Photocatalytic coatings having improved low-maintenance properties

Information

  • Patent Grant
  • 7862910
  • Patent Number
    7,862,910
  • Date Filed
    Wednesday, April 11, 2007
    17 years ago
  • Date Issued
    Tuesday, January 4, 2011
    14 years ago
Abstract
The invention provides a substrate bearing a photocatalytic coating. In some embodiments, the coating includes a photocatalytic film comprising titania deposited over a layer comprising tungsten oxide, aluminum oxide, niobium oxide or zirconium oxide. Additionally or alternatively, the photocatalytic film can include both titania and a material selected from the group consisting of nitrogen, tantalum, copper and silica. The invention also provides methods of depositing such coatings.
Description
FIELD OF THE INVENTION

The present invention provides photocatalytic coatings for substrates, such as glass and the like. More particularly, the invention provides photocatalytic coatings including an underlying film comprising one or more specified materials, and/or one or more additional materials are incorporated into a titania-containing film. The invention also provides methods of depositing such coatings onto glass sheets and other substrates.


BACKGROUND OF THE INVENTION

Photocatalytic coatings are known in the art. These coatings commonly include a film of titania on a substrate. A great deal of research has been done with a view toward providing photocatalytic coatings that have desirable low-maintenance properties. Desirable low-maintenance properties include self-cleaning properties, hydrophilic properties, etc. The pursuit of low-maintenance window coatings, in particular, has been an active field of exploration.


It would be desirable to provide a photocatalytic coating with an underlayer that would enhance the low-maintenance properties of the coating. Additionally or alternatively, it would be desirable to incorporate into the photocatalytic film itself additional materials which would enhance the low-maintenance properties of the coating.


SUMMARY OF THE INVENTION

A transparent substrate is provided a photocatalytic coating. In some embodiments, the coating includes a photocatalytic film deposited directly over an underlying film comprising a material selected from the group consisting of tungsten oxide and niobium oxide. The photocatalytic film preferably comprises both titania and an additional material selected from the group consisting of nitrogen, copper, tantalum, silicon, silica, palladium, tin, tungsten, niobium, and molybdenum. In some cases, the additional material is simply a dopant. Such a dopant can be present in an amount of up to 5%, for example 2%. In one case, the photocatalytic film comprises titania and a tungsten dopant. The underlying film has a thickness of less than about 250 angstroms and more preferably less than about 75 angstroms. In some cases, the coating further includes a base film deposited beneath the underlying film, wherein the base film comprises silica and/or titania.


In other embodiments, the photocatalytic coating includes a photocatalytic film comprising titania positioned directly over a film comprising tungsten oxide. In some cases, the film comprising tungsten oxide consists essentially of tungsten oxide. In other cases, the film comprising tungsten oxide is a mixed film comprising silica, silicon, titania, titanium, and/or substoichiometric titanium oxide. The film comprising tungsten oxide preferably has a thickness of between about 15 angstroms and about 150 angstroms. The film is also preferably positioned directly over a film comprising silica and/or titania. The film comprising silica and/or titania preferably has a thickness of less than about 300 angstroms and more preferably has a thickness of less than 100 angstroms. In some cases, the photocatalytic film comprises both titania and a material selected from the group consisting of nitrogen, tantalum, copper and silica. In certain cases, the photocatalytic film comprises both titanium and nitrogen.


In yet other embodiments, the photocatalytic coating comprises, from the substrate outwardly, a base film deposited over the substrate and having a thickness of less than about 300 angstroms, a film comprising tungsten oxide deposited over the base film and having a thickness of less than about 100 angstroms, and a photocatalytic film comprising titania deposited directly over the film comprising tungsten oxide. The film comprising tungsten oxide preferably has a thickness of less than about 75 angstroms.


In some cases, the photocatalytic coating includes a photocatalytic film deposited over an underlying film comprising a material selected from the group consisting of tungsten oxide, niobium oxide, aluminum oxide and zirconium oxide, wherein a film comprising zirconium oxide or niobium oxide is deposited over or under the underlying film, the film comprising zirconium oxide or niobium oxide being a different material than the underlying film. The underlying film preferably has a thickness of less than about 250 angstroms and more preferably has a thickness of less than about 75 angstroms. The film comprising zirconia or niobium oxide preferably has a thickness of between about 10 angstroms and about 20 angstroms. In some cases, the film comprising zirconium oxide or niobium oxide is deposited over the underlying film. In other cases, the film comprising zirconium oxide or niobium oxide is deposited under the underlying film. In yet other cases, the film comprising zirconium oxide or niobium oxide is deposited under the underlying film, and a second film comprising zirconium oxide or niobium oxide is deposited over the underlying film. In certain cases, the coating further includes a base film deposited beneath the underlying film, wherein the base film comprises silica and/or titania.


A method of depositing a photocatalytic coating is also provided. In some embodiments, the method comprises depositing a film comprising tungsten oxide over a major surface of a glass sheet, and depositing a photocatalytic film comprising titania directly over the film comprising tungsten oxide. The film comprising tungsten oxide is preferably deposited at a thickness of between about 15 angstroms and about 150 angstroms. In some cases, the film comprising tungsten oxide is deposited by providing a sputtering target having a sputterable material that comprises tungsten, the sputterable material being selected from the group consisting essentially of pure tungsten, a tungsten oxide, and a tungsten alloy. The film comprising tungsten oxide can be a mixed film comprising silica, the mixed film being deposited by co-sputtering a target comprising tungsten and a target comprising silicon, titanium and/or substoichiometric titanium oxide. In some cases, the photocatalytic film comprises nitrogen, the photocatalytic film being deposited by sputtering a target comprising titanium in an atmosphere comprising nitrogen.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic cross-sectional view of a substrate having a surface bearing a photocatalytic coating in accordance with an embodiment of the invention;



FIG. 2 is a schematic cross-sectional view of a substrate having a surface bearing a photocatalytic coating in accordance with another embodiment of the invention;



FIG. 3 is a schematic cross-sectional view of a substrate having a surface bearing a photocatalytic coating in accordance with another embodiment of the invention;



FIG. 4 is a schematic cross-sectional view of a substrate having a surface bearing a photocatalytic coating in accordance with another embodiment of the invention;



FIG. 5 is a schematic cross-sectional view of a substrate having one surface bearing a photocatalytic coating and another surface bearing an additional coating in accordance with another embodiment of the invention;



FIG. 6 is a partially broken-away schematic cross-sectional side view of a multiple-pane insulating glass unit that includes a window pane having two coated surfaces in accordance with certain embodiments of the invention;



FIG. 7 is a partially broken-away perspective view of a window pane carrying a photocatalytic coating, the pane being mounted in an exterior wall of a building in accordance with certain embodiments of the invention; and



FIG. 8 is a schematic side view of a sputtering chamber that is adapted for use in certain methods of the invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following detailed description is to be read with reference to the drawings, in which like elements in different drawings have like reference numbers. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. Skilled artisans will recognize that the given examples have many alternatives that fall within the scope of the invention.


