The present invention provides photocatalytic coatings for substrates, such as glass and the like. More particularly, the invention provides photocatalytic coatings including an underlying film comprising one or more specified materials, and/or one or more additional materials are incorporated into a titania-containing film. The invention also provides methods of depositing such coatings onto glass sheets and other substrates.
Photocatalytic coatings are known in the art. These coatings commonly include a film of titania on a substrate. A great deal of research has been done with a view toward providing photocatalytic coatings that have desirable low-maintenance properties. Desirable low-maintenance properties include self-cleaning properties, hydrophilic properties, etc. The pursuit of low-maintenance window coatings, in particular, has been an active field of exploration.
It would be desirable to provide a photocatalytic coating with an underlayer that would enhance the low-maintenance properties of the coating. Additionally or alternatively, it would be desirable to incorporate into the photocatalytic film itself additional materials which would enhance the low-maintenance properties of the coating.
A transparent substrate is provided a photocatalytic coating. In some embodiments, the coating includes a photocatalytic film deposited directly over an underlying film comprising a material selected from the group consisting of tungsten oxide and niobium oxide. The photocatalytic film preferably comprises both titania and an additional material selected from the group consisting of nitrogen, copper, tantalum, silicon, silica, palladium, tin, tungsten, niobium, and molybdenum. In some cases, the additional material is simply a dopant. Such a dopant can be present in an amount of up to 5%, for example 2%. In one case, the photocatalytic film comprises titania and a tungsten dopant. The underlying film has a thickness of less than about 250 angstroms and more preferably less than about 75 angstroms. In some cases, the coating further includes a base film deposited beneath the underlying film, wherein the base film comprises silica and/or titania.
In other embodiments, the photocatalytic coating includes a photocatalytic film comprising titania positioned directly over a film comprising tungsten oxide. In some cases, the film comprising tungsten oxide consists essentially of tungsten oxide. In other cases, the film comprising tungsten oxide is a mixed film comprising silica, silicon, titania, titanium, and/or substoichiometric titanium oxide. The film comprising tungsten oxide preferably has a thickness of between about 15 angstroms and about 150 angstroms. The film is also preferably positioned directly over a film comprising silica and/or titania. The film comprising silica and/or titania preferably has a thickness of less than about 300 angstroms and more preferably has a thickness of less than 100 angstroms. In some cases, the photocatalytic film comprises both titania and a material selected from the group consisting of nitrogen, tantalum, copper and silica. In certain cases, the photocatalytic film comprises both titanium and nitrogen.
In yet other embodiments, the photocatalytic coating comprises, from the substrate outwardly, a base film deposited over the substrate and having a thickness of less than about 300 angstroms, a film comprising tungsten oxide deposited over the base film and having a thickness of less than about 100 angstroms, and a photocatalytic film comprising titania deposited directly over the film comprising tungsten oxide. The film comprising tungsten oxide preferably has a thickness of less than about 75 angstroms.
In some cases, the photocatalytic coating includes a photocatalytic film deposited over an underlying film comprising a material selected from the group consisting of tungsten oxide, niobium oxide, aluminum oxide and zirconium oxide, wherein a film comprising zirconium oxide or niobium oxide is deposited over or under the underlying film, the film comprising zirconium oxide or niobium oxide being a different material than the underlying film. The underlying film preferably has a thickness of less than about 250 angstroms and more preferably has a thickness of less than about 75 angstroms. The film comprising zirconia or niobium oxide preferably has a thickness of between about 10 angstroms and about 20 angstroms. In some cases, the film comprising zirconium oxide or niobium oxide is deposited over the underlying film. In other cases, the film comprising zirconium oxide or niobium oxide is deposited under the underlying film. In yet other cases, the film comprising zirconium oxide or niobium oxide is deposited under the underlying film, and a second film comprising zirconium oxide or niobium oxide is deposited over the underlying film. In certain cases, the coating further includes a base film deposited beneath the underlying film, wherein the base film comprises silica and/or titania.
A method of depositing a photocatalytic coating is also provided. In some embodiments, the method comprises depositing a film comprising tungsten oxide over a major surface of a glass sheet, and depositing a photocatalytic film comprising titania directly over the film comprising tungsten oxide. The film comprising tungsten oxide is preferably deposited at a thickness of between about 15 angstroms and about 150 angstroms. In some cases, the film comprising tungsten oxide is deposited by providing a sputtering target having a sputterable material that comprises tungsten, the sputterable material being selected from the group consisting essentially of pure tungsten, a tungsten oxide, and a tungsten alloy. The film comprising tungsten oxide can be a mixed film comprising silica, the mixed film being deposited by co-sputtering a target comprising tungsten and a target comprising silicon, titanium and/or substoichiometric titanium oxide. In some cases, the photocatalytic film comprises nitrogen, the photocatalytic film being deposited by sputtering a target comprising titanium in an atmosphere comprising nitrogen.
The following detailed description is to be read with reference to the drawings, in which like elements in different drawings have like reference numbers. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. Skilled artisans will recognize that the given examples have many alternatives that fall within the scope of the invention.
Many embodiments of the invention involve a coated substrate. A wide variety of substrates types are suitable for use in the invention. In some embodiments, the substrate 10 is a sheet-like substrate having generally opposed first 12 and second 14 major surfaces. For example, the substrate can be a sheet of transparent material (i.e., a transparent sheet). The substrate, however, is not required to be a sheet, nor is it required to be transparent.
