The present invention relates generally to X-ray imaging, X-ray spectroscopy, and industrial inspection. More particularly, the invention relates to a Photo Emitter X-Ray Source Array (PeXSA) for X-ray imaging.
The current approach to DPC is to use gratings in front of conventional X-ray sources. The gratings are very difficult to fabricate for energies higher than 50 KeV, and absorb a considerable amount of X-ray radiation, thereby reducing the achievable SNR.
What is needed is a device that includes a patterned source so that the grating is not needed, and that creates a coherent source enabling interferometric, time resolved measurements such as shadowgraph or Schlieren measurements of objects. Time resolved measurements using X-rays are difficult to make with current X-ray sources, as switching high voltages rapidly, on the order of picoseconds, is very difficult.
To address the needs in the art, a photo-emitter x-ray source is provided that includes a photocathode electron source, a laser light source, where the laser light source illuminates the photocathode electron source to emit electrons, and an X-ray target, where the emitted electrons are focused on the X-ray target, where the X-ray target emits X-rays.
According to one aspect of the invention, the material of the photocathode electron source can include alkali halides (such as CsBr and CsI), semiconductors (such as GaAs, InP), and theses materials modified with rare Earth element (such as Eu) doping, electron beam bombardment, and X-ray irradiation.
In a further aspect of the invention, the photocathode electron source is capable of operating at energies below a bandgap of the photocathode electron source through doped states or color centers created by high energy radiations (UV, X-rays, gamma rays) or high energy particle bombardment (electrons).
According to a further aspect of the invention, the emitted X-rays has energies below 250 Kev.
In one aspect of the invention, the emitted X-rays are focused to a spot size in a range between 20 nm to 5 mm.
In yet another aspect of the invention, the photocathode electron source has a maximum current density of at least 5 A/cm2, where the current density is a function of the input optical power and a cathode pattern area.
According to a further aspect of the invention, the laser light source has a wavelength in a range of 200 nm to 800 nm.
In one aspect of the invention, a beam from the laser light source is pulsed or steered according to light modulators that can include acousto-optics, mode-locking, micro-mirror array, and liquid crystals.
In a further aspect of the invention, the laser light source includes a nano-aperture or nano-particle arrays, where the nano-aperture is a C-aperture or a circular aperture.
According to another aspect of the invention, the X-ray target includes a material such as tungsten, copper, rhodium or molybdenum.
In another aspect of the invention, the photocathode electron source has a form factor that includes planar, patterned, of optically patterned.
The current invention enables new X-ray imaging modalities by creating an X-ray source that can be patterned and modulated at very high rates over time. According to one embodiment, an X-ray target is illuminated by an electron beam, where the electron beam is generated by illuminating a target with a laser source. The laser source can be pulsed to enable very short X-ray pulse trains. This new source enables new imaging modalities such as 3-D differential phase contrast imaging, X-ray point sources with a spatial resolution of less than 20 nm, and X-ray spectroscopic imaging by combining both temporal and spatial imaging modalities.
In one embodiment of the invention, a previously activated material capable of efficient electron emission with a photon energy less than the band gap is illuminated by a laser source, such as a 257 nm doubled Ar laser source, or any other suitable source having a wavelength in a range of 200-800 nm. A pre-sensitized medium emits an electron beam upon illumination by the laser source. A magnetic field is used to image the electron beam onto an X-ray target, or it can be used as an optically induced electron beam in its own right, having a spot size from 20 nm to 5 millimeters, and with very high electron beam intensities. If the electron beam is incident on an X-ray target, such as tungsten, copper, rhodium or molybdenum then an X-ray beam is generated. By patterning the cathode and imaging the cathode onto the target using a magnetic lens, a patterned X-ray beam is generated. By using a preferred 1:1 imaging configuration for the magnetic lens, aberrations are minimized. In a further embodiment, the patterned X-ray source is used to steer the X-ray beam. The patterned source enables partially-coherent X-ray beams to be used in interferometric measurements without the need for an amplitude gratings in front of a standard incoherent X-ray source, as is used in the prior art.
Some exemplary applications of the invention include a differential phase contrast (DPC) imaging, where both the real and imaginary part of a material's index of refraction is measured. This leads to better and more contrast rich images of soft tissue objects or other objects having close to the same X-ray absorption but different real part of the refractive index, such as fluids and home made explosives. Variations in soft tissue such as breast tissue is also better observed with this imaging technique. A further application includes probing matter with a nano-sized, short pulse X-ray beam for spectroscopic imaging with unprecedented spatial resolution, where the pulsed electron beam source, without the X-ray target, can also be used for ionization mass spectroscopy, enabling both time and space dependent measurements.
In a further exemplary application, the photo emitter electron source itself can be used as a far field probe for nano-metrology applications, which cannot be done with a near-field optical probe.
According to the current invention, the combination of short, modulated pulse trains with resolutions from nanometers to macro-scales is unprecedented.
The PeXSA source according the current invention overcomes these problems of using gratings in front of conventional X-ray sources by patterning the source so that the grating is not needed. Another advantage of the PeXSA source is the ability to create a coherent source enabling interferometric, time resolved measurements such as shadowgraph or Schlieren measurements of objects. Time resolved measurements using X-rays are difficult to make with existing X-ray sources, as switching high voltages rapidly, on the order of picoseconds, is very difficult.
