This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2016-169734, filed on Aug. 31, 2016, the entire contents of which are incorporated herein by reference.
The embodiments discussed herein are directed to a photochemical electrode and an oxygen evolution device.
Researches have been made on technology for oxygen evolution through water splitting. This technology generates pairs of electrons and holes in an optical absorption layer and produces oxygen gas at an anode-side photochemical electrode. Therefore, what are important to obtain high splitting efficiency is that the light is led to the optical absorption layer highly efficiently and that the activity of a catalyst is high. It is also important that the photochemical electrode is chemically stable in an aqueous electrolyte since an electrolyte is added to the water for the water splitting. If a photochemical electrode is not chemically stable, splitting efficiency is degraded due to alteration of the photochemical electrode.
However, in conventional photochemical electrodes, it is not possible to produce oxygen gas highly efficiently while keeping their chemical stability.
Patent Document 1: International Publication Pamphlet No. WO 2011/089904
Patent Document 2: Japanese Laid-Open Patent Publication No. 2015-98644
According to an aspect of the embodiments, a photochemical electrode includes: an optical absorption layer; a catalyst layer for oxygen evolution reaction over the optical absorption layer; and a conducting layer over the catalyst layer. A valance band maximum of the catalyst layer is higher than a valance band maximum of the optical absorption layer, and a work function of the conducting layer is larger than a work function of the catalyst layer.
According to another aspect of the embodiments, an oxygen evolution device includes: an aqueous electrolyte; the above-described photochemical electrode in the aqueous electrolyte; and a cathode electrode in the aqueous electrolyte.
The object and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention.
Hereinafter, embodiments will be specifically described with reference to the attached drawings.
First, a first embodiment will be described. The first embodiment is an example of a photochemical electrode.
As illustrated in
According to this embodiment, as illustrated in
For example, the optical transmission layer 11 is an undoped SrTiO3 substrate having a 0.3 mm thickness, the optical absorption layer 12 is a BiFeO3 layer having a 100 nm thickness, the catalyst layer 13 is a La89Sr11CoO3 layer having a 15 nm thickness, and the conducting layer 14 is a porous Au layer having a 15 nm thickness. For example, the BiFeO3 layer and the La89Sr11CoO3 layer may be deposited on the SrTiO3 substrate by a pulsed laser deposition (PLD) method. The porous Au layer may be deposited on the La89Sr11CoO3 layer by a thermal evaporation method at room temperature.
For example, the optical transmission layer 11 is an undoped SrTiO3 substrate having a 0.5 mm thickness, the optical absorption layer 12 is a BiFeO3 layer having a 100 nm thickness, the catalyst layer 13 is a La70Sr30CoO3 layer having a 15 nm thickness, and the conducting layer 14 is a porous Au layer having a 15 nm thickness. For example, the BiFeO3 layer and the La70Sr30CoO3 layer may be deposited on the SrTiO3 substrate by a PLD method. The porous Au layer may be deposited on the La70Sr30CoO3 layer by an evaporation method.
For example, the optical transmission layer 11 is an undoped SrTiO3 substrate having a 0.5 mm thickness, the optical absorption layer 12 is a BiFeO3 layer having a 100 nm thickness, the catalyst layer 13 is a PrNiO3 layer having a 15 nm thickness, and the conducting layer 14 is a porous Au layer having a 15 nm thickness. For example, the BiFeO3 layer and the PrNiO3 layer may be deposited on the SrTiO3 substrate by a PLD method, and the porous Au layer may be deposited on the PrNiO3 layer by an evaporation method.
According to the first embodiment, owing to the presence of the conducting layer 14 over the catalyst layer 13, alternation of the catalyst layer 13 is suppressed even if the catalyst layer 13 is not stable in the aqueous electrolyte. This allows to select a material of the catalyst layer 13 regardless of chemical stability, allowing the use of a highly active material for the catalyst layer 13. Further, the light can be led to the optical absorption layer 12 through the optical transmission layer 11 despite of the presence of the conducting layer 14. This enables the highly efficient use of the light irradiating the photochemical electrode 1.