The substrate can optionally be a component of any of a variety of building materials. Examples of anticipated applications include embodiments wherein the substrate is a sash (e.g., a window sash or a door sash), a siding panel (e.g., an aluminum siding panel), a tent panel, a tarpaulin (e.g., a fluorocarbon polymer tarpaulin), a plastic film (e.g., a fluorocarbon plastic film), a roofing shingle, a window blind (such as a metal, plastic, or paper window blind), a paper screen (e.g., a shoji), a railing, a baluster, or an escutcheon. In one embodiment, the substrate is a ceramic tile, such as a wall, ceiling, or floor tile. In another embodiment, the substrate is a glass block. A variety of suitable glass blocks can be obtained commercially from Saint-Gobain Oberland (Koblenz, Germany). In still other embodiments, the substrate is a polyester film, a polyethylene film, a terephthalate film, etc. Suitable films of this nature can be obtained commercially from Nippon Soda Co., Ltd. (Tokyo, Japan). In further embodiments, the substrate is a fence or wall, such as a noise-reduction fence or wall.
For many applications, the substrate will comprise a transparent (or at least translucent) material, such as glass or clear plastic. For example, the substrate is a glass sheet (e.g., a window pane) in certain embodiments. A variety of known glass types can be used, and soda-lime glass will commonly be preferred. In certain preferred embodiments, the substrate is part of a window, skylight, door, shower door, or other glazing. In some cases, the substrate is part of an automobile windshield, an automobile side window, an exterior or interior rear-view mirror, a bumper, a hubcap, a windshield wiper, or an automobile hood panel, side panel, trunk panel, or roof panel. In other embodiments, the substrate is a piece of aquarium glass, a plastic aquarium window, or a piece of greenhouse glass. In a further embodiment, the substrate is a refrigerator panel, such as part of a refrigerator door or window.
Substrates of various sizes can be used in the present invention. Commonly, large-area substrates are used. Certain embodiments involve a substrate 10 having a major dimension (e.g., a length or width) of at least about 0.5 meter, preferably at least about 1 meter, perhaps more preferably at least about 1.5 meters (e.g., between about 2 meters and about 4 meters), and in some cases at least about 3 meters. In some embodiments, the substrate is a jumbo glass sheet having a length and/or width that is between about 3 meters and about 10 meters, e.g., a glass sheet having a width of about 3.5 meters and a length of about 6.5 meters. Substrates having a length and/or width of greater than about 10 meters are also anticipated.
In some embodiments, the substrate 10 is a generally square or rectangular glass sheet. The substrate in these embodiments can have any of the dimensions described in the preceding paragraph and/or in the following paragraph. In one particular embodiment, the substrate is a generally rectangular glass sheet having a width of between about 3 meters and about 5 meters, such as about 3.5 meters, and a length of between about 6 meters and about 10 meters, such as about 6.5 meters.
Substrates of various thicknesses can be used in the present invention. In some embodiments, the substrate 10 (which can optionally be a glass sheet) has a thickness of about 1-5 mm. Certain embodiments involve a substrate 10 with a thickness of between about 2.3 mm and about 4.8 mm, and perhaps more preferably between about 2.5 mm and about 4.8 mm. In one particular embodiment, a sheet of glass (e.g., soda-lime glass) with a thickness of about 3 mm is used. In one group of embodiments, the thickness of the substrate (which can be glass, plastic, or another material) is between about 4 mm and about 20 mm. Thicknesses in this range, for example, may be useful for aquarium tanks (in which case, the substrate can optionally be glass or acrylic). When the substrate is float glass, it will commonly have a thickness of between about 4 mm and about 19 mm. In another group of embodiments, the substrate is a thin sheet (e.g., of glass) having a thickness of between about 0.35 mm and about 1.9 mm. Embodiments of this nature can optionally involve the substrate 10 being a sheet of display glass or the like.
With reference to
The photocatalytic film 30 can include titanium oxide and/or substoichiometric titanium oxide. In some embodiments, the film 30 consists essentially of titania. In other embodiments, the film 30 includes both titanium (e.g, titania or substoichiometric titanium oxide) and a material selected from the group consisting of nitrogen, tantalum, copper, silica, palladium, tin, tungsten, niobium, and molybdenum. The nitrogen, copper, tantalum, silicon, silica, palladium, tin, tungsten, niobium, or molybdenum can also simply be a dopant in some embodiments. Such a dopant can be present in an amount of up to 5%, for example about 2%.
In some cases, the film 30 includes titania and nitrogen, titania and silica, titania and copper, titania and tantalum, titania and palladium, titania and tin, titania and tungsten, titania and niobium, or titania and molybdenum. In still other cases, the film 30 comprises substoichiometric titanium oxide and nitrogen, substoichiometric titanium oxide and silica, substoichiometric titanium oxide and copper, substoichiometric titanium oxide and tantalum, substoichiometric titanium oxide and palladium, substoichiometric titanium oxide and tin, substoichiometric titanium oxide and tungsten, substoichiometric titanium oxide and niobium, or substoichiometric titanium oxide and molybdenum. One further embodiment provides a film 30 comprising titania, silica, and nitrogen. When present, the copper can optionally be oxidized. When the film 30 includes at least one of the noted additional materials, the underlayer can be formed of any desired material, or it can be omitted entirely.
When provided, the underlying film 20 can optionally comprise one or more of the following materials: tungsten oxide, aluminum oxide, niobium oxide and/or zirconium oxide. In certain embodiments, the film comprises a material selected from the group consisting of tungsten oxide or niobium oxide. In some cases, the film 20 consists essentially of tungsten oxide or niobium oxide. In other embodiments, the film comprises a material selected from the group consisting of aluminum oxide or zirconium oxide. In some cases, the film 20 consists essentially of aluminum oxide or zirconium oxide.
In some embodiments, the film 20 is a mixed film comprising tungsten oxide and/or aluminum oxide and/or niobium oxide and/or zirconium oxide and/or another material. In certain cases, the film 20 is a mixed film including silica, silicon, titania, titanium, and/or substoichiometric titanium oxide. For example, such a mixed film can include a mix of tungsten oxide and silica, silicon, titania, titanium, and/or substoichiometric titanium oxide, or a mix of aluminum oxide and silica, silicon, titania, titanium, and/or substoichiometric titanium oxide, or a mix of niobium oxide and silica, silicon, titania, titanium, and/or substoichiometric titanium oxide, or a mix of zirconium oxide and silica, silicon, titania, titanium, and/or substoichiometric titanium oxide.
