Fields of the invention include phosphors and devices that incorporate phosphors. Preferred applications of the invention are to light-emitting devices and particularly to microcavity plasma devices (also referred to as microplasma devices or microdischarge devices) having microstructured or inclined surfaces that are difficult to coat uniformly with phosphor.
Phosphors are compounds that exhibit a sustained glow (phosphorescence) in response to the absorption of an energized particle, such as an electron or a photon. The sustained glow results from the ability of a phosphor material to store energy for a period of time before re-emitting it. Phosphors are a fundamental component in countless display devices, light sources, and other devices, including safety equipment and novelty items. For example, phosphors are indispensable in producing white light or light of various colors from displays and lighting sources. There are a large number of phosphor compounds that have well established color responses and persistence, i.e., the duration of glow after excitation. Phosphors are chosen for particular applications based upon color response (emission spectrum) and persistence.
Phosphor coatings have been studied widely, and are applied in different thicknesses on the surfaces of various materials. Phosphor films have been applied to glass and other surfaces for many years. Several past efforts have mixed phosphor materials with glass or plastic, but the formation methods and resulting layers have limited application. A few patents have provided processes for preparing layers of phosphors embedded in materials such as glass. One example is U.S. Pat. No. 2,857,541 which describes a method for producing a thin layer of phosphor-embedded glass by mixing powdered glass and phosphor with an electrolyte and water to form a slurry. From the resulting green plaque, layers having a minimal thickness on the order of 2 mm are realized. Such a formation method and the resultant phosphor-embedded glass slab are not amenable to uniformly coating phosphor onto microstructured and irregular surfaces.
Roohollah S. Targhatr, et al., “Realization of Flexible Plasma Display Panels on PET Substrates,” Proceedings of the IEEE, VOL. 93, NO. 7, July 2005, proposes a flexible plasma display that has a top polyethylene terephtalate (PET) substrate with phosphor grains that are blast-embedded into the PET substrate. The blasting of phosphor particles embeds the phosphor particles into PET craters. In a variation, vertical etching is used to form craters on the top substrate via a photo-chemical reaction which yields a vertical and sharp etching of squares, and the particles are then deposited into the craters. The top PET layer with phosphor acts to convert vacuum ultraviolet (VUV) radiation into visible light.
Any process for preparing thin phosphor films of precisely controlled thickness and efficient in generating light, should account for several factors. If the purpose of the phosphor is to convert short wavelength (ultraviolet) radiation into visible light, it is important to distinguish phosphor layers photoexcited by VUV radiation (wavelengths less than approximately 200 nm) from phosphors intended to be illuminated by longer-wavelength ultraviolet light (200-400 nm, in the so-called UV A,B, and C regions). The reason for the distinction is that VUV photons are strongly absorbed by virtually all materials in which one might embed a phosphor. Consequently, it is preferable that phosphors intended for illumination by VUV light are exposed directly to the incoming radiation. Inserting most materials between the phosphor and the VUV source will result in some or most of the VUV photons being absorbed by said material and, thus, never reaching the phosphor. On the other hand, if it is intended that longer wavelength (λ≧250 nm) photons excite the phosphor, one has greater freedom in inserting a thin layer of one or more materials between the UV source and the phosphor because a greater variety of materials transmit efficiently in this range of wavelengths. In summary, the use of binders, glasses, or other materials to encapsulate or partially shield the phosphor is undesirable if the phosphor is to be “driven” by VUV photons. However, even if the intent is to illuminate the phosphor with photons having wavelengths above 200 nm, it is desirable to minimize the thickness of any encapsulating materials because the absorption (and reflection) of light is not zero for even the best materials.
Another consideration important to forming phosphor layers is that phosphors are generally large molecules that can be damaged if the method of depositing the layers is overly aggressive physically or chemically. Therefore, the blast embedding of phosphors into a surface is not desirable, and experience has shown that phosphor particle sizes in the 1-10 μm range are preferable.
