1. Field
The present invention relates to replacement of bulbs used for lighting by light emitting diode (LED) bulbs, and more particularly, to the dispersal of the phosphor used by the LEDs into the bulb in order to permit greater amounts of phosphor to be used, to permit cooler operating temperature of the phosphor, and to permit the LEDs to be run at higher power.
2. Description of Related Art
An LED consists of a semiconductor junction, which emits light due to a current flowing through the junction. A white LED is typically made by using a blue or ultraviolet LED die, and adding a plastic coat to it, the coat containing a phosphor. The phosphor is used to convert the blue or ultraviolet light emitted by the LED die to a spectrum of light that more or less closely resembles white light or blackbody radiation.
At first sight, it would seem that white LEDs should make an excellent replacement for the traditional tungsten filament incandescent bulb. At equal power, they give far more light output than do incandescent bulbs, or, what is the same thing, they use much less power for equal light; and their operational life is orders of magnitude larger, namely, 10-100 thousand hours vs. 1-2 thousand hours.
However, LEDs have a number of drawbacks that have prevented them, so far, from being widely adopted as incandescent replacements. One of these is that, although LEDs require substantially less power for a given light output than do incandescent bulbs, it still takes many watts to generate adequate light for illumination. Whereas the tungsten filament in an incandescent bulb operates at a temperature of approximately 3000K, an LED cannot be allowed to get hotter than approximately 120° C., and some are limited to even lower maximum temperatures. The LED thus has a substantial heat problem: If operated in vacuum like an incandescent, or even in air, the LED would rapidly get too hot and fail. This has limited available LED bulbs to very low power (less than approximately 3 W), producing insufficient illumination for incandescent replacements.
One of the reasons that an LED is limited to such a low maximum temperature is due to the temperature characteristics of the phosphor rather than the LED die itself. Presently known phosphors, especially those in the red, tend to degrade quite rapidly at elevated temperatures. Once degradation has occurred, the white light output of the LED is reduced, thus ending the useful life of the LED and of the LED bulb.
This invention has the object of developing a light emitting apparatus utilizing light emitting diodes (LEDs), such that the above-described primary problem is effectively solved. In accordance with one embodiment, a replacement bulb for incandescent lighting having a plurality of LEDs with a light output equal in intensity to that of an incandescent bulb, and wherein the LEDs' temperature may be permitted to rise much higher than the present state-of-the-art permits. The apparatus includes a bulb-shaped shell, preferentially formed of a plastic such as polycarbonate. The shell may be transparent, or may contain materials dispersed in it to disperse the light, making it appear not to have point sources of light.
The shell is filled with a filler material, which can be a fluid, a gel, a plastic or other material, such as water or a hydrogel, which is preferentially thermally conductive. The filler material acts as a means to transfer the heat power generated by the LEDs to the shell, where it may be removed by radiation and convection, as in a normal incandescent bulb. In accordance with a preferred embodiment, the filler material contains phosphor dispersed throughout the material, which changes the bluish color of the LED dice's light to a more yellowish color, more closely resembling the light from normal incandescent bulbs. It can be appreciated that in accordance with another embodiment, the filler material and phosphor material therein may also be used for changing the color emitted by other LED dice. In accordance with a preferred embodiment, the filler is preferentially electrically insulating.
In accordance with one embodiment, the phosphor may be uniformly distributed throughout the filler material. The phosphor density may be set to be higher or lower than that commonly used in LEDs today, a higher density producing more total conversion of the LED dice's light.
In accordance with another embodiment, the phosphor may be distributed in the filler material with an orientation preference, wherein the orientation preference can be used to generate light that is more intense in converted light in one direction than another.
In accordance with another embodiment, different phosphors may be distributed in the filler material with an orientation preference, wherein the orientation preference can be used to generate light that is different colors in one direction than another.
According to the present invention, a phosphor is distributed in a filler inside an LED light bulb for the purpose of changing the color of the light emitted by the LED into a more desirable color for emission from the bulb. Such a color-changing application is described in detail and set forth in Stokes et al., U.S. Pat. No. 6,791,259 (hereinafter “the '259”), which is incorporated herein by reference in its entirety with regard to all aspects thereof. As set forth in the '259 patent, a radiation-scattering material is located between the LEDs and the phosphor.
Such a filler is described in detail and set forth in Diamantidis, U.S. Publication No. 20070090391 (hereinafter “the '391 publication”), which is incorporated herein by reference in its entirety. As set forth in the '391 publication, a liquid fluid is in contact with the light-emitting chip crystal.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
According to the design characteristics, a detailed description of the current practice and preferred embodiments is given below.