Many embodiments of the invention involve a coated substrate. A wide variety of substrates types are suitable for use in the invention. In some embodiments, the substrate 10 is a sheet-like substrate having generally opposed first 12 and second 14 major surfaces. For example, the substrate can be a sheet of transparent material (i.e., a transparent sheet). The substrate, however, is not required to be a sheet, nor is it required to be transparent.


The substrate can optionally be a component of any of a variety of building materials. Examples of anticipated applications include embodiments wherein the substrate is a sash (e.g., a window sash or a door sash), a siding panel (e.g., an aluminum siding panel), a tent panel, a tarpaulin (e.g., a fluorocarbon polymer tarpaulin), a plastic film (e.g., a fluorocarbon plastic film), a roofing shingle, a window blind (such as a metal, plastic, or paper window blind), a paper screen (e.g., a shoji), a railing, a baluster, or an escutcheon. In one embodiment, the substrate is a ceramic tile, such as a wall, ceiling, or floor tile. In another embodiment, the substrate is a glass block. A variety of suitable glass blocks can be obtained commercially from Saint-Gobain Oberland (Koblenz, Germany). In still other embodiments, the substrate is a polyester film, a polyethylene film, a terephthalate film, etc. Suitable films of this nature can be obtained commercially from Nippon Soda Co., Ltd. (Tokyo, Japan). In further embodiments, the substrate is a fence or wall, such as a noise-reduction fence or wall.


For many applications, the substrate will comprise a transparent (or at least translucent) material, such as glass or clear plastic. For example, the substrate is a glass sheet (e.g., a window pane) in certain embodiments. A variety of known glass types can be used, and soda-lime glass will commonly be preferred. In certain preferred embodiments, the substrate is part of a window, skylight, door, shower door, or other glazing. In some cases, the substrate is part of an automobile windshield, an automobile side window, an exterior or interior rear-view mirror, a bumper, a hubcap, a windshield wiper, or an automobile hood panel, side panel, trunk panel, or roof panel. In other embodiments, the substrate is a piece of aquarium glass, a plastic aquarium window, or a piece of greenhouse glass. In a further embodiment, the substrate is a refrigerator panel, such as part of a refrigerator door or window.


Substrates of various sizes can be used in the present invention. Commonly, large-area substrates are used. Certain embodiments involve a substrate 10 having a major dimension (e.g., a length or width) of at least about 0.5 meter, preferably at least about 1 meter, perhaps more preferably at least about 1.5 meters (e.g., between about 2 meters and about 4 meters), and in some cases at least about 3 meters. In some embodiments, the substrate is a jumbo glass sheet having a length and/or width that is between about 3 meters and about 10 meters, e.g., a glass sheet having a width of about 3.5 meters and a length of about 6.5 meters. Substrates having a length and/or width of greater than about 10 meters are also anticipated.


In some embodiments, the substrate 10 is a generally square or rectangular glass sheet. The substrate in these embodiments can have any of the dimensions described in the preceding paragraph and/or in the following paragraph. In one particular embodiment, the substrate is a generally rectangular glass sheet having a width of between about 3 meters and about 5 meters, such as about 3.5 meters, and a length of between about 6 meters and about 10 meters, such as about 6.5 meters.


Substrates of various thicknesses can be used in the present invention. In some embodiments, the substrate 10 (which can optionally be a glass sheet) has a thickness of about 1-5 mm. Certain embodiments involve a substrate 10 with a thickness of between about 2.3 mm and about 4.8 mm, and perhaps more preferably between about 2.5 mm and about 4.8 mm. In one particular embodiment, a sheet of glass (e.g., soda-lime glass) with a thickness of about 3 mm is used. In one group of embodiments, the thickness of the substrate (which can be glass, plastic, or another material) is between about 4 mm and about 20 mm. Thicknesses in this range, for example, may be useful for aquarium tanks (in which case, the substrate can optionally be glass or acrylic). When the substrate is float glass, it will commonly have a thickness of between about 4 mm and about 19 mm. In another group of embodiments, the substrate is a thin sheet (e.g., of glass) having a thickness of between about 0.35 mm and about 1.9 mm. Embodiments of this nature can optionally involve the substrate 10 being a sheet of display glass or the like.


With reference to FIG. 1, there is shown a transparent substrate 10 with a major surface 12 bearing a photocatalytic coating 50. The coating 50 includes a photocatalytic film 30 comprising titania and an underlying film 20. Preferably, the photocatalytic film 30 is deposited directly over, and is contiguous to, the underlying film 20.


The photocatalytic film 30 can include titanium oxide and/or substoichiometric titanium oxide. In some embodiments, the film 30 consists essentially of titania. In other embodiments, the film 30 includes both titanium (e.g, titania or substoichiometric titanium oxide) and a material selected from the group consisting of nitrogen, tantalum, copper, silica, palladium, tin, tungsten, niobium, and molybdenum. The nitrogen, copper, tantalum, silicon, silica, palladium, tin, tungsten, niobium, or molybdenum can also simply be a dopant in some embodiments. Such a dopant can be present in an amount of up to 5%, for example about 2%.


In some cases, the film 30 includes titania and nitrogen, titania and silica, titania and copper, titania and tantalum, titania and palladium, titania and tin, titania and tungsten, titania and niobium, or titania and molybdenum. In still other cases, the film 30 comprises substoichiometric titanium oxide and nitrogen, substoichiometric titanium oxide and silica, substoichiometric titanium oxide and copper, substoichiometric titanium oxide and tantalum, substoichiometric titanium oxide and palladium, substoichiometric titanium oxide and tin, substoichiometric titanium oxide and tungsten, substoichiometric titanium oxide and niobium, or substoichiometric titanium oxide and molybdenum. One further embodiment provides a film 30 comprising titania, silica, and nitrogen. When present, the copper can optionally be oxidized. When the film 30 includes at least one of the noted additional materials, the underlayer can be formed of any desired material, or it can be omitted entirely.


When provided, the underlying film 20 can optionally comprise one or more of the following materials: tungsten oxide, aluminum oxide, niobium oxide and/or zirconium oxide. In certain embodiments, the film comprises a material selected from the group consisting of tungsten oxide or niobium oxide. In some cases, the film 20 consists essentially of tungsten oxide or niobium oxide. In other embodiments, the film comprises a material selected from the group consisting of aluminum oxide or zirconium oxide. In some cases, the film 20 consists essentially of aluminum oxide or zirconium oxide.


In some embodiments, the film 20 is a mixed film comprising tungsten oxide and/or aluminum oxide and/or niobium oxide and/or zirconium oxide and/or another material. In certain cases, the film 20 is a mixed film including silica, silicon, titania, titanium, and/or substoichiometric titanium oxide. For example, such a mixed film can include a mix of tungsten oxide and silica, silicon, titania, titanium, and/or substoichiometric titanium oxide, or a mix of aluminum oxide and silica, silicon, titania, titanium, and/or substoichiometric titanium oxide, or a mix of niobium oxide and silica, silicon, titania, titanium, and/or substoichiometric titanium oxide, or a mix of zirconium oxide and silica, silicon, titania, titanium, and/or substoichiometric titanium oxide.