Microcavity plasma devices and arrays have been developed and advanced by researchers at the University of Illinois, including inventors of this application. Devices and arrays have been fabricated in different materials, such as ceramics and semiconductors. Arrays of microcavity devices have been fabricated in thin metal and metal oxide sheets. Advantageously, microcavity plasma devices confine the plasma in cavities having microscopic dimensions and require no ballast, reflector or heavy metal housing. Microcavities in such devices can have different cross-sectional shapes, but generally confine plasma in a cavity having a characteristic dimension in the range of about 5 μm to 500 μm.
Applying uniform layers of phosphors to the surfaces of microcavity devices or other irregular surfaces is often challenging. Arrays of microcavities, in particular, often have inclined or spatially modulated surfaces with considerable microstructure that can include steps or gratings, not to mention the microcavities themselves. Applying a phosphor film to the interior surface of fluorescent light tubes has been a part of the manufacturing process for years but the surface to be coated is reasonably smooth and no effort is made to encapsulate the phosphor particles. Furthermore, the phosphor layer formation process often involves water which, if not removed completely from the phosphor in subsequent processing (baking, de-gassing), will adversely impact the performance and lifetime of the lamp.
The present invention addresses the need for a method to uniformly coat irregular and microstructured surfaces with one or more thin layers of phosphor. In addition, the individual phosphor particles can be coated by, or partially or wholly encapsulated (in a glass or other material), thereby protecting the phosphor from the microplasma or vice-versa.
Methods of the invention can provide a thin (sub-200 μm) layer of phosphor that is fully or partially embedded in glass. Methods of the present invention can form thin layers of phosphors in glass, but provide the capability to do so on three dimensional (stereoscopic) structures having a high degree of surface relief, including microstructured and inclined surfaces. The thickness of the layers is typically no greater than 20 μm and the method of the invention is s capable of coating complex structures (such as wire meshes and grids) and disparate materials (including nanoporous aluminum oxide and glass).
A preferred embodiment of the present invention is a thin encapsulated phosphor coating on a substrate. The coating typically includes a glass, metal or polymer film having a substantially uniform thickness of ˜1-˜20 μm and phosphor particles having diameters in the range of ˜1 to ˜10 μm. The phosphor particles are at least partially encapsulated by the glass, metal or polymer film. Microstructured, irregular surfaces pose special challenges but coatings of the invention can uniformly coat irregular and microstructured surfaces with one or more thin layers of phosphor. Preferred embodiment coatings are used in microcavity plasma devices and the substrate is, for example, a device electrode with a patterned and microstructured dielectric surface.
A method for forming a thin encapsulated phosphor coating of the invention applies a uniform paste of glass or polymer layer to the substrate. In another embodiment, a low temperature melting point metal is deposited on the substrate. Polymer particles are deposited on a metal layer, or a mixture of a phosphor particles and a solvent are deposited onto the uniform glass or polymer layer. Sequential soft and hard baking with temperatures controlled to drive off the solvent will then soften or melt the lowest melting point constituents of the glass or polymer layer, partially or fully embed the phosphor particles into glass, polymer, or metal layers, which partially or fully encapsulate the phosphor particles and/or serve to anchor the particles to a surface.
Above mentioned prior methods have provided phosphor coating methods suitable for coating regular, flat horizontal surfaces typically with thick phosphor layers. The '541 patent mentioned above, for example, provides a formation method and resultant phosphor-embedded glass slab that are not amenable to uniformly coating phosphor in a thin layer onto microstructured and irregular surfaces. Microstructured, irregular surface pose special challenges. The present invention provides methods to uniformly coat such irregular and microstructured surfaces with one or more thin layers of phosphor. In addition, the individual phosphor particles can be coated by, or encapsulated in, glass or polymer, thereby protecting the phosphor from the microplasma or vice-versa. Another preferred embodiment of the invention provides a thin layer of a low melting point metal (such as In) into which phosphor particles may be anchored. The phosphor particles anchored in metal can also be partially or fully embedded in think glass or polymer.
