Human blood has been found to be an effective indicator of many health parameters. Analysis of blood chemistry is often performed as part of routine medical examinations and also as a screening and diagnostic medium for investigation of more specific medical conditions and determination of appropriate treatment. Phlebotomy is a medical field that relates to therapeutic intervention in a circulatory member for accessing patient bloodflow, typically initiated via a hypodermic needle for piercing an epidermal surface to access a closely located blood vessel just beneath the surface. Such access is significant for both withdrawal of blood for analysis and introduction of fluidic medicine through intravenous lines for intervention.
A phlebotomy aid device provides a capability to expand circulatory members (typically veins) for emphasizing venous appearance and accessibility on an epidermal surface. A warming sheath or sleeve extends over a patient forearm for introducing a thermal source adjacent to a patient blood vessel for emphasizing the vein appearance on the epidermal surface. A beating element in the sleeve is powered and controlled by a low voltage circuit for controlled thermal introduction for mitigating discomfort from overheating and eliminating proximity of potentially harmful electrical exposure. Introduction of gently controlled warmth induces physiologic changes in the forearm to expand the vein, facilitate bloodflow and pressure, and emphasize the appearance of the vein, facilitating accurate needle penetration as the vein “stands out” on the epidermal surface and becomes more receptive to a needle puncture. A disposable liner sized slightly smaller than the sleeve interior allows inexpensive use with multiple patients in succession by providing single-use liners to each patient.
Configurations herein are based, in part, on the observation that needle insertions are often routinely undertaken by general nursing staff or patient technicians that are not phlebotomy specialists. Unfortunately, conventional phlebotomy practices suffer from the shortcoming that they tend to result in multiple needle insertions (“pokes”) due to an inability to accurately insert the hypodermic needle in a manner that establishes effective fluidic communication with the vein. Typically a nurse is afforded two attempts to “hit” a vein, and if unsuccessful, an escalation protocol elevates the task to more experienced staff. The resulting patient discomfort from multiple needle punctures is substantial. Accordingly, configurations herein substantially overcome the above described shortcomings by providing a phlebotomy aid that enhances appearance and texture of veins and surrounding tissue to allow proper needle insertion into the vein upon a first insertion attempt.
The phlebotomy aid device as disclosed herein includes an elongated flexible sleeve having an opening, in which the flexible sleeve defines a receptacle adapted for receiving a human forearm for warming prior to a blood drawing procedure. A thermal element is attached to or integrated within the sleeve for heating a volume within the receptacle, and a power supply connects to the thermal element for energizing the thermal element. The flexible sleeve, in an example configuration, is constructed from opposed flexible panels attached at a seam extending partially around a perimeter of the flexible panels, and the opening is defined by an absence of the seam for defining the opening. The phlebotomy aid device takes the form of a glove or mitten that fits over the patients forearm up to the elbow region, and gently heats the forearm (the typical insertion site for most routine phlebotomy procedures) to cause the veins to “stand out” for facilitated needle insertion.
The foregoing and other objects, features and advantages of the invention will be apparent from the following description of particular embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
Configurations presented below show examples of the phlebotomy aid device for warming a forearm or other insertion site for emphasizing vascular features and facilitating percutaneous insertions, typically needles for IV, blood draw and medication introduction. Other configurations may be apparent from the examples presented below.
The phlebotomy aid device leverages the principle that the presence of a gentle warmth increases bloodflow to the general forearm region, creating a greater pressure in the vein that causes it to expand slightly and become more turgid and stiff to accept a puncture. Surrounding tissue may also stiffen slightly from increased blood flow in the capillaries of the tissue. The overall effect is a vein that is more visible for access, and is more rigid to withstand the pressure of a needle puncture, rather than a “softer” vein that tends to deform and move aside in response to the insertion pressure of an impending needle.
In an example use case, the sleeve 150 facilitates a method of pre-warming an injection site for therapeutic blood draw, including disposing the closed end sleeve over an appendage having a venous region for a percutaneous needle injection. The closed end sleeve encloses the site 112 or venous region within the warmed interior volume 152 defined by the closed end sleeve. In the example configuration, the sleeve 150 forms a substantially tubular shape closed 160 at the distal end and open at an opposed, proximate end 154 for receiving the appendage. The heating medium is configured for heating the interior volume 152 to a temperature greater than room temperature and less than a temperature that would cause thermal discomfort to a wearer. Activation of the heat source embedded in the planar heating medium 142 for a brief interval warms the interior volume 152 for enhancing a venous presence in the venous region.
An electrical supply provides a non-harmful, DC voltage via a transformer 170 for transforming and reducing a wall supply voltage 175 down to a non-oscillating, non-harmful voltage source, typically 12 or 24 VDC. In a particular arrangement, the thermal element 145 is an electrical conductor having a resistance based on achieving a temperature greater than 86° in the receptacle at a voltage of 24V. The low voltage transformer 170 in the power supply is adapted to convert electrical characteristics of a wall receptacle (typically 120 VAC) to a benign voltage and current in the fibrous electrical conductor, such that any potential shock hazard is eliminated by low voltage, low amperage and/or DC electrical operation.
In an alternate arrangement, a portable, rechargeable power source 180 (battery) may also be employed, and is readily marketed in 12V sources. Series combination therefore provides 24V. A battery powered unit is particularly effective in a large medical facility where a phlebotomist may be called around to patient rooms. Modern battery technology is rapidly evolving to provide sufficient power in a lightweight battery package to provide ample longevity with a size and weight that is not cumbersome to carry. Regardless of grid or battery power, a high voltage region 310 is effectively separated from crossing into a patient contact region 320 where low voltage prevails, as shown by dotted line 302.
As an example, the planar heating medium 142 may take the form of an alternating curved arrangement (e.g. “S” curves) alternating along a textile surface that uniformly heats the volume 152, and may be fulfilled a low cost resistance heating medium. An absence of crossover or crosshatching (e.g. “grid”) arrangement avoids potential short circuits where electrical conductors cross. A variable thermostatic, or fixed thermistor control 172 may be established, as any gentle warming in excess of around 86 degrees will enhance vein receptibility to needles, and of course should not (and need not) heat to an uncomfortable level.
The opposed panels 142-1 . . . 142-2 each define a surface and have a substantially equal area and an aligned perimeter, and may be fulfilled by rectangular textile panels such that a seam 143 or threaded attachment extends around three of four sides of the textile panels, thus forming the closed end 160 and leaving an open width on the fourth side to define the proximate side 154 opening for forearm insertion.
While the system and methods defined herein have been particularly shown and described with references to embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This patent application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Nos. 63/109,041, filed Nov. 3, 2020, entitled “PHLEBOTOMY AID DEVICE,” incorporated herein by reference in entirety
Number | Date | Country | |
---|---|---|---|
63109041 | Nov 2020 | US |