When provided, the mixed film can be a homogenous film, or it can be a graded film. In some embodiments, a graded film is provided having, from the substrate surface outwardly, a substantially continuously decreasing concentration of silica, silicon, titania, titanium, and/or substoichiometric titanium oxide and a substantially continuously increasing concentration of tungsten oxide. In other embodiments, a graded film is provided having, from the substrate surface outwardly, a substantially continuously decreasing concentration of silica, silicon, titania, titanium, and/or substoichiometric titanium oxide and a substantially continuously increasing concentration of aluminum oxide. In yet other embodiments, a graded film is provided having, from the substrate surface outwardly, a substantially continuously decreasing concentration of silica, silicon, titania, titanium, and/or substoichiometric titanium oxide and a substantially continuously increasing concentration of niobium oxide. In yet other embodiments, a graded film is provided having, from the substrate surface outwardly, a substantially continuously decreasing concentration of silica, silicon, titania, titanium, and/or substoichiometric titanium oxide, and a substantially continuously increasing concentration of zirconium oxide.


The underlying film 20 optionally has a thickness of less than about 250 angstroms, less than about 200 angstroms, less than about 150 angstroms, less than about 125 angstroms, less than 100 angstroms, or even less than about 75 angstroms. One particular embodiment provides the film 20 at thicknesses of less than 65 angstroms (e.g., 50 angstroms or less). In some cases, the film 20 has a thickness of between about 5 angstroms and about 200 angstroms, such as between about 15 angstroms and about 150 angstroms. In certain cases, the film 20 has a thickness of 25-40 angstroms.


In some embodiments, a thin film may be provided under or over the film 20 to improve adhesion and durability of the film 20. In certain embodiments, a thin film is provided under the film 20 and another thin film is provided over the film 20. In FIG. 2, film 25a is provided above the film 20 and film 25b is provided beneath the film 20. The films 25a and 25b each have a thickness of between about 10 angstroms and about 20 angstroms in some cases. The films 25a and 25b can comprise zirconium oxide and in some cases consists essentially of zirconium oxide. The films 25a and 25b can also comprise niobium oxide and in some cases consists essentially of niobium oxide. In certain cases, only one of the films 25a and 25b are provided.


With reference to FIG. 3, in some embodiments, the photocatalytic coating 50 includes a film 15 deposited between the optional film 20 and the substrate 10. The film 15 can be a base film comprising silica, and in some cases consists essentially of silica. The film 15 can also be a base film comprising titania, and in some cases consists essentially of titania. The film 15 can even further be a base film comprising silica and titania, and in some cases consists essentially of silica and titanium. The film 15 preferably directly underlies, and is contiguous to, the film 20. In some cases, the film 15 is deposited directly onto the substrate and the film 20 is deposited directly onto the film 15. The film 15 can optionally have a thickness of less than about 300 angstroms. In certain embodiments, the film 15 has a thickness of less than 100 angstroms. With reference to FIG. 4, in some cases, films 25a and 25b are provided under and above the film 20, so that the film 25a is contiguous to the film 15. The films 25a and 25b also preferably comprise zirconia and have a thickness of between about 10 angstroms and about 20 angstroms. Again, in certain cases, only one of the films 25a and 25b are provided.


In one particular embodiment, the photocatalytic coating includes, from the substrate surface outwardly, a silica film (optionally deposited directly onto the substrate) having a thickness of about 75 angstroms, a tungsten oxide film deposited directly onto the silica film and having a thickness of about 25 angstroms, and a titania film deposited directly onto the tungsten oxide film and having a thickness of between about 25 angstroms and about 40 angstroms.


In another particular embodiment, the photocatalytic coating includes, from the substrate surface outwardly, a silica film (optionally deposited directly onto the substrate) having a thickness of about 75 angstroms, a first zirconia film deposited directly onto the silica film and having a thickness of between about 10 angstroms and about 20 angstroms, a tungsten oxide film deposited directly onto the first zirconia film and having a thickness of about 25 angstroms, a second zirconia film deposited directly onto the tungsten oxide film and having a thickness of between about 10 angstroms and about 20 angstroms and a titania film deposited directly onto the second zirconia film and having a thickness of between about 25 angstroms and about 40 angstroms.


In yet another particular embodiment, the photocatalytic coating includes, from the substrate surface outwardly, a niobium oxide film deposited directly onto the substrate surface and having a thickness of between about 10 angstroms and about 20 angstroms, a tungsten oxide film deposited directly onto the niobium oxide film and having at thickness of about 25 angstroms and a titania film deposited directly onto the tungsten oxide film and having a thickness of between about 25 angstroms and about 40 angstroms. Likewise, in another embodiment, the photocatalytic coating includes, from the substrate surface outwardly, a tungsten oxide film deposited directly onto the substrate surface and having at thickness of about 25 angstroms, a niobium oxide film deposited directly onto the tungsten oxide film and having a thickness of between about 10 angstroms and about 20 angstroms and a titania film deposited directly onto the niobium oxide film and having a thickness of between about 25 angstroms and about 40 angstroms.


In some cases, the photocatalytic coating 50 is provided on a first major surface of the substrate and another functional coating is provided on an opposite major surface of the same substrate. FIG. 5 illustrates an embodiment wherein the substrate 10 has a first surface 12 bearing a photocatalytic coating 50 and a second surface 14 bearing a functional coating 80. The functional coating 80 can include a single film or a plurality of films. Any functional coating known in the art can be used. In some cases, the functional coating 80 is a low-emissivity film. In certain cases, the coating 80 includes a low-emissivity film having three or more infrared-reflecting layers. Suitable low-emissivity coatings having three or more infrared-reflecting layers are described in U.S. Patent No. 60/725,891, the entire teachings of which are incorporated herein by reference. In other cases, the functional coating can be a “single silver” or “double silver” low-emissivity coating.


With reference to FIG. 6, the substrate 10 can be part of an insulating glass unit 110. Typically, an insulating glass unit 110 has an exterior pane 10 and an interior pane 10′ separated by a between-pane space 800. A spacer 900 (which can optionally be part of a sash) is commonly provided to separate the panes 10 and 10′. The spacer can be secured to the interior surfaces of each pane using an adhesive 700. In some cases, an end sealant 600 is also provided. In the illustrated embodiment, the exterior pane 10 has an exterior surface 12 and an interior surface 14. The interior pane 10′ has an interior surface 16 and an exterior surface 18. The pane 10 can be mounted in a frame (e.g., a window frame) such that the exterior surface 12 is exposed to an outdoor environment. Interior surfaces 14 and 16 are both exposed to the atmosphere in the between-pane space 800 of the insulating glass unit. In some cases, the exterior surface 12 of the substrate 10 in the IG unit shown in FIG. 4 has a photocatalytic coating 50. The coating 50 can be any of the embodiments already described. The interior surface 14 of the same substrate 10 can include a functional coating 80, for example a low-emissivity coating.