Methods of the invention are capable, for example, of forming thin layers of phosphors partially or fully encapsulated in glass or polymer on three dimensional (stereoscopic) structures having a high degree of surface relief, including microstructured and inclined surfaces. Preferred methods and resultant coatings can be very thin, e.g., a typical thickness is no greater than 20 μm, and preferably no greater than ˜5 μm in preferred embodiments, with partially or fully encapsulated phosphor particles having diameters in the range of ˜1-7 μm. The method of the invention is capable of coating complex structures (such as wire meshes and grids) and materials with irregular surfaces (including nanoporous aluminum oxide and nanoporous titanium oxide).
Applying uniform layers of phosphors to the surfaces of microcavity devices or other irregular surfaces is challenging, but is readily accomplished with phosphor coatings and coating methods of the invention. Arrays of microcavities, in particular, often have inclined or spatially modulated surfaces with considerable microstructure which can include steps or gratings, not to mention the microcavities themselves. The invention provides phosphor particles enclosed in a thin glass or polymer layer that can be applied onto virtually any underlying substrate having a microstructured and/or irregular surface. Phosphor layers as thin as 1-10 μm in thickness can be deposited uniformly on a variety of substrates through a combination of solution deposition and baking processes. In preferred embodiment methods of forming a phosphor coating, a thin layer of glass paste or polymer is deposited onto the surface of interest, followed by deposition of phosphor or a phosphor paste. Sequential baking steps are conducted at temperatures controlled such that the underlying glass (or polymer) is softened, resulting in the partial or complete embedding and, therefore, encapsulation of phosphor particles in the underlying glass or polymer film. Rather than pre-mixing the glass or polymer and phosphor, this sequential process deposits separately the constituents of the desired layer and then embeds the phosphor particles while maintaining the integrity of the phosphor particles and the resultant glass or polymer layer that partially or fully encapsulates the particles. Such an approach is well-suited to irregular surfaces because the microstructures and irregular features (including cavities) are first covered by a conformal glass or polymer film. Unimpeded by the presence of phosphor particles, the glass or polymer paste is able to flow into cavities, trenches and other features to yield a uniform film. Paste, as defined herein, means that the glass or polymer has a viscosity that permits flow during deposition to form a uniform film on surfaces that are inclined or irregular. Viscosities in the range of 10 to 10000 centipoise (cps) interval are preferred, and viscosities in the range of 500-1000 centipoise are most preferred.
Temperature and the viscosity of the glass paste or polymer are controlled so as to ensure that inclined surfaces are also coated uniformly (i.e., without dripping or thickening at the base of an inclined surface). Subsequently, the phosphor is introduced with the glass or polymer film in place. Therefore, this invention decouples the introduction of phosphor into the glass (or polymer) from the process of applying a glass layer in a conformal manner to an irregular surface. Preferred formation methods of the invention use spin coating and baking steps that are inexpensive and readily integrated into a manufacturing environment. A thin glass or polymer layer, including embedded phosphor particles of the invention, can now be formed as a coating on various substrates, such as aluminum or nanoporous alumina (Al2O3), which, in the past, have posed challenges to forming phosphor layers of uniform thickness and particularly if the surface was irregular, tilted, or microstructured.