When provided, the mixed film can be a homogenous film, or it can be a graded film. In some embodiments, a graded film is provided having, from the substrate surface outwardly, a substantially continuously decreasing concentration of silica, silicon, titania, titanium, and/or substoichiometric titanium oxide and a substantially continuously increasing concentration of tungsten oxide. In other embodiments, a graded film is provided having, from the substrate surface outwardly, a substantially continuously decreasing concentration of silica, silicon, titania, titanium, and/or substoichiometric titanium oxide and a substantially continuously increasing concentration of aluminum oxide. In yet other embodiments, a graded film is provided having, from the substrate surface outwardly, a substantially continuously decreasing concentration of silica, silicon, titania, titanium, and/or substoichiometric titanium oxide and a substantially continuously increasing concentration of niobium oxide. In yet other embodiments, a graded film is provided having, from the substrate surface outwardly, a substantially continuously decreasing concentration of silica, silicon, titania, titanium, and/or substoichiometric titanium oxide, and a substantially continuously increasing concentration of zirconium oxide.
The underlying film 20 optionally has a thickness of less than about 250 angstroms, less than about 200 angstroms, less than about 150 angstroms, less than about 125 angstroms, less than 100 angstroms, or even less than about 75 angstroms. One particular embodiment provides the film 20 at thicknesses of less than 65 angstroms (e.g., 50 angstroms or less). In some cases, the film 20 has a thickness of between about 5 angstroms and about 200 angstroms, such as between about 15 angstroms and about 150 angstroms. In certain cases, the film 20 has a thickness of 25-40 angstroms.
In some embodiments, a thin film may be provided under or over the film 20 to improve adhesion and durability of the film 20. In certain embodiments, a thin film is provided under the film 20 and another thin film is provided over the film 20. In
With reference to
In one particular embodiment, the photocatalytic coating includes, from the substrate surface outwardly, a silica film (optionally deposited directly onto the substrate) having a thickness of about 75 angstroms, a tungsten oxide film deposited directly onto the silica film and having a thickness of about 25 angstroms, and a titania film deposited directly onto the tungsten oxide film and having a thickness of between about 25 angstroms and about 40 angstroms.
In another particular embodiment, the photocatalytic coating includes, from the substrate surface outwardly, a silica film (optionally deposited directly onto the substrate) having a thickness of about 75 angstroms, a first zirconia film deposited directly onto the silica film and having a thickness of between about 10 angstroms and about 20 angstroms, a tungsten oxide film deposited directly onto the first zirconia film and having a thickness of about 25 angstroms, a second zirconia film deposited directly onto the tungsten oxide film and having a thickness of between about 10 angstroms and about 20 angstroms and a titania film deposited directly onto the second zirconia film and having a thickness of between about 25 angstroms and about 40 angstroms.
In yet another particular embodiment, the photocatalytic coating includes, from the substrate surface outwardly, a niobium oxide film deposited directly onto the substrate surface and having a thickness of between about 10 angstroms and about 20 angstroms, a tungsten oxide film deposited directly onto the niobium oxide film and having at thickness of about 25 angstroms and a titania film deposited directly onto the tungsten oxide film and having a thickness of between about 25 angstroms and about 40 angstroms. Likewise, in another embodiment, the photocatalytic coating includes, from the substrate surface outwardly, a tungsten oxide film deposited directly onto the substrate surface and having at thickness of about 25 angstroms, a niobium oxide film deposited directly onto the tungsten oxide film and having a thickness of between about 10 angstroms and about 20 angstroms and a titania film deposited directly onto the niobium oxide film and having a thickness of between about 25 angstroms and about 40 angstroms.
In some cases, the photocatalytic coating 50 is provided on a first major surface of the substrate and another functional coating is provided on an opposite major surface of the same substrate.
With reference to
Methods for producing coated substrates are also provided. Each film of the photocatalytic coating 50 can be deposited by a variety of well known coating techniques. Suitable coating techniques include, but are not limited to, chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition, pyrolytic deposition, sol-gel deposition and sputtering. In certain embodiments, the films are deposited by sputtering, optionally at a low temperature (e.g., while maintaining the substrate at below about 250 degrees Celsius, and perhaps more preferably below 200 degrees Celsius). Sputtering is well known in the present art.
Equipment for producing coated substrates are also provided.
When the coating is done by sputtering, the sputtering can optionally be performed while maintaining the substrate at a temperature of less than about 250 degrees Celsius, and more preferably less than 200 degrees Celsius (e.g., without supplemental heating of the substrate). In such cases, the coating can optionally be sputter deposited without any supplemental means for delivering energy to a growing film (e.g., without any heating of the substrate beyond that which occurs normally from the plasma and ion bombardment of conventional sputtering). In other cases, one or more films of the coating 50 is/are deposited by a sputter deposition technique that includes a supplemental heating (or other supplemental energy delivery). Additionally or alternatively, the coating 50 once deposited may be subjected to an ion treatment by operating an ion gun and accelerating ions against the coating (e.g., to enhance the low-maintenance properties of the coating). In some cases, this is done for embodiments where the photocatalytic film includes titania and one or more of the above-noted materials.
