2.20 (m, 4H), 2.23 (s, 3H), 2.50 (s, 3H), 3.66 (dd, J=7.9, 3.0 Hz, 1H), 3.89 (s, 2H), 3.90-3.95 (m, 1H), 4.16 (dd, J=10.1, 3.0 Hz, 1H), 6.72 (s, 1H), 6.83 (d, J=8.8 Hz, 1H), 7.02-7.12 (m, 2H). LC/MS (m/z): calcd for C26H38NO5S (M+H)+: 476.2; found: 476.2


Example 129
Preparation of sodium salt of enantiomer 2 of [(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid



embedded image


Using a procedure analogous to Example 128, enantiomer 2 of 2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid (Example 49) (0.69 g, 1.15 mmol) gives the title compound (0.69 g, 1.15 mmol, 100%). 1H NMR and LC/MS: identical to Example 128.


Example 130
Preparation of 2-[N-acetyl-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-ylmethyl)-amino]-acetic acid



embedded image


A. Preparation of 5-(1-{4-[2-(tert-Butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-carbaldehyde



embedded image


Using a procedure analogous to Example 41, 1-{4-[1-ethyl-1-(5-hydroxymethyl-4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol (Example 124B) (0.88 g, 1.69 mmol) gives the title compound (0.77 g, 1.49 mmol, 88%). 1H NMR (CDC3), δ 0.07 (s, 3H), 0.12 (s, 3H), 0.72 (t, J=7.4 Hz, 6H), 0.91 (s, 9H), 0.98 (s, 9H), 2.12 (q, J=7.4 Hz, 4H), 2.21 (s, 3H), 2.50 (s, 3H), 3.68 (dd, J=5.4, 3.5 Hz, 1H), 3.86 (dd, J=9.9, 5.4 Hz, 1H), 3.98 (dd, J=9.9, 3.5 Hz, 1H), 6.64 (s, 1H), 6.68 (d, J=8.7 Hz, 1H), 6.95-7.03 (m, 2H), 9.92 (s, 1H). LC/MS (m/z): calcd for C30H49O3SSi (M+H)+: 517.9; found: 517.2


B. 2-{[5-(1-{4-[2-(tert-Butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phienyl}-1-ethyl-propyl)-3-methyl-thiopben-2-ylmethyl-3-yl]-amino}-acetic acid methyl ester



embedded image


A mixture of 5-(1-{4-[2-(tert-butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-carbaldehyde (2.11 g, 4.09 mm) and glycine methyl ester hydrochloride (0.56 g, 4.50 mmol) with Et3N (0.74 mL, 5.3 mmol) is treated with Ti(Oi-Pr)4 (1.6 mL, 5.3 mmol) at RT for 1 h. It is diluted with CH3OH (20 mL), treated with NaB(CN)H3 (282 mg, 4.5 mmol). The reaction is stirred overnight. It is then quenched with H2O (3 mL) and stirred at RT for 1 h, and filtered through silica gel washed with EtOAC (100 mL) and concentrated. Chromatographic purification gives the title compound (1.54 g, 2.61 mmol, 64%).



1H NMR (CDCl3), δ 0.06 (s, 3H), 0.12 (s, 3H), 0.70 (t, J=6.9 Hz, 6H), 0.91 (s, 9H), 0.97 (s, 9H), 2.02-2.10 (m, 4H), 2.13 (s, 3H), 2.20 (s, 3H), 3.45 (s, 2H), 3.67 (dd, J=5.4, 3.4 Hz, 1H), 3.73 (s, 3H), 3.82-3.87 (m, 3H), 3.98 (dd, J=9.6, 3.4 Hz, 1H), 6.49 (s, 1H), 6.67 (d, J=8.3 Hz, I H), 7.00-7.05 (m, 2H). LC/MS (m/z): calcd for C33H55NO4SSi (M)+: 589.9; found: 589.0.


C. 2-{[5-(1-{4-[2-(tert-Butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophen-2-ylmethyl]-amino}-acetic acid methyl ester



embedded image


Using a procedure analogous to Example 41, 5-(1-{4-[2-(tert-Butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-carbaldehyde (additional example Lu-13-A) (2.11 g, 4.09 mm) and glycine methyl ester hydrochloride (0.56 g, 4.50 mmol) give the title compound (1.54 g, 2.61 mmol, 64%). %). 1H NMR (CDCl3), 60.06 (s, 3H), 0.12 (s, 3H), 0.70 (t, J=6.9 Hz, 6H), 0.91(s, 9H), 0.97 (s, 9H), 2.02-2.10 (m, 4H), 2.13 (s, 3H), 2.20 (s, 3H), 3.45 (s, 2H), 3.67 (dd, J=5.4, 3.4 Hz, 1H), 3.73 (s, 3H), 3.82-3.87 (m, 3H), 3.98 (dd, J=9.6, 3.4 Hz, 1H), 6.49 (s, I H), 6.67 (d, J=8.3 Hz, I H), 7.00-7.05 (m, 2H). LC/MS (m/z): calcd for C33H55NO4SSi (M)+: 589.9; found: 589.0.


D. 2-{N-Acetyl-[5-(1-{4-[2-(tert-butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-]-etliyl-propyl)-3-methyl-thiophen-2-ylmethyl]-amino}-acetic acid methyl ester



embedded image


To a 0° C. solution of 2-{[5-(1-{4-[2-(tert-Butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophen-2-ylmethyl]-amino}-acetic acid metlhyl ester (1.54 g, 2.61 minol) in CH2C2 (10 mL) is added acetyl chloride (0.20 mL, 2.88 ilnol). The reaction is stirred at RT for 1 h, diluted with CH2C2 (100 mL), washed with 1.0 M HCl (2×30 mL), H2O (25 mL); Na2SO4 dried, and concentrated. The resulting residue is chromatographed to give the title compound (1.32 g, 2.09 mmol, 80%). 1H NMR (CDCl3), δ 0.06 (s, 3H), 0.12 (s, 3H), 0.69 (t, J=7.1 Hz, 6H), 0.91 (s, 9H), 0.97 (s, 9H), 2.00-2.05 (m, 4H), 2.06 (s, 3H), 2.07 (s, 1.11H), 2.10 (s, 1.89H), 2.21 (s, 1.89H), 2.24 (s, 1.11H), 3.66-3.71 (m, 4H), 3.83-3.89 (m, 1H), 3.95 (s, 0.74H), 3.96-4.01 (m, 1H), 4.04 (1.26H), 4.60 (1.26H), 4.68 (0.74H), 6.49 (s, 0.37H), 6.51 (s, 0.63H), 6.65-6.69 (m, 1H), 6.97-7.03 (m, 2H). LC/MS (m/z): calcd for C35H58NO5SSi (M+H)+: 632.4; found: 632.3.


E. 2-[N-Acetyl-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-ylmethyl)-amino]-acetic acid



embedded image


Using a procedure analogous to Example 124D, 2-{N-Acetyl-[5-(1-{4-[2-(tert-butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophen-2-ylmethyl]-amino}-acetic acid methyl ester (1.32 g, 2.09 mmol) gives the title compound (0.95 g, 1.83 mmol, 88%). 1H NMR (CD30D), δ 0.72 (t, J=7.3 Hz, 3H), 0.73 (t, J=7.3 Hz, 3H), 1.05 (s, 9H), 2.03 (s, 3H), 2.05-2.14 (m, 4H), 2.16 (s, 1.5H), 2.18 (s, 1.5H), 2.22 (s, 1.5H), 2.24 (s, 1.5H), 3.66 (dd, J=7.6, 2.7 Hz, 1H), 3.91 (dd, J=10.1, 7.6 Hz, 1H), 3.98 (s, 1H), 4.03 (s, 1H), 4.16 (dd, J=10.1, 2.7 Hz, 1H), 4.67 (s, I H), 4.71 (s, 1H), 6.59 (s, 0.5H), 6.63 (s, 0.5H), 6.80 (d, J=3.1 Hz, 0.5H), 6.82 (d, J=2.7 Hz, 0.5H), 7.01-7.10 (m, 2H). LC/MS (m/z): calcd for C28H40NO5SSi (M−H): 502.7; found: 502.2.


Example 131 and 132
Preparation of enantiomers of 2-[N-Acetyl-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-ylmethyl)-amino]-acetic acid



embedded image


Enantiomer 2

A racemic mixture of 2-[N-acetyl-(5-{-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-ylmethyl)-amino]-acetic acid (560 mg) is chromatographed (CHIRALPAK AD, 0.1% TFA in i-PrOH/MeOH/Hept (20/5/75),) to give fraction-1 (338 mg, rt=6.4 m), and fraction-2, (343 mg, rt=13.7 m). Fraction-1 is chromatographed to give the low Rf component (TLC: (EtOAc/CH3OH/HOAc, 85/15/0.5; Rf=0.5). The low Rf component is dissolved in CH3OH (5 mL), treated with 0.5 M NaOCH3 (1.2 ml, 0.59 mmol), and stirred at RT for 10 m. The reaction is concentrated and partitioned between 1.0 M HCl (2 ml)/H2O (10 ml)/EtOAc (3×15 ml). The organic layer is MgSO4 dried and concentrated to give the enantiomer 1 of the title compound (Example 131) (153.7 mg, 27%).


Fraction-2 from the chiral resolution is manipulated as described for fraction-1 to give the enantiomer 2 of the title compound (Example 132) (149.9 mg, 27%).


Example 131, Enantiomer I CHIRALPAK AD, 0.1% TFA in i-PrOH/MeOH/Hept (20/5/75); rt=6.4 m.


NMR & LC/MS: identical to the racemic material, Example 130.


Example 132, Enantiomer 2 CHIRALPAK AD, 0.1% TFA in i-PrOH/MeOH/Hept (20/5/75); rt=13.7 m.


NMR & LC/MS: Identical to the racemic material, Example 130.


Example 133
Preparation of 2-[N-Acetyl-(5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-yl-methyl)-amino]-acetic acid



embedded image


Using a procedure analogous to Example 50, from 2-[N-acetyl-(5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-yl-methyl)-amino]acetic acid, Example 130 (0.35 g, 0.70 mmol) and Dess-Martin reagent (0.33 g, 0.77 mmol) give the title compound (0.11 g, 0.22 mmol, 31%). 1H NMR (CD30D), δ 0.72 (t, J=7.6 Hz, 3H), 0.73 (t, J=7.0 Hz, 3H), 1.29 (s, 9H), 2.04-2.14 (m, 7H), 2.16 (s, 1.5H), 2.18 (s, 1.5H), 2.25 (s, 3H), 3.97 (s, 1H), 4.01 (s, 1H), 4.68 (s, 1H), 4.71 (s, 1H), 5.03 (s, 1H), 5.04 (s, 1H), 6.59 (s, 1H), 6.66-6.67 (m, 1H), 7.00-7.08 (m, 2H).


LC/MS (m/z): calcd for C28H38NO5SSi (M−H): 500.7; found: 500.3. δ


Example 134
Preparation of (5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester



embedded image


A. 1-{4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-one



embedded image


A mixture of 3′-[4-(hydroxy)-3-methylphenyl]-3′-[4-methylthiophen-2-yl]pentane (4.4 g, 16.4 mmol), 1-chloro-3,3-dimethyl-butan-2-one (2.37 ml, 18.1 mmol) and K2CO3 (3.39 g, 24.6 mmol) in acetone (40 ml) is refluxed overnight. After cooling, the reaction is filtered, concentrated and partitioned between EtOAc and 1N HCl. The organic phase is Na2SO4 dried and concentrated to give the title compound (6.2 g, quantitative).



1H NMR (CDCl3): δ 7.05 (d, 1H, J=1.2 Hz), 7.02 (dd, 1H, J=8.8, 2.4 Hz), 6.70 (s, 1H), 6.60 (d, 1H, J=1.2 Hz), 6.52 (d, 1H, J=8.8 Hz), 4.84 (s, 2H), 2.27 (s, 3H), 2.21 (s, 3H), 2.09 (q, 4H), 1.27 (s, 9H), 0.70 (t, 6H).


B. 1-{4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol



embedded image


To a stirred solution of 1-{4-[ ]-Ethyl-]-(4-methyl-tliiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-one (5.2 g, 14 mmol) in THF/MeOH (40 ml/10 ml) at 0° C. is added NaBH4 (528 mg, 14 mmol), warmed to RT, and stirred for 1 h. The reaction is concentrated and the residue is partitioned between EtOAc and 0.2 N HCl. The organic layer is MgSO4 dried and concentrated to give the title compound (5.4 g, quantitative).



1H NMR (CDCl3): δ 7.05 (s, 2H), 6.73 (s, 1H), 6.70 (s, 1H), 6.60 (s, 1H), 4.09 (dd, 1H, J=20 =8.1, 2.4 Hz), 3.87 (dd, 1H, J=8.1, 8.9 Hz), 3.70 (dd, 1H, J=8.9, 2.4 Hz), 2.20 (s, 6H), 2.07 (q, 4H), 1.01 (s, 9H), 0.70 (t, 6H);


ES-MS: 375 (M+1).


C. 1-{4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-2-(t-butyldimethylsilyloxy)-3,3-dimethyl-butane



embedded image


To a solution of 1-{4-[ ]-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol (7.5 g, 20 mmol) in dichloromethane (100 ml) at −78° C. is added 2,6-dimethylpyridine (5.8 ml, 50 mmol) followed by tert-butyldimethylsilyl trifluoromethanesulfonate (6.0 ml, 26 mmol). After stirring at RT for 2 h, the reaction diluted with dichoromethane and washed successively with 1N HCl followed by satd NaHCO3. The organic layer is dried over MgSO4 and concentrated to give the title product (9.5 g, 97%).



1H NMR (CDCl3): δ 7.02, 7.06 (m, 2H), 6.61, 6.71 (m, 3H), 3.98 (dd, 1H, J=3.5, 9.9 Hz), 3.84 (dd, 1H, J=5.8, 9.9 Hz), 3.66 (dd, 1H, J=3.5, 5.8 Hz), 2.20 (s, 3H), 2.19 (s, 3H), 2.08 (q, 4H), 0.96 (s, 9H), 0.90 (s, 9H), 0.70 (t, 6H), 0.10 (s, 3H), 0.05 (s, 3H).


D. 5-(1-{4-[2-(tert-Butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiopliene-2-sulfonyl chloride



embedded image


Add n-BuLi (6 ml, 9.6 mmol, 1.6 M/Hex) to a solution of 1-{4-[1-Ethyl-1-(4-methyl-thiopben-2-yl)-propyl]-2-methyl-phenoxy}-2-(t-butyldimethylsilyloxy)-3,3-dimethyl-butane (3.9 g, 8 mmol) in THF (20 ml) at 0° C. After 1 h, the mixture is transferred through cannula into a solution of SO2C2 (0.65 ml, 8 mmol) in pentane (30 ml) at −78° C. It is stirred at RT for 2 h and concentrated. The residue is dissolved in dichlorornethane (20 ml) and used for the next reaction without further purification.


E. [5-(1-{4-[2-(tert-Butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonylamine]-acetic acid methyl ester



embedded image


An aliquot of 5-(1-{4-[2-(tert-butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonyl chloride (step D) (4 ml, 1.5 mmol) is added to a suspension of glycine methyl ester hydrochloride (565 mg, 4.5 mmol) and Et3N (0.94 ml, 6.75 mmol) in dichloromethane (10 ml) at 0° C. It is stirred at RT overnight, concentrated, and partitioned between EtOAc and 1N HCl. The organic layer is concentrated and chromatographed (Hex to 20% EtOAc/Hex) to give the title product (380 mg, 40%).



1H NMR (CDCl3): δ 7.01 (dd, 1H, J=2.0, 8.3 Hz), 6.97 (d, 1H, J=2.0 Hz), 6.68 (d, 1H, J=8.3 Hz), 6.59 (s, 1H), 5.10 (t, 1H), 3.98 (dd, 1H, J=3.5, 9.9 Hz), 3.84, 3.88 (m, 3H), 3.65, 3.69 (m, 4H), 2.41 (s, 3H), 2.20 (s, 3H), 2.09 (q, 4H), 0.97 (s, 9H), 0.90 (s, 9H), 0.70 (t, 6H), 0.11 (s, 3H), 0.05 (s, 3H);


ES-MS: 640 (M+1).


F. (5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester



embedded image


To a solution of [5-(1-{4-[2-(tert-butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonylamine]-acetic acid methyl ester (380 mg, 0.59 mmol) in acetonitrile (10 ml) at 0° C. is added hydrofluoride solution (3 ml, 48% in water). After stirring at RT for 2 h, the reaction is concentrated and partitioned between EtOAc and 1N HCl. The organic layer is washed successively with 1N HCl and brine. Tle organic layer is concentrated and chromatographed (Hex to 25% EtOAc/Hex) to give the title compound (250 mg, 82%).