FIG. 7 exemplifies embodiments wherein the substrate 10 (which may be a glass pane) is a window pane mounted on a window frame 95 (e.g., in an exterior wall 98 of a building 99). In certain applications, the coated first surface (i.e., surface 12) of such a window carries a photocatalytic coating 50 in accordance with any of the described embodiments. In some embodiments of this nature, the coated surface 12 may be exposed to an outdoor environment (and/or may be in periodic contact with rain).


Methods for producing coated substrates are also provided. Each film of the photocatalytic coating 50 can be deposited by a variety of well known coating techniques. Suitable coating techniques include, but are not limited to, chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition, pyrolytic deposition, sol-gel deposition and sputtering. In certain embodiments, the films are deposited by sputtering, optionally at a low temperature (e.g., while maintaining the substrate at below about 250 degrees Celsius, and perhaps more preferably below 200 degrees Celsius). Sputtering is well known in the present art.


Equipment for producing coated substrates are also provided. FIG. 6 depicts an exemplary magnetron sputtering chamber 200 that can be used to deposit a photocatalytic coating of the invention. Magnetron sputtering chambers and related equipment are commercially available from a variety of sources (e.g., Leybold). Useful magnetron sputtering techniques and equipment are described in U.S. Pat. No. 4,166,018, issued to Chapin, the entire teachings of which are incorporated herein by reference. The sputtering chamber 200 illustrated in FIG. 6 includes a base (or “floor”) 220, a plurality of side walls 222, and a ceiling (or “top lid” or “cover”) 230, together bounding a sputtering cavity 202. Two upper targets 280a and 280b are mounted above the path of substrate travel 45. The substrate 10 is conveyed along the path of substrate travel 45 during film deposition, optionally over a plurality of spaced-apart transport rollers 210. In FIG. 6, two upper targets are provided, although this is by no means required. For example, the targets could alternatively be lower targets positioned below the path of substrate travel and adapted for depositing the photocatalytic coating on a bottom surface of the substrate. In some embodiments, at least one film of the photocatalytic coating is sputter deposited at the same time that another film is being sputtered onto the other side of the substrate, i.e., using a dual-direction sputtering chamber. Dual-direction sputtering chambers are described in U.S. patent applications Ser. Nos. 09/868,542, 10/911,155, and 10/922,719, the entire teachings of each of which are incorporated herein by reference. Alternatively, a single upper or lower target could be used in each chamber. Moreover, the chamber can include one or more upper and/or lower planar targets, although cylindrical targets are shown.


When the coating is done by sputtering, the sputtering can optionally be performed while maintaining the substrate at a temperature of less than about 250 degrees Celsius, and more preferably less than 200 degrees Celsius (e.g., without supplemental heating of the substrate). In such cases, the coating can optionally be sputter deposited without any supplemental means for delivering energy to a growing film (e.g., without any heating of the substrate beyond that which occurs normally from the plasma and ion bombardment of conventional sputtering). In other cases, one or more films of the coating 50 is/are deposited by a sputter deposition technique that includes a supplemental heating (or other supplemental energy delivery). Additionally or alternatively, the coating 50 once deposited may be subjected to an ion treatment by operating an ion gun and accelerating ions against the coating (e.g., to enhance the low-maintenance properties of the coating). In some cases, this is done for embodiments where the photocatalytic film includes titania and one or more of the above-noted materials.


In certain embodiments, a method of depositing a photocatalytic coating 50 is provided, the method comprising depositing an underlying film over a major surface of a substrate (e.g., a glass sheet) and then depositing a photocatalytic film comprising titania directly over the underlying film. In cases where the photocatalytic film consists essentially of titania, a sputtering chamber as illustrated in FIG. 8 can be used, and the targets 280a and 280b can each comprise titanium. In some cases, the targets are metal titanium targets and an oxidizing atmosphere (optionally including some nitrogen) is used for sputtering the film comprising titania. In other cases, the targets are titanium oxide targets and an inert atmosphere (optionally with a small amount of oxygen and/or nitrogen) is used in the chamber. In yet other cases, the targets are substoichiometric titanium oxide targets and an inert atmosphere (optionally with a small amount of oxygen and/or nitrogen) is used in the chamber.


In cases where the photocatalytic film is a film including titania and another material, a co-sputtering method can optionally be used. For example, one of the targets 280a or 280b can optionally comprise titanium while the other target comprises another material. In some cases, the other target comprises copper, so the resulting film comprises titania and copper (such copper optionally being oxidized). In other cases, the other target comprises silicon so the resulting film comprises titania and silica. The target comprising silicon can be a pure silicon target and an oxidizing atmosphere (optionally also including some nitrogen) can be introduced into the chamber. The target comprising silicon can alternatively be a silicon oxide target, so that the target can be sputtered in an inert (or slightly oxidizing and/or slightly nitriding) atmosphere. In other cases, the other target comprises palladium so the resulting film comprises titania and palladium. In other cases, the other target comprises tin so the resulting film comprises titania and tin. In other cases, the other target comprises tungsten so the resulting film comprises titania and tungsten. In other cases, the other target comprises niobium so the resulting film comprises titania and niobium. In other cases, the other target comprises molybdenum so the resulting film comprises titania and molybdenum.


In cases where the photocatalytic film is a mixed film including titania, silica and nitrogen, one of the targets 280a or 280b can comprise titanium (and/or titanium oxide) and the other target can comprise silicon (and/or silicon oxide). A nitrogen containing atmosphere can then be used in the chamber. Rather than using a co-sputtering method for mixed film embodiments, each target can comprise titanium and at least one additional material selected from the group consisting of silicon and copper. Further, in any embodiment where nitrogen is incorporated into the film 30, the deposition atmosphere can include nitrogen.


Also, in cases where the photocatalytic coating is a mixed film, a method of sputtering an alloyed target can be used. For example, one or both of the targets 280a and 280b can be an alloyed target. The alloyed target can be an alloy selected from the following; titanium and copper, titanium and tantalum, titanium and silicon, titanium and palladium, titanium and tin, titanium and tungsten, titanium and niobium, titanium and molybdenum, substoichiometric titanium oxide and copper, substoichiometric titanium oxide and tantalum, substoichiometric titanium oxide and silicon, substoichiometric titanium oxide and palladium, substoichiometric titanium oxide and tin, substoichiometric titanium oxide and tungsten, substoichiometric titanium oxide and niobium, or substoichiometric titanium oxide and molybdenum. In some cases, the amount of titanium or substoichiometric titanium oxide in the target is present in a higher amount than the other material. In some cases, the titanium or substoichiometric titanium oxide in the target is simply doped with the other material. The alloyed target can also be sputtered in a reactive atmosphere, such as an oxidizing or nitriding atmosphere. In cases where the alloyed target includes substoichiometric titanium oxide, the target can be sputtered in inert atmosphere, slightly oxidizing atmosphere, or slightly nitriding atmosphere.


