The basis for phononic crystals-dates back to Isaac Newton who imagined that sound waves propagated through air in the same way that an elastic wave would propagate along a lattice of point masses connected by springs with an elastic force constant E, the force constant being identical to the modulus of the material. The field of phononic crystals and our theoretical understanding of them have steadily grown since that time (see, for example, Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton University Press, Princeton (1995); Garcia et al., “Theory for Tailoring Sonic Devices: Diffraction Dominates over Refraction,” Phys. Rev. E 67, 046606 (2003); Kushwaha and P. Halevi, “Band-gap Engineering in Periodic Elastic Composites,” Appl. Phys. Lett. 64(9):1085-1087 (1994); Lai et al. “Engineering Acoustic Band Gaps,” Appl. Phys. Lett. 79(20): 3224-3226 (2001); Sigmund and Jensen “Systematic Design of Phononic Band-Gap Materials and Structures by Topology Optimization,” Phil. Trans. R. Soc. Lond. A 361:1001-1019 (2003), Caballero et al. “Large Two-Dimensional Sonic Band Gaps,” Phys. Rev. E 60:(6):R6316-R6319 (1999); and Sliwa and Krawczyk “The Effect of Material Parameters Values on the Relation Between Energy Gap Width and the Scattering Symmetry in Two-Dimensional Phononic Crystals,” arXiv:cond-mat/05022 (2005).
Disclosed herein are methods, systems, apparatus, and/or articles as described and/or illustrated herein. In an implementation, disclosed is a system and method for desalination of salt water based on an engineered acoustic field that causes constructive and destructive interference at pre-computed spatial positions. The engineered acoustic field can cause high-pressure and low-pressure regions where desalination membranes are located. The induced pressure from the acoustic field can force pure water through the membranes leaving ionic and dissolved molecular species behind.
Disclosed herein is an apparatus including an array of tubes, wherein each tube is surrounded by a membrane and wherein the tubes are parallel to each other; a flow chamber; and one or more acoustic transducers. A fluid can flow through the flow chamber in a direction of flow. The array of tubes can also be positioned in the flow chamber so that the hollow portions of the tubes are in the direction of flow. Also, the spaces between each of the tubes in the flow chamber can form an interstitial region. Further, the acoustic transducers can be positioned so that they touch a fluid present in the flow chamber.
The membrane can include a desalination polymer. The tubes can be made up of a porous material. The array of tubes can be arranged in a hexagonal array. The wall of the flow chamber can include the acoustic transducer. The apparatus can also include two transducers. Specifically, the two transducers can cover an entire boundary or side of the flow chamber. Further, the array of tubes can be packed into a phononic crystal or a phononic crystal system.
Also disclosed herein is a method of desalinating water. The method includes creating an engineered acoustic field, wherein the engineered acoustic field creates high pressure and low pressure regions; providing a desalination membrane; and positioning a high pressure region so as to force water through the desalination membrane thereby separating solutes from the water thereby desalinating the water.
The method can also include providing an array of tubes, wherein each tube is surrounded by a membrane and wherein the tubes are parallel to each other; a flow chamber; and one or more acoustic transducers. A fluid can flow through the flow chamber in a direction of flow. The array of tubes can also be positioned in the flow chamber so that the hollow portions of the tubes are in the direction of flow. Also, the spaces between each of the tubes in the flow chamber can form an interstitial region. Further, the acoustic transducers can be positioned so that they touch a fluid present in the flow chamber.
The water to be desalinated can present in the interstitial region and the engineered acoustic field be oriented to force the water to be desalinated through the desalination membranes into the tubes. Also, the water to be desalinated can be present in the tubes and the engineered acoustic field be oriented to force the water to be desalinated through the desalination membranes into the interstitial region. Further, the array of tubes can be packed into a phononic crystal or a phononic crystal system.