1H NMR (CDC3): δ 7.02 (dd, 1H, J=2.5, 8.3 Hz), 6.97 (d, 1H, J=2.0 Hz), 6.73 (d, 1H, J=8.3 Hz), 6.58 (s, 1H), 5.12 (t, 1H), 4.10 (dd, 1H, J=2.5, 8.6 Hz), 3.87 (dd, 1H, J=8.6, 8.8 Hz), 3.84 (d, 2H, J=5.3 Hz), 3.71 (dd, 1H, J=2.5, 8.8 Hz), 3.66 (s, 3H), 2.40 (s, 3H), 2.20 (s, 3H), 2.07 (q, 4H), 1.02 (s, 9H), 0.69 (t, 6H);


HRMS: Calcd. for C26H43N2O6S2 (M+18), 543.2563, found, 543.2550.


Example 135 and Example 136
Preparation of enantiomers of (5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester



embedded image


A racemic mixture of (5-{(1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylanine)-acetic acid methyl ester (750 mg) is chromatographed on Chiralpak AD column to give enantiomer 1, Example 135 (400 mg, 53%) and enantiomer 2, Example 136 (320 mg, 43%).


HPLC: Chiralpak AD (4.6×150 mm); 35% heptane, 65% EtOH; flow rate: 0.6 ml/m;


UV: 260 nm


Enantiomer 1, Example 135: rt=4.5 m;



1H NMR (CDCl3): equivalent to Example 134


Enantiomer 2, equivalent to Example 136: rt=5.6 m.



1H NMR (CDCl3): equivalent to Example 134


Example 137
Preparation of (5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid



embedded image


To a solution of (5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester (210 mg, 0.4 mmol) in dioxane (10 ml) is added 2N LiOH/H20 solution (10 ml) and stirred at RT overnight. The reaction is concentrated and partitioned between EtOAc/1N HCl. The organic layer is concentrated to give the title compound (180 mg, 88%).



1H NMR (CDCl3): δ 7.01 (dd, 1H, J=2.5, 8.3 Hz), 6.97 (d, 1H, J=2.0 Hz), 6.73 (d, 1H, J=8.3 Hz), 6.60 (s, 1H), 5.16 (t, 1H), 4.12 (dd, 1H, J=2.9, 9.3 Hz), 3.88 (dd, 1H, J=8.8, 9.3 Hz), 3.86(d, 2H, J=5.5 Hz), 3.72 (dd, 1H, J=2.9, 8.8 Hz), 2.40 (s, 3H), 2.20 (s, 3H), 2.05 (q, 4H), 1.01 (s, 9H), 0.70 (t, 6H);


HRMS: Calcd. for C25H38NO6S2 (M+1), 512.2146, found, 512.2141.


Example 138
Preparation of enantiomers of (5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid



embedded image


Using aprocedure analogous to Example 136, enantiomer 1 of (5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester (390 mg, 0.74 mmol) (Example 135) gives the title compound (250 mg, 66%). 1H NMR (CDCl3): equivalent to Example 134;


ES-MS: 512 (M+1).


Example 139
Preparation of (5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid



embedded image


A. [5-(1-{4-[2-(tert-Butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonylamine]-acetic acid tert-butyl ester



embedded image


Using a procedure analogous to Example 134E, 5-(1-{4-[2-(tert-butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonyl chloride and 2-amino-acetic acid tert-butyl ester (787 mg, 6 mmol) give the title compound (670 mg, 20%).



1H NMR (CDCl3): δ 7.01 (dd, 1H, J=2.5, 8.8 Hz), 6.97 (d, 1H, J=2.0 Hz), 6.68 (d, 1H, J=8.8 Hz), 6.57 (s, 1H), 5.09 (t, 1H), 3.98 (dd, 1H, J=3.5, 9.8 Hz), 3.86 (dd, 1H, J=5.9, 9.8 Hz), 3.71 (d, 2H, J=5.4 Hz), 3.67 (dd, 1H, J=3.5, 5.9 Hz), 2.40 (s, 3H), 2.20 (s, 3H), 2.08 (q, 4H), 1.40 (s, 9H), 0.97 (s, 9H), 0.90 (s, 9H), 0.70 (t, 6H), 0.11 (s, 3H), 0.05 (s, 3H).


B. (5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid tert-butyl ester



embedded image


A mixture of [5-(1-{4-[2-(tert-butyl-dimetiyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonylaminel-acetic acid tert-butyl ester (667 mg, 1 mmol) and tetra-n-buty]ammonium fluoride (6 ml, 1 M in THF) is stirred at RT for 3 d. It is diluted with EtOAc and washed with NH4Cl. The organic layer is concentrated and chromatographed (Hex to 15% EtOAc/Hex) to give the title compound (360 mg, 63%).


ES-MS: 568 (M+1).


C. (5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid tert-butyl ester



embedded image


A mixture of (5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid tert-butyl ester (360 mg, 0.63 mmol), pyridinium dichromate (179 mg, 0.48 mmol) and Ac2O (66 μL, 0.7 mmol) in dichloromethane (10 ml) is refluxed for 3 h. The reaction is concentrated and chromatographed (Hex to 15% EtOAc/Hex) to give the title compound (330 mg, 92%); 1H NMR (CDC3): δ 6.96, 7.23 (m, 2H), 6.56 (s, 1H), 6.51 (d, 1H, J=8.3 Hz), 6.57 (s, 1H), 5.08 (t, 1H), 4.85 (s, 2H), 3.71 (d, 2H, J=5.4 Hz), 2.40 (s, 3H), 2.26 (s, 3H), 2.07 (q, 4H), 1.40 (s, 9H), 1.26 (s, 9H), 0.90 (s, 9H), 0.70 (t, 6H);


HRMS: calcd. for C29H47N2O6S2 (M+18), 583.2876, found, 583.2876.


D. (5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid



embedded image


A solution of (5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid tert-butyl ester (320 mg, 0.57 mmol) in 4N HCl/dioxane (10 ml) is stirred at RT overnight. The reaction is concentrated and chromatographed (Hex to 0.5% AcOH in 50% EtOAc/Hex) to give the title compound (250 mg, 87%).



1H NMR (CDCl3): δ 7.01 (d, 1H, J=2.5 Hz), 6.92 (dd, 1H, J=2.5, 8.8 Hz), 6.62 (s, 1H), 6.45 (d, 1H, J=8.8 Hz), 5.10 (t, 1H), 4.91 (s, 2H), 3.86(d, 2H, J=5.4 Hz), 2.41 (s, 3H), 2.25 (s, 3H), 2.04 (q, 4H), 1.25 (s, 9H), 0.71 (t, 6H);


HRMS: Calcd. for C25H39N2O6S2 (M+18), 527.2250, found, 527.2245.


Example 140
Preparation of 3-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid ethyl ester



embedded image


Using procedures analogous to Example 134E and Example 134F, an aliquot of 5-(1-{4-[2-(tert-butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-tliiophene-2-sulfonyl chloride (Example 134D) and 3-amino-propionic acid ethyl ester hydrochloride give the title compound (19% overall yield).



1H NMR (CDC3): δ 7.02 (dd, 1H, J=2.5, 8.8 Hz), 6.98 (d, 1H, J=2.0 Hz), 6.73 (d, 1H, J=8.8 Hz), 6.58 (s, 1H), 5.26 (t, 1H), 4.14 (q, 2H), 4.10 (dd, 1H, J=2.9, 8.9 Hz), 3.87 (dd, 1H, J=8.8, 8.9 Hz), 3.71 (dd, 1H, J=2.9, 8.8 Hz), 3.25 (m, 2H), 2.50 (t, 2H), 2.39 (s, 3H), 2.20 (s, 3H), 2.06 (q, 4H), 1.02 (s, 9H), 0.70 (t, 6H);


HRMS: Calcd. for C28H44NO6S2 (M+1), 554.2610, found, 554.2590.


Example 141
Preparation of 3-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid



embedded image


The title compound is obtained from 3-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid ethyl ester using an analogous procedure as described for Example 137.



1H NMR (CDC3): δ 7.02 (d, 1H, J=8.3 Hz), 6.98 (s, 1H), 6.73 (d, 1H, J=8.3 Hz), 6.60 (s, 1H), 5.50 (t, 1H), 4.13 (d, 1H), 4.12 (dd, 1H, J=2.0, 8.9 Hz), 3.88 (dd, 1H, J=8.8, 8.9 Hz), 3.72 (dd, 1H, J=2.0, 8.8 Hz), 3.26 (m, 2H), 2.55 (t, 2H), 2.39 (s, 3H), 2.20 (s, 3H), 2.06 (q, 4H), 1.02 (s, 9H), 0.70 (t, 6H);


HRMS: Calcd. for C26H40NO6S2 (M+1), 526.2297, found, 526.2275.


Example 142 and Example 143
Preparation of enantiomners of 3-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid



embedded image


A racemic mixture of 3-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid (200 mg) is chromatographed on a Chiralpak AD column to give enantiomer 1, example 142 (79 mg, 40%) and enantiomer 2, Example 143 (79 mg, 40%).


HPLC: Chiralpak AD (4.6×250 mm); 0.1% TFA in 15% EtOH/85% Hept; flow rate: 1.0 ml/m; UV: 260 nm


Enantiomer 1: rt=12 m;



1H NMR (CDCl3): equivalent to Example 141;


ES-MS: 526 (M+1)


Enantiomer 2: rt=21 m;



1H NMR (CDCl3): equivalent to Example 141;


ES-MS: 526 (M+1).


Example 144
Preparation of 3-(5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid



embedded image


The title compound is obtained from 5-(1-{4-[2-(tert-butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonyl chloride and 2-amino-acetic acid tert-butyl ester and 3-amino-propionic acid t-butyl ester hydrochloride using an analogous procedures as described for Example 139A to Example 139D.



1H NMR (CDCl3): δ 6.99 (s, 1H), 6.97 (d, 1H, J=8.4 Hz), 6.59 (s, 1H), 6.50 (d, 1H, J=8.4 Hz), 5.61 (t, 1H), 4.87 (s, 2H), 3.26 (m, 2H), 2.55 (t, 2H), 2.39 (s, 3H), 2.25 (s, 3H), 2.06 (q, 4H), 1.26 (s, 9H), 0.69 (t, 6H); ES-MS: 524 (M+1).


Example 145
Preparation of 3-[(5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonyl)-methyl-amine]-propionic acid



embedded image


A. 3-[(5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonyl)-methyl-amine]-propionic acid tert-butyl ester



embedded image


To a mixture of 3-(5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl)-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid tert-butyl ester (Example 143C) (400 mg, 0.69 mmol) and THF (15 ml) is added PPh3 (272 mg, 1.04 mmol), diethyl azodicarboxylate (163 μL, 1.04 mmol) and methanol (42 μL, 1.04 mmol). The reaction is stirred at RT overnight, concentrated and chromatographed (Hex to 20% EtOAc/Hex) to give the title compound (240 mg, 59%).



1H NMR (CDCl3): δ 6.99 (s, 1H), 6.97 (d, 1H, J=8.4 Hz), 6.57 (s, 1H), 6.52 (d, 1H, J=8.4 Hz), 4.85 (s, 2H), 3.37 (t, 2H), 2.81 (s, 3H), 2.51 (t, 2H), 2.41 (s, 3H), 2.26 (s, 3H), 2.06 (q, 4H), 1.44 (s, 9H), 1.26 (s, 9H), 0.69 (t, 6H).


B. 3-[(5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonyl)-methyl-amine]-propionic acid



embedded image


Tle title compound is prepared from 3-[(5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonyl)-methyl-amine]-propionic acid tert-butyl ester using a procedure analogous to Example 139D.



1H NMR (CDCl3): δ 6.99 (s, 1H), 6.97 (d, 1H, J=8.4 Hz), 6.60 (s, 1H), 6.50 (d, 1H, J=8.4 Hz), 4.87 (s, 2H), 3.41 (t, 2H), 2.84 (s, 3H), 2.63 (t, 2H), 2.41 (s, 3H), 2.26 (s, 3H), 2.06 (q, 4H), 1.26 (s, 9H), 0.69 (t, 6H).


HRMS: calcd. for C27H40NO6S2, 538.2297, found, 538.2296.


Example 146
2-(R)-(5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid



embedded image


The title compound is prepared from 2-(R)-amino-propionic acid tert-butyl ester hydrochloride following an analogous procedure as described for Example 139.



1H NMR (CDCl3): δ 6.96 (d, 1H, J=2.5 Hz), 6.97 (dd, 1H, J=2.0, 8.8 Hz), 6.61 (s, 1H), 6.44 (d, IfH, J=8.5 Hz), 5.26 (d, 1H, J=8.3 Hz), 4.92 (s, 2H), 4.11 (m, 1H), 2.40 (s, 3H), 2.25 (s, 3H), 2.06 (q, 4H), 1.42 (d, 3H, J=7.4 Hz), 1.25 (s, 9H), 0.69 (t, 6H);


ES-MS: 524 (M+1).


Example 147
2-(R)-(5-{1-[4-(3,3-Dimethyl-2-tbioxo-butoxy)-3-methyl-phenyl]-]-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid



embedded image


A mixture of 2-(R)-(5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-etbyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid (125 mg, 0.2 mmol) and Lawesson's reagent (236 mg, 0.5 mmol) in dichloroethane (7 ml) is refluxed for 3 d. The solvent is concentrated and chromatographed (0.1% AcOH in 50% EtOAc/Hex) to give the title compound (67 mg, 52%).



1H NMR (CDC3): δ 6.97 (s, 1H), 6.96 (d, 1H, J=8.4 Hz), 6.60 (s, 1H), 6.50 (d, 1H, J=8.4 Hz), 5.19 (d, 1H, J=8.8 Hz), 4.86 (s, 2H), 4.14 (m, 1H), 2.40 (s, 3H), 2.25 (s, 3H), 2.06 (m, 4H), 1.38 (d, 3H), 1.26 (s, 9H), 0.69 (t, 6H);


HRMS: calcd. for C26H38NO5S3, 540.1912, found, 540.1908.


Example 148
Preparation of 2-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-2-methyl-propionic acid methyl ester



embedded image


Using analogous procedures as described for Example 134D to Example 134F, 2-amino-2-methyl-propionic acid methyl ester hydrochloride gives the title compound (20% overall yield).



1H NMR (CDCl3): δ 7.03 (dd, 1H, J=2.4, 8.4 Hz), 6.96 (d, 1H, J=2.3 Hz), 6.72 (d, 1H, J=8.8 Hz), 6.53 (s, 1H), 5.42 (s, 1H), 4.10 (dd, 1H, J=2.6, 9.2 Hz), 3.87 (dd, 1H, J=8.8, 9.2 Hz), 3.69 (dd, 1H, J=2.6, 8.8 Hz), 3.67 (s, 3H), 2.38 (s, 3H), 2.19 (s, 3H), 2.06 (q, 4H), 1.48 (s, 6H), 1.02 (s, 9H), 0.69 (t, 6H);


HRMS: Calcd. for C28H44NO6S2 (M+1), 554.2610, found, 554.2610.


Example 149
Preparation of 2-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-benzoic acid



embedded image


Using analogous procedures as described for Example 134D to Example 134F and Example 137, 2-amino-benzoic acid methyl ester gives the title compound (8% overall yield).



1NMR (400 MHz, CDCl3) δ 10.54 (s, 1H), 8.03 (d, 1H, J=7.9 Hz), 7.71 (d, 1H, J=8.4 Hz), 7.48 (t, 1H, =7.9 Hz), 7.09 (t, 1H, J=7.7 Hz), 6.93 (dd, 1H, J=8.6, 2.4 Hz), 6.86 (s, 1H), 6.70 (d, 1H, J=8.4 Hz), 6.48 (s, 1H), 4.14-4.07 (m, 1H), 3.89 (t, 1H, J=9.0 Hz), 3.72 (dd, 1H, J=8.6, 2.4 Hz), 2.30 (s, 3H), 2.16 (s, 3H), 2.04-1.93 (m, 4H), 1.02 (s, 9H), 0.60 (t, 6H, J=7.3 Hz).