In certain embodiments, a method of depositing an underlying film 20 is provided. The method comprises depositing an underlying film over a major surface of a substrate (e.g., a glass sheet). A sputtering chamber as illustrated in FIG. 8 can be used. In cases where the underlying film 20 consists essentially of tungsten oxide, aluminum oxide, niobium oxide or zirconium oxide, the targets 280a and 280b can each comprise tungsten, aluminum, niobium, or zirconium. In some cases, the targets are metal tungsten targets, metal aluminum targets, metal niobium targets, or metal zirconium targets in an oxidizing atmosphere (optionally including some nitrogen) is used. In other cases, the targets are tungsten oxide targets, aluminum oxide targets, niobium oxide targets, or zirconium oxide targets in an inert atmosphere (optionally with a small amount of oxygen and or nitrogen is used in the chamber).


In cases where the underlying film is a mixed film, a co-sputtering method can optionally be used. For example, one of the targets 280a or 280b can optionally comprise tungsten, aluminum, niobium, or zirconium while the other target comprises another material. In some cases, one target comprises metal tungsten, metal aluminum, metal niobium, or metal zirconium and the other target comprises silicon, titanium, or substoichiometric titanium oxide and both are co-sputtered in an oxidizing atmosphere (optionally including some nitrogen). In other cases, one target comprises tungsten oxide, aluminum oxide, niobium oxide, or zirconium oxide and the other target comprises silicon oxide, titanium oxide, or substoichiometric titanium oxide and both are co-sputtered in an inert atmosphere (optionally with a small amount of oxygen and or nitrogen is used in the chamber).


Also, in cases where the underlying film is a mixed film, a method of sputtering an alloyed target can be used. For example, one or both of the targets 280a and 280b can be an alloyed target. The alloyed target can be an alloy selected from the following: tungsten and titanium, tungsten and silicon, tungsten and substoichiometric titanium oxide, aluminum and titanium, aluminum and silicon, aluminum and substoichiometric titanium oxide, niobium and titanium, niobium and silicon, niobium and substoichiometric titanium oxide, zirconium and titanium, zirconium and silicon, and zirconium and substoichiometric titanium oxide. The alloyed targets are sputtered in an oxidizing atmosphere (optionally including some nitrogen).


While a preferred embodiment of the present invention has been described, it should be understood that various changes, adaptations and modifications may be made therein without departing from the spirit of the invention and the scope of the appended claims.

Claims
  • 1. A transparent substrate on which there is provided a photocatalytic coating, the coating including a photocatalytic film deposited directly over an underlying film consisting essentially of tungsten oxide.
  • 2. The substrate of claim 1 wherein the photocatalytic film comprises both titania and a material selected from the group consisting of nitrogen, copper, tantalum, silica, palladium, tin, tungsten, niobium, and molybdenum.
  • 3. The substrate of claim 2 wherein the material selected from the group consisting of nitrogen, copper, tantalum, silica, palladium, tin, tungsten, niobium, and molybdenum is a dopant.
  • 4. The substrate of claim 3 wherein the photocatalytic film comprises both titania and tungsten dopant.
  • 5. The substrate of claim 1 wherein the underlying film has a thickness of less than about 250 angstroms.
  • 6. The substrate of claim 1 wherein the underlying film has a thickness of less than about 75 angstroms.
  • 7. The substrate of claim 1 further comprising a base film deposited beneath the underlying film, wherein the base film comprises silica and/or titania.
  • 8. A transparent substrate on which there is provided a photocatalytic coating, the coating including a photocatalytic film comprising titania positioned directly over a film consisting essentially of tungsten oxide.
  • 9. The substrate of claim 8 wherein the film consisting essentially of tungsten oxide has a thickness of between about 15 angstroms and about 150 angstroms.
  • 10. The substrate of claim 8 wherein the film consisting essentially of tungsten oxide is positioned directly over a film comprising silica and/or titania.
  • 11. The substrate of claim 10 wherein the film comprising silica and/or titania has a thickness of less than about 300 angstroms.
  • 12. The substrate of claim 11 wherein the film comprising silica and/or titania has a thickness of less than 100 angstroms.
  • 13. The substrate of claim 8 wherein the photocatalytic film comprises both titania and a material selected from the group consisting of nitrogen, copper, tantalum, silica, palladium, tin, tungsten, niobium, and molybdenum.
  • 14. The substrate of claim 13 wherein the material selected from the group consisting of nitrogen, copper, tantalum, silica, palladium, tin, tungsten, niobium, and molybdenum is a dopant.
  • 15. The substrate of claim 8 wherein the photocatalytic film comprises both titanium and nitrogen.
  • 16. A transparent substrate on which there is provided a photocatalytic coating, the coating comprising, from the substrate outwardly, a base film deposited over the substrate and having a thickness of less than about 300 angstroms, a film consisting essentially of tungsten oxide deposited over the base film and having a thickness of less than about 100 angstroms, and a photocatalytic film comprising titania deposited directly over the film consisting essentially of tungsten oxide.
  • 17. The substrate of claim 16 wherein the film consisting essentially of tungsten oxide has a thickness of less than about 75 angstroms.
  • 18. A transparent substrate on which there is provided a photocatalytic coating, the coating including a photocatalytic film deposited over an underlying film consisting essentially of tungsten oxide, wherein a film comprising zirconium oxide or niobium oxide is deposited over or under the underlying film.
  • 19. The substrate of claim 18 wherein the underlying film has a thickness of less than about 250 angstroms.
  • 20. The substrate of claim 18 wherein the underlying film has a thickness of less than about 75 angstroms.
  • 21. The substrate of claim 18 wherein the film comprising zirconia or niobium oxide has a thickness of between about 10 angstroms and about 20 angstroms.
  • 22. The substrate of claim 18 wherein the film comprising zirconium oxide or niobium oxide is deposited over the underlying film.
  • 23. The substrate of claim 18 wherein the film comprising zirconium oxide or niobium oxide is deposited under the underlying film.
  • 24. The substrate of claim 18 wherein the film comprising zirconium oxide or niobium oxide is deposited under the underlying film, and wherein a second film comprising zirconium oxide or niobium oxide is deposited over the underlying film.
  • 25. The substrate of claim 18 further comprising a base film deposited beneath the underlying film, wherein the base film comprises silica and/or titania.
  • 26. The substrate of claim 1 wherein the photocatalytic coating is provided on an exterior surface of a multiple-pane insulating glass unit.
  • 27. The substrate of claim 8 wherein the photocatalytic coating is provided on an exterior surface of a multiple-pane insulating glass unit.
  • 28. The substrate of claim 16 wherein the photocatalytic coating is provided on an exterior surface of a multiple-pane insulating glass unit.
  • 29. The substrate of claim 18 wherein the photocatalytic coating is provided on an exterior surface of a multiple-pane insulating glass unit.
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims priority to U.S. Application No. 60/791,107, filed Apr. 11, 2006, the entire disclosure of which is incorporated herein by reference.