In certain embodiments, a method of depositing a photocatalytic coating 50 is provided, the method comprising depositing an underlying film over a major surface of a substrate (e.g., a glass sheet) and then depositing a photocatalytic film comprising titania directly over the underlying film. In cases where the photocatalytic film consists essentially of titania, a sputtering chamber as illustrated in
In cases where the photocatalytic film is a film including titania and another material, a co-sputtering method can optionally be used. For example, one of the targets 280a or 280b can optionally comprise titanium while the other target comprises another material. In some cases, the other target comprises copper, so the resulting film comprises titania and copper (such copper optionally being oxidized). In other cases, the other target comprises silicon so the resulting film comprises titania and silica. The target comprising silicon can be a pure silicon target and an oxidizing atmosphere (optionally also including some nitrogen) can be introduced into the chamber. The target comprising silicon can alternatively be a silicon oxide target, so that the target can be sputtered in an inert (or slightly oxidizing and/or slightly nitriding) atmosphere. In other cases, the other target comprises palladium so the resulting film comprises titania and palladium. In other cases, the other target comprises tin so the resulting film comprises titania and tin. In other cases, the other target comprises tungsten so the resulting film comprises titania and tungsten. In other cases, the other target comprises niobium so the resulting film comprises titania and niobium. In other cases, the other target comprises molybdenum so the resulting film comprises titania and molybdenum.
In cases where the photocatalytic film is a mixed film including titania, silica and nitrogen, one of the targets 280a or 280b can comprise titanium (and/or titanium oxide) and the other target can comprise silicon (and/or silicon oxide). A nitrogen containing atmosphere can then be used in the chamber. Rather than using a co-sputtering method for mixed film embodiments, each target can comprise titanium and at least one additional material selected from the group consisting of silicon and copper. Further, in any embodiment where nitrogen is incorporated into the film 30, the deposition atmosphere can include nitrogen.
Also, in cases where the photocatalytic coating is a mixed film, a method of sputtering an alloyed target can be used. For example, one or both of the targets 280a and 280b can be an alloyed target. The alloyed target can be an alloy selected from the following; titanium and copper, titanium and tantalum, titanium and silicon, titanium and palladium, titanium and tin, titanium and tungsten, titanium and niobium, titanium and molybdenum, substoichiometric titanium oxide and copper, substoichiometric titanium oxide and tantalum, substoichiometric titanium oxide and silicon, substoichiometric titanium oxide and palladium, substoichiometric titanium oxide and tin, substoichiometric titanium oxide and tungsten, substoichiometric titanium oxide and niobium, or substoichiometric titanium oxide and molybdenum. In some cases, the amount of titanium or substoichiometric titanium oxide in the target is present in a higher amount than the other material. In some cases, the titanium or substoichiometric titanium oxide in the target is simply doped with the other material. The alloyed target can also be sputtered in a reactive atmosphere, such as an oxidizing or nitriding atmosphere. In cases where the alloyed target includes substoichiometric titanium oxide, the target can be sputtered in inert atmosphere, slightly oxidizing atmosphere, or slightly nitriding atmosphere.
In certain embodiments, a method of depositing an underlying film 20 is provided. The method comprises depositing an underlying film over a major surface of a substrate (e.g., a glass sheet). A sputtering chamber as illustrated in
In cases where the underlying film is a mixed film, a co-sputtering method can optionally be used. For example, one of the targets 280a or 280b can optionally comprise tungsten, aluminum, niobium, or zirconium while the other target comprises another material. In some cases, one target comprises metal tungsten, metal aluminum, metal niobium, or metal zirconium and the other target comprises silicon, titanium, or substoichiometric titanium oxide and both are co-sputtered in an oxidizing atmosphere (optionally including some nitrogen). In other cases, one target comprises tungsten oxide, aluminum oxide, niobium oxide, or zirconium oxide and the other target comprises silicon oxide, titanium oxide, or substoichiometric titanium oxide and both are co-sputtered in an inert atmosphere (optionally with a small amount of oxygen and or nitrogen is used in the chamber).
Also, in cases where the underlying film is a mixed film, a method of sputtering an alloyed target can be used. For example, one or both of the targets 280a and 280b can be an alloyed target. The alloyed target can be an alloy selected from the following: tungsten and titanium, tungsten and silicon, tungsten and substoichiometric titanium oxide, aluminum and titanium, aluminum and silicon, aluminum and substoichiometric titanium oxide, niobium and titanium, niobium and silicon, niobium and substoichiometric titanium oxide, zirconium and titanium, zirconium and silicon, and zirconium and substoichiometric titanium oxide. The alloyed targets are sputtered in an oxidizing atmosphere (optionally including some nitrogen).
While a preferred embodiment of the present invention has been described, it should be understood that various changes, adaptations and modifications may be made therein without departing from the spirit of the invention and the scope of the appended claims.