High Res. EI-MS: 574.2305; calc. for C30H39NO6S2+H: 574.2297


Example 150
Preparation of epimer 1 of 2-(R)-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid methyl ester



embedded image


A. Enantiomer 1 of 1-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol



embedded image


To a mixture of (R)-2-methyl-CBS-oxazaborolidine (0.1 ml, 0.1 mmol, 1M in toluene), borane-N,N-dimethyl aniline complex (0.18 ml, 1 mmol) in THF (5 ml) is added a solution of 1-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-one (372 mg, 1 mmol) in THF (5 ml) over a period of m. The reaction is stirred at RT for 2 h and MeOH (2 ml) is added followed by 1N hydrochloric acid. The mixture is extracted with EtOAc and the organic phase is concentrated and chromatographed (Hex to 25% EtOAc/Hex) to give the title compound (305 mg, 82%).


HPLC: Chiralpak AD (0.46×25 cm); 20% 2-propanol, 80% heptane; flow rate: 1.0


ml/m; UV: 225 nm;


Enantiomer 1: 91% ee; rt: 4.03 m.



1H NMR (CDC3) equivalent to Example 134B


B. Epimer 1 of 2-(R)-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-tliiophene-2-sulfonylamine)-propionic acid methyl ester



embedded image


Using analogous procedures described in Example 134C to Example 134F, enantiomer 1 of 1-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol and 2-(R)-amino-propionic acid methyl ester hydrochloride give the title compound (27% overall yield).



1NMR (400 MHz, CDCl3) 67 7.01 (d, 1H, J=8.4 Hz), 6.96 (s, 1H), 6.72 (d, 1H, J=8.4 Hz), 6.56 (s, 1H), 5.26 (d, 1H, J=8.8 Hz), 4.10-4.03 (m, 2H), 3.86 (t, 1H, J=9.0 Hz), 3.71 (dd, 1H, J=8.8, 2.2 Hz), 3.59 (s, 3H), 2.38 (s, 3H), 2.19 (s, 3H), 2.11-2.03 (m, 4H), 1.38 (d, 3H, J=7.0 Hz), 1.01 (s, 9H), 0.68 (t, 6H, J=7.3 Hz).


High Res. EI-MS: 540.24556; calc. for C27H41NO6S2+H: 540.2454


Example 151
Preparation of epimer 1 of 2-(R)-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid



embedded image


Using an analogous procedure to Example 137, epimer 1 of 2-(R)-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid methyl ester (Example 150) gives the title compound (98%).



1NMR (400 MHz, CDCl3) δ 7.04-6.98 (m, 1H), 6.96 (s, 1H), 6.73 (d, 1H, J=8.8 Hz), 6.59 (s, 1H), 5.29 (d, 1H, J=8.8 Hz), 4.14-4.07 (m, 2H), 3.88 (t, 1H, J=9.0 Hz), 3.74-3.69 (m, 1H), 2.38 (s, 3H), 2.19 (s, 3H), 2.12-2.01 (m, 4H), 1.41 (d, 3H, J=7.0 Hz), 1.01 (s, 9H), 0.69 (t, 6H, J=7.3 Hz).


High Res. EI-MS: 526.2284; calc. for C26H39NO6S2+H: 526.2297


Example 152
Preparation of enantiomer 1 of (5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-thiophene-2-sulfonylaamine)-acetic acid methyl ester



embedded image


Using a procedure analogous to Example 150A, 1-[4-(1-ethyl-1-thiophen-2-yl-propyl)-2-methyl-phenoxy]-3,3-dimethyl-butan-2-one gives the title compound (18%). 1H NMR (CDCl3) δ 7.43 (d, 1H, J=4.0 Hz), 7.02 (dd, 1H, J=2.0, 8.5 Hz), 6.98 (s, 1H), 6.74 (s, 1H), 6.73 (d, 1H, J=8.8 Hz), 5.11 (t, 1H), 4.10 (dd, 1H, J=2.6, 9.2 Hz), 3.88 (dd, 1H, J=8.8, 9.2 Hz), 3.85 (d, 2H, J=4.8 Hz), 3.71 (dd, 1H, J=2.6, 8.8 Hz), 3.66 (s, 3H), 2.19 (s, 3H), 2.07 (m, 4H), 1.01 (s, 9H), 0.70 (t, 6H);


HRMS: Calcd. for C25H41N2O6S2 (M+18), 529.2406, found, 529.2413.


Example 153
Preparation of enantiomer 1 of (5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-thiophene-2-sulfonylamine)-acetic acid



embedded image


Using an analogous precedure to Example 137, enantiomer 1 of (5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-ph enyl]-propyl}-thiophene-2-sulfonylamine)-acetic acid methyl ester give the title compound (quant).



1H NMR (CDC3) δ 7.44 (d, 1H, J=4.0 Hz), 7.0 (d, 1H, J=8.4 Hz), 6.98 (s, 1H), 6.78 (d, 1H, J=4.0 Hz), 6.74 (d, 1H, J=8.4 Hz), 5.11 (t, 1H), 4.10 (dd, 1H, J=2.5, 9.2 Hz), 3.88 (dd, 1H, J=8.8, 9.2 Hz), 3.85 (d, 2H, J=4.4 Hz), 3.71 (dd, 1H, J=2.5, 8.8 Hz), 2.19 (s, 3H), 2.07 (m, 4H), 1.01 (s, 9H), 0.70 (t, 6H);


HRMS: Calcd. for C24H39N2O6S2 (+18), 515.2249, found, 515.2267.


Example 154
Preparation of enantiomer 1 of (5-{1-ethyl-1-[3-ethyl-4-(2-hydroxy-3,3-dimethyl-butoxy)-phenyl]-propyl}-thiophene-2-sulfonylamine)-acetic acid methyl ester



embedded image


Using a procedure analogous to Example 150A, 1-[2-ethyl-4-(1-ethyl-1-thiophen-2-yl-propyl)-phenoxy]-3,3-dimethyl-butan-2-one gives the title compound (34%). 1H NMR (CDCl3) δ 7.43 (d, 1H, J=3.5 Hz), 7.02 (d, 1H, J=8.3 Hz), 7.00 (s, 1H), 6.76 (d, 1H, J=3.5 Hz), 6.75 (d, 1H, J=8.3 Hz), 5.06 (t, 1H), 4.10 (dd, 1H, J=2.6, 9.3 Hz), 3.88 (dd, 1H, J=8.8, 9.3 Hz), 3.85 (d, 2H, J=5.8 Hz), 3.71 (dd, 1H, J=2.6, 8.8 Hz), 3.67 (s, 3H), 2.60 (q, 2H), 2.06 (q, 4H), 1.14 (t, 3H), 1.01 (s, 9H), 0.70 (t, 6H); HRMS: Calcd. for C26H40NO6S2 (M+1), 526.2297, found; 526.2285.


Example 155
Preparation of enantiomer 1 of (5-{1-Ethyl-1-[3-ethyl-4-(2-hydroxy-3,3-dimethyl-butoxy)-phenyl]-propyl}-thiophene-2-sulfonylamine)-acetic acid



embedded image


Using a procedure analogous to Example 137, enantiomer 1 of (5-{1-ethyl-1-[3-ethyl-4-(2-hydroxy-3,3-dimethyl-butoxy)-phenyl]-propyl}-thiophene-2-sulfonylamine)-acetic acid methyl ester gives the title compound (quant).



1H NMR (CDCl3) δ 7.44 (d, 1H, J=4.0 Hz), 6.98, 7.01 (m, 2H), 6.74, 6.79 (m, 2H), 5.11 (t, 1H), 4.13 (dd, 1H, J=3.0, 9.4 Hz), 3.90 (dd, 1H, J=8.9, 9.4 Hz), 3.86 (d, 2H, J=5.3 Hz), 3.73 (dd, 1H, J=3.0, 8.9 Hz), 2.60 (q, 2H), 2.09 (m, 4H), 1.16 (t, 3H), 1.03 (s, 9H), 0.72 (t, 6H);


HRMS: Calcd. for C25H41N2O6S2 (M+18), 529.2406, found, 529.2397.


Examnle 156
Preparation of enantiomer 1 of (5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-propyl-phenyl]-propyl}-thiophene-2-sulfonylamine)-acetic acid methyl ester



embedded image


Using a procedure analogous to Example 150, 1-[4-(1-ethyl-1-thiophen-2-yl-propyl)-2-propyl-phenoxy]-3,3-dimethyl-butan-2-one gives the title compound (25%). 1H NMR (CDC3) δ 7.43 (d, 1H, J=4.0 Hz), 7.02 (dd, 1H, J=1.8, 8.8 Hz), 7.00 (d, 1H, J=1.8 Hz), 6.77 (d, 1H, J=4.0 Hz), 6.75 (d, 1H, J=8.8 Hz), 5.05 (t, 1H), 4.10 (dd, 1H, J=2.4, 8.8 Hz), 3.88 (dd, 1H, J=8.8, 9.2 Hz), 3.85 (d, 2H, J=5.2 Hz), 3.71 (dd, 1H, J=2.4, 8.8 Hz), 3.67 (s, 3H), 2.55 (t, 2H), 2.06 (q, 4H), 1.56 (m, 2H), 1.02 (s, 9H), 0.89 (t, 3H), 0.70 (t, 6H);


HRMS: Calcd. for C27H45N2O6S2 (M+18), 557.2719, found, 557.2698.


Example 157
Preparation of (5-{1-Etbyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-propyl-phenyl]-propyl}-thiophene-2-sulfonylamine)-acetic acid



embedded image


Using a procedure analogous to Example 137, (5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-propyl-phenyl]-propyl}-thiophene-2-sulfonylamine)-acetic acid methyl ester gives the title compound (quant).



1H NMR (CDCl3) δ 7.43 (d, 1H, J=4.0 Hz), 6.99 (d, 1H, J=8.4 Hz), 6.98 (s, 1H), 6.78 (d, 1H, J=4.0 Hz), 6.75 (d, 1H, J=8.4 Hz), 5.09 (t, 1H), 4.10 (dd, 1H, J=2.4, 9.4 Hz), 3.88 (dd, 1H, J=8.8, 9.4 Hz), 3.86 (d, 2H, J=5.3 Hz), 3.72 (dd, 1H, J=2.4, 8.8 Hz), 2.55 (t, 2H), 2.07 (m, 4H), 1.56 (m, 2H), 1.01 (s, 9H), 0.89 (t, 3H), 0.71 (t, 6H);


HRMS: Calcd. for C26H43N2O6S2 (M+18), 543.2563, found, 543.2541.


Example 158
Preparation of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonic acid acetyl-amide



embedded image


A. 5-(1-{4-[2-(tert-Butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonic acid amide



embedded image


Using a procedure analogous to Example 134E, 5-(1-{4-[2-(tert-butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonyl chloride and NH4OH give the title compound (39%).



1H NMR (CDCl3) δ 7.02 (dd, 1H, J=2.9, 8.6 Hz), 6.96 (d, 1H, J=2.2 Hz), 6.68 (d, 1H, J=8.6 Hz), 6.60 (s, 1H), 4.83 (s, 2H), 3.98 (dd, 1H, J=3.3, 9.9 Hz), 3.85 (dd, 1H, J=5.5, 9.9 Hz), 3.67 (dd, 1H, J=3.3, 5.5 Hz), 2.43 (s, 3H), 2.20 (s, 3H), 2.06 (q, 4H), 0.96 (s, 9H), 0.89 (s, 9H), 0.70 (t, 6H), 0.11 (s, 3H), 0.05 (s, 3H).


B. 5-(1-{4-[2-(tert-Butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonic acid acetyl-amide



embedded image


A mixture of 5-(1-{4-[2-(tert-Butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxyl-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonic acid amide (227 mg, 0.4 mmol), EDCI (92 mg, 0.48 mmol), acetic acid (27 μL, 0.48 mmol) and DMAP (50 mg) in dichloromethane (10 ml) is stirred at RT overnight. The reaction is diluted with dichloromethane and washed with 1N HCl. The organic phase is concentrated and chromatographed (Hex to 20% EtOAc/Hex) to give the title compound (240 mg, 98%). 1H NMR (CDC3) δ 7.99 (s, 1H), 7.02 (d 1H, J=8.8 Hz), 6.96 (s, 1H), 6.69 (d, 1H, J=8.8 Hz), 6.59 (s, 1H), 3.98 (dd, 1H, J=3.4, 9.8 Hz), 3.85 (dd, 1H, J=5.8, 9.8 Hz), 3.67 (dd, 1H, J=3.4, 5.8 Hz), 2.43 (s, 3H), 2.20 (s, 3H), 2.13 9s, 3H), 2.06 (q, 4H), 0.96 (s, 9H), 0.89 (s, 9H), 0.70 (t, 6H), 0.11 (s, 3H), 0.05 (s, 3H);


ES-MS: 610 (M+1).


C. 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonic acid acetyl-amide



embedded image


Using a procedure analogous to example-TWM-1F, 5-(1-{4-[2-(tert-butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonic acid acetyl-amide gives the title compound (240 mg, 62%).



1H NMR (CDC3) δ 7.97 (s, 1H), 7.02 (dd, 1H, J=2.4, 8.3 Hz), 6.99 (s, 1H), 6.74 (d, 1H, J=8.3 Hz), 6.58 (s, 1H), 4.10 (dd, 1H, J=2.4, 9.3 Hz), 3.88 (dd, 1H, J=8.8, 9.3 Hz), 3.72 (dd, 1H, J=2.4, 8.8 Hz), 2.46 (s, 3H), 2.21 (s, 3H), 2.13 (s, 3H), 2.07 (m, 4H), 1.02 (s, 9H), 0.70 (t, 6H).


HRMS: calcd. for C25H38NO5S2 (M+1), 496.2191, found, 496.2188.


Example 159
Preparation of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonic acid propionyl-amide



embedded image


Using procedures analogous to Example 158B and Example 158C, 5-(1-{4-[2-(tert-butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonic acid amide and propionic acid give the title compound (66%).



1H NMR (CDCl3) δ 8.56 (s, 1H), 7.02 (dd, 1H, J=2.4, 8.3 Hz), 6.98 (d, 1H, J=2.4 Hz), 6.73 (d, 1H, J=8.3 Hz), 6.56 (s, 1H), 4.10 (dd, 1H, J=3.0, 9.3 Hz), 3.88 (dd, 1H, J=8.8, 9.3 Hz), 3.71 (dd, 1H, J=3.0, 8.8 Hz), 2.47 (s, 3H), 2.33 (q, 2H), 2.19 (s, 3H), 2.07 (m, 4H), 1.08 (t, 3H), 1.02 (s, 9H), 0.68 (t, 6H);


HRMS: calcd. for C26H40NO5S2 (M+1), 510.2348, found, 510.2359.


Example 160
Preparation of 5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid acetyl-amide



embedded image


Using a procedure analogous to Example 138C, 5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonic acid acetyl-amide gives the title compound (84%).



1H NMR (CDC3) δ 8.05 (s, 1H), 6.91, 6.99 (m, 2H), 6.57 (s, 1H), 6.51 (d, 1H, J=8.5 Hz), 4.86 (s, 2H), 2.46 (s, 3H), 2.26 (s, 3H), 2.13 (s, 3H), 2.07 (m, 4H), 1.26 (s, 9H), 0.69 (t, 6H).


HRMS: calcd. for C25H36NO5S2 (M+1), 494.2035, found, 494.2040.


Example 161
Preparation of 5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethy]-propyl}-3-methyl-thiophene-2-sulfonic acid dimethylaminemethyleneamide



embedded image


A. 5-{1-[4-(tert-Butyl-dimethyl-silanyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid amide



embedded image


To a 0° C. solution of tert-butyl-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-dimethyl-silane (28.37 g, 72.99 mmol) in THF (360 ml) is added dropwise n-butyllithium (47.90 ml, 76.64 mmol, 1.6M in Hex) and stirred at 0° C. for 30 m. The reaction mixture is cannulated into a −78° C. solution of sulfuryl chloride (11.73 ml, 145.98 mrnol) in pentane (360 ml) and the reaction warms to RT for 2 h. The reaction mixture is concentrated and the residue is dissolved in acetone (100 ml) and added to a 0° C. mixture of acetone (1 L) and concentrated NH4OH (150 ml) and stirs at 0° C. for 2 h. The reaction mixture is concentrated and the residue is partitioned between EtOAc (700 ml) and satd aqueous NHCl (200 ml). The organic layer is MgSO4 dried, concentrated and chromatographed (330 g SiO2, 50% EtOAc/Hex) to yield the title compound (5.34 g, 16%).



1NMR (400 MHz, CDC3) δ 6.97 (d, 1H, J=2.2 Hz), 6.91 (dd, 1H, J=8.6, 2.4 Hz), 6.66 (d, 1H, J=8.4 Hz), 6.58 (s, 1H), 4.90 (s, 2H), 2.42 (s, 3H), 2.17 (s, 3H), 2.09-2.04 (m, 4H), 1.00 (s, 9H), 0.69 (t, 6H, J=7.3 Hz), 0.21 (s, 6H).