The invention also provides microcavity plasma devices, and arrays of microcavity plasma devices, that include a thin glass or polymer layer having fully or partially encapsulated phosphors that are positioned to be excited by VUV or UV emissions from the microcavity plasma device or array of microcavity plasma devices. Particular preferred embodiments include a thin glass layer, which has been demonstrated experimentally to provide excellent structural benefits in addition to protection of the phosphor from the plasma. In preferred embodiments in which the intention is to photoexcite phosphors with longer wavelength (UV A-C) light, the phosphor particles are fully encapsulated in a thin glass layer that protects the phosphor from damage by the plasma produced in the microcavity plasma device(s). Conversely, the plasma is protected from outgassing by the phosphor. Testing of exemplary experimental arrays of microcavity devices of the invention has shown substantial improvement of their optical properties as compared to those for similar devices having phosphors that are exposed directly to plasma. Another preferred embodiment of the invention concerns the excitation of phosphors with VUV light. In this instance, it is advantageous to not fully encapsulate the phosphor particles because the coating itself may absorb a substantial fraction of the VUV photons. Rather, the invention provides a thin layer of a low melting temperature metal which is able to anchor the phosphor particles and, if desired, serve as an additional electrode. A subsequent layer of glass to partially encapsulate the phosphor may also be used.
Preferred embodiments of the invention will now be discussed with respect to the drawings. The drawings include schematic representations that will be understood by artisans in view of the general knowledge in the art and the description that follows. Features may be exaggerated in the drawings for emphasis, and features may not be to scale. Artisans will recognize broader aspects of the invention from the description of the preferred embodiments.
In a first process of
Dipping or spraying is effective for various glass pastes but the specific paste adopted for tests to date is a mixture of B2O3, MgO, ZnO, TiO2, Al2O3, SiO2 and Bi2O3. The latter serves a function similar to that for PbO but allows for a lead-free seal to be made to the substrate. After a film of glass paste having the desired thickness has been applied to the substrate surface, the film 12 and substrate 10 are “soft baked” in air or N2 at 150° C. The baking serves to adhere the film 12 to the substrate and the time period for this baking step was about one hour.
The next step in the process, in
Suitable example phosphors and those typically employed in experiments conducted to date include (Y,Gd)BO3:Eu (red), Eu:Y2O3 (red), LaPO4:Ce,Tb (green), Zn2SiO4:Mn (green), and BAM (BaMgAl14O23:Eu or BaMgAl10O17:Eu) for blue. The desired thickness of the phosphor/solvent mixture is dependent upon the wavelength of the ultraviolet light with which the phosphors are excited. In a lamp, for example, based on Xe gas in which the predominant emitter is Xe2 (which produces peak emission at λ≈172 nm), it is desirable to maintain the phosphor film thickness below 10 μm because of the phosphor absorption coefficient in this wavelength region. When photoexciting the phosphor at longer UV wavelengths (such as 300 nm or 350 nm), the phosphor layer can generally be made thicker so as to efficiently absorb most or all of the incoming UV radiation. To produce a thicker phosphor layer, the deposition process can be repeated.
After applying the phosphor/solvent layer, the substrate 10 and films 12, 16 are, again, soft-baked. Example suitable soft bake conditions used in experiments were 150° C. for about one hour in air or N2. The soft-bake is followed by a “hard bake” ramp procedure. The hard baking ramp procedure involves slowly ramping the temperature to a higher temperature that can vaporize the organic solvents contained in both films on the substrate. An example suitable temperature in experiments for the solvents used was approximately 250° C. for approximately one hour. After this one hour period, the temperature is increased again to a value that can soften or melt the lowest melting point constituents of the glass or polymer layer 12, thereby resulting in the partial or complete embedding and, therefore, encapsulation of phosphor particles in the glass or polymer layer 12, as seen in
Excess phosphor particles 20, also shown in
The encapsulated phosphor layer 18 resulting from this procedure is much more mechanically robust compared to phosphor films typically applied to the interior of fluorescent lamps, for example. The loss of phosphor in such devices which are coated by conventional means is often significant and deleterious to lamp performance. The method of the present invention yields uniform films of glass or polymer-encapsulated phosphor particles, even if the surface of the substrate 10 is steeply inclined, includes inclined features, includes surface irregularities, and/or is punctuated with cavities and/or trenches.