The present application claims priority to U.S. Application No. 60/791,107, filed Apr. 11, 2006, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4166018 | Chapin | Aug 1979 | A |
4556599 | Sato | Dec 1985 | A |
4663234 | Bouton | May 1987 | A |
4692428 | Murrell | Sep 1987 | A |
4838935 | Dunlop | Jun 1989 | A |
4854670 | Mellor | Aug 1989 | A |
4883574 | dos Santos Pereina Ribeiro | Nov 1989 | A |
4902580 | Gillery | Feb 1990 | A |
4931315 | Mellor | Jun 1990 | A |
4940636 | Brock | Jul 1990 | A |
4954465 | Kawashima | Sep 1990 | A |
4963240 | Fukasawa | Oct 1990 | A |
4995893 | Jenkins | Feb 1991 | A |
4997576 | Heller | Mar 1991 | A |
5006248 | Anderson | Apr 1991 | A |
5035784 | Anderson | Jul 1991 | A |
5047131 | Wolfe | Sep 1991 | A |
5073451 | Iida | Dec 1991 | A |
5104539 | Anderson | Apr 1992 | A |
5110637 | Ando | May 1992 | A |
5160534 | Hiraki | Nov 1992 | A |
5168003 | Proscia | Dec 1992 | A |
5176897 | Lester | Jan 1993 | A |
5179468 | Gasloli | Jan 1993 | A |
5234487 | Wickersham | Aug 1993 | A |
5298048 | Lingle | Mar 1994 | A |
5298338 | Hiraki | Mar 1994 | A |
5306569 | Hiraki | Apr 1994 | A |
5318830 | Takamatsu | Jun 1994 | A |
5356718 | Athey | Oct 1994 | A |
5397050 | Mueller | Mar 1995 | A |
5417827 | Finley | May 1995 | A |
5470527 | Yamanobe | Nov 1995 | A |
5496621 | Makita | Mar 1996 | A |
5512152 | Schicht | Apr 1996 | A |
5513039 | Lu | Apr 1996 | A |
5514485 | Ando | May 1996 | A |
5525406 | Goodman | Jun 1996 | A |
5527755 | Wenski | Jun 1996 | A |
5552180 | Finley | Sep 1996 | A |
5569362 | Lerbet | Oct 1996 | A |
5595813 | Ogawa | Jan 1997 | A |
5635287 | Balian | Jun 1997 | A |
5679978 | Kawahara | Oct 1997 | A |
5686372 | Langford | Nov 1997 | A |
5715103 | Amano | Feb 1998 | A |
5744215 | Neuman | Apr 1998 | A |
5780149 | McCurdy | Jul 1998 | A |
5780380 | Endoh | Jul 1998 | A |
5811191 | Neuman | Sep 1998 | A |
5812405 | Meredith, Jr. | Sep 1998 | A |
5827490 | Jones | Oct 1998 | A |
5830252 | Finley | Nov 1998 | A |
5854169 | Heller | Dec 1998 | A |
5854708 | Komatsu | Dec 1998 | A |
5863398 | Kardokus | Jan 1999 | A |
5869187 | Nakamura | Feb 1999 | A |
5871843 | Yoneda | Feb 1999 | A |
5873203 | Thiel | Feb 1999 | A |
5874701 | Watanabe | Feb 1999 | A |
5877391 | Kanno | Mar 1999 | A |
5896553 | Lo | Apr 1999 | A |
5897957 | Goodman | Apr 1999 | A |
5935716 | McCurdy | Aug 1999 | A |
5939188 | Moncur | Aug 1999 | A |
5939201 | Boire | Aug 1999 | A |
5948538 | Brochot | Sep 1999 | A |
5981426 | Langford | Nov 1999 | A |
5993734 | Snowman | Nov 1999 | A |
6013372 | Hayakawa | Jan 2000 | A |
6027766 | Greenberg | Feb 2000 | A |
6037289 | Chopin | Mar 2000 | A |
6040939 | Demiryont | Mar 2000 | A |
6054227 | Greenberg | Apr 2000 | A |
6068914 | Boire | May 2000 | A |
6071606 | Yamazaki | Jun 2000 | A |
6071623 | Sugawara | Jun 2000 | A |
6074981 | Tada | Jun 2000 | A |
6077482 | Kanno | Jun 2000 | A |
6077492 | Anpo | Jun 2000 | A |
6090489 | Hayakawa | Jul 2000 | A |
6103363 | Boire | Aug 2000 | A |
6120747 | Sugishima | Sep 2000 | A |
6139803 | Watanabe | Oct 2000 | A |
6139968 | Knapp | Oct 2000 | A |
6153067 | Maishev | Nov 2000 | A |
6154311 | Simmons, Jr. | Nov 2000 | A |
6156409 | Doushita | Dec 2000 | A |
6165256 | Hayakawa | Dec 2000 | A |
6179971 | Kittrell | Jan 2001 | B1 |
6179972 | Kittrell | Jan 2001 | B1 |
6193378 | Tonar | Feb 2001 | B1 |
6193856 | Kida | Feb 2001 | B1 |
6194346 | Tada | Feb 2001 | B1 |
6228480 | Kimura | May 2001 | B1 |
6228502 | Saitoh | May 2001 | B1 |
6238738 | McCurdy | May 2001 | B1 |
6242752 | Soma | Jun 2001 | B1 |
6248397 | Ye | Jun 2001 | B1 |
6274244 | Finley | Aug 2001 | B1 |
6299981 | Azzopardi | Oct 2001 | B1 |
6319326 | Koh | Nov 2001 | B1 |
6326079 | Philippe | Dec 2001 | B1 |
6329060 | Barkac | Dec 2001 | B1 |
6334938 | Kida | Jan 2002 | B2 |
6335479 | Yamada | Jan 2002 | B1 |
6336998 | Wang | Jan 2002 | B1 |
6337124 | Anderson | Jan 2002 | B1 |
6346174 | Finley | Feb 2002 | B1 |
6352755 | Finley | Mar 2002 | B1 |
6362121 | Chopin | Mar 2002 | B1 |
6365014 | Finley | Apr 2002 | B2 |
6368664 | Veerasamy | Apr 2002 | B1 |
6368668 | Kobayashi | Apr 2002 | B1 |