US Referenced Citations (361)
Number Name Date Kind
4166018 Chapin Aug 1979 A
4556599 Sato Dec 1985 A
4663234 Bouton May 1987 A
4692428 Murrell Sep 1987 A
4838935 Dunlop Jun 1989 A
4854670 Mellor Aug 1989 A
4883574 dos Santos Pereina Ribeiro Nov 1989 A
4902580 Gillery Feb 1990 A
4931315 Mellor Jun 1990 A
4940636 Brock Jul 1990 A
4954465 Kawashima Sep 1990 A
4963240 Fukasawa Oct 1990 A
4995893 Jenkins Feb 1991 A
4997576 Heller Mar 1991 A
5006248 Anderson Apr 1991 A
5035784 Anderson Jul 1991 A
5047131 Wolfe Sep 1991 A
5073451 Iida Dec 1991 A
5104539 Anderson Apr 1992 A
5110637 Ando May 1992 A
5160534 Hiraki Nov 1992 A
5168003 Proscia Dec 1992 A
5176897 Lester Jan 1993 A
5179468 Gasloli Jan 1993 A
5234487 Wickersham Aug 1993 A
5298048 Lingle Mar 1994 A
5298338 Hiraki Mar 1994 A
5306569 Hiraki Apr 1994 A
5318830 Takamatsu Jun 1994 A
5356718 Athey Oct 1994 A
5397050 Mueller Mar 1995 A
5417827 Finley May 1995 A
5470527 Yamanobe Nov 1995 A
5496621 Makita Mar 1996 A
5512152 Schicht Apr 1996 A
5513039 Lu Apr 1996 A
5514485 Ando May 1996 A
5525406 Goodman Jun 1996 A
5527755 Wenski Jun 1996 A
5552180 Finley Sep 1996 A
5569362 Lerbet Oct 1996 A
5595813 Ogawa Jan 1997 A
5635287 Balian Jun 1997 A
5679978 Kawahara Oct 1997 A
5686372 Langford Nov 1997 A
5715103 Amano Feb 1998 A
5744215 Neuman Apr 1998 A
5780149 McCurdy Jul 1998 A
5780380 Endoh Jul 1998 A
5811191 Neuman Sep 1998 A
5812405 Meredith, Jr. Sep 1998 A
5827490 Jones Oct 1998 A
5830252 Finley Nov 1998 A
5854169 Heller Dec 1998 A
5854708 Komatsu Dec 1998 A
5863398 Kardokus Jan 1999 A
5869187 Nakamura Feb 1999 A
5871843 Yoneda Feb 1999 A
5873203 Thiel Feb 1999 A
5874701 Watanabe Feb 1999 A
5877391 Kanno Mar 1999 A
5896553 Lo Apr 1999 A
5897957 Goodman Apr 1999 A
5935716 McCurdy Aug 1999 A
5939188 Moncur Aug 1999 A
5939201 Boire Aug 1999 A
5948538 Brochot Sep 1999 A
5981426 Langford Nov 1999 A
5993734 Snowman Nov 1999 A
6013372 Hayakawa Jan 2000 A
6027766 Greenberg Feb 2000 A
6037289 Chopin Mar 2000 A
6040939 Demiryont Mar 2000 A
6054227 Greenberg Apr 2000 A
6068914 Boire May 2000 A
6071606 Yamazaki Jun 2000 A
6071623 Sugawara Jun 2000 A
6074981 Tada Jun 2000 A
6077482 Kanno Jun 2000 A
6077492 Anpo Jun 2000 A
6090489 Hayakawa Jul 2000 A
6103363 Boire Aug 2000 A
6120747 Sugishima Sep 2000 A
6139803 Watanabe Oct 2000 A
6139968 Knapp Oct 2000 A
6153067 Maishev Nov 2000 A
6154311 Simmons, Jr. Nov 2000 A
6156409 Doushita Dec 2000 A
6165256 Hayakawa Dec 2000 A
6179971 Kittrell Jan 2001 B1
6179972 Kittrell Jan 2001 B1
6193378 Tonar Feb 2001 B1
6193856 Kida Feb 2001 B1
6194346 Tada Feb 2001 B1
6228480 Kimura May 2001 B1
6228502 Saitoh May 2001 B1
6238738 McCurdy May 2001 B1
6242752 Soma Jun 2001 B1
6248397 Ye Jun 2001 B1
6274244 Finley Aug 2001 B1
6299981 Azzopardi Oct 2001 B1
6319326 Koh Nov 2001 B1
6326079 Philippe Dec 2001 B1
6329060 Barkac Dec 2001 B1
6334938 Kida Jan 2002 B2
6335479 Yamada Jan 2002 B1
6336998 Wang Jan 2002 B1
6337124 Anderson Jan 2002 B1
6346174 Finley Feb 2002 B1
6352755 Finley Mar 2002 B1
6362121 Chopin Mar 2002 B1
6365014 Finley Apr 2002 B2
6368664 Veerasamy Apr 2002 B1
6368668 Kobayashi Apr 2002 B1
6379776 Tada Apr 2002 B1
6387844 Fujishima May 2002 B1
6413581 Greenberg Jul 2002 B1
6414213 Ohmori Jul 2002 B2
6425670 Komatsu Jul 2002 B1
6436542 Ogino Aug 2002 B1
6440278 Kida Aug 2002 B1
6461686 Vanderstraeten Oct 2002 B1
6464951 Kittrell Oct 2002 B1
6465088 Talpaert Oct 2002 B1
6468402 Vanderstraeten Oct 2002 B1
6468403 Shimizu Oct 2002 B1
6468428 Nishii Oct 2002 B1
6511587 Vanderstraeten Jan 2003 B2
6570709 Katayama May 2003 B2
6576344 Doushita Jun 2003 B1
6582839 Yamamoto Jun 2003 B1
6596664 Kittrell Jul 2003 B2
6635155 Miyamura Oct 2003 B2
6673738 Ueda Jan 2004 B2
6677063 Finley Jan 2004 B2
6679978 Johnson Jan 2004 B2
6680135 Boire Jan 2004 B2
6716323 Siddle Apr 2004 B1
6720066 Talpaert Apr 2004 B2
6722159 Greenberg Apr 2004 B2
6730630 Okusako May 2004 B2
6733889 Varanasi May 2004 B2
6743343 Kida Jun 2004 B2
6743749 Morikawa et al. Jun 2004 B2
6761984 Anzaki Jul 2004 B2
6770321 Hukari Aug 2004 B2
6777030 Veerasamy Aug 2004 B2
6781738 Kikuchi Aug 2004 B2
6787199 Anpo Sep 2004 B2
6789906 Tonar Sep 2004 B2
6794065 Morikawa Sep 2004 B1
6800182 Mitsui Oct 2004 B2
6800354 Baumann Oct 2004 B2
6804048 MacQuart Oct 2004 B2
6811856 Nun Nov 2004 B2
6818309 Talpaert Nov 2004 B1