B. 5-{1-[4-(tert-Butyl-dirmethyl-silanyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid dimethylaminemethyleneamide



embedded image


To a solution of 5-{1-[4-(tert-butyl-dimethyl-silanyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid amide (5.34 g, 11.42 mmol) in THF (200 ml) is added dimethyl formamide dimethyl acetamide (1.52 ml, 11.42 mmol) and sitrred overnight. The reaction mixture is diluted with EtOAc (500 ml) and washed with 0.2N HCl (100 ml). The organic layer is MgSO4 dried, concentrated and chromatographed (120 g SiO2, 50% EtOAc/Hex) to yield the title compound (6.0 g, quant.).



1NMR (400 MHz, CDCl3) δ 8.10 (s, 1H), 6.98 (d, 1H, J=2.2 Hz), 6.92 (dd, 1H, J=8.4, 2.6 Hz), 6.65 (d, 1H, J=8.4 Hz), 6.52 (s, 1H), 3.12 (s, 3H), 3.05 (s, 3H), 2.41 (s, 3H), 2.16 (s, 3H), 2.09-1.99 (m, 4H), 1.00 (s, 9H), 0.68 (t, 6H, J=7.3 Hz), 0.20 (s, 6H).


C. 5-[1-Ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-3-methyl-thiophene-2-sulfonic acid dimethylaminemethyleneamide



embedded image


To a 0° C. solution of 5-{1-[4-(tert-butyl-dimethyl-silanyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid dimethylaminemethyleneamide (6.1 g, 11.68 mmol) in THF (150 ml) is added dropwise tetrabutylammonium fluoride (15.62 ml, 15.62 mmol, 1.0 M in THF) and is warmed to RT for 1 h. The reaction is quenched with satd aqueous NH4Cl (100 ml) and extracted with Et2O (2×200 ml). The combined organic layers are dried MgSO4 dried, concentrated and chromatographed (120 g SiO2, 50% EtOAc/Hex) to yield the title compound (4.63 g, 97%).



1NMR (400 MHz, CDCl3) δ 8.09 (s, 1H), 6.97 (s, 1H), 6.95 (d, 1H, J=8.4 Hz), 6.68 (d, 1H, J=8.4 Hz), 6.52 (s, 1H), 4.84 (s, 1H), 3.12 (s, 3H), 3.04 (s, 3H), 2.40 (s, 3H), 2.21 (s, 3H), 2.08-2.01 (m, 4H), 0.68 (t, 6H, J=7.3 Hz).


D. 5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid dimethylaminemethyleneamide



embedded image


To a solution of 5-[1-ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-3-methyl-thiophene-2-sulfonic acid dimethylaminemethyleneamide (5.1 g, 12.48 mmol) in 2-butanone (50 ml) is added potassium carbonate (2.59 g, 18.72 mmol), and chloropinacolone (3.28 ml, 24.91 mmol). The reaction is refluxed overnight, filtered, and concentrated. The residue is partitioned between EtOAc (400 ml) and 0.2N HCl (100 ml). The organic layer is washed with brine (100 ml), MgSO4 dried, concentrated, and chromatographed (120 g SiO2, 50% EtOAc/Hex) to yield the title compound (6.11 g, 97%).


1NMR (400 MHz, CDC3) δ 8.10 (s, 1H), 7.01 (s, 1H), 6.98 (d, 1H, J=9.2 Hz), 6.52 (s, 1H), 6.50 (d, 1H, J=8.4 Hz), 4.85 (s, 2H), 3.13 (s, 3H), 3.05 (s, 3H), 2.41 (s, 3H), 2.26 (s, 3H), 2.09-2.01 (m, 4H), 1.26 (s, 9H), 0.68 (t, 6H, J=7.3 Hz).


HRMS: calcd. for C26H39N2O4S2 (M+1), 507.2351, found, 507.2349.


Example 162
Preparation of 5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1′-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid amide



embedded image


A solution of 5-{1′-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1′-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid dimethylaminemethyleneamide (6.11 g, 12.06 mmol) in 5N HCl/MeOH (180/200 ml) is refluxed overnight. The reaction mixture is concentrated and the residue redissolved in EtOAc (500 ml) and is washed with water (100 ml), brine (100 ml), dried (MgSO4), concentrated and chromatographed (120 g SiO2, 60% EtOAc/Hex) to yield the title compound (5.50 g, quant.).



1NMR (400 MHz, CDC3) δ 7.01-6.95 (m, 211), 6.57 (s, I H), 6.51 (d, 1H, J=7.9 Hz), 4.92 (s, 211), 4.85 (s, 211), 2.41 (s, 311), 2.26 (s, 311), 2.09-2.03 (m, 4H), 1.25 (s, 9H), 0.69 (t, 611, =7.3 Hz).


EI-MS: 507.3 (M+1)


Example 163
Preparation of 5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid propionyl-amide



embedded image


A mixture of 5-{1′-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1′-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid amide (330 mg, 0.73 mmol), EDCI (210 mg, 1.1 mmol), propionic acid (82 μL, 1.1 mmol) and DMAP (50 mg) in dichloromethane (10 ml) is stirrred overnight. The reaction is diluted with dichloromethane and washed with 1N HCl. The organic phase is concentrated and chromatographed (Hex to 30% EtOAc/Hex) to give the title compound (92%).



1H NMR (CDC3) δ 8.10 (s, 1H), 6.98 (s, 1H), 6.97 (d, 1H, J=8.3 Hz), 6.56 (s, 1H), 6.51 (d, 1H, J=8.3 Hz), 4.86 (s, 2H), 2.48 (s, 3H), 2.34 (q, 2H), 2.26 (s, 3H), 2.06 (m, 4H), 1.26 (s, 9H), 1.10 (t, 3H), 0.69 (t, 6H); HRMS: calcd. for C26H41N2O5S2 (M+18), 525.2457, found, 525.2433.


Example 164
Preparation of 5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid isobutyryl-amide



embedded image


Using a procedure analogous to Example 163, 5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid amide and 2-methylpropionic acid give the title compound (56%).



1NMR (400 MHz, CDC3) δ 8.00 (s, 1H), 6.99-6.94 (m, 2H), 6.55 (s, 1H), 6.50 (d, 1H, J=8.4 Hz), 4.85 (s, 2H), 2.49 (s, 3H), 2.44 (sept, 1H, J=7.0 Hz), 2.25 (s, 3H), 2.11-2.02 (m, 4H), 1.25 (s, 9H), 1.11 (d, 6H, J=7.0 Hz), 0.68 (t, 6H, J=7.3 Hz).


ES-MS: 522 (M+1)


Example 165
Preparation of 5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid cyclopropanecarbonyl-amide



embedded image


Using a procedure analogous to Example 163, 5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid amide and cyclopropanecarboxylic acid give the title compound (60%).



1NMR (400 MHz, CDCl3) δ 8.43 (s, 1H), 6.99-6.94 (m, 2H), 6.56 (s, 1H), 6.51 (d, 1H, J=8.4 Hz), 4.86 (s, 2H), 2.46 (s, 3H), 2.25 (s, 3H), 2.12-2.01 (m, 4H), 1.68-1.58 (m, 1H), 1.26 (s, 9H), 1.05-0.99 (m, 2H), 0.89-0.82 (m, 2H), 0.68 (t, 6H, J=7.3 Hz).


EI-MS: 520.2 (M+H), 518.4 (M−H)


Example 166
Preparation of 5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid (2-methoxy-acetyl)-amide



embedded image


Using a procedure analogous to Example 163, 5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid amide and methoxy-acetic acid give the title compound (84%).



1H NMR (CDC3) δ 8.91 (s, 1H), 7.00 (s, 1H), 6.97 (dd, 1H, J=2.6, 8.3 Hz), 6.54 (s, 1H), 6.51 (d, 1H, J=8.3 Hz), 4.86 (s, 2H), 3.90 (s, 2H), 3.43 (s, 3H), 2.48 (s, 3H), 2.26 (s, 3H), 2.06 (m, 4H), 1.26 (s, 9H), 0.69 (t, 6H);


HRMS: calcd. for C26H41N2O6S2 (M+18), 541.2406, found, 541.2400.


Example 169
Preparation of 5-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-yl)-3H-[1,3,4]oxadiazol-2-one



embedded image


A mixture of 5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid hydrazide (432 mg, 1 mmol), 1,1′-carbonyldiimidazole (405 mg, 2.5 mmol) and triethylame (0.28 ml, 2 mmol) in THF (10 ml) is stirred at reflux overnight. It is diluted with EtOAc, washed with 1N HCl solution. The organic phase is concentrated and chromatographed (Hex to 20% EtOAc/Hex to give the title compound (290 mg, 63%).



1HNMR (CDC3) δ 8.51 (s, 1H), 7.05 (dd, 1H, J=2.4, 8.8 Hz), 7.01 (s, 1H), 6.73 (d, 1H, J=8.8 Hz), 6.62 (s, 1H), 4.09 (dd, 1H, J=2.6, 9.2 Hz), 3.87 (dd, 1H, J=8.8, 9.2 Hz), 3.70 (dd, J=2.6, 8.8 Hz), 2.42 (s, 3H), 2.20 (s, 3H), 2.08 (m, 4H), 1.01 (s, 9H), 0.69 (t, 6H);


HRMS: calcd. for C25H35N2O4S (M+1), 459.2318, found, 459.2325.


Example 170
Preparation of enantiomer 1 of 5-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-yl)-3H-[1,3,4]oxadiazol-2-one



embedded image


Using an analogous procedure as Example 169, enantiomer 1 of 5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-m ethyl-ph enyl]-propyl}-3-methyl-thiophene-2-carboxylic acid hydrazide (Example 168) gives the title compound (65%). Enantiomer 1: 1H NMR (CDC3) equivalent to Example 169;


HRMS: calcd. for C25H35N2O4S (M+1), 459.2318, found, 459.2321.


Example 171
Preparation of enantiomer 2 of 5-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-yl)-3H-[1,3,4]oxadiazol-2-one



embedded image


Using analogous procedures as in Example 168 and Example 169, enantiomer 2 of 1-{4-[1-ethyl-1-(5-methoxycarbonyl-4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol (Example 6B) gives the title compound (83%). Enantiomer 2: 1H NMR (CDCl3) equivalent to Example 169;


HRMS: calcd. for C25H35N2O4S (M+1), 459.2318, found, 459.2320.


Example 172
Preparation of 5-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-yl)-3H-[1,3,4]oxadiazole-2-thi one



embedded image


A mixture of 5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid hydrazide (432 mg, 1 mmol), carbon disulfide (0.15 ml, 2.5 mmol) and KOH (62 mg, 1.1 mmol) in methanol (15 ml) is refluxed overnight. The reaction is concentrated and partitioned between EtOAc and 1N HCl. The organic phase is concentrated and chromatographed to give the title compound (320 mg, 68%).



1H NMR (CDC3) δ 7.05 (d, 1H, J=8.3 Hz), 7.00 (s, 1H), 6.74 (d, 1H, J=8.3 Hz), 6.66 (s, 1H), 4.10 (dd, 1H, J=2.6, 9.2 Hz), 3.87 (dd, 1H, J=8.8, 9.2 Hz), 3.71 (dd, J=2.6, 8.8 Hz), 2.46 (s, 3H), 2.20 (s, 3H), 2.08 (m, 4H), 1.01 (s, 9H), 0.71 (t, 6H);


HRMS: calcd. for C25H35N2O3S2 (M+1), 475.2089, found, 475.2094.


Example 173
Preparation of enantiomer 1 of 5-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-yl)-3H-[1,3,4]oxadiazole-2-thione



embedded image


Using an analogous procedure as in Example 172, enantiomer 1 of 5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid hydrazide (Example 168) gives the title compound (72%).



1H NMR (CDC3): equivalent to Example 172;


HRMS: calcd. for C25H35N2O3S2 (M+1), 475.2089, found, 475.2084.


Example 174
Preparation of 5-{1-Ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid methyl ester



embedded image


A. Trifluoromethanesulfonic acid 4-[1-ethyl-1-(4-methyl-thiophen-2-yl)propyl]-2-methyl-phenyl ester



embedded image


To a mixture of 3′-[4-(hydroxy)-3-methylphenyl]-3′-[4-methylthiophen-2-yl]pentane (8.8 g, 32.2 mmol) and triethylamine (6.8 ml, 48.3 mmol) in dichloromethane (200 ml) at −78° C. is added trifluoromethanesulfonic anhydride (6.5 ml, 38.6 mmol) dropwise and warmed to RT. The reaction is stirred for 1 h, diluted with dichloromethane and washed with 0.2 N HCl followed by brine. The organic layer is concentrated to give the title compound (12 g, 92%).


B. 4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-benzoic acid methyl ester



embedded image


A mixture of trifluoromethanesulfonic acid 4-[1-ethyl-1-(4-methyl-thiophen-2-yl) propyl]-2-methyl-phenyl ester (12 g, 29.62 mmol), Pd(OAc)2 (699 mg, 3 mmol), dppf (3.3 g, 6 mmol), triethylamine (12.5 ml, 90 mmol), methanol (12 ml, 300 mmol), and N,N-dimethylformamide (40 ml) is treated with carbon monoxide (1000 psi) at 110° C. in a Parr-reactor for 48 h. The reaction is concentrated, dissolved in is evaporated in EtOAc and filtered through a silica gel pad. The filtrate is concentrated and chromatographed (Hex to 10% EtOAc/Hex) to give the title compound (6.9 g, 73%).



1H NMR (CDCl3) δ 7.83 (d, 1H, J=8.8 Hz), 7.16 (m, 2H), 6.73 (s, 1H), 6.60 (s, 1H), 3.87 (s, 3H), 2.58 (s, 3H), 2.21 (s, 3H), 2.13 (m, 4H), 0.71 (t, 6H).


C. {4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenyl}-methanol



embedded image


To a 0° C. solution of 4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-benzoic acid methyl ester (6.7 g, 21.2 mmol) in THF (100 ml) is added 1M LiA1H4/THF (32 ml, 32 mmol). After stirring at RT for 2 h, the reaction is quenched with water (1 ml) followed by 5N NaOH solution (1 ml) and water (3 ml). The mixture is filtered and the filtrate is concentrated to give the title compound as a clear oil (6 g, 98%).


D. 1-{4-[1-Ethyl-1-(4-methyl-thiopben-2-yl)-propyl]-2-methyl-phenyl}-4,4-dimethyl-pentan-3-one



embedded image


To a 0° C. solution of {4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenyl}-methanol (6 g,) in THF (50 ml) is treated with PBr3 (2.2 ml, 23.3 mmol) and warmed to RT. After stirring for 2 h, the mixture is partitioned between EtOAc and brine. The organic layer is MgSO4 dried, concentrated, and dissolved in anhydrous THF (30 ml) to give a solution of {4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenyl}-methane bromide. Separately, a solution of 3,3-dimethyl-butan-2-one (5.3 ml, 42.4 mmol) in THF (15 ml) is treated with LiHMDS (42.4 ml, 42.4 mmol, 1M in THF) at −70° C. for 1 h. This solution is transferred (via cannula) into a −70° C. solution of {4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenyl}-methanebromide/THF. The mixture is warmed to RT and stirred for 1 h. The reaction is diluted with EtOAc and washed with 0.2 N HCl until the aq layer is pH 2. The organic layer is concentrated to give the title compound (6.2 g, 79%).


E. 1-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenyl}-4,4-dimethyl-pentan-3-ol



embedded image


Using a procedure analogous to Example 134B, 1-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenyl}-4,4-dimethyl-pentan-3-one and NaBH4 give the title compound (quant).



1H NMR (CDC3) δ 7.02, 7.07 (m, 3H), 6.71 (s, 1H), 6.61 (s, 1H), 3.26 (dd, 1H, J=2.0, 10.3 Hz), 2.88 (m, 1H), 2.56 (m, 1H), 2.28 (s, 3H), 2.20 (s, 3H), 2.08 (m, 4H), 1.78 (m, 1H), 1.58 (m, 1H), 0.90 (s, 9H), 0.70 (t, 6H).


F. tert-Butyl-[1-(2-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2 methyl-phenyl}-ethyl)-2,2-dimethyl-propoxy]-dimethyl-silane



embedded image


Using a procedure analogous to Example 134C, 1-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenyl}-4,4-dimethyl-pentan-3-ol gives the title compound (quant).