6379776 | Tada | Apr 2002 | B1 |
6387844 | Fujishima | May 2002 | B1 |
6413581 | Greenberg | Jul 2002 | B1 |
6414213 | Ohmori | Jul 2002 | B2 |
6425670 | Komatsu | Jul 2002 | B1 |
6436542 | Ogino | Aug 2002 | B1 |
6440278 | Kida | Aug 2002 | B1 |
6461686 | Vanderstraeten | Oct 2002 | B1 |
6464951 | Kittrell | Oct 2002 | B1 |
6465088 | Talpaert | Oct 2002 | B1 |
6468402 | Vanderstraeten | Oct 2002 | B1 |
6468403 | Shimizu | Oct 2002 | B1 |
6468428 | Nishii | Oct 2002 | B1 |
6511587 | Vanderstraeten | Jan 2003 | B2 |
6570709 | Katayama | May 2003 | B2 |
6576344 | Doushita | Jun 2003 | B1 |
6582839 | Yamamoto | Jun 2003 | B1 |
6596664 | Kittrell | Jul 2003 | B2 |
6635155 | Miyamura | Oct 2003 | B2 |
6673738 | Ueda | Jan 2004 | B2 |
6677063 | Finley | Jan 2004 | B2 |
6679978 | Johnson | Jan 2004 | B2 |
6680135 | Boire | Jan 2004 | B2 |
6716323 | Siddle | Apr 2004 | B1 |
6720066 | Talpaert | Apr 2004 | B2 |
6722159 | Greenberg | Apr 2004 | B2 |
6730630 | Okusako | May 2004 | B2 |
6733889 | Varanasi | May 2004 | B2 |
6743343 | Kida | Jun 2004 | B2 |
6743749 | Morikawa et al. | Jun 2004 | B2 |
6761984 | Anzaki | Jul 2004 | B2 |
6770321 | Hukari | Aug 2004 | B2 |
6777030 | Veerasamy | Aug 2004 | B2 |
6781738 | Kikuchi | Aug 2004 | B2 |
6787199 | Anpo | Sep 2004 | B2 |
6789906 | Tonar | Sep 2004 | B2 |
6794065 | Morikawa | Sep 2004 | B1 |
6800182 | Mitsui | Oct 2004 | B2 |
6800354 | Baumann | Oct 2004 | B2 |
6804048 | MacQuart | Oct 2004 | B2 |
6811856 | Nun | Nov 2004 | B2 |
6818309 | Talpaert | Nov 2004 | B1 |
6829084 | Takaki | Dec 2004 | B2 |
6830785 | Hayakawa | Dec 2004 | B1 |
6833089 | Kawahara | Dec 2004 | B1 |
6835688 | Morikawa | Dec 2004 | B2 |
6840061 | Hurst | Jan 2005 | B1 |
6846556 | Boire | Jan 2005 | B2 |
6869644 | Buhay | Mar 2005 | B2 |
6870657 | Fitzmaurice | Mar 2005 | B1 |
6872441 | Baumann | Mar 2005 | B2 |
6875319 | Nadaud | Apr 2005 | B2 |
6878242 | Wang | Apr 2005 | B2 |
6878450 | Anpo | Apr 2005 | B2 |
6881701 | Jacobs | Apr 2005 | B2 |
6890656 | Iacovangelo | May 2005 | B2 |
6908698 | Yoshida | Jun 2005 | B2 |
6908881 | Sugihara | Jun 2005 | B1 |
6916542 | Buhay | Jul 2005 | B2 |
6929862 | Hurst | Aug 2005 | B2 |
6939611 | Fujishima | Sep 2005 | B2 |
6952299 | Fukazawa | Oct 2005 | B1 |
6954240 | Hamamoto | Oct 2005 | B2 |
6962759 | Buhay | Nov 2005 | B2 |
6964731 | Krisko | Nov 2005 | B1 |
6997570 | Nakaho | Feb 2006 | B2 |
7005188 | Anderson | Feb 2006 | B2 |
7005189 | Tachibana | Feb 2006 | B1 |
7011691 | Abe | Mar 2006 | B2 |
7022416 | Teranishi | Apr 2006 | B2 |
7049002 | Greenberg | May 2006 | B2 |
7052585 | Veerasamy | May 2006 | B2 |
7060643 | Sanbayashi | Jun 2006 | B2 |
7096692 | Greenberg et al. | Aug 2006 | B2 |
7118936 | Kobayashi | Oct 2006 | B2 |
7138181 | McCurdy | Nov 2006 | B2 |
7157840 | Fujishima | Jan 2007 | B2 |
7175911 | Zhou | Feb 2007 | B2 |
7179527 | Sato | Feb 2007 | B2 |
7195821 | Tixhon | Mar 2007 | B2 |
7198699 | Thomsen | Apr 2007 | B2 |
7211513 | Remington, Jr. | May 2007 | B2 |
7211543 | Nakabayash | May 2007 | B2 |
7223523 | Boykin | May 2007 | B2 |
7232615 | Buhay | Jun 2007 | B2 |
7255831 | Wei | Aug 2007 | B2 |
7261942 | Andrews | Aug 2007 | B2 |
7264741 | Hartig | Sep 2007 | B2 |
7294365 | Hayakawa | Nov 2007 | B2 |
7294404 | Krisko | Nov 2007 | B2 |
7300634 | Yaniv | Nov 2007 | B2 |
7309405 | Cho | Dec 2007 | B2 |
7309664 | Marzolin | Dec 2007 | B1 |
7311961 | Finley | Dec 2007 | B2 |
7320827 | Fujisawa | Jan 2008 | B2 |
7323249 | Athey | Jan 2008 | B2 |
7348054 | Jacquiod | Mar 2008 | B2 |
7354624 | Millero | Apr 2008 | B2 |
7361963 | Ikadai | Apr 2008 | B2 |
7387839 | Gueneau | Jun 2008 | B2 |
20010030808 | Komatsu | Oct 2001 | A1 |
20020012779 | Miyashita | Jan 2002 | A1 |
20020016250 | Hayakawa | Feb 2002 | A1 |
20020028361 | Boire | Mar 2002 | A1 |
20020071956 | Boire | Jun 2002 | A1 |
20020110638 | Boire | Aug 2002 | A1 |
20020119307 | Boire | Aug 2002 | A1 |
20020155299 | Harris | Oct 2002 | A1 |
20020172775 | Buhay | Nov 2002 | A1 |
20030038028 | Schultheis | Feb 2003 | A1 |
20030039843 | Johnson | Feb 2003 | A1 |
20030054177 | Jin | Mar 2003 | A1 |