For those photonic devices (such as lamps) requiring the conversion of UV light into the visible, preferred arrays of microcavity plasma devices of the invention (such as in
For applications in which the intention is to excite a phosphor with VUV (λ≦200 nm) photons (or, indeed any UV wavelength which is unable to pass efficiently through a glass or polymer coating), it is advantageous to only partially embed and not fully coat the phosphor particles. This can be achieved with the processes already described using polymers and glasses to partially embed the phosphors. Phosphor particles can also be anchored to a metal layer and be left partially exposed by an even thinner glass or polymer layer or left anchored by the metal layer itself.
The microcavities 30 can be any of a wide variety of geometries. The cavities can be shaped according to commercial wire mesh that is available in different shapes, or can be formed by any of a number microfabrication processes from a solid foil. Anodization creates the metal oxide, and then the glass and phosphor are deposited according to the methods discussed above with respect to
Experiments show that the thin encapsulated (or partially encapsulated) phosphor layers form as uniform films over the entire electrode mesh 32, 34, including within the microcavities 30. A scanning electron micrograph (SEM) of a solid (as opposed to wire) aluminum mesh completely covered by a phosphor/glass layer is shown as
Experiments have shown that the thin glass encapsulated phosphor layers are uniform in thickness and also robust. That is, the phosphor particles are attached firmly to the surface and partially or completely encapsulated in a thin glass layer. Furthermore, the constituents of the glass paste (such as Al2O3) having a melting point well above the highest temperature employed in the high temperature baking process are not melted. Rather, as described previously, such to particles serve to stabilize the position of a phosphor particle on an inclined or vertically-oriented surface. This provides a phosphor coating that is able to remain stable on an inclined or vertical surface. As best illustrated by the cross-sectional SEM images of
The encapsulation of phosphors in a thin layer provides other benefits apart from the protection of the phosphor. Phosphors are problematic from a vacuum and chemical standpoint. As a result of outgassing, phosphors can poison the gas in a microcavity plasma device or a conventional lamp. Partially or fully encapsulating phosphor particles in glass or polymer mitigates this difficulty. The magnified view in
While the thin encapsulated phosphor layers have been illustrated with respect to preferred embodiment arrays of microcavity plasma that are based upon thin metal/metal oxide sheets, the layers are generally applicable to almost any application in which phosphors find use. In addition, the thin encapsulated phosphor layers are of value in other types of microcavity plasma devices, such as those formed from semiconductors and ceramic materials.
As an example, U.S. Pat. No. 7,112,918 discloses microcavity plasma devices and arrays having tapered microcavities. A preferred device of the invention, based upon a tapered microcavity plasma device of the type in the '918 patent, is shown in
Additional preferred microcavity plasma device arrays of the invention provide full color displays, specific color displays, or white lamps by use of multiple different colored electrodes or by a pattern of phosphors to produce separate red, green, and green emitting pixels.
The
The white phosphor 78 on the separate top and bottom packaging layers 76 in
When separate top and bottom packaging layers are used, ends of the array of can be sealed with a sealing agent 80, which may be glass frit or another suitable material. A plasma medium (gas, vapor, or a combination thereof) is enclosed in the array, and plasma is formed in microcavities 82 that extend the full height created by the three layers 70, 72, and 74 when time-varying (AC, RF, bipolar or pulsed DC, etc.) potential is applied between the electrodes 70, 72 and 74 to excite the gaseous or vapor medium to create a microplasma in each is microcavity 82. The device operates at pressures not normally obtainable in macroscopic discharges, and the plasma medium can be produced and readily contained, for example, at pressures up to 1 atmosphere and beyond. This makes the array robust, and permits very thin packaging layers to be used when the difference between the internal pressure in the lamp and 1 atmosphere is small.
Additional embodiments that are similar to the
While specific embodiments of the present invention have been shown and described, it should be understood that other modifications, substitutions and alternatives are apparent to one of ordinary skill in the art. Such modifications, substitutions and alternatives can be made without departing from the spirit and scope of the invention, which should be determined from the appended claims.
Various features of the invention are set forth in the appended claims.