G. 5-(1-{4-[3-(tert-butyl-dimethyl-silanyloxy)-4,4-dimethyl-pentyl]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-carboxylic acid methyl ester



embedded image


To a 0° C. solution oftert-butyl-[1-(2-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2 methyl-phenyl}-ethyl)-2,2-dimethyl-propoxy]-dimethyl-silane (1.46 g, 3 mmol) in THF (15 ml) is added 1.6 M n-BuLi/Hex (2 ml, 3.3 mmol). After 45 m, the mixture is transferred (via cannula) into a −70° C. solution of methyl chloroformate (0.26 ml, 3.3 mmol) in pentane (10 ml). The mixture is warmed to RT and stirred for 3 h. The reaction is diluted with EtOAc, washed with 0.2 N HCl until the aq layer is pH 2, and followed by washing with satd sodium bicarbonate. The organic layer is concentrated and chromatographed (Hex to 5% EtOAc/Hex) to give the title compound (1.05 g, 64%). 1H NMR (CDC3) δ 6.99, 7.04 (m, 3H), 6.62 (s, 1H), 3.80 (s, 3H), 3.35 (dd, 1H, J=2.9, 7.3 Hz), 2.76 (m, 1H), 2.48 (s, 3H), 2.41 (m, 1H), 2.26 (s, 3H), 2.08 (m, 4H), 1.78 (m, 1H), 1.59 (m, 1H), 0.93 (s, 9H), 0.88 (s, 9H), 0.70 (t, 6H), 0.10 (s, 3H), 0.07 (s, 3H).


H. 5-{1-Ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid methyl ester



embedded image


Using a procedure analogous to Example 134F, 5-(1-{4-[3-(tert-butyl-dimethyl-silanyloxy)-4,4-dimethyl-pentyl]-3-methyl-phenyl}-1-etllyl-propyl)-3-methyl-thiophene-2-carboxylic acid methyl ester gives the title compound (94%).



1H NMR (CDC3) δ 7.00, 7.07 (m, 3H), 6.62 (s, 1H), 3.80 (s, 3H), 3.25 (dd, 1H, J=1.8, 10.5 Hz), 2.88 (m, 1H), 2.55 (m, 1H), 2.48 (s, 3H), 2.28 (s, 3H), 2.08 (m, 4H), 1.79 (m, 1H), 1.58 (m, 1H), 0.90 (s, 9H), 0.70 (t, 6H);


HRMS: calcd. for C26H3803NaS (M+23), 453.2439, found 453.2465.


Example 175
Preparation of 5-{1-Ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid



embedded image


Using LiOH hydrolysis as described in Example 137, 5-{1-ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid methyl ester gives the title compound (94%).



1H NMR (CDCl3) δ 7.00, 7.07 (m, 3H), 6.62 (s, 1H), 3.25 (dd, 1H, J=1.8, 10.5 Hz), 2.88 (m, 1H), 2.55 (m, 1H), 2.48 (s, 3H), 2.28 (s, 3H), 2.08 (m, 4H), 1.79 (m, 1H), 1.58 (m, 1H), 0.90 (s, 9H), 0.70 (t, 6H); HRMS: calcd. for C25H36O3NaS (M+23), 439.2283, found 439.2283.


Example 176
Preparation of [(5-{1-Ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amine]-acetic acid methyl ester



embedded image


A mixture of 5-{1-ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (160 mg, 0.38 mmol), 2-amino-acetic acid methyl ester hydrochloride (53 mg, 0.42 mmol), EDCl (89 mg, 0.46 mmol) and triethylamine (0.134 ml, 0.96 mmol) in dichloromethane (5 ml) is stirred at RT overnight. The reaction is concentrated, partitioned between 1N HCl and EtOAc. The organic layer is concentrated and chromatographed (Hex to 30% EtOAc/Hex) to give the title compound (75 mg, 40%).



1H NMR (CDC3) δ 7.07 (d, 1H, J=8.7 Hz), 7.00 (d, 1H, J=8.7 Hz), 6.99 (s, 1H), 6.63 (s, 1H), 6.20 (t, 1H), 4.16 (d, 2H, J=5.3 Hz), 3.78 (s, 3H), 3.26 (bd, 1H, J=9.3 Hz), 2.88 (m, 1H), 2.56 (m, 1H), 2.47 (s, 3H), 2.28 (s, 3H), 2.08 (m, 4H), 1.78 (m, 1H), 1.58 (m, 1H), 0.90 (s, 9H), 0.70 (t, 6H).


ES-MS: 488 (M+1).


Example 177
Preparation of [(5-{1-Ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid



embedded image


Using LiOH hydrolysis as described in Example 136, [(5-{1-ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid methyl ester gives the title compound (quant). 1H NMR (CDC3) δ 7.07 (d, 1H, J=8.7 Hz), 7.00 (d, 1H, J=8.7 Hz), 6.99 (s, 1H), 6.63 (s, 1H), 6.21 (t, 1H), 4.20 (d, 2H, J=5.3 Hz), 3.26 (bd, 1H, J=9.3 Hz), 2.88 (m, 1H), 2.56 (m, 1H), 2.47 (s, 3H), 2.28 (s, 3H), 2.08 (m, 4H), 1.78 (m, 1H), 1.58 (m, 1H), 0.90 (s, 9H), 0.70 (t, 6H);


HRMS: calcd. for C27H40NO4S (M+1), 474.2678, found 474.2687.


Example 178
Preparation of (5-{1-Ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester



embedded image


Using procedures analogous to Example 134D to Example 134F, from tert-butyl-[1-(2-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2 methyl-phenyl}-ethyl)-2,2-dimethyl-propoxy]-dimethyl-silane and 2-amino-acetic acid methyl ester hydrochloride gives the title compound (24%).



1H NMR (CDCl3) δ 7.07 (d, 1H, J=7.9 Hz), 7.02 (s, 1H), 6.97 (d, 1H, J=7.9 Hz), 6.64 (s, 1H), 5.12 (t, 1H), 3.82 (d, 2H, J=5.3 Hz), 3.65 (s, 3H), 3.32 (d, 1H, J=9.3 Hz), 2.88 (m, 1H), 2.56 (m, 1H), 2.42 (s, 3H), 2.30 (s, 3H), 2.08 (m, 4H), 1.88 (m, 1H), 1.54 (m, 1H), 0.87 (s, 9H), 0.72 (t, 6H).


ES-MS: 524 (M+1).


Example 179
(5-{1-Ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamino)-acetic acid



embedded image


Using LiOH hydrolysis as described in Example 136, (5-{1-ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester gives the title compound (quant).



1H NMR (CDC3) δ7.08 (d, 1H, J=7.9 Hz), 7.03 (s, 1H), 6.98 (d, 1H, J=7.9 Hz), 6.65 (s, 1H), 5.12 (t, 1H), 3.82 (d, 2H, J=5.3 Hz), 3.32 (d, 1H, J=9.3 Hz), 2.88 (m, 1H), 2.56 (m, 1H), 2.42 (s, 3H), 2.30 (s, 3H), 2.08 (m, 4H), 1.88 (m, 1H), 1.54 (m, 1H), 0.87 (s, 9H), 0.72 (t, 6H).


HRMS: calcd. for C26H43N2O5S2 (M+18), 527.2613, found 527.2639.


Example 180 and Example 181
Preparation of enantiomers of (5-{1-ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylaminoo)-acetic acid



embedded image


A racemic mixture of (5-{1-ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid (180 mg) is chromatographed on a Chiralpak AD column (0.46×25 cm) to give the title compounds.


HPLC condition: 0.1% trfluoroacetic acid in 30% isopropanol/hept; flow rate: 1.0 ml/m;


UV: 225 nm.


Enantiomer 1, Example 179: 70 mg (39%); rt: 6.63 m;



1H NMR (CDCl3) equivalent to Example 179


HRMS: calcd. for C26H40NO5S2 (M+1), 510.2348, found 510.2333.


Enantiomer 2, Example 180: 60 mg (33%); rt: 8.60 m.



1H NMR (CDC3) equivalent to Example 179;


HRMS: calcd. for C26H40NO5S2 (M+1), 510.2348, found 510.2359.


Example 182
Preparation of (5-{1-[4-(4,4-Dimethyl-3-oxo-pentyl)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid



embedded image


A. (5-{1-[4-(4,4-Dimethyl-3-oxo-pentyl)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester



embedded image


Using the pyridinium dichromate oxidation analogous to Example 139C, (5-{1-ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester gives the title compound (96%). 1H NMR (CDC3) δ 6.96, 7.02 (m, 3H), 6.59 (s, 1H), 5.22 (t, 1H), 3.83 (d, 1H, J=5.7 Hz), 3.65 (s, 3H), 2.82 (t, 2H), 2.72 (t, 2H), 2.40 (s, 3H), 2.27 (s, 3H), 2.07 (m, 4H), 1.10 (s, 9H), 0.68 (t, 6H);


ES-MS: 522 (M+1).


B. (5-{1-[4-(4,4-Dimethyl-3-oxo-pentyl)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid



embedded image


Using LiOH hydrolysis as described in Example 137, (5-{1-[4-(4,4-dimethyl-3-oxo-pentyl)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester gives the title compound (quant).



1H NMR (CDC3) δ 6.94, 7.01 (m, 3H), 6.60 (s, 1H), 5.30 (t, 1H), 3.86 (d, 1H, J=4.8 Hz), 2.82 (t, 2H), 2.74 (t, 2H), 2.39 (s, 3H), 2.27 (s, 3H), 2.07 (m, 4H), 1.10 (s, 9H), 0.68 (t, 6H);


ES-MS: 508 (M+1).


Example 183
Preparation of (5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-ylmethylsulfanyl)-acetic acid ethyl ester



embedded image


A. (5-{1-[4-(tert-Butyl-dimethyl-silanyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-yl)-methanol



embedded image


To a 0° C. solution of 5-{1-[4-(tert-butyl-dimethyl-silanyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-carboxylic acid methyl ester (10.0 g, 22.39 mmol) in THF (200 ml) is added portionwise lithium aluminum hydride (1.70 g, 44.78 mmol) and the reaction mixture is warmed to RT for 1 h. The reaction is quenched with water (1.7 ml), 5N NaOH (1.7 ml), and water (5.1 ml). The reaction mixture is filtered, concentrated and chromatographed (120 g SiO2, 10% EtOAc/Hex) to yield the title compound (7.0 g, 75%).



1NMR (400 MHz, CDC3) δ 7.01 (d, 1H, J=2.2 Hz), 6.94 (dd, 1H, J=8.4, 2.2 Hz), 6.65 (d, 1H, J=8.4 Hz), 6.52 (s, 1H), 4.65 (d, 2H, J=4.8 Hz), 2.17 (s, 6H), 2.09-1.99 (m, 4H), 1.54 (t, 1H, J=5.5 Hz), 1.00 (s, 9H), 0.69 (t, 6H, J=7.3 Hz), 0.20 (s, 6H).


B. Toluene-4-sulfonic acid 5-{1-[4-(tert-butyl-dimethyl-silanyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-ylmethyl ester



embedded image


To a solution of (5-{1-[4-(tert-butyl-dimethyl-silanyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-yl)-methanol (1.0 g, 2.39 mmol) in Et2O (5 ml) is added triethyl amine (666 μl, 4.78 mmol). The mixture is added to a solution of p-toluenesulfonyl chloride (501 mg, 2.62 mmol) in Et2O (5 ml) and stirred overnight. The reaction is filtered, concentrated and chromatographed (12 g SiO2, 5% EtOAc/Hex) to yield the title compound (740 mg, 55%).



1NMR (400 MHz, CDCl3) δ 7.93 (d, 2H, J=8.4 Hz), 7.41 (d, 2H, J=8.8 Hz), 7.00 (s, 1H), 6.93 (dd, 1H, J=8.4, 2.2 Hz), 6.63 (d, 1H, J=8.4 Hz), 6.48 (s, 1H), 4.49 (s, 2H), 2.49 (s, 3H), 2.15 (s, 3H), 2.09 (s, 3H), 2.05-2.00 (m, 4H), 0.99 (s, 9H), 0.67 (t, 6H, J=7.3 Hz), 0.19 (s, 6H).


EI-MS: 401.2


C. (5-{1-[4-(tert-Butyl-dimethyl-silanyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-ylmethylsulfanyl)-acetic acid ethyl ester



embedded image


To a solution of 2.68 M sodium ethoxide (507 μl, 1.36 mmol) in EtOH (2 ml) is added ethyl 2-mercaptoacetate (149 μd, 1.36 mmol) and stirred at RT for 30 m. The mixture is added a solution of toluene-4-sulfonic acid 5-{1-[4-(tert-butyl-dimethyl-silanyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-ylmethyl ester (740 mg, 1.29 mmol) in EtOH (2 ml) is added and refluxed for 15 m. The reaction is concentrated and partitioned between EtOAc (100 ml) and 0.2N HCl (50 ml). The organic layer is washed with water (50 ml), dried (MgSO4), concentrated, and chromatographed (12 g SiO2, 5% EtOAc/Hex) to yield the title compound (180 mg, 27%). 1NMR (400 MHz, CDC3) δ 7.00 (d, 1H, J=2.2 Hz), 6.92 (dd, 1H, J=8.4, 2.2 Hz), 6.64 (d, 1H, J=8.4 Hz), 6.46 (s, 1H), 4.17 (q, 2H, J=7.2 Hz), 3.92 (s, 2H), 3.14 (s, 2H), 2.16 (s, 3H), 2.12 (s, 3H), 2.07-1.98 (m, 4H), 1.28 (t, 3H, J=7.0 Hz), 1.00 (s, 9H), 0.68 (t, 6H, J=7.3 Hz), 0.20 (s, 6H). EI-MS: 538.2 (M+NH4)


D. {5-[1-Ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-3-methyl-thiophen-2-ylmethylsulfanyl}-acetic acid ethyl ester



embedded image


Using an analogous procedure to Example 12F, (5-{1-[4-(tert-Butyl-dimethyl-silanyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-ylmethylsulfanyl)-acetic acid ethyl ester (180 mg, 0.346 mmol) gives the title compound (147 mg, quant.). 1NMR (400 MHz, CDC3) δ 7.00 (s, 1H), 6.97 (d, 1H, J=7.9 Hz), 6.67 (d, 1H, J=8.4 Hz), 6.47 (s, 1H), 4.58 (s, 1H), 4.17 (q, 2H, J=7.2 Hz), 3.92 (s, 2H), 3.14 (s, 2H), 2.21 (s, 3H), 2.12 (s, 3H), 2.06-1.99 (m, 4H), 1.28 (t, 3H, J=7.0 Hz), 0.68 (t, 6H, J=7.3 Hz).


E. (5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-ylmethylsulfanyl)-acetic acid ethyl ester



embedded image


Using an analogous procedure to Example 134A, {5-[1-Ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-3-methyl-thiophen-2-ylmethylsulfanyl}-acetic acid ethyl ester (141 mg, 0.347 mmol) gives the title compound (145 mg, 83%). 1NMR (400 MHz, CDCl3) δ 7.02 (s, 1H), 7.00 (d, 1H, J-8.4 Hz), 6.51 (d, 1H, J=8.4 Hz), 6.46 (s, 1H), 4.83 (s, 2H), 4.17 (q, 2H, J=7.2 Hz), 3.92 (s, 2H), 3.14 (s, 2H), 2.25 (s, 3H), 2.12 (s, 3H), 2.08-1.97 (m, 4H), 1.30-1.19 (m, 12H), 0.67 (t, 6H, J=7.3 Hz).


EI-MS: 522.2 (M+NH4).


Example 184
Preparation of 3′-[4-(2-Oxo-3,3-dimethylbutoxy-3-methylphenyl)]-3′-[5-(methylmercaptylmethyl)thiophen-2-yl]pentane



embedded image


L. 2-(Methylmercaptylmethyl)-thiophene



embedded image


To a 25° C. solution of 2-hydroxymethyl thiophene (2.28 g, 20 mmol), and S-methyl-N,N′tetramethylisothiouronium iodide [(5.48 g, 20 mmol); [S. Fujisaki et al, Bull. Chem. Soc. Jpn., 58, 2429-30 (1985)] in anhydrous DMF (10 ml) under a N2 atmosphere, is added NaH (1.44 g, 60 mmol, 2.40 g of 60% mineral oil dispersion) in small portions. After the resulting vigorous liberation of hydrogen ceases, hexane (10 ml) is added. After stirring for 1 h, the reaction is cooled to 0° C. and water (10 ml) is added dropwise. The mixture is extracted with hexane (3×50 ml). The combined extract is K2CO3, concentrated, and chromatographed with (Hex to 20% CHC3/Hex) to give the title compound as a colorless liquid (2.4 g, 83%).



1NMR (300 MHz, CDC3) δ ppm: 2.10 (s, 3H), 3.92 (s, 2H), 6.95 (m, 2H), 7.23 (1H).