Also disclosed herein is an apparatus including a guide having a two-dimensional cubic or hexagonal configuration of circular rods, wherein a phononic crystal system is built within the guide; and an acoustic pressure source positioned at a first side of the guide. The acoustic pressure source can transmit acoustic energy and can be positioned such that a box exists outside the opposite side of the guide, wherein the acoustic energy is integrated.
The circular rods can be between about 3.175 and about 9.525 mm in diameter. The circular rods can be embedded in urethane. The crystal system can surrounded by urethane. The circular rods can include a material selected from alumina, stainless steel, aluminum, nylon and porous ceramic. The acoustic energy can be of a frequency between about 10 and about 200 kHz.
The details of one or more variations of the subject matter described herein are set forth in the accompanying drawings and the description below. Other features and advantages of the subject matter described herein will be apparent from the description and drawings, and from the claims.
Generally speaking the figures are not to scale in absolute terms or comparatively but are intended to be illustrative of claimed features. Also, relative placement of features and elements maybe modified for the purpose of illustrative clarity. Many of the figures show the components in schematic for the purpose of simplicity and are not intended to specifically show the design of the components or how they are coupled together.
Described herein are systems and methods for desalination and the separation of dissolved metals, salts, and organics from water by exploiting phenomena observed in phononic crystals. In particular, described herein is a method and system using phononic crystals to produce ultrasonic or acoustic standing waves at key spatial locations within the crystal where the acoustic pressure differential is sufficient to force water through a polymeric membrane at that location, and leave a concentrated brine solution behind. The high pressure differential at eighteen modes in the crystal forces pure water through the membrane leaving a concentrated brine solution and the ionic species behind in order to desalinate water. The systems and methods for desalination by membrane distillation described herein provide many advantages, for example, pure desalinated water with very low power requirements.
The elastic force constant is of key importance and is a key factor for acoustic band-gap engineering in impedance mismatch between periodic elements including the crystal and the surrounding medium. When an advancing wave-front meets a material with very high impedance it will tend to increase its phase velocity through that medium. Likewise, when an advancing wave-front meets a low impedance medium it will slow down.
For inhomogenous solids, the wave equation is given by
Here, ui is the ith component displacement vector. The subscript j is in reference to the medium (medium 1 or medium 2); λ, μ are the Lame coefficients, ρ is the density, and the longitudinal and transverse speed of sound are given by
cl=√{square root over ((λ+2μ)/ρ)}
ct=√{square root over (μ/ρ)}
The Lame coefficients can be expressed as Young's modulus E.
Et=ρc2=μ
El=ρct2=λ+2μ
Young's modulus has importance to elastic vibrations in lattices. Upon performing a numerical survey of materials, lattice spacing, packing arrangements, and crystal orientations, it can be observed that as the Young's modulus increases, the width of the first (lowest frequency) band-gap also increases. This trend can be observed for both cubic (X and M direction) and hexagonal crystals (K and M directions) at several filling fractions and rod diameters.
The band-gaps in phononic crystals can be a function of material composition, lattice spacing, crystal-packing arrangement, crystal orientation, and/or size of the elements in the crystal.