6829084 Takaki Dec 2004 B2
6830785 Hayakawa Dec 2004 B1
6833089 Kawahara Dec 2004 B1
6835688 Morikawa Dec 2004 B2
6840061 Hurst Jan 2005 B1
6846556 Boire Jan 2005 B2
6869644 Buhay Mar 2005 B2
6870657 Fitzmaurice Mar 2005 B1
6872441 Baumann Mar 2005 B2
6875319 Nadaud Apr 2005 B2
6878242 Wang Apr 2005 B2
6878450 Anpo Apr 2005 B2
6881701 Jacobs Apr 2005 B2
6890656 Iacovangelo May 2005 B2
6908698 Yoshida Jun 2005 B2
6908881 Sugihara Jun 2005 B1
6916542 Buhay Jul 2005 B2
6929862 Hurst Aug 2005 B2
6939611 Fujishima Sep 2005 B2
6952299 Fukazawa Oct 2005 B1
6954240 Hamamoto Oct 2005 B2
6962759 Buhay Nov 2005 B2
6964731 Krisko Nov 2005 B1
6997570 Nakaho Feb 2006 B2
7005188 Anderson Feb 2006 B2
7005189 Tachibana Feb 2006 B1
7011691 Abe Mar 2006 B2
7022416 Teranishi Apr 2006 B2
7049002 Greenberg May 2006 B2
7052585 Veerasamy May 2006 B2
7060643 Sanbayashi Jun 2006 B2
7096692 Greenberg et al. Aug 2006 B2
7118936 Kobayashi Oct 2006 B2
7138181 McCurdy Nov 2006 B2
7157840 Fujishima Jan 2007 B2
7175911 Zhou Feb 2007 B2
7179527 Sato Feb 2007 B2
7195821 Tixhon Mar 2007 B2
7198699 Thomsen Apr 2007 B2
7211513 Remington, Jr. May 2007 B2
7211543 Nakabayash May 2007 B2
7223523 Boykin May 2007 B2
7232615 Buhay Jun 2007 B2
7255831 Wei Aug 2007 B2
7261942 Andrews Aug 2007 B2
7264741 Hartig Sep 2007 B2
7294365 Hayakawa Nov 2007 B2
7294404 Krisko Nov 2007 B2
7300634 Yaniv Nov 2007 B2
7309405 Cho Dec 2007 B2
7309664 Marzolin Dec 2007 B1
7311961 Finley Dec 2007 B2
7320827 Fujisawa Jan 2008 B2
7323249 Athey Jan 2008 B2
7348054 Jacquiod Mar 2008 B2
7354624 Millero Apr 2008 B2
7361963 Ikadai Apr 2008 B2
7387839 Gueneau Jun 2008 B2
20010030808 Komatsu Oct 2001 A1
20020012779 Miyashita Jan 2002 A1
20020016250 Hayakawa Feb 2002 A1
20020028361 Boire Mar 2002 A1
20020071956 Boire Jun 2002 A1
20020110638 Boire Aug 2002 A1
20020119307 Boire Aug 2002 A1
20020155299 Harris Oct 2002 A1
20020172775 Buhay Nov 2002 A1
20030038028 Schultheis Feb 2003 A1
20030039843 Johnson Feb 2003 A1
20030054177 Jin Mar 2003 A1
20030096701 Fujishima May 2003 A1
20030143437 Ohtsu Jul 2003 A1
20030152780 Baumann Aug 2003 A1
20030180547 Buhay Sep 2003 A1
20030186089 Kikuchi Oct 2003 A1
20030207028 Boire Nov 2003 A1
20030215647 Yoshida Nov 2003 A1
20030224620 Kools Dec 2003 A1
20030235720 Athey Dec 2003 A1
20040005466 Arai Jan 2004 A1
20040009356 Medwick Jan 2004 A1
20040043260 Nadaud Mar 2004 A1
20040069623 Vanderstraeten Apr 2004 A1
20040115362 Hartig Jun 2004 A1
20040140198 Cho Jul 2004 A1
20040149307 Hartig Aug 2004 A1
20040179978 Kobayashi Sep 2004 A1
20040180216 Veerasamy Sep 2004 A1
20040180220 Gueneau Sep 2004 A1
20040196580 Nakaho Oct 2004 A1
20040202890 Kutilek Oct 2004 A1
20040206024 Graf Oct 2004 A1
20040214010 Murata Oct 2004 A1
20040216487 Boire Nov 2004 A1
20040219348 Jacquiod Nov 2004 A1
20040241040 Wei Dec 2004 A1
20040241490 Finley Dec 2004 A1
20040247901 Suzuki Dec 2004 A1
20040248725 Hiraoka Dec 2004 A1
20040253382 De Bosscher Dec 2004 A1
20040253471 Thiel Dec 2004 A1
20050003672 Kools Jan 2005 A1
20050016835 Krisko Jan 2005 A1
20050019505 Hamamoto Jan 2005 A1
20050019700 Hayakawa Jan 2005 A1
20050020444 Hiraoka Jan 2005 A1
20050025982 Krisko Feb 2005 A1
20050031876 Lu Feb 2005 A1
20050042375 Minami Feb 2005 A1
20050044894 Nelson Mar 2005 A1
20050051422 Rietzel Mar 2005 A1
20050084688 Garrec Apr 2005 A1
20050137084 Krisko Jun 2005 A1
20050191505 Akarsu Sep 2005 A1
20050191522 Anzaki Sep 2005 A1
20050221098 Azzopardi Oct 2005 A1
20050227008 Okada Oct 2005 A1
20050233893 Sakatani Oct 2005 A1
20050233899 Anzaki Oct 2005 A1
20050238861 Buhay Oct 2005 A1
20050245382 Iwahashi Nov 2005 A1
20050245383 Iwahashi Nov 2005 A1
20050247555 Thiel Nov 2005 A1
20050248824 Fukazawa Nov 2005 A1
20050252108 Sanderson Nov 2005 A1
20050258030 Finley Nov 2005 A1
20050266248 Millero Dec 2005 A1
20050272590 Iwahashi Dec 2005 A1
20060003545 Veerasamy Jan 2006 A1
20060011945 Spitzer-Keller Jan 2006 A1
20060014027 Oudard Jan 2006 A1
20060014050 Gueneau Jan 2006 A1
20060019104 Hurst Jan 2006 A1
20060029813 Kutilek Feb 2006 A1
20060031681 Smith Feb 2006 A1
20060032739 Ikeda Feb 2006 A1
20060051597 Anzaki Mar 2006 A1
20060055513 French Mar 2006 A1
20060057298 Krisko Mar 2006 A1
20060057401 Krisko Mar 2006 A1
20060070869 Krisko Apr 2006 A1
20060090996 Yaniv May 2006 A1