M. 3′-[4-(Hydroxy)-3-methylphenyl]-3′-[5-(methylmercaptylmethyl)thiophen-2-yl]pentane



embedded image


To a 0° C. mixture of 3′-[4-(hydroxy)-3-methylphenyl]pentan-3-ol (582 mg, 3.0 mmol) and 2-(methylmercaptylmethyl)-thiophene (2.16 g, 15.0 mmol) is added BF3-Et2O (171 mg, 0.15 ml, 1.20 mmol). After stirring for 30 m at 0 to 5° C., the reaction is quenched with satd aq NaHCO3 and is extracted with EtOAc (2×). The combined extract is washed with brine, Na2SO4 dried, concentrated, and chromatographed by radial chromatography (4 mm plate, 25% to 80% CHCl3/Hex to give the title compound as a pale brown oil (695 mg, 72%).



1NMR (300 MHz, CDCl3) δ ppm: 0.0.71 (t, J=7.3 Hz, 6H), 2.06 (s, 3H), 2.07 (m, 4H), 2.23 (s, 3H), 3.82 (s, 3H), 4.52 (s, 1H), 6.60 to 6.75 (m, 3H), 6.96-7.05 (m, 2H).


TOF(+) MS m/z: 320.2; calc. for C18H24OS2: 320.20.


ES (−) MS m/z 319.1, [M−H]; calc. for C18H23OS2: 319.24.


C. 3′-[4-(2-Oxo-3,3-dimethylbutoxy-3-methylphenyl)]-3′-[5-(methylmercaptyl-methyl)-thiophen-2-yl]pentane



embedded image


To a mixture of 3′-[4-(hydroxy)-3-methylphenyl]-3′-[5-(methylmercaptyl-methyl)-thiophen-2-yl]pentane (586 mg, 1.83 mmol), KI (122 mg, 0.73 mmol), 3,3-dimethyl-1-chloro-2-butanone (370 mg, 2.75 mmol) and DMF (10 ml) at 25° C. is added 60% NaH dispersion (92 mg, 2.29 mmol) in small portions. The reaction is stirred for 15 m and quenched with satd NaHCO3 solution (50 ml). The mixture is extracted with EtOAc (2×50 ml) and the combined organic layer is washed with brine, Na2SO4 dried, and concentrated. The resulting oil is radial chromatographed (50% to 75% CHC13/Hex) to give the title product as a pale yellow oil (516 mg, 67%).



1NMR (400 MHz, DMSO-d6) δ ppm: 0.64 (t, J=7.3 Hz, 6H), 1.18 (s, 9H), 1.97 (s, 3H), 2.02 (m, 4H), 2.15 (s, 3H), 3.84 (s, 2H), 5.07 (s, 2H), 6.55 to 6.76 (m, 3H), 6.93 to 7.04 (m, 2H).


FAB(+) MS m/z [M−H]: 417.3; calc. for C24H34O2S2(—H): 417.20 IR (CHC3): 1724.08 cm−1.


Example 185
Preparation of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-(methylmercaptylmethyl)-thiophen-2-yl]pentane



embedded image


To a 25° C. solution of 3′-[4-(2-Oxo-3,3-dimethylbutoxy-3-methylphenyl)]-3′-[5-(methylmercaptylmethyl)thiophen-2-yl]pentane (90 mg, 0.22 mmol) in MeOH (10 ml) is added NaBH4 (8.1 mg, 0.22 mmol). The reaction mixture is stirred overnight at ambient temperature. Then 1 ml of acetone is added, the reaction is concentrated and the residue is distributed between H2O and CH2Cl2. The organic layer is washed with water, dried with anhydrous Na2SO4, and concentrated to give the title compound as a colorless oil (90 mg, quant).



1NMR (300 MHz, CDC3) δ ppm: 0.63 (t, J=7.3 Hz, 6H), 0.94 (s, 9H), 1.95-2.08 (m, 4H), 1.97 (s, 3H), 2.12 (s, 3H), 3.63 (m, 1H), 3.73 (s, 2H), 3.79 (dd, J=7.3, 10.2 Hz, 1H), 4.02 (dd, J=3.4, 10.2 Hz, 1H), 6.54 (m, 1H), 6.64 (m, 2H), 6.97 (m, 2H).


FAB(+) MS m/z [M−H]: 419.3; calc. for C24H36O2S2 (—H): 419.22.


ES (+) MS m/z 438.2, [MNH4+]; calc. for C24H40NO2S2: 438.24.


Example 186A and Example 186B
Preparation of enantiomers of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy-3-methylphenyl)]-3′-[5-(methylmercaptylmethyl)-thiophen-2-yl]pentane



embedded image


A racemic mixture of 3′-[4-(2-oxo-3,3-dimethylbutoxy-3-methylphenyl)]-3′-[5-(methylmercaptylmethyl)thiophen-2-yl]pentane (76 mg) is chromatographed with a Chiralcel AD column to give enantiomer 1, Example 186A (28 mg, 37%) and enantiomer 2, Example 186B (22 mg, 29%).


Enantiomer 1, Example 186A


HPLC: Chiralcel AD (4.6X250 mm); 40% IPA/60% heptane; 1 ml/m (flow rate); rt=4.21 m; 225 nm; ee 100% by HPLC.


FAB(+) MS m/z [M−H]: 419.3; calc. for C24H36O2S2 (—H): 419.22.


Enantiomer 2, Example 186B


HPLC: Chiralcel AD (4.6X250 mm); 40% IPA/60% heptane; 1 ml/m (flow rate); rt=5.67 m; 225 nm; ee 100% by HPLC.


FAB(+) MS m/z [M−H]: 419.3; calc. for C24H36O2S2 (—H): 419.22.


Example 187
Preparation of 3′-[4-(2-oxo-3,3-dimethylbutoxy-3-methylphenyl)]-3′-[5-(methylsulphonylmethyl)-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 9C, 3′-[4-(2-oxo-3,3-dimethylbutoxy-3-methylphenyl)]-3′-[5-(methylmercaptylmethyl)-thiophen-2-yl]pentane gives the title compound as a pale yellow oil (287 mg, 85%).



1NMR (300 MHz, CDC3) 8 ppm: 0.71 (t, J=7.3 Hz, 6H), 1.28 (s, 9H), 2.04-2.25 (m, 4H), 2.27 (s, 3H), 2.79 (s, 3H), 4.37 (s, 2H), 4.86 (s, 2H), 6.53 (d, J=8.3 Hz, 1H), 6.76 (d, J=3.6 Hz, 1H), 6.99 to 7.02 (m, 3H).


FAB(+) MS m/z: 452.3; calc. for C24H34O4S2: 450.19.


ES (+) MS m/z 468.2, [MNH4+]; calc. for C24H38NO4S2: 468.22.


IR (CHCl3): 1725.04 cm−1.


UV (EtOH): 227 nm (e=17500), 255 nm (shoulder, e=10,000).


Example 188
Preparation of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[S-(methylsulfonylmethyl)-thiophen-2-yl]pentane



embedded image


Using a procedure analogous to Example 2, 3′-[4-(2-oxo-3,3-dimethylbutoxy-3-methylphenyl)]-3′-[5-(methylsulfonylmethyl)-thiophen-2-yl]pentane gives the title compound as a colorless oil (188 mg, 94%).



1NMR (400 MHz, CDCl3) 3 ppm: 0.67 (t, J=7.3 Hz, 6H), 1.04 (s, 9H), 2.12 (m, 4H), 2.22 (s, 3H), 2.14 (s, 3H), 2.80 (s, 3H), 3.72 (m, 1H), 3.99 (m, 1H), 4.12 (dd, J=2.9, 9.8 Hz, 1H), 4.36 (s, 2H), 6.74 (d, J=8.3 Hz, 1H), 6.78 (d, J=3.6 Hz, 1H), 6.96 to 7.08 (m, 3H).


FAB(+) MS m/z: 452.3; calc. for C24H36O4S2: 452.21.


Example 189A and Example 189B
Preparation of enantiomers of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-(methylsulfonylmethyl)-thiophen-2-yl]pentane



embedded image


A racemic mixture of 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-(methylsulfonylmethyl)-thiophen-2-yl]pentane (174 mg) is chromatographed (Chiralcel AD column) to give enantiomer 1, Example 189A (78 mg, 43%) and enantiomer 2, Example 189B (86 mg, 4 g)


Enantiomer 1, Example 189A


HPLC: Chiralcel AD (4.6X250 mm); 40% IPA/60% heptane; 1 ml/m (flow rate); rt=5.75 m; 240 nm; ee=99.8%.


FAB(+) MS m/z: 452.3; calc. for C24H36O4S2: 452.21.


ES (+) MS m/z 470.1, [MNH4+]; calc. for C24H4ONO4S2: 470.24.


Enantiomer 2, Example 189B


HPLC: Chiralcel AD (4.6X250 mm); 40% IPA/60% heptane; 1 ml/m (flow rate); rt=7.75 m; 260 nm; ee=99.6%.


FAB(+) MS m/z: 452.3; calc. for C24H36O4S2: 452.21.


ES (+) MS m/z 470.1, [MNH4+]; calc. for C24H4ONO4S2: 470.24.


Methods of Using the Compounds of the Invention:


When administration of the Active Ingredient is to be parenteral, such as intravenous on a daily basis, injectable pharmaceuticals may be prepared in conventional forms, either as liquid Solutions or suspensions; solid forms suitable for solution or suspension in liquid prior to injection; or as emulsions. Suitable excipients are, for example, water, saline, dextrose, mannitol, lactose, lecithin, albumin, sodium glutamate, cysteine hydrochloride, or the like. In addition, if desired, the injectable pharmaceutical compositions may contain minor amounts of nontoxic auxiliary substances, such as wetting agents, pH buffering agents, and the like. If desired, absorption enhancing preparations (e.g. liposomes) may be utilized.


Method of Making the Compounds of the Invention


Scheme 1: synthesis of Phenyl-thiophene acids.


Bromophenol 1 is O-silylated with TBSCl and treated with Mg/THF at reflux to form the corresponding Grignard reagent. Condensation of the Grignard reagent with the 3-pentanone provides tertiary alcohol 2. Tertiary alcohol 2 is condensed with 3-methylthiophene and boron trifluoride etherate to yield scaffold 3. Scaffold 3 is O-benzylated with NaH/benzyl bromide to give benzyl ether 4. Benzyl ether 4 is reacted with nBuLi and chloromethyl formate to give methyl ester 5. Methyl ester 5 is debenzylated with palladium on carbon/hydrogen to yield phenol 6. Phenol 6 is alkylated with sodium hydride and bromopinacolone to give ketone 7. Ketone 7 is reduced with sodium borohydride/MeOH to yield alcohol 8. Alcohol 8 is treated with potassium hydroxide/EtOH at 70° C. to give acid 9. Acid 9 is resolved with a ChiralPak AD column to give enantiomer 1 (2A) and enantiomer 2 (9B). Alternatively, alcohol 8 is resolved with a ChiralPak AD column to give enantiomer 1 (UA and enantiomer 2 (aB). Enantiomer 1 (8A) and enantiomer 2 (8B) are converted to enantiomer 1 (2A) and enantiomer 2 (9B) with KOH/EtOH, respectively.


Scheme 2: synthesis of phenyl-thiophene amides.


Acid 9 is converted to amide 10 by treatment with 1) diphenylphosphoryl azide/triethyl amine, DMAP and 2) appropriate amine HNR1R2.


Scheme 3: synthesis of phenyl-thiophene amide-acids.


Acid 9 is reacted with EDCI/(N-methylmorpholine or Et3N)/(HOBT or HOAT)/a substituted glycine ester to give amide-ester 11. Amide-ester 11 is hydrolyzed with LiOH/H20/THF to yield amide-acid 12.


Scheme 4: synthesis of phenyl-3-unsubstituted thiophene.


Ester 13 is reacted with EtMgBr/Et2O to give tertiary alcohol 14. Tertiary alcohol 14 is treated with nBuLi (2 eq) and CO2 (g) to yield acid 15. Acid 15 is dehydrated and esterified with MeOH/HCl (g) to give a mixture of olefinic ester 16. Olefinic ester 16 is reacted with o-cresol and BF3-Et2O to yield phenol 17. Phenol 17 is treated with NaH/DMF and 1-chloropinacolone/KI to give ketone 18. Ketone 18 is reacted with NaBH4/MeOH and KOH/EtOH to yield acid 19.


Alternatively, Phenol 17 (step 5i of scheme 4) is treated withK2CO3/ACN/KI catalyst to give ketone 18.


Scheme 5: synthesis of phenyl-thiophene sulfones.


Methyl ester 5 is reacted with LAH/THF/45° C. to give alcohol 20. Alcohol 20 is treated with PBr3 and then sodium alkyl thiolate to afford sulfide 21. Sulfide 21 is oxidized with mCBPA to yield sulfone 22. Sulfone 22 is hydrogenolyzed with Pd—C/H2 to give phenol 23. Phenol 23 is reacted with NaH/DMF and 1-bromopinacolone to afford ketone 24. Ketone 24 is reduced with NaBH4/MeOH to yield alcohol 25.


Scheme 6: synthesis of pentan-3-ol phenyl-thiophene amide-acids.


Phenol 3 is reacted with Tf2O and pyridine to give triflate 26. Triflate 26 is methoxy carbonylated with Pd(OAc)2/(DPPF or DPPB)/CO (g)/MeOH/Et3N/(DMF or DMSO) at 80-100 C to yield ester 27. Ester 27 is treated with LAH/THF to afford alcohol 28. Alcohol 28 is reacted with PBr3 to give bromide 29. Bromide 29 is reacted with the lithium enolate of pinacolone to yield ketone 30. Ketone 30 is treated with NaBH4/MeOH and TBSOTf/2,6-methylpyridine to give silyl ether 31. Silyl ether 31 is reacted with nBuLi/THF and methyl chloroformate to afford ester 32. Ester 32 is desilylated with aq HF to yield alcohol 32A. Alcohol 32A is hydrolyzed with aq KOH/EtOH/70° C. to afford acid 32B. Acid 32B is coupled with EDCl/(N-methylmorpholine or Et3N)/(HOBT or HOAT)/a substituted glycine ester to give amide-ester 32C. Amide-ester 32C is hydrolyzed with LiOH/H20/THF to yield amide-acid 32D.


Scheme 7: synthesis of pentan-3-ol thiophene phenyl sulfonates.


Alcohol 20 is reacted with PBr3 to give bromide 33. Bromide 33 is reacted with the lithium enolate of pinacolone to afford ketone 34. Ketone 34 is hydrogenolyzed with Pd—C/H2 to yield phenol 35. Phenol 35 is sulfonated with a substituted alkyl sulfonyl chloride to give sulfonate 36. Sulfonate 36 is reduced with NaBH4/MeOH to yield alcohol 37. Alcohol 37 is treated with dilute aq LiOH/MeOH/dioxane to give sulfonate-acids 38.


Scheme 8: synthesis of pentan-3-ol thiophenyl phenyl sulfonamides.


Phenol 20 is treated with Tf2O/pyridine and Pd(OAc)2/(DPPF or DPPB)/CO (g)/MeOH/Et3N/(DMF or DMSO) at 80-100° C. to give ester 39. Ester 39 is reacted with NaBH4/MeOH and NaH/BnBr to afford benzyl ether 40. Benzyl ether 40 is hydrolyzed with KOH/EtOH/80° C. to yield acid 41. Acid 41 is reacted diphenyl phosphoryl azide/Et3N and tBuOH/90° C. to afford Boc-amine 42. Boc-amine 42 is treated with TFA/anisole to give aniline 43. Aniline 43 is subjected to R3SO2Cl/pyridine and Pd—C/H2 to afford sulfonamide 44. Sulfonamide 44 is hydrolyzed with aq LiOH/MeOH to yield sulfonamide-acid 45.


Scheme 9: synthesis of α-methylated pinacolol phenyl-thiophene acids and amide acids.


Ester 7 is treated with LiHMDS; Mel and NaBH4/MeOH to give alcohol 46. Alcohol 46 is reacted with KOH/EtOH/heat to afford acid 47. Acid 47 is coupled with EDCl/(N-methylmorpholine or Et3N)/(HOBT or HOAT)/a substituted glycine ester to give amide-ester 48. Amide-ester 48 is hydrolyzed with LiOH/H20/THF to yield amide-acid 49.


Scheme 10: synthesis of tertiary alcohol phenyl-thiophene acids and amide-acids.


Phenol 3 is reacted with NaH/DMF and 1-bromopinacolone to give ketone 50. Ketone 50 is treated with MeMgBr/Et2O to afford tertiary alcohol 51. Tertiary alcohol 51 reacted with s-BuLi (2.5 eq) and CO2 (g) to give acid 52. Acid 52 is coupled with EDCl/(N-methylmorpholine or Et3N)/(HOBT or HOAT)/a substituted glycine ester to give amide-ester 53. Amide-ester 53 is hydrolyzed with LiOH/H2O/dioxane to yield amide-acid 54. Alternatively, Phenol 3 may be reacted with K2CO3 and KI catalyst in place of NaH/DMF to give ketone 50.