The configuration, diameter, and material of the rods 110 as well as the filling fraction can all vary. As mentioned, the rods 110 can be in a two-dimensional cubic or hexagonal configuration. The rod diameter used can be, for example, 3.175 mm (0.125″), 6.35 mm (0.25″), and 9.525 mm (0.375″). The filling fractions used can be, for example, 0.90699, 0.403066, and 0.29613. Using all three rod diameters and all three filling fractions results in nine possible combinations. For the cubic crystals, X and M directions can be used. For the hexagonally-packed crystals, K and M directions can be used. The material of the rods 110 can vary, including alumina (p=3860 kg/m3; c=10520 m/sec; E=3.61×1011 Pa), stainless steel (p=7850 kg/m3; c=5790 m/sec; E=1.03×1011 Pa), aluminum (p=2700 kg/m3; c=6420 m/sec; E=6.9×1010 Pa) and nylon (p=1130 kg/m3; c=2675 m/sec; E=2.4×109 Pa) or other appropriate material. In an embodiment, the material is a porous ceramic. For each rod material combination, the acoustic properties for eighteen different crystals/orientations can be analyzed. As mentioned, the frequency can vary. The frequency can be between about 10 kHz to about 200 kHz. In a variation, X and M directions can be used in cubic and K and M directions in hexagonal polyester (p=1350 kg/m3; c=2100 m/sec; E=4.41×109 Pa)) and graphite (p=2200 kg/m3; c=3310 m/sec; E=2.41×1010 Pa) packed in urethane. The width and center frequency for the first band gap can be a function of the Young's modulus. The lattice spacing can be a function of the filling fraction and the rod diameter. Band gaps for materials having a modulus nearing that of the impedance will not as pronounced. For example, the band gap for nylon will not be as pronounced as alumina, steel or aluminum.
The systems and methods for desalination of water described herein incorporate an engineered acoustic field that can cause constructive and destructive interference at spatial positions identified using the modeling system described above. The engineered acoustic field can cause high-pressure and low-pressure regions where desalination membranes can be positioned. The induced pressure from the acoustic field can force pure water through the membranes leaving ionic and dissolved molecular species behind.
The arrangement of porous tubes 205 coated with a desalination polymeric membrane 207 can be packed into a phononic crystal. The tubes 205 can be arranged in parallel configuration or any regular polygon or circular cross-sectional shape. The arrangement of tubes 205 can be packed into a larger tube or container such as a flow chamber 215 having a generally small cross-section. The chamber 215 can be rectangular, a regular polygon, circular or other cross-sectional shape. In one variation, the cross-section of the flow chamber 215 is about 10 cm×6 cm. The chamber 215 can be a metal material.
Water to be desalinated can flow through the interstitial region 210 between the tubes 205 (perpendicular to the diagram) such that the inside of the tubes 205 are initially kept empty. Alternatively, water to be desalinated can flow through the inside of the tubes 205 and the interstitial regions 210 kept empty. The membrane 207 coating the tubes 205 allows fresh water to pass therethrough. Depending upon the configuration of the system 200, the pure water can flow from the interstitial region 210 into and through the tubes 205. Alternatively, the pure water can flow from the tubes 205 into and through the interstitial region 210.
The arrangement of tubes 205 within the chamber 215 can be positioned adjacent to one or more acoustic transducers (not shown). The transducers can be located at one or more boundaries of the flow chamber 215 such that the transducers contact the water to be desalinated. Alternatively, the walls of the chamber 215 can act as the acoustic transducer. The packing arrangement of the tubes 205 can vary as can the number of transducers, their arrangement, and the acoustic frequency selected. In a variation, two adjacent transducers can be selected such that they cover an entire boundary or side of the flow chamber 215.
When these transducers are powered up, such as by an alternating current, they can induce a complex acoustic standing wave in the surrounding tubes 205 due to constructive and destructive interference. Stable nodes of very high-pressure differential can be produced over small spatial areas. By tuning the placement of the tubes 205 and adjusting the resonance frequency of the transducer(s), water molecules can be forced through the membrane 207 and into the empty tubes 205 (or the reverse situation, depending on tuning of the system). Each transducer can operate at a variety of resonances as will be described in more detail below. The membranes 207 can be positioned at these calculated nodes of high pressure differential. Alternatively, the stable nodes of very high-pressure differential can be tuned to the location of where the membranes 207 are positioned.
While this specification contains many specifics, these should not be construed as limitations on the scope of what is claimed or of what may be claimed, but rather as descriptions of features specific to particular variations. Certain features that are described in this specification in the context of separate variations can also be implemented in combination in a single variation. Conversely, various features that are described in the context of a single variation can also be implemented in multiple variations separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Only a few examples and implementations are disclosed. Variations, modifications and enhancements to the described examples and implementations and other implementations may be made based on what is disclosed.