This application claims priority under 35 U.S.C. §119 from co-pending provisional application Ser. No. 61/368,955, which was filed on Jul. 29, 2010.
This invention was made with government support under Contract No. FA9550-07-1-0003 awarded by United States Air Force Office of Scientific Research. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
2857541 | Etzel et al. | Oct 1958 | A |
3551303 | Suzuki et al. | Dec 1970 | A |
5441627 | Kato et al. | Aug 1995 | A |
6439943 | Aoki et al. | Aug 2002 | B1 |
6695664 | Eden et al. | Feb 2004 | B2 |
6815891 | Eden et al. | Nov 2004 | B2 |
6867548 | Eden et al. | Mar 2005 | B2 |
7112918 | Eden et al. | Sep 2006 | B2 |
7297041 | Eden et al. | Nov 2007 | B2 |
7385350 | Eden et al. | Jun 2008 | B2 |
7477017 | Eden et al. | Jan 2009 | B2 |
7511426 | Eden et al. | Mar 2009 | B2 |
7573202 | Eden et al. | Aug 2009 | B2 |
7615926 | Eden et al. | Nov 2009 | B2 |
7638937 | Eden et al. | Dec 2009 | B2 |
8004017 | Eden et al. | Aug 2011 | B2 |
20030080664 | Eden et al. | May 2003 | A1 |
20030080688 | Eden et al. | May 2003 | A1 |
20030132693 | Eden et al. | Jul 2003 | A1 |
20040160162 | Eden et al. | Aug 2004 | A1 |
20050136609 | Mosley et al. | Jun 2005 | A1 |
20050148270 | Eden et al. | Jul 2005 | A1 |
20060038490 | Eden et al. | Feb 2006 | A1 |
20060082319 | Eden et al. | Apr 2006 | A1 |
20060127670 | Kinlen et al. | Jun 2006 | A1 |
20080119105 | Eden et al. | May 2008 | A1 |
20080129185 | Eden et al. | Jun 2008 | A1 |
20080185579 | Eden et al. | Aug 2008 | A1 |
20080238298 | Asai et al. | Oct 2008 | A1 |
20090091237 | Hirosaki et al. | Apr 2009 | A1 |
20100001629 | Eden et al. | Jan 2010 | A1 |
20100072893 | Eden et al. | Mar 2010 | A1 |
20100213450 | Satoh et al. | Aug 2010 | A1 |
20100245218 | Nasu et al. | Sep 2010 | A1 |
20110109224 | Eden et al. | May 2011 | A1 |
20110148282 | Eden et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
WO 2007-087285 | Aug 2007 | WO |
WO 2008-013820 | Jan 2008 | WO |
Entry |
---|
Eden, J. Gary, et. al., “Arrays of nonequalibrium plasmas confined to microcavities: an emerging frontier in plasma science and its applications”, Plasma Sources Sci. Technol., 15, 2006. |
Masuda, Hideki, et. al. “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina”, Science, New Series, vol. 268, No. 5216 Jun. 9, 1995. |
Park, S-J. et. al., “Flexible microdischarge arrays: Metal/polymer devices”, Applied Physics Letters, vol. 77, No. 2, Jul. 10, 2000. |
Park, S-J. et. al., “Nanoporous alumina as a dielectric for microcavity plasma devices: Multilayer A1/A12 O3 structures”, Applied Physics Letters, vol. 86, 2005. |
Park, S-J. et. al., Lightining from thin (,1mm) sheets of microcavity plasma arrays fabricated in A1/A12 O3 glass structures: planar, mercury-free lamps with radiating areas beyond 200cm2 , J. Phys. D.: Appl. Phys, 40, 2007. |
Tarighat, R., et. al. “Realization of Flexible Plamsa Display Panels on PET Substrates”, Proceeding of the IEEE, vol. 93, No. 7, Jul. 2005. |
Number | Date | Country | |
---|---|---|---|
20120025696 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61368955 | Jul 2010 | US |