Scheme 11: synthesis of cis-pentynol phenyl-thiophene acids and amide-acids.


Phenol 3 is reacted with TBSCl/imidazole. To give silyl ether 55. Silyl ether 55 is treated with n-BuLi/THF and methyl chloroformate to afford ester 56. Ester 56 is reacted with TBAF/THF and Tf2O/pyridine to yield triflate 57. Triflate 57 is coupled with TMS-acetylene/Et3N/DMF/Pd(PPh3)2C12 and desilylated with TBAF/THF to give acetylene 58. Acetylene 58 is treated with Zn(OTf)2Et3N//t-butyl aldehyde/chiral auxiliary (with or without) to give alcohol 60. Alternatively, Acetylene 58 is reacted with LiHMDS/ketone 59 to give alcohol 60. Alcohol 60 is hydrolyzed with KOH/EtOH to afford acid 61.


Optionally, the acetylenic bond may be hydrogenated by conventional methods.


Scheme 12: synthesis of cis-pentenol phenyl-thiophene acids and amide-acids.


Alcohol 60 is treated with Lindlar's catalyst/H2 and KOH/EtOH to yield acid 62.


Scheme 13: synthesis of trans-pentenol phenyl-thiophene acids and amide-acids.


Phenol 3 is reacted with Tf2O/pyridine to give triflate 63. Triflate 63 is coupled with TMS-acetylene/Et3N/DMF/Pd(PPh3)2C12 and desilylated with TBAF/THF to give acetylene 64. Acetylene 64 is treated with Zn(OTf)2/t-butyl aldehyde/chiral auxiliary (with or without) to give alcohol 65. For tertiary alcohols, acetylene 64 is reacted with LiHMDS/ketone 59 to give alcohol 65. Alcohol 65 is reduce with LAH or DiBAH to afford trans-pentenol 66. Trans-pentenol 66 is treated with s-BuLi (2.5 eq) and C02 (g) to give acid 67.


Scheme 14: synthesis of pentynol thiophenyl-pheny acids.


Phenol 3 is reacted with DPTBSCl/imidazole. to give silyl ether 68. Silyl ether 68 is reacted with n-BuLi/THF and iodine to afford iodide 69. Iodide 69 is coupled with TMS-acetylene/Et3N/DMF/Pd(PPh3)2C12 and desilylated with TBAF/THF to give acetylene 70. Acetylene 70 is treated with Zn(OTf)2/t-butyl aldehyde/chiral auxiliary (with or without) to give alcohol 71. For tertiary alcohols, acetylene 70 is reacted with LiHMDS/ketone 59 to give alcohol 71. Alcohol 71 is subjected to TBAF/THF and Tf2O/pyridine to yield triflate 72. Triflate 72 is methoxycarbonylated with Pd(OAc)2/(DPPF or DPPB)/CO (g)/MeOH/Et3N/(DMF or DMSO) at 80-100° C. to give ester 73. Ester 73 is hydrolyzed with KOH/EtOH to afford acid 74.


Optionally, the acetylenic bond may be hydrogenated by conventional methods.


Scheme 15: synthesis of cis-pentenol thiophenyl-phenyl acids.


Acid 74 is reduced with Lindlar's catalyst/H2 to give acid 75.


Scheme 16: synthesis of trans-pentenol thiophenyl-phenyl acids.


Acetylene 71 is reduced with LAH or DiBAlH to give trans-pentenol 76. Trans-pentenol 76 is treated with TBAF/THF and Tf2O/pyridine to afford triflate 77. Triflate 77 is methoxycarbonylated with Pd(OAc)2/(DPPF or DPPB)/CO (g)/MeOH/Et3N/(DMF or DMSO) at 80-100° C. to give an ester which is hydrolyzed with KOH/EtOH to afford acid 78.


Scheme 17: synthesis of phenyl-thiophenyl acid mimics.


Acid 9 is coupled with EDCl/H2NSO2R3/DMAP to give acyl-sulfonamide 79. Acid 9 is coupled with EDCl/5-aminotetrazole/DMAP to give acyl-aminotetrazole 80. For tetrazole 83, acid 9 is reacted with formamide/NaOMe at 100° C. to afford amide 81. Amide 81 is treated with trifluoroacetic acid and methylene chloride followed by 2-chloro-1,3-dimethyl-2-imidazolinium hexafluorophosphate to give nitrile 82. Nitrile 82 is reacted with sodium azide and triethylammonium hydrochloride in N-methylpyrrolidin-2-one to afford tetrazole 83.


Scheme 18: synthesis of phenyl-thiophenyl acid analogs.


Alcohol 20 is reacted with Pd—C/H2 to give phenol 84. Phenol 84 is treated with NaH/DMF (1.0 eq) and 1-bromopinacolone to afford ketone 85. Ketone 85 is reacted with PBr3 to afford bromide 86. Bromide 86 is couple with KCN/DMF to give nitrile 87. Nitrile 87 is reduced with NaBH4/MeOH to yield alcohol 88. Alcohol 88 is reacted with KOH/H20/dioxane/heat to give acid 89. Acid 89 is coupled with EDCI/5-aminotetrazole/DMAP to give acyl-aminotetrazole 90.


Scheme 19: synthesis of additional phenyl-thiophene acid analogs.


Alcohol 88 is reacted with NaN3/Et3N-HCl/NMP at 150 C to afford tetrazole 91. Bromide 86 is treated with the sodium enolate of dimethyl malonate and KOH/EtOH/heat to give propionic acid 93. Acid 93 is reduced with NaBH4/MeOH to give 93A.


Scheme 20: synthesis of pentan-3-ol thiophenyl phenyl oxyacetic acid.


Phenol 35 is reacted with K2CO3/BrCH2CO2Me to give oxyacetate 94. Oxyacetate is hydrolyzed with aq LiOH/MeOH/dioxane to yield oxyacetic acid 95. Oxyacetic acid 95 is reduced with NaBH4/MeOH to afford alcohol-oxyacetic acid 96.


Scheme 21: synthesis of pentan-3-ol phenyl thiophene propionic acid.


Silyl ether 31 is reacted with n-BuLi/THF and bromine to give bromide 97. Bromide 97 is coupled with BrZnCH2CH2CO2Et/Pd(DPPF)C12/THF/heat to afford ester 98. Ester 98 is reacted with aq LiOH/MeOH and TBAF/THF to yield propionic acid 99.


Scheme 22: synthesis of pentan-3-ol thiophenyl phenyl propionic acid.


Phenol 35 is reacted with Tf2O/pyridine to give triflate 100. Triflate 100 is coupled with BrZnCH2CH2CO2Et/Pd(DPPF)C12/THF/heat to afford ester 101. Ester 101 is reacted with aq LiOH/MeOH/dioxane and NaBH4/MeOH to yield propionic acid 102.


Scheme 23: Improved synthesis of phenyl thiophene derivatives.


Acid 103 is esterified with MeOH/HCl (g) and reacted with EtMgBr (6 eq) to give alcohol 104. Alcohol 104 is coupled with 3-methylthiophene and BF3-OEt2 to afford phenol 3. Phenol 3 is treated with TBSCl/imidazole. to yield silyl ether 55. Silyl ether 55 is reacted with nBuLi and methyl chloroformate to give ester 56. Ester 56 is sequentially reacted with 6) TBAF; 7) 1-bromopinacolone/K2C03; 8) NaBH4; and 9) KOH to afford acid 9.


Scheme 24: Synthesis of phenyl-3-unsubstituted-thiophene sulfones and sulfides. Commercially available 2-hydroxymethyl thiophene is reacted with NaH (3 eq) and S-methyl-N,N′-tetramethylisothiuronium iodide to give 2-(methylmercaptylmethyl)-thiophene (105). Compound (105) is coupled with alcohol (104) and BF3-OEt2 to afford phenol 106. Phenol 106 is reacted with NaH/DMF and 1-chloropinacolone/KI to provide ketone 107. The sulfide moiety of 107 is oxidized with mCPBA to yield sulfone 108. Compound 108 is reacted with NaBH4/MeOH to yield sulfone-alcohol 109. In addition, ketone 107 is reduced by NaBH4/MeOH to yield the sulfide-alcohol 110.


Scheme 25: Preparation of sulfonyl aminoalkylcarboxylic acids.


Silyl ether 55 is reacted with nBuLi/THF followed by sulfuryl chloride to give sulfonyl chloride 111. Sulfonyl chloride 111 is reacted with allyl amine to yield a sulfonamide 112. Sulfonamide 112 is alkylated with K2CO3/BrCH2CO2Me to afford ester 113. Ester 113 is reacted sequentially with 1) HF/H20/acetonitrile; 2) K2CO3/1-chloropinacolone to give ketone-ester 114. Ketone-ester 114 is treated with 1) Pd(PPh3)4/N,N-dimethyl barbituric acid; 2) NaBH4/MeOH; aq LiOH/dioxane to yield sulfonamide-acid 115.
embedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded image

TABLE 5Summary of Experimental ResultsRXR-VDR(SaOS-2VDR CTFMouseTestcells)2(Caco-2 cells)3OCN Promoter4Hypercal5Cmpd.1EC50 (nM)EC50 (nM)EC50 (nM)μg/Kg/dEx. 13696140.5Ex. 2111230.65>1000Ex. 372.6753000Ex. 4374147.21000Ex. 51027146.1>3000Ex. 6A81.54599.8463.81000Ex. 6B323.061056.5325.57>6000Ex. 7397.36274.50112.356000Ex. 8956.98367.2>3000Ex. 9295.31091.146.656000Ex. 1058.8980.7151.31Ex. 11A18.12206.6142.751500Ex. 11B96.14365.96150.15Ex. 13312.7Ex. 1485.30264.1146.65Ex. 15A40.57361.2846.82>1000Ex. 15B211.66244.6919.729000Ex. 1696.84866.3931>3000Ex. 189.00551.7811.16Ex. 19A14.24310.5926.2>3000Ex. 19B186.18450.0410.2>1000Ex. 20862Ex. 21139.7Ex. 24560.734.7Ex. 25A96.27699.289.9Ex. 2674.54589.167.951000Ex. 2749.1>3000Ex. 28535.750.76Ex. 29269.60790.908.65Ex. 30A24.88573.7311.221000Ex. 30B150.401046.0814.12000Ex. 31513.631919.237.8Ex. 322025.589.35Ex. 33A136.161697.3243.55>9000Ex. 33B94.61778.397.551000Ex. 34735.721228.9596.83000Ex. 35311.891166.8321.133000Ex. 36185.38702.5567.872000Ex. 37441.60239.87Ex. 38379.5Ex. 39189.14299.66Ex. 40450.82612.8Ex. 41300.5Ex. 4210.741154.5633.5Ex. 4380.55598.4319.71000Ex. 44584.10910.9730.41000Ex. 4523.761671.3040.95>1500Ex. 462.495855.7243.6Ex. 4710.04727.7Ex. 48176.42949.3312.33000Ex. 49526.80798.8062.34>3000Ex. 50186.851480.0021.63>3000Ex. 51781Ex. 53821.55267.2Ex. 54465.431436.6727.5Ex. 55170.75779.4629.631000Ex. 56164.1Ex. 57114.95Ex. 58276.7Ex. 59503888.71319Ex. 64173.87411.134.1Ex. 6523.39497.973.4300Ex. 66313.331457.8728.45Ex. 67202.57796.5319.453000Ex. 6850556Ex. 69558.83487.1Ex. 70149.361377.9925.8Ex. 71137.79497.413.5<300Ex. 72498.391026.70218.55Ex. 73670.15265.8Ex. 74319.27478.6Ex. 75722.03423.17Ex. 76552.7757.8Ex. 7753.70534.562300Ex. 81381.62200Ex. 821284Ex. 86321.74204.6Ex. 87744>1000Ex. 88469.50168.83Ex. 89286.16360.27313.67Ex. 906561312Ex. 91212Ex. 9275.351000Ex. 93598.5038.53000Ex. 9451.08599.404.051000Ex. 95420.731176.7321.45>6000Ex. 9716.67858.1522.453000Ex. 9865.301019.5915.854000Ex. 9938.1>1000Ex. 10053.13615.075.633000Ex. 101379.2529.3512000Ex. 103548.211284.03102.353000Ex. 104286.18801.0790.931000Ex. 105633.62735.55Ex. 10683.75899.388.05>=1000Ex. 107372.201031.1242.3Ex. 108159.89352.205.25300Ex. 11018.81113.370.225<300Ex. 111188.97319.8434.45Ex. 1124856585Ex. 113542118Ex. 1148.1385.020.28<300Ex. 115859.391109.8719.95Ex. 116571.99860.6116.85>3000Ex. 1172212.29101.3Ex. 118384.8232.25Ex. 122526.6067.45Ex. 123667.80474.65Ex. 124453.07101Ex. 125144.2Ex. 1262.754358.01111.4Ex. 12738.191503.75956Ex. 128433.892522.7512.6Ex. 129390.6468.4Ex. 130336.511105.3349.7Ex. 131461.51693.3059.353000Ex. 132355.90969.2951.251000Ex. 133603.09957.7449.25>9000Ex. 1344.051302.9930.6Ex. 135318.10620.0629.9Ex. 136430.68901.03145.8Ex. 137409.0024.2>3000Ex. 138476.091060.2427.132000Ex. 139479.3030.97>3000Ex. 140436.8172.45Ex. 141196.8643.7Ex. 142604.77783.08113.730002123818Ex. 143735.29687.93Ex. 144687.941513.7429.23000Ex. 145284.27221.8Ex. 146676.0227.7>3000Ex. 147351.94128.27Ex. 148848.321146.189236.2Ex. 149371.941206.2598.35Ex. 150103.991128.455.2Ex. 151257.44714.9848.2>3000Ex. 152473.97110Ex. 153376.02187Ex. 154171.33470.4620.5Ex. 155270.66799.3018.46000Ex. 157235.83484.317.65>1000Ex. 158732.372414.3784.97Ex. 159400.621336.7589.67Ex. 160900.6340.33000Ex. 16177Ex. 162131Ex. 163649.14105.9Ex. 1641054.86150.4Ex. 1651783.20137.7Ex. 1661072.82151Ex. 16980.70370.9117.65<1000Ex. 17096.53589.048.41000Ex. 171229.78930.6292.6Ex. 172417.83781.8817.2Ex. 17380.93645.1825.43000Ex. 17458.901100.63172Ex. 175687.78126.9Ex. 176135.98288.78174.2Ex. 177362.2145.97Ex. 17825.5Ex. 179142.50279.4227.85Ex. 180394.35603.5340.52>3000Ex. 181403.35645.0383.57>3000Ex. 182231.3Ex. 183134.13781.1738.6AA5.021650.06BB10.32169.818.24>=20CC2427.7>1000DD109.4431.11000EE429.99891.1634′1.251000FF357









TABLE 6










Summary of Experimental Results











Test
Kera. Prolif.
IL-10



Cmpd.1
IC50 (nM)
IC50 (nM)















Ex. 1





Ex. 2



Ex. 3



Ex. 4
122.5



Ex. 5



Ex. 6A
439.0



Ex. 9
129
98



Ex. 10
25.0



Ex. 11A



Ex. 11B
216.0



Ex. 15A
76
26



Ex. 15B
84.0
66



Ex. 16
257.0



Ex. 18
24.5



Ex. 19A
18
60



Ex. 19B
20
48



Ex. 29
4.6



Ex. 30A
13.0



Ex. 30B
40
120



Ex. 33B
22.5



Ex. 35
474.0



Ex. 39
367.0



Ex. 48
71.5



Ex. 49
430.0



Ex. 55
0.1



Ex. 65
56
41



Ex. 66
277.0



Ex. 67
197.0



Ex. 71
29.0



Ex. 77
194.0



Ex. 89
105.0



Ex. 93
178.0



Ex. 100
215.0



Ex. 106
13.0



Ex. 108
66.0
597



Ex. 110
9.5
288



Ex. 124
216.3



Ex. 138
102.0
110



Ex. 142
300.0



Ex. 145
702.0



Ex. 155
788.0



Ex. 158
500.0



Ex. 159
234.3



Ex. 160
1095.0



Ex. 169
522.0



Ex. 170
36
100



Ex. 173
478.0



Ex. 176
114.0



Ex. 177
81.3



Ex. 179
221.0



AA
120
1.2



BB
10
28



CC





DD
1060



EE



FF
103
0.5











Explanation of Table 5 and 6 column numerical superscripts:


1. Test Compound numbers refer to the products of the corresponding Example Nos. that is, compounds within the scope of the invention. For example, the number “Ex. 2” refers to the compound, 3′-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3′-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane, prepared in Example 2. The control experiments are done with the double letter coded compounds identified as follows:


“AA”=1α,25-dihydroxyvitamin D3


“BB”=3-(4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-10 propyl}-2-methyl-phenoxy)-propane-1,2-diol “CC”=1-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-cyclohexyl}-2-methyl-phenoxy)-3,3-dimethyl-butan-2-one


“DD”=compound represented by the formula:
embedded image


“EE”=compound represented by the formula:
embedded image

calcipotriol (structural formula below):
embedded image


2. The RXR-VDR heterodimerization (SaOS-2 cells) test is described in the “Assay” section of the Description, infra.


3. The VDR CTF (Caco-2 cells) test is described in the “Assay” section of the Description, infra.


4. The OCN Promoter test is described in the “Assay” section of the Description, infra.


5. The Mouse Hypercalcemia test is described in the “Assay” section of the Description, infra.


6. The keratinocyte proliferation assay is described in the “Assay” section of the Description, infra.


7. The IL-10 induction assay is described in the “Assay” section of the Description, infra.


Assay Methods

Use of the Assay Methods:


The evaluation of the novel compounds of the invention for osteoporosis and other related diseases is done using a plurality of test results. The use of multiple assays is necessary since the combined properties of (i) high activity for the vitamin D receptor, and (ii) prevention of hypercalcemia must be achieved to have utility for the methods of treating diseases, which are also, aspects of this invention. Some of the tests described below are believed related to other tests and measure related properties of compounds. Consequently, a compound may be considered to have utility in the practice of the invention if is meets most, if not all, of the acceptance criteria for the above described tests.