This application is a divisional of U.S. patent application Ser. No. 13/162,463, filed Jun. 16, 2011, now U.S. Pat. No. 8,956,538, which claimed the benefit of priority under 35 U.S.C. §119 to U.S. Provisional Patent Application Ser. No. 61/355,421, filed on Jun. 16, 2010, entitled, “Phononic Crystal Desalination System and Methods of Use”, the entire disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2473971 | Ross | Jun 1949 | A |
2667944 | Crites | Feb 1954 | A |
3555311 | Weber | Jan 1971 | A |
4055491 | Porath-Furedi | Oct 1977 | A |
4158629 | Sawyer | Jun 1979 | A |
4165273 | Azarov et al. | Aug 1979 | A |
4173725 | Asai et al. | Nov 1979 | A |
4204096 | Barcus et al. | May 1980 | A |
4398325 | Piaget et al. | Aug 1983 | A |
4552669 | Sekellick | Nov 1985 | A |
4666595 | Graham | May 1987 | A |
4699588 | Zinn et al. | Oct 1987 | A |
4743361 | Schram | May 1988 | A |
4759775 | Peterson et al. | Jul 1988 | A |
4836684 | Javorik et al. | Jun 1989 | A |
4983189 | Peterson et al. | Jan 1991 | A |
5062965 | Bernou | Nov 1991 | A |
5164094 | Stuckart | Nov 1992 | A |
5225089 | Benes et al. | Jul 1993 | A |
5371429 | Manna | Dec 1994 | A |
5395592 | Bolleman et al. | Mar 1995 | A |
5443985 | Lu et al. | Aug 1995 | A |
5452267 | Spevak | Sep 1995 | A |
5484537 | Whitworth | Jan 1996 | A |
5527460 | Trampler et al. | Jun 1996 | A |
5560362 | Sliwa, Jr. et al. | Oct 1996 | A |
5594165 | Madanshetty | Jan 1997 | A |
5604301 | Mountford et al. | Feb 1997 | A |
5626767 | Trampler et al. | May 1997 | A |
5688405 | Dickinson et al. | Nov 1997 | A |
5711888 | Trampler et al. | Jan 1998 | A |
5831166 | Kozuka et al. | Nov 1998 | A |
5834871 | Puskas | Nov 1998 | A |
5902489 | Yasuda et al. | May 1999 | A |
5912182 | Coakley et al. | Jun 1999 | A |
5951456 | Scott | Sep 1999 | A |
6090295 | Raghavarao et al. | Jul 2000 | A |
6166231 | Hoeksema | Dec 2000 | A |
6205848 | Faber et al. | Mar 2001 | B1 |
6216538 | Yasuda et al. | Apr 2001 | B1 |
6273262 | Yasuda et al. | Aug 2001 | B1 |
6332541 | Coakley et al. | Dec 2001 | B1 |
6391653 | Letcher et al. | May 2002 | B1 |
6482327 | Mori et al. | Nov 2002 | B1 |
6487095 | Malik et al. | Nov 2002 | B1 |
6592821 | Wada et al. | Jul 2003 | B1 |
6649069 | DeAngelis | Nov 2003 | B2 |
6763722 | Fjield et al. | Jul 2004 | B2 |
6881314 | Wang et al. | Apr 2005 | B1 |
6929750 | Laurell et al. | Aug 2005 | B2 |
6936151 | Lock et al. | Aug 2005 | B1 |
7008540 | Weavers et al. | Mar 2006 | B1 |
7010979 | Scott | Mar 2006 | B2 |
7061163 | Nagahara et al. | Jun 2006 | B2 |
7081192 | Wang et al. | Jul 2006 | B1 |
7093482 | Berndt | Aug 2006 | B2 |
7108137 | Lal et al. | Sep 2006 | B2 |
7150779 | Meegan, Jr. | Dec 2006 | B2 |
7186502 | Vesey | Mar 2007 | B2 |
7191787 | Redeker et al. | Mar 2007 | B1 |
7322431 | Ratcliff | Jan 2008 | B2 |
7331233 | Scott | Feb 2008 | B2 |
7340957 | Kaduchak et al. | Mar 2008 | B2 |
7373805 | Hawkes et al. | May 2008 | B2 |