20060102465 Blondeel May 2006 A1
20060107599 Luten May 2006 A1
20060110605 Luten May 2006 A1
20060118406 Delahoy Jun 2006 A1
20060121315 Myli Jun 2006 A1
20060127604 Ikadai Jun 2006 A1
20060134322 Harris Jun 2006 A1
20060134436 Maschwitz Jun 2006 A1
20060141290 Sheel Jun 2006 A1
20060152832 Aumercier Jul 2006 A1
20060159906 Messere Jul 2006 A1
20060165996 Veerasamy Jul 2006 A1
20060194066 Ye Aug 2006 A1
20060196765 Cheng Sep 2006 A1
20060201203 Labrousse Sep 2006 A1
20060210783 Seder Sep 2006 A1
20060210810 Harris Sep 2006 A1
20060225999 Fukawa Oct 2006 A1
20060228476 McCurdy Oct 2006 A1
20060234064 Baubet Oct 2006 A1
20060247125 Choi Nov 2006 A1
20060263610 Greenberg Nov 2006 A1
20060275612 Baubet Dec 2006 A1
20070025000 Lin Feb 2007 A1
20070029187 Krasnov Feb 2007 A1
20070029527 Mills Feb 2007 A1
20070030569 Lu Feb 2007 A1
20070031593 Krasnov Feb 2007 A1
20070031681 Anzaki Feb 2007 A1
20070031682 Krasnov Feb 2007 A1
20070042893 Koike Feb 2007 A1
20070065670 Varaprasad Mar 2007 A1
20070077406 Jacobs Apr 2007 A1
20070087187 Lu Apr 2007 A1
20070092734 Durandeau Apr 2007 A1
20070108043 Lu May 2007 A1
20070109543 Hoffman May 2007 A1
20070111012 Rimmer May 2007 A1
20070116966 Mellott May 2007 A1
20070116967 Medwick May 2007 A1
20070129248 Labrousse Jun 2007 A1
20070134501 McMaster Jun 2007 A1
20070137673 Boykin Jun 2007 A1
20070148064 Labrousse Jun 2007 A1
20070184291 Harris Aug 2007 A1
20070196563 Wuwen Aug 2007 A1
20070218264 Gueneau Sep 2007 A1
20070218265 Harris Sep 2007 A1
20070218311 O'Shaughnessy Sep 2007 A1
20070224357 Buhay Sep 2007 A1
20070231501 Finley Oct 2007 A1
20070237968 Kijima Oct 2007 A1
20070254163 Veerasamy Nov 2007 A1
20070254164 Veerasamy Nov 2007 A1
20070275252 Krasnov Nov 2007 A1
20070275253 Thiel Nov 2007 A1
20080011408 Maschwitz Jan 2008 A1
20080014349 Otani Jan 2008 A1
20080026161 Frings Jan 2008 A1
20080115471 Labrousse May 2008 A1
20080119352 Kitaguchi May 2008 A1
20080124460 Athey May 2008 A1
20080188370 Vormberg Aug 2008 A1
Foreign Referenced Citations (96)
Number Date Country
0285130 Oct 1988 EP
0574119 Apr 1993 EP
0345045 Oct 1993 EP
0901991 Mar 1999 EP
1066878 Jan 2001 EP
1074525 Feb 2001 EP
0816466 May 2006 EP
1506143 May 2006 EP
2738836 Mar 1997 FR
2884147 Oct 2006 FR
2000094569 Apr 2000 JP
2006305527 Nov 2006 JP
9707069 Feb 1997 WO
9737801 Oct 1997 WO
9806675 Feb 1998 WO
9911896 Mar 1999 WO
9944954 Sep 1999 WO
0015571 Feb 2000 WO
0027771 May 2000 WO
0040402 Jul 2000 WO
0075087 Dec 2000 WO
0168786 Sep 2001 WO
0240417 May 2002 WO
0249980 Jun 2002 WO
0285809 Oct 2002 WO
03006393 Jan 2003 WO
03009061 Jan 2003 WO
03050056 Jun 2003 WO
03062166 Jul 2003 WO
03068500 Aug 2003 WO
03072849 Sep 2003 WO
03087002 Oct 2003 WO
03087005 Oct 2003 WO
03091471 Nov 2003 WO
03093188 Nov 2003 WO
03095385 Nov 2003 WO
03097549 Nov 2003 WO
2004013376 Feb 2004 WO
2004034105 Apr 2004 WO
2004061151 Jul 2004 WO
2004085699 Oct 2004 WO
2004085701 Oct 2004 WO
2004086104 Oct 2004 WO
2004087985 Oct 2004 WO
2004089836 Oct 2004 WO
2004089838 Oct 2004 WO
2004089839 Oct 2004 WO
2004092088 Oct 2004 WO
2004092089 Oct 2004 WO
2004097063 Nov 2004 WO
2004108618 Dec 2004 WO
2004108619 Dec 2004 WO
2004108846 Dec 2004 WO
2004113064 Dec 2004 WO
2005000758 Jan 2005 WO
2005000759 Jan 2005 WO
2005005337 Jan 2005 WO
2005007286 Jan 2005 WO
2005009914 Feb 2005 WO
2005012593 Feb 2005 WO
2005023723 Mar 2005 WO
2005040056 May 2005 WO
2005102952 Nov 2005 WO
2005110937 Nov 2005 WO
2005111257 Nov 2005 WO
2006004169 Jan 2006 WO
2006007062 Jan 2006 WO
2006019995 Feb 2006 WO
2006020477 Feb 2006 WO
2006028729 Mar 2006 WO
2006055513 May 2006 WO
WO2006054954 May 2006 WO
2006057830 Jun 2006 WO
2006062902 Jun 2006 WO
2006064059 Jun 2006 WO
2006064060 Jun 2006 WO
2006066101 Jun 2006 WO
2006077839 Jul 2006 WO
2006089964 Aug 2006 WO
2006101994 Sep 2006 WO
2006108985 Oct 2006 WO
2006117345 Nov 2006 WO
2006134335 Dec 2006 WO
2007016127 Feb 2007 WO
2007018974 Feb 2007 WO
2007018975 Feb 2007 WO
2007045805 Apr 2007 WO
2007080428 Jul 2007 WO
2007093823 Aug 2007 WO
2007096461 Aug 2007 WO
WO2007092511 Aug 2007 WO
2007121215 Oct 2007 WO
2007110482 Oct 2007 WO
2007121211 Oct 2007 WO
WO2007127060 Nov 2007 WO
WO2007130140 Nov 2007 WO
Related Publications (1)
Number Date Country
20070264494 A1 Nov 2007 US
Provisional Applications (1)
Number Date Country
60791107 Apr 2006 US