The evaluation of the novel compounds of the invention for psoriasis is done using the Keratinocyte Proliferation Assay in combination with other assays that measure inhibition of IL-2 production and stimulation of IL-10 production in peripheral blood mononuclear cells (PBMCs).


Brief Description, Utility and Acceptance Criteria for the Assay Methods:


1. The RXR-VDR heterodimerAssay:


This assay provides the VDR activity of a test compound. It is desirable to have low EC50 values for a compound in this assay. The lower the EC50 value, the more active the compound will be as a VDR agonist. Desired assay results are EC50 values less than or equal to 600 nM. Preferred assay results are less than 250 nM, and most preferably less than 150 nM.


2. The Caco-2 Cell Co-Transfection Assay:


The Caco-2 cell assay is an indicator for the undesirable condition of hypercalcemia. This co-transfection assay is a surrogate assay for in vivo calcemic activity of VDR ligands. It is desirable to have high EC50 values for a test compound in this assay. The higher the EC50 values for a compound the less calcemic it will be in vivo. Desired assay results are EC50 greater than or equal to 300 nM. Preferred assay results are greater than 1000 nM.


3. The OCN (Osteocalcin) Promoter Assay


The OCN Promoter Assay is an indicator and marker for osteoporosis. Desired assay results are EC50 less than or equal to 325 nM. Preferred assay results are less than 50 nM.


4. The Mouse Hypercalcemia Assay


The Mouse Hypercalcemia Assay is a six day hypercalcemia test for toxicity and selectivity. Acceptable test results are levels greater than 300 μg/kg/day. Preferred assay results are levels greater than 1000 μg/kg/day.


5. The Keratinocyte Proliferation Assay


This Assay is indicative for the treatment of psoriasis. An acceptable test result is IC50 value of less than or equal to 300 nM. Preferred assay results are IC50 values of less than 100 nM.


6. The IL-1 Induction Assay


This is an in vitro efficacy assay for psoriasis, abscess and adhesion. Psoriasis involves both keratinocytes and immune cells. IL-10 is a unique cytokine because it is anti-inflammatory and immunosuppressive. This assay tells us whether a VDRM is able to function as an agonist in PBMCs (primary blood mononuclear cells) or not. A lower EC50 value is desirable in this assay since a compound with a lower EC50 value will be a better agonist in PBMCs. An acceptable test result is an EC50 value of less than 200 nM. Preferred assay results are EC50 values of less than 100 nM.


Details of the Assay Methods:


(1) Materials and Method for RXR-VDR Heterodimerization Assay:


Transfection Method:


FuGENE 6 Transfection Reagent (Roche Cat # 1 814 443) Growth Media:


D-MEM High Glucose (Gibco BRL Cat # 11054-020), 10% FBS, 1% antibiotic-antimycotic (Ab-Am)


FBS heat inactivated (Gibco BRL Cat # 10092-147)


Ab-Am (Gibco BRL Cat # 15240-062)


Cells:


Grow SaOs-2 cells in T-152 cm2 culture flasks in growth media.


Keep the density at 5-6×105 cells/ml


Passage cells 1:3 twice a week


Add Trypsin EDTA (Gibco BRL Cat # 25300-020)and incubate


Resuspend cells in plating media and transfer into growth media.


Wash Media:


HBSS Low Glucose Without Phenol Red (Gibco BRL Cat # 14175-095), 1% Ab-Am


Plating Media:


D-MEM Low Glucose Without Phenol Red (Gibco BRL Cat # 11054-020), 1% Ab-Am D-MEM


Stripped FBS (Hyclone Cat# SH30068.03 Lot # AHM9371)


Ab-Am


Transfection/Treatment Media:


D-MEM Low Glucose Without Phenol Red only


T-152 cm2 culture flask:


Use Corning Coastar T-152 cm2 culture flask (Cat # 430825) to grow the cells


Flat well Plates:


Use well plate to plate cells


Use Deep well plate sterile to make up treatment media.


Luciferase Assay Reagent:


Use Steady-Glo Luciferase Reagent from Promega (Cat # E2550) Consists of:


a. E2533 Assay Substrate, lyopholized product and


b. E2543 Assay Buffer.


Thaw at room temperature


Store


DAY 1: Cell Plating:


Cell Harvesting


Aspirate media from culture flask, rinse cells with HBSS and aspirate.


Add trypsin and incubate.


When cells appear detached, resuspend cells in growth media.


Transfer into a new flask with fresh growth media for passaging the cells.


Plate well plates and two extra plates


B. Cell Count


Mix the cell suspension using pipette


Use Hematocytometer to count the cells


Load cell suspension onto the hemocytometer chamber


Count cells.


Plate seeding:


Use plating media 10% Stripped FBS in D-MEM Low Glucose, Without Phenol Red, 1% Ab-Am


Plate 14 plates @ 165 μl/well.


In sterile flask add cell suspension to plating media.


Mix.


Add cells/well.


Place the cells in the incubator.


Cells should be about 75% confluent prior to transfection.


DAY 2: Transfection


Step 1: DNA and Media


Add plain DMEM media to tubes for mixing the DNA


Add the Reporter gene pFR-LUC


Add the Gal-4-RXR-DEF and VP16-VDR-LBD


Step 2: FuGENE and Media


Prepare plain DMEM media in a ubes for mixing FuGENE


Add FuGENE 6 Transfection Reagent


Incubate


Step 3: FuGENE, DNA and Media Complex


Add FuGENE Media complex from step 2 to DNA Media complex from step 1


Incubate


Step 4: FuGENE, DNA and Media Complex to-well plate


Add FuGENE-DNA-Media complex from step 3 to each plate


Incubate.


DAY 3: Dosing


Treatment preparation


Allow for transfection time


Make a stock solution of the compounds in DMSO


Vortex until all the compounds has been dissolved.


Further dilute in D-MEM (Low Glucose—With out Phenol Red)


Add compounds in quadruplicate to give final volume


Incubate.


Day 4: Luciferase Assay


Read the plates after drug treatment


Remove part of media from all the wells and leave remainder


Add Steady-Glo Luciferase Reagent mixture/wells


Incubate


Count each well using a Luminescence counter, Top Count NXT by Packard


Set a delay between plates to reduce the background.


(2) Materials and Method for The Caco-2 Cell Assay:


Caco-2 cells, grown in phenol red free, DMEM (Invitrogen, Carlsbad, Calif.) containing 10% charcoal-stripped FCS (Hyclone, Logan, Utah), were transfected with Fugene 6 reagent (Roche Diagnostics, Indianapolis, Ind.). Cells (5000/well) were plated 18 h before transfection in a 96 well plate. The Cells were transfected with Gal-4-responsive reporter pFRLuc (150 ng, Stratagene, La Jolla Calif.) and the receptor expression vector pGa14-VDR-LBD (10 ng), along with Fugene 6 reagent (0.2 □l/well). The DNA-Fugene complex was formed by incubating the mixture for 30 min at room temperature. The cells were transfected in triplicate for 5 h, and treated with various concentrations of VDR ligands (form 0.01 nM to 10,000 nM concentration range) 18 h post-transfection. The luciferase activity was quantified using Steady-Glo reagent kit (Promega, Madison, Wis.) as per manufacturer's specifications.


(3) Materials and Method for The OCN Promoter Assay:


The activation of osteocalcin by VDR ligands was evaluated in a rat osteoblast-like cell line RG-15 (ROS 17/2.8) stably expressing rat osteocalcin promoter fused with luciferase reporter gene. The stable cell lines were established as reported before (Activation of Osteocalcin Transcription involves interaction of protein kinase A- and Protein kinase C-dependent pathways. Boguslawski, G., Hale, L. V., Yu, X.-P., Miles, R. R., Onyia, J. E., Santerre R. F., Chandrasekhar, S. J Biol. Chem. 275, 999-1006, 2000). Confluent RG-15 cells maintained in DMEM/F-12 medium (3:1) containing 5% FBS, 300 □g/ml G418 and at 37° C. under 5% CO2/95% air atmosphere were trypsinized (0.25% trypsin) and plated into white opaque 96-well cell culture plates (25000 cells/well). After 24 hr, cells (in DMEM/F-12 medium+2% FBS) were treated with various concentrations of compounds, dissolved in DMSO. The final DMSO concentration remained at 0.01% (v/v). After 48 hr treatment, the medium was removed, cells were lysed with 50 □l of lysis buffer (From Luciferase reporter assay system, Roche Diagnostics, Indianapolis, Ind.) and assayed for luciferase activity using the Luciferase Reporter Gene Assay kit from Boehringer Mannheim as per manufacturer's specifications.


(4) Materials and Method for The Mouse Hypercalcemia Assay:


Weanling, virus-antibody-free, five to six weeks old female DBF mice (Harlan, Indianapolis, Ind.) are used for all the studies. Animals are allowed to acclimate to local vivarium conditions for 2 days. Mice are maintained on a 12 hr light/dark cycle at 22° C. with ad lib access to food (TD 5001 with 1.2% Ca and 0.9% P, Teklad, Madison, Wis.) and water. The animals then are divided into groups with 4-5 mice per group. Different doses of test compounds prepared in 10% Ethanol and 90% sesame oil are administered to mice orally via gavage for 6 days. 1α-25(OH)2D3 0.5 μg/kg/d was also given to one group of mice as the positive control. Serum ionized calcium is evaluated at 6 hours after the last dosing under isoflurane anesthesia by Ciba-Corning Ca++/PH Analyzer, (Model 634, Chiron Diagnostics Corp., East Walpole, Mass.). Raw data of group differences is assessed by analysis of variance (ANOVA) using Fisher's protected least significant difference (PLSD) where the significance level was P<0.05.


(5) The Keratinocyte Proliferation Assay:


KERtr cells (Human skin keratinocyte transformed with a retrovirus vector, obtained from ATCC) were plated in 96-well flat-bottomed plates (3000 cells/well) in 100 □l keratinocyte serum free medium supplemented with bovine pituitary extract in the absence of EGF (Life Technologies, Rockville, Md.) and incubated at 37° C. for two days. The cells were treated with various concentrations of VDR ligands (ten-fold serial dilution from 10,000 nM to 0.1 nM in triplicate), dissolved in 100 □l keratinocyte serum free medium supplemented with bovine pituitary extract in the absence of EGF and incubated at 37° C. for 72 hr. BrdU (5-bromo-2′-deoxyuridine) incorporation was analyzed as a measure of DNA replication (Cell proliferation ELISA kit, Roche Diagnostics, Indianapolis, Ind.) and absorbance was measured at 405 nm. Potency values (IC50) values were determined as the concentration (nM) of compound that elicited a half-maximal response.


(6) Materials and Method for Human IL-10 Induction Assay:


Isolation of peripheral blood mononuclear cells (PBMCs):






    • A. Collect 50 ml of human blood and dilute with media, RPMI-1640.

    • B. Prepare sterile tubes with ficol.

    • C. Add diluted blood to tubes.

    • D. Centrifuge.

    • E. Discard the top layer and collect the cells from middle layer.

    • F. Divide all cells into four tubes and add media.

    • G. Centrifuge.

    • H. Aspirate off media and resuspend.

    • I. Collect all cells

    • J. Centrifuge. at 1200 rpm for 10 minutes.

    • K. Resuspend in RPMI-1640 with 2% FBS and count cells

    • Stimulation of PBMC:

    • L. Prepare TPA in DMSO.

    • M. Dissolve PHA in water.

    • N. Plate TPA/PHA treated PBMCs in well plates.

    • O. Incubate.

    • Treatment:

    • P. Prepare all compound dilutions in plain RPMI-1640 media.

    • Q. Add diluted compound.

    • R. Incubate.

    • Sample Collection and assay:

    • S. Remove all the cells by centrifugation and assay the supernatant for IL-10 by immunoassay.

    • 1) T. Perform IL-10 assay using anti-human IL-10 antibody coated beads, as described by the manufacturer (Linco Research Inc., St. Charles, Mo.).




Claims
  • 1. A compound represented by formula I or a pharmaceutically acceptable salt or a prodrug derivative thereof:
  • 2. A compound represented by formula II or III or IV or V or a pharmaceutically acceptable salt or prodrug derivative thereof:
  • 3. A compound of claim 1 or 2
  • 4. A compound according to claim 1 represented by any one of formula (X1) thru (X188) a pharmaceutically acceptable salt, solvate, or prodrug derivative thereof:
  • 5. A compound according to claim 1 selected from the group consisting of compounds represented by the formula:
  • 6. A compound according to claim 1 selected from the group consisting of compounds represented by the formula:
  • 7. A compound represented by the formula:
  • 8. A compound represented by the formula:
  • 9. A compound represented by the formula:
  • 10. A compound represented by the formula:
  • 11. A pharmaceutical formulation comprising a compound of claim 1, or a pharmaceutically acceptable salt or prodrug derivative thereof, together with a pharmaceutically acceptable carrier or diluent therefor.
  • 12. A method of treating a mammal to prevent or alleviate the pathological effects of abscess, acne, adhesion, alopecia, Alzheimer's disease, autoimmune induced diabetes, bone fracture healing, breast cancer, cancer, colon cancer, diabetes, Type I, host-graft rejection, humoral hypercalcemia, induced diabetes, leukemia, lupus, multiple sclerosis, insufficient sebum secretion, osteomalacia, osteoporosis, insufficient dermal firmness, insufficient dermal hydration, phoriatic arthritis, prostate cancer, psoriasis, renal failure, renal osteodystrophy, rheumatoid arthritis, scleroderma, systemic lupus erythematosus, and wrinkles; wherein the method comprises administering a pharmaceutically effective amount of at least one compound of claim 1, or a pharmaceutically acceptable salt or prodrug derivative thereof.
  • 13. A method of treating or preventing disease states mediated by the Vitamin D receptor, wherein a mammal in need thereof is administered a pharmaceutically effective amount of a compound of claim 1, or a pharmaceutically acceptable salt or prodrug derivative thereof.
  • 14. A method of treating or preventing osteoporosis, wherein a mammal in need thereof is administered a pharmaceutically effective amount of a compound of claim 6.
  • 15. A method of treating or preventing psoriasis, wherein a mammal in need thereof is administered a pharmaceutically effective amount of a compound of claim 5.
  • 16. A method of treating or preventing abscess or adhesion, within a mammal in need thereof is administered a pharmaceutically effective amount of a compound of claim 5.
  • 17.-18. (canceled)
  • 19. A compound according to claim 1 represented by the formula:
  • 20. A compound according to claim 1 represented by the formula:
CROSS REFERENCE TO RELATED APPLICATIONS

This patent application claims the benefit of priority under Title 35 United States Code, section 119(e), of Provisional Patent Application No. 60/384,151 filed May 29, 2002; the disclosure of which is incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US03/14539 5/22/2003 WO 1/25/2006
Provisional Applications (1)
Number Date Country
60384151 May 2002 US