7541166 | Belgrader et al. | Jun 2009 | B2 |
7601267 | Haake et al. | Oct 2009 | B2 |
7673516 | Janssen et al. | Mar 2010 | B2 |
7837040 | Ward et al. | Nov 2010 | B2 |
7846382 | Strand et al. | Dec 2010 | B2 |
7968049 | Takahashi et al. | Jun 2011 | B2 |
8080202 | Takahashi et al. | Dec 2011 | B2 |
8134705 | Kaduchak et al. | Mar 2012 | B2 |
8256076 | Feller | Sep 2012 | B1 |
8266950 | Kaduchak et al. | Sep 2012 | B2 |
8273253 | Curran | Sep 2012 | B2 |
8273302 | Takahashi et al. | Sep 2012 | B2 |
8309408 | Ward et al. | Nov 2012 | B2 |
8319398 | Vivek et al. | Nov 2012 | B2 |
8334133 | Fedorov et al. | Dec 2012 | B2 |
8387803 | Thorslund et al. | Mar 2013 | B2 |
8476060 | Chianelli et al. | Jul 2013 | B2 |
8691145 | Dionne et al. | Apr 2014 | B2 |
8714360 | Swayze et al. | May 2014 | B2 |
8772004 | Schafran et al. | Jul 2014 | B2 |
8865452 | Radaelli et al. | Oct 2014 | B2 |
8873051 | Kaduchak et al. | Oct 2014 | B2 |
20020038662 | Schuler et al. | Apr 2002 | A1 |
20020134734 | Campbell et al. | Sep 2002 | A1 |
20030028108 | Miller et al. | Feb 2003 | A1 |
20030195496 | Maguire | Oct 2003 | A1 |
20030209500 | Kock et al. | Nov 2003 | A1 |
20030230535 | Affeld et al. | Dec 2003 | A1 |
20040016699 | Bayevsky | Jan 2004 | A1 |
20050031499 | Meier | Feb 2005 | A1 |
20050121269 | Namuduri | Jun 2005 | A1 |
20050145567 | Quintel et al. | Jul 2005 | A1 |
20050196725 | Fu | Sep 2005 | A1 |
20060037915 | Strand et al. | Feb 2006 | A1 |
20070272618 | Gou et al. | Nov 2007 | A1 |
20070284299 | Xu et al. | Dec 2007 | A1 |
20080105625 | Rosenberg et al. | May 2008 | A1 |
20080217259 | Siversson | Sep 2008 | A1 |
20080245709 | Kaduchak et al. | Oct 2008 | A1 |
20090029870 | Ward et al. | Jan 2009 | A1 |
20090045107 | Ward et al. | Feb 2009 | A1 |
20090053686 | Ward et al. | Feb 2009 | A1 |
20090098027 | Tabata et al. | Apr 2009 | A1 |
20090104594 | Webb | Apr 2009 | A1 |
20090178716 | Kaduchak et al. | Jul 2009 | A1 |
20090194420 | Mariella, Jr. et al. | Aug 2009 | A1 |
20090295505 | Mohammadi et al. | Dec 2009 | A1 |
20100000945 | Gavalas | Jan 2010 | A1 |
20100078384 | Yang | Apr 2010 | A1 |
20100124142 | Laugharn et al. | May 2010 | A1 |
20100139377 | Huang et al. | Jun 2010 | A1 |
20100192693 | Mudge et al. | Aug 2010 | A1 |
20100193407 | Steinberg et al. | Aug 2010 | A1 |
20100206818 | Leong et al. | Aug 2010 | A1 |
20100255573 | Bond et al. | Oct 2010 | A1 |
20100261918 | Chianelli et al. | Oct 2010 | A1 |
20100317088 | Radaelli et al. | Dec 2010 | A1 |
20100323342 | Gonzalez Gomez et al. | Dec 2010 | A1 |
20100330633 | Walther et al. | Dec 2010 | A1 |
20110003350 | Schafran et al. | Jan 2011 | A1 |
20110024335 | Ward et al. | Feb 2011 | A1 |
20110092726 | Clarke | Apr 2011 | A1 |
20110095225 | Eckelberry et al. | Apr 2011 | A1 |
20110123392 | Dionne et al. | May 2011 | A1 |
20110154890 | Holm et al. | Jun 2011 | A1 |
20110166551 | Schafer | Jul 2011 | A1 |