20030096701 | Fujishima | May 2003 | A1 |
20030143437 | Ohtsu | Jul 2003 | A1 |
20030152780 | Baumann | Aug 2003 | A1 |
20030180547 | Buhay | Sep 2003 | A1 |
20030186089 | Kikuchi | Oct 2003 | A1 |
20030207028 | Boire | Nov 2003 | A1 |
20030215647 | Yoshida | Nov 2003 | A1 |
20030224620 | Kools | Dec 2003 | A1 |
20030235720 | Athey | Dec 2003 | A1 |
20040005466 | Arai | Jan 2004 | A1 |
20040009356 | Medwick | Jan 2004 | A1 |
20040043260 | Nadaud | Mar 2004 | A1 |
20040069623 | Vanderstraeten | Apr 2004 | A1 |
20040115362 | Hartig | Jun 2004 | A1 |
20040140198 | Cho | Jul 2004 | A1 |
20040149307 | Hartig | Aug 2004 | A1 |
20040179978 | Kobayashi | Sep 2004 | A1 |
20040180216 | Veerasamy | Sep 2004 | A1 |
20040180220 | Gueneau | Sep 2004 | A1 |
20040196580 | Nakaho | Oct 2004 | A1 |
20040202890 | Kutilek | Oct 2004 | A1 |
20040206024 | Graf | Oct 2004 | A1 |
20040214010 | Murata | Oct 2004 | A1 |
20040216487 | Boire | Nov 2004 | A1 |
20040219348 | Jacquiod | Nov 2004 | A1 |
20040241040 | Wei | Dec 2004 | A1 |
20040241490 | Finley | Dec 2004 | A1 |
20040247901 | Suzuki | Dec 2004 | A1 |
20040248725 | Hiraoka | Dec 2004 | A1 |
20040253382 | De Bosscher | Dec 2004 | A1 |
20040253471 | Thiel | Dec 2004 | A1 |
20050003672 | Kools | Jan 2005 | A1 |
20050016835 | Krisko | Jan 2005 | A1 |
20050019505 | Hamamoto | Jan 2005 | A1 |
20050019700 | Hayakawa | Jan 2005 | A1 |
20050020444 | Hiraoka | Jan 2005 | A1 |
20050025982 | Krisko | Feb 2005 | A1 |
20050031876 | Lu | Feb 2005 | A1 |
20050042375 | Minami | Feb 2005 | A1 |
20050044894 | Nelson | Mar 2005 | A1 |
20050051422 | Rietzel | Mar 2005 | A1 |
20050084688 | Garrec | Apr 2005 | A1 |
20050137084 | Krisko | Jun 2005 | A1 |
20050191505 | Akarsu | Sep 2005 | A1 |
20050191522 | Anzaki | Sep 2005 | A1 |
20050221098 | Azzopardi | Oct 2005 | A1 |
20050227008 | Okada | Oct 2005 | A1 |
20050233893 | Sakatani | Oct 2005 | A1 |
20050233899 | Anzaki | Oct 2005 | A1 |
20050238861 | Buhay | Oct 2005 | A1 |
20050245382 | Iwahashi | Nov 2005 | A1 |
20050245383 | Iwahashi | Nov 2005 | A1 |
20050247555 | Thiel | Nov 2005 | A1 |
20050248824 | Fukazawa | Nov 2005 | A1 |
20050252108 | Sanderson | Nov 2005 | A1 |
20050258030 | Finley | Nov 2005 | A1 |
20050266248 | Millero | Dec 2005 | A1 |
20050272590 | Iwahashi | Dec 2005 | A1 |
20060003545 | Veerasamy | Jan 2006 | A1 |
20060011945 | Spitzer-Keller | Jan 2006 | A1 |
20060014027 | Oudard | Jan 2006 | A1 |
20060014050 | Gueneau | Jan 2006 | A1 |
20060019104 | Hurst | Jan 2006 | A1 |
20060029813 | Kutilek | Feb 2006 | A1 |
20060031681 | Smith | Feb 2006 | A1 |
20060032739 | Ikeda | Feb 2006 | A1 |
20060051597 | Anzaki | Mar 2006 | A1 |
20060055513 | French | Mar 2006 | A1 |
20060057298 | Krisko | Mar 2006 | A1 |
20060057401 | Krisko | Mar 2006 | A1 |
20060070869 | Krisko | Apr 2006 | A1 |
20060090996 | Yaniv | May 2006 | A1 |
20060102465 | Blondeel | May 2006 | A1 |
20060107599 | Luten | May 2006 | A1 |
20060110605 | Luten | May 2006 | A1 |
20060118406 | Delahoy | Jun 2006 | A1 |
20060121315 | Myli | Jun 2006 | A1 |
20060127604 | Ikadai | Jun 2006 | A1 |
20060134322 | Harris | Jun 2006 | A1 |
20060134436 | Maschwitz | Jun 2006 | A1 |
20060141290 | Sheel | Jun 2006 | A1 |
20060152832 | Aumercier | Jul 2006 | A1 |
20060159906 | Messere | Jul 2006 | A1 |
20060165996 | Veerasamy | Jul 2006 | A1 |
20060194066 | Ye | Aug 2006 | A1 |
20060196765 | Cheng | Sep 2006 | A1 |
20060201203 | Labrousse | Sep 2006 | A1 |
20060210783 | Seder | Sep 2006 | A1 |
20060210810 | Harris | Sep 2006 | A1 |
20060225999 | Fukawa | Oct 2006 | A1 |
20060228476 | McCurdy | Oct 2006 | A1 |
20060234064 | Baubet | Oct 2006 | A1 |
20060247125 | Choi | Nov 2006 | A1 |
20060263610 | Greenberg | Nov 2006 | A1 |
20060275612 | Baubet | Dec 2006 | A1 |
20070025000 | Lin | Feb 2007 | A1 |
20070029187 | Krasnov | Feb 2007 | A1 |
20070029527 | Mills | Feb 2007 | A1 |
20070030569 | Lu | Feb 2007 | A1 |
20070031593 | Krasnov | Feb 2007 | A1 |
20070031681 | Anzaki | Feb 2007 | A1 |
20070031682 | Krasnov | Feb 2007 | A1 |
20070042893 | Koike | Feb 2007 | A1 |
20070065670 | Varaprasad | Mar 2007 | A1 |