It will be apparent to those skilled in the art that various modifications and variation can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
This application is a continuation of U.S. Non-provisional application Ser. No. 13/892,181, filed May 10, 2013, which is a continuation of U.S. Non-provisional application Ser. No. 12/678,287, filed Jun. 16, 2010 and issued May 28, 2013 as U.S. Pat. No. 8,450,927, which is a 35 U.S.C. §371 National Stage filing of International Patent Application No. PCT/US08/10713, filed Sep. 12, 2008, which claims the benefit of U.S. Provisional Application No. 60/972,382, filed Sep. 14, 2007. The content of all of the above-referenced applications is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4160929 | Thorington et al. | Jul 1979 | A |
4289991 | Schreurs | Sep 1981 | A |
4346324 | Yoldas | Aug 1982 | A |
4405744 | Greinecker et al. | Sep 1983 | A |
4584428 | Garlick | Apr 1986 | A |
5140220 | Hasegawa | Aug 1992 | A |
5433738 | Stinson | Jul 1995 | A |
5905343 | McCamant | May 1999 | A |
6504301 | Lowery | Jan 2003 | B1 |
6513955 | Waltz | Feb 2003 | B1 |
6612712 | Nepil | Sep 2003 | B2 |
6639360 | Roberts et al. | Oct 2003 | B2 |
6655810 | Hayashi et al. | Dec 2003 | B2 |
6685852 | Setlur et al. | Feb 2004 | B2 |
6791259 | Stokes et al. | Sep 2004 | B1 |
6963688 | Nath | Nov 2005 | B2 |
7022260 | Morioka | Apr 2006 | B2 |
7075112 | Roberts et al. | Jul 2006 | B2 |
7078732 | Reeh et al. | Jul 2006 | B1 |
7086767 | Sidwell et al. | Aug 2006 | B2 |
7213934 | Zarian et al. | May 2007 | B2 |
7288798 | Chang et al. | Oct 2007 | B2 |
7319293 | Maxik | Jan 2008 | B2 |
7344279 | Mueller et al. | Mar 2008 | B2 |
7489031 | Roberts et al. | Feb 2009 | B2 |
20020149312 | Roberts et al. | Oct 2002 | A1 |
20030067265 | Srivastava et al. | Apr 2003 | A1 |
20040004435 | Hsu | Jan 2004 | A1 |
20040113549 | Roberts et al. | Jun 2004 | A1 |
20040245912 | Thurk et al. | Dec 2004 | A1 |
20040264192 | Nagata et al. | Dec 2004 | A1 |
20050031281 | Nath | Feb 2005 | A1 |
20050084229 | Babbitt et al. | Apr 2005 | A1 |
20050179379 | Kim | Aug 2005 | A1 |
20050224829 | Negley et al. | Oct 2005 | A1 |
20050243539 | Evans et al. | Nov 2005 | A1 |
20050243552 | Maxik | Nov 2005 | A1 |
20060007410 | Masuoka et al. | Jan 2006 | A1 |
20060145172 | Su et al. | Jul 2006 | A1 |
20060176699 | Crunk | Aug 2006 | A1 |
20060187653 | Olsson | Aug 2006 | A1 |
20060274524 | Chang et al. | Dec 2006 | A1 |
20070090391 | Diamantidis | Apr 2007 | A1 |
20070090737 | Hu et al. | Apr 2007 | A1 |
20070139949 | Tanda et al. | Jun 2007 | A1 |
20070291490 | Tajul et al. | Dec 2007 | A1 |
20080013316 | Chiang | Jan 2008 | A1 |
20080061687 | Cok et al. | Mar 2008 | A1 |
20090001372 | Arik et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
0658933 | Oct 2001 | EP |
7-99372 | Apr 1995 | JP |
3351103 | Nov 2002 | JP |
02061805 | Aug 2002 | WO |
2005060309 | Jun 2005 | WO |
2007069119 | Jun 2007 | WO |
2007130359 | Nov 2007 | WO |
2009054948 | Apr 2009 | WO |
Entry |
---|
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2008/010713, mailed on Mar. 25, 2010, 6 pages. |
International Search Report received for PCT Patent Application No. PCT/US2008/010713, mailed on Nov. 21, 2008, 1 page. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2008/011984, mailed on May 6, 2010, 5 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/011984, mailed on Jan. 15, 2009, 6 pages. |
International Search Report received for PCT Patent Application No. PCT/US2009/004662, mailed on Oct. 5, 2009, 2 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/004662, mailed on Mar. 3, 2011, 9 pages. |
Non Final Office Action received for U. S. Patent Application No. 12/678,287, mailed on Apr. 19, 2011, 5 pages. |
Final Office Action received for U.S. Appl. No. 12/678,287, mailed on Oct. 11, 2011, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 12/678,287, mailed on Jan. 31, 2013, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/892,181, mailed on Sep. 18, 2013, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20140175973 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
60972382 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13892181 | May 2013 | US |
Child | 14133459 | US | |
Parent | 12678287 | US | |
Child | 13892181 | US |