20110262990 | Wang et al. | Oct 2011 | A1 |
20110281319 | Swayze et al. | Nov 2011 | A1 |
20110309020 | Rietman et al. | Dec 2011 | A1 |
20120088295 | Yasuda et al. | Apr 2012 | A1 |
20120267288 | Chen et al. | Oct 2012 | A1 |
20120328477 | Dionne et al. | Dec 2012 | A1 |
20120329122 | Lipkens et al. | Dec 2012 | A1 |
20130175226 | Coussios et al. | Jul 2013 | A1 |
20130277316 | Dutra et al. | Oct 2013 | A1 |
20130277317 | LoRicco et al. | Oct 2013 | A1 |
20130284271 | Lipkens et al. | Oct 2013 | A1 |
20140011240 | Lipkens et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
30 27 433 | Feb 1982 | DE |
196 48 519 | Jun 1998 | DE |
10 2008 006 501 | Sep 2008 | DE |
0 292 470 | Nov 1988 | EP |
1 254 669 | Nov 2002 | EP |
2 420 510 | May 2006 | GB |
9-136090 | May 1997 | JP |
WO 8707178 | Dec 1987 | WO |
WO 9005008 | May 1990 | WO |
WO 02072234 | Sep 2002 | WO |
WO 2009111276 | Sep 2009 | WO |
WO 2009144709 | Dec 2009 | WO |
WO 2010024753 | Apr 2010 | WO |
WO 2011023949 | Mar 2011 | WO |
WO 2011027146 | Mar 2011 | WO |
WO 2011161463 | Dec 2011 | WO |
Entry |
---|
Alvarez et al.; Shock Waves, vol. 17, No. 6, pp. 441-447, 2008. |
Benes et al.; Ultrasonic Separation of Suspended Particles, 2001 IEEE Ultrasonics Symposium; Oct. 7-10, 2001; pp. 649-659; Atlanta, Georgia. |
Castro; Tunable gap and quantum quench dynamics in bilayer graphene; Jul. 13, 2010; Mathematica Summer School. |
Cravotto et al.; Ultrasonics Sonochemistry, vol. 15, No. 5, pp. 898-902, 2008. |
Garcia-Lopez, et al; Enhanced Acoustic Separation of Oil-Water Emulsion in Resonant Cavities. The Open Acoustics Journal. 2008, vol. 1, pp. 66-71. |
Gor'Kov; On the forces acting on a small particle in an acoustical field in an ideal fluid; Soy. Phys. Dokl.; vol. 6, pp. 773-775; 1962. |
Hill et al.; Ultrasonic Particle Manipulation; Microfluidic Technologies for Miniaturized Analysis Systems, Jan. 2007, pp. 359-378. |
Kuznetsova et al.; Microparticle concentration in short path length ultrasonic resonators: Roles of radiation pressure and acoustic streaming; Journal of the Acoustical Society of America, American Institute of Physics for the Acoustical Society of America, vol. 116, No. 4, Oct. 1, 2004, pp. 1956-1966, DOI: 1.1121/1.1785831. |
Latt et al.; Ultrasound-membrane hybrid processes for enhancement of filtration properties; Ultrasonics sonochemistry 13.4 (2006): 321-328. |
Lipkens et al.; Frequency sweeping and fluid flow effects on particle trajectories in ultrasonic standing waves; Acoustics 08, Paris, Jun. 29-Jul. 4, 2008. |
Lipkens et al.: “Macro-scale acoustophoretic separation of lipid particles from red blood cells”, J. of the Acoustical Society of America, vol. 133, Jun. 2, 2013, p. 045017, XP055162509, New York, NY. ISSN: 0001-4966, DOI: 10.1121/1.4799371. |
Lipkens et al.; Prediction and measurement of particle velocities in ultrasonic standing waves; J. Acoust. Soc. Am., 124 No. 4, pp. 2492 (A) 2008. |