Here, characteristics of a catalyst will be described. As illustrated in
A band gap Eg1 of the optical transmission layer 11 is preferably 3 eV or more. If the band gap Eg1 is less than 3 eV, the optical transmission layer 11 may absorb the light to decrease an amount of the light reaching the optical absorption layer 12. A band gap Eg2 of the optical absorption layer 12 is preferably 3 eV or less. If the band gap Eg2 is over 3 eV, the optical absorption layer 12 may not be able to absorb the light sufficiently. The band gap Eg2 is preferably not less than 1 eV nor more than 3 eV. If the band gap Eg2 is less than 1 eV, the optical absorption layer 12 may not be able to absorb the light sufficiently, either.
A material of the optical transmission layer 11 is not limited, and the optical transmission layer 11 contains, for example, SrTiO3, (La0.3Sr0.7) (Al0.65Ta0.35)O3 (LSAT), LaAlO3, MgO, NdGaO3, or DyScO3. A material of the optical absorption layer 12 is not limited, and the optical absorption layer 12 contains, for example, an oxide including a perovskite structure, for example, BiFeO3. A material of the catalyst layer 13 is not limited, and the catalyst layer 13 contains, for example, an oxide of Co or Ni, or both of them. The conducting layer 14 is preferably porous, and is, for example, a porous Au layer.
Next, a second embodiment will be described. The second embodiment relates to an oxygen evolution device including the photochemical electrode 1.
As illustrated in
According to the oxygen evolution device 21, when light irradiates the photochemical electrode 1, pairs of electrons and holes are generated in the optical absorption layer 12, the holes oxidize water on the surface of the conducting layer 14, and oxygen gas is produced, as described above. Owing to the photochemical electrode 1 included therein, it is possible to produce the oxygen gas highly efficiently.
Next, a third embodiment will be described. The third embodiment relates to an oxygen evolution device including the photochemical electrode 1.
In the oxygen evolution device 31 according to the third embodiment, as illustrated in
According to the third embodiment, similarly to the second embodiment, owing to the photochemical electrode 1 according to the first embodiment 1 included therein, it is possible to produce the oxygen gas highly efficiently.
As one aspect, since the appropriate optical absorption layer, catalyst layer, and conducting layer are included, it is possible to produce oxygen gas highly efficiently while keeping chemical stability.
All examples and conditional language provided herein are intended for the pedagogical purposes of aiding the reader in understanding the invention and the concepts contributed by the inventor to further the art, and are not to be construed as limitations to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although one or more embodiments of the present invention have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2016-169734 | Aug 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20120285823 | Suzuki et al. | Nov 2012 | A1 |
20130008495 | Jun | Jan 2013 | A1 |
20140374270 | Minegishi | Dec 2014 | A1 |
20150111119 | Tamura et al. | Apr 2015 | A1 |
20150218719 | Deguchi | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
2015-098644 | May 2015 | JP |
2011089904 | Jul 2011 | WO |
Entry |
---|
PhysicsNet (“Photoelectric Effect”, 2012) (Year: 2012). |
Li et al (“Ultraviolet photovoltaic effect in BiFeO3/Nb—SrTiO3 heterostructure”, Journal of Applied Physics, 112, pp. 083506-1-083506-4, 2012) (Year: 2012). |
Qu et al (“Resistance switching and white-light photovoltaic effects in heterojunctions”, Applied Physics Letters, 98, pp. 173507-1-173507-3, 2011) (Year: 2011). |
Skotheim et al (“Photoelectrochemical Behavior of n-Si Electrodes Protected with Pt-Polypyrrole”, Journal of the Electrochemical Society, 129, 8, pp. 1737-1741, 1982) (Year: 1982). |
JPOA—Office Action of Japanese Patent Application No. 2016-169734 dated Feb. 25, 2020, with full machine translation. **References cited in the JPOA were previously submitted in the IDS filed on Aug. 24, 2017. |
Number | Date | Country | |
---|---|---|---|
20180057951 A1 | Mar 2018 | US |