According to further embodiments of the invention, different non-linear source materials can be used, such as a previously activated material capable of efficient electron emission with a photon energy less than the band gap of CsBr, either undoped or doped with rare earth materials such as Eu, or Er, or others having atomic weights from 21 to 71. Instead of patterning the cathode the anode can be patterned as well. A laser emitting radiation at 405 nm, for example, may be used with CsBr doped with Eu or other rare earth metals, or pretreated with electron beam bombardment or X-ray irradiation.
According to different embodiments of the invention, the photocathode material can include any one or any combination of alkali halides (such as CsBr and CsI), semiconductors (such as GaAs, InP), and theses materials modified with rare Earth element (such as Eu) doping, electron beam bombardment, or X-ray irradiation.
The invention includes new aspects such as a patterned cathode X-ray source, illuminated by a laser beam, a pulsed X-ray PeXSA having the ability to produce pulses from sub-picosecond to DC, a sub-20 nm X-ray source operating from sub-picosecond to DC, and a patterned source for use in lithography.
The current invention provides differential phase contrast imaging of baggage for DHS applications and other industrial inspection applications. DPC imaging for medical applications, X-ray spectroscopy with nano-sized spatial resolution, potential X-ray beam steering, coherent X-ray imaging and metrology.
Turning now to the figures,
In one embodiment, an array of integrated sources can be implemented. Scaling laws governing larger arrays of hundreds of X-ray sources will be determined.
According to the current invention, the electron source for the x-ray system could be either a single photoemitter or an array of identical photoemitters controlled by independent laser beams with acousto-optics, mode-locking, micro-mirror array, liquid crystals or any other suitable light modulators. The current invention allows rapid x-ray gating at frequencies 100's of MHz. The laser wavelength of a preferred embodiment for excitation of electrons in the photocathode materials is chosen to be around 405 nm to enable use of low cost commercially available, high-powered (100's of mW) diode lasers. It is understood that the current invention uses excitation wavelengths in a range of 200 nm to 800 nm. The photo-emitter structure mated to the illuminating laser depends on the required x-ray source spot size and power.
The source x-ray power is limited by heat dissipation in the target, which depends on the required resolution (spot size). According to the current invention, the maximum power that can be handled by the target is approximately given by the relationship: 0.8 W times the spot size in microns. The x-ray spot size produced by solid metal targets depends on the target density and the energy of the bombarding electrons. For example for 40 KeV electrons, the electron range in a high-density material like tungsten is greater than 4 microns. Therefore, if a spot size less than 4 microns is desired it may be required to use special targets shown in
According to another embodiment of the invention, the photocathode structures utilizing CsBr films take advantage of the color centers generated on alkali halide materials by UV radiation (257 nm). A band of radiation-induced energy states about 3.8 eV below the vacuum energy. This allows photoemission with 4.8 eV laser radiation. According to one aspect, the invention includes doping the CsBr films during deposition with the proper elements or modifying the CsBr film with electron bombardment after deposition, in one embodiment using rare earth materials doping or electron beam bombardment, to induce energy states closer to the vacuum level and allow operation at longer wavelengths (˜405 nm).
Doping of CsBr with materials like Europium generates light emission bands in the visible range suitable for x-ray plate detector applications.
Several types of x-ray targets can be implemented for small spot size applications, according to embodiments of the current invention. One embodiment includes thin metal pads with the desired spot size dimensions and the required x-ray emission characteristics incorporated thereto. The pads are deposited on solid targets made of low atomic number materials like Berylium, which allow low x-ray emission in the range of interest. In a further embodiment, the targets can be made movable so new areas can be utilized as needed. Another embodiment includes the use of transmission targets of the proper metal and thickness. Metal pads can also be deposited on thin Beryllium foils or plates with low x-ray absorption.
As shown in
According to one example, a uniform B field of 0.11 T and uniform E field of 3.3 MV/m. Focus is achieved after 1 cyclotron orbit at z=30 mm (see
In yet another aspect of the invention, the photocathode electron source has a maximum current density of at least 5 A/cm2, where the current density is a function of the input optical power and a cathode pattern area.
In another aspect of the invention, the photocathode electron source has a form factor that includes planar, patterned, of optically patterned.
One embodiment, to reduce heat loading on the x-ray target, involves illuminating the target with an elliptical electron spot (usually impinging at 6-12 degrees). This can reduce the heat loading by more than a factor of 5. Another embodiment uses a conical target with nucleate boiling to reduce the heat load. This can be accomplished by etching conical indentations on a flat plate and bombarding the inside of the cones with electrons while flowing a high velocity turbulent flow over the back of the cones to enhance heat transfer.
The present invention has now been described in accordance with several exemplary embodiments, which are intended to be illustrative in all aspects, rather than restrictive. Thus, the present invention is capable of many variations in detailed implementation, which may be derived from the description contained herein by a person of ordinary skill in the art. All such variations are considered to be within the scope and spirit of the present invention as defined by the following claims and their legal equivalents.
This application claims priority from U.S. Provisional Patent Application 61/701,031 filed Sep. 14, 2012, which is incorporated herein by reference.
This invention was made with Government support under grant (or contract) no. HSGQDC-12-C-00002 awarded by the Department of Homeland Security. The Government has certain rights in this invention.
Number | Date | Country | |
---|---|---|---|
61701031 | Sep 2012 | US |