Lipkens et al.; Separation of micron-sized particles in macro-scale cavities by ultrasonic standing waves; Presented at the International Congress on Ultrasonics, Santiago; Jan. 11-17, 2009. |
Lipkens et al.; The effect of frequency sweeping and fluid flow on particle trajectories in ultrasonic standing waves; IEEE Sensors Journal, vol. 8, No. 6, pp. 667-677, 2008. |
Meribout et a.; An Industrial-Prototype Acoustic Array for Real-Time Emulsion Layer Detection in Oil Storage Tanks; IEEE Sensors Journal, vol. 9, No. 12, Dec. 2009. |
Nilsson et al.; Review of cell and particle trapping in microfluidic systems; Department of Measurement Technology and Industrial Electrical Engineering, Div. of Nanobiotechnology, Lund University, P.O. Box 118. Lund, Sweden, Analytica Chimica Acta 649, Jul. 14, 2009, pp. 141-157. |
Pangu et al.; Droplet transport and coalescence kinetics in emulsions subjected to acoustic fields; Ultrasonics 46, pp. 289-302 (2007). |
Ponomarenko et al.; Density of states and zero Landau level probed through capacitance of graphene; Nature Nanotechnology Letters, Jul. 5, 2009; DOI: 10.1038/NNANO.2009.177. |
Seymour et al, J. Chem. Edu., 1990, 67(9), p. 763, published Sep. 1990. |
Wang et al., “Retention and Viability Characteristics of Manmmalian Cells in an Acoustically Driven Polymer Mesh”, Biotechnol. Prog., Jan.-Feb. 2004; pp. 384-385. |
Annex to Form PCT/ISA/206—Communication Relating to the Results of the Partial International Search Report, dated Jul. 18, 2013. |
European Search Report of European Application No. 11769474.5 Dated Oct. 10, 2012. |
International Search Report and Written Opinion dated Dec. 20, 2011, for corresponding PCT application No. PCT/US2011/032181. |
International Search Report and Written Opinion dated Feb. 27, 2012, for PCT application No. PCT/US2011/040787. |
International Search Report and Written Opinion of International Application No. PCT/US2013/037404 Dated Jun. 21, 2013. |
International Search Report and Written Opinion of International Application No. PCT/US2013/050729 Dated Sep. 25, 2013. |
International Search Report for corresponding PCT Application Serial No. PCT/US2014/015382 dated May 6, 2014. |
International Search Report and Written Opinion of International Application No. PCT/US2015/010595 dated Apr. 15, 2015. |
Phys. Org. “Engineers develop revolutionary nanotech water desalination membrane.” Nov. 6, 2006. http://phys.org/news82047372.html. |
“Proceedings of the Acoustics 2012 Nantes Conference,” Apr. 23-27, 2012, Nantes, France, pp. 278-282. |
Sony New Release: <http://www.sony.net/SonyInfo/News/Press/201010/10-137E/index.html>. |
European Search Report of European Application No. 11796470.0 dated Jan. 5, 2016. |
Number | Date | Country | |
---|---|---|---|
20150158743 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
61355421 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13162463 | Jun 2011 | US |
Child | 14623906 | US |