20070077406 | Jacobs | Apr 2007 | A1 |
20070087187 | Lu | Apr 2007 | A1 |
20070092734 | Durandeau | Apr 2007 | A1 |
20070108043 | Lu | May 2007 | A1 |
20070109543 | Hoffman | May 2007 | A1 |
20070111012 | Rimmer | May 2007 | A1 |
20070116966 | Mellott | May 2007 | A1 |
20070116967 | Medwick | May 2007 | A1 |
20070129248 | Labrousse | Jun 2007 | A1 |
20070134501 | McMaster | Jun 2007 | A1 |
20070137673 | Boykin | Jun 2007 | A1 |
20070148064 | Labrousse | Jun 2007 | A1 |
20070184291 | Harris | Aug 2007 | A1 |
20070196563 | Wuwen | Aug 2007 | A1 |
20070218264 | Gueneau | Sep 2007 | A1 |
20070218265 | Harris | Sep 2007 | A1 |
20070218311 | O'Shaughnessy | Sep 2007 | A1 |
20070224357 | Buhay | Sep 2007 | A1 |
20070231501 | Finley | Oct 2007 | A1 |
20070237968 | Kijima | Oct 2007 | A1 |
20070254163 | Veerasamy | Nov 2007 | A1 |
20070254164 | Veerasamy | Nov 2007 | A1 |
20070275252 | Krasnov | Nov 2007 | A1 |
20070275253 | Thiel | Nov 2007 | A1 |
20080011408 | Maschwitz | Jan 2008 | A1 |
20080014349 | Otani | Jan 2008 | A1 |
20080026161 | Frings | Jan 2008 | A1 |
20080115471 | Labrousse | May 2008 | A1 |
20080119352 | Kitaguchi | May 2008 | A1 |
20080124460 | Athey | May 2008 | A1 |
20080188370 | Vormberg | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
0285130 | Oct 1988 | EP |
0574119 | Apr 1993 | EP |
0345045 | Oct 1993 | EP |
0901991 | Mar 1999 | EP |
1066878 | Jan 2001 | EP |
1074525 | Feb 2001 | EP |
0816466 | May 2006 | EP |
1506143 | May 2006 | EP |
2738836 | Mar 1997 | FR |
2884147 | Oct 2006 | FR |
2000094569 | Apr 2000 | JP |
2006305527 | Nov 2006 | JP |
9707069 | Feb 1997 | WO |
9737801 | Oct 1997 | WO |
9806675 | Feb 1998 | WO |
9911896 | Mar 1999 | WO |
9944954 | Sep 1999 | WO |
0015571 | Feb 2000 | WO |
0027771 | May 2000 | WO |
0040402 | Jul 2000 | WO |
0075087 | Dec 2000 | WO |
0168786 | Sep 2001 | WO |
0240417 | May 2002 | WO |
0249980 | Jun 2002 | WO |
0285809 | Oct 2002 | WO |
03006393 | Jan 2003 | WO |
03009061 | Jan 2003 | WO |
03050056 | Jun 2003 | WO |
03062166 | Jul 2003 | WO |
03068500 | Aug 2003 | WO |
03072849 | Sep 2003 | WO |
03087002 | Oct 2003 | WO |
03087005 | Oct 2003 | WO |
03091471 | Nov 2003 | WO |
03093188 | Nov 2003 | WO |
03095385 | Nov 2003 | WO |
03097549 | Nov 2003 | WO |
2004013376 | Feb 2004 | WO |
2004034105 | Apr 2004 | WO |
2004061151 | Jul 2004 | WO |
2004085699 | Oct 2004 | WO |
2004085701 | Oct 2004 | WO |
2004086104 | Oct 2004 | WO |
2004087985 | Oct 2004 | WO |
2004089836 | Oct 2004 | WO |
2004089838 | Oct 2004 | WO |
2004089839 | Oct 2004 | WO |
2004092088 | Oct 2004 | WO |
2004092089 | Oct 2004 | WO |
2004097063 | Nov 2004 | WO |
2004108618 | Dec 2004 | WO |
2004108619 | Dec 2004 | WO |
2004108846 | Dec 2004 | WO |
2004113064 | Dec 2004 | WO |
2005000758 | Jan 2005 | WO |
2005000759 | Jan 2005 | WO |
2005005337 | Jan 2005 | WO |
2005007286 | Jan 2005 | WO |
2005009914 | Feb 2005 | WO |
2005012593 | Feb 2005 | WO |
2005023723 | Mar 2005 | WO |
2005040056 | May 2005 | WO |
2005102952 | Nov 2005 | WO |
2005110937 | Nov 2005 | WO |
2005111257 | Nov 2005 | WO |
2006004169 | Jan 2006 | WO |
2006007062 | Jan 2006 | WO |
2006019995 | Feb 2006 | WO |
2006020477 | Feb 2006 | WO |
2006028729 | Mar 2006 | WO |
2006055513 | May 2006 | WO |
WO2006054954 | May 2006 | WO |
2006057830 | Jun 2006 | WO |
2006062902 | Jun 2006 | WO |
2006064059 | Jun 2006 | WO |
2006064060 | Jun 2006 | WO |
2006066101 | Jun 2006 | WO |
2006077839 | Jul 2006 | WO |
2006089964 | Aug 2006 | WO |
2006101994 | Sep 2006 | WO |
2006108985 | Oct 2006 | WO |
2006117345 | Nov 2006 | WO |
2006134335 | Dec 2006 | WO |
2007016127 | Feb 2007 | WO |
2007018974 | Feb 2007 | WO |
2007018975 | Feb 2007 | WO |
2007045805 | Apr 2007 | WO |
2007080428 | Jul 2007 | WO |
2007093823 | Aug 2007 | WO |
2007096461 | Aug 2007 | WO |
WO2007092511 | Aug 2007 | WO |
2007121215 | Oct 2007 | WO |
2007110482 | Oct 2007 | WO |
2007121211 | Oct 2007 | WO |
WO2007127060 | Nov 2007 | WO |
WO2007130140 | Nov 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20070264494 A1 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
60791107 | Apr 2006 | US |