1. Field of the Disclosure
This disclosure relates generally to a photoconductive semiconductor fiber antenna and, more particularly, to a photoconductive semiconductor fiber antenna that includes a semiconductor core and an outer cladding layer, where the cladding layer receives an optical pump beam that propagates down the cladding layer to be absorbed by the core and generate photo-carriers.
2. Discussion of the Related Art
There are situations and conditions where it is desirable to transmit and receive RF signals from a physical location without employing an antenna that can be detected at the location. Antennas are typically fabricated from electrically conducting wires or other components, and as such, will reflect incident electromagnetic waves, such as those from search radar beams. The magnitude of the radar reflectivity of a structure is referred to as its radar cross-section (RCS), and a considerable effort has been devoted to the reduction and control of a structure's RCS for various military platforms. For these situations in general, it would be desirable to transmit and receive electro-magnetic (EM) waves from a non-conductive antenna device. Unfortunately, the transmission of EM waves requires an oscillating current flow in a conductor. A next best approach is to provide an antenna structure that can be effectively turned on and off. That is the goal for the extensive research into plasma antennas, well known to those skilled in the art.
A conventional plasma antenna is essentially a structure that includes an electrical or RF discharge in a gas provided within a dielectric tube that renders the gaseous column in the tube electrically conductive by the presence of free electrons and ions. As an electrical conductor, the dielectric tube can also support RF currents impressed thereon by a transmitter or as a result of an incident received signal. Potential commercial applications for plasma antennas include a reconfigurable plasma antenna or a beam scanned array for communications systems. Although a plasma antenna provides a conductive structure that can be detected by search beams, the plasma antenna has the ability to be switched off when not in use, where it is non-conductive and thus undetectable. However, plasma antennas typically have a significant RF emission when they are active that provides a background noise that limits the sensitivity of the antenna for receiving low intensity signals. Also, plasma antennas require a heavy power source for operation.
Non-linear polycrystalline fibers are known in the art. One approach for developing such a polycrystalline fiber includes preparing a composite optical fiber preform that can be drawn into an optical fiber using a conventional fiber drawing tower, but which has a central core comprising a polycrystalline or single crystal material. To fabricate this composite perform, a hole is drilled in a fused silica preform and a single crystal or ceramic rod is precision fit into the hole. One crystalline core fiber of great interest includes a crystalline semiconductor core, such as silicon or germanium, useful for Raman applications in the millimeter-wave and infrared wavelengths. This process has created an engineered optical fiber that has significant nonlinear optical applications, but another potential application involves its application as a photoconductive fiber. It has also been proposed in the art to use crystalline semiconductor core fibers as Raman amplifiers.
The following discussion of the embodiments of the disclosure directed to a photoconducting fiber antenna is merely exemplary in nature, and is in no way intended to limit the invention or its applications or uses.
The present disclosure proposes a photoconducting semiconductor fiber antenna developed using semiconductor crystal fiber technologies. The basic operating principal of the semiconductor fiber antenna is that a relatively low power laser diode drives the semi-insulating semiconductor crystal core fiber into a photoconducting state, where the core fiber can function as a conventional RF conductive wire element or an array element.
The effective absorption coefficient αeff for the laser light propagating down the cladding layer 14 is given by:
Where αo is the absorbtion coefficient of the semiconductor material in the core 12 at the laser wavelength, rc is the core radius and rcl is the cladding radius.
The laser light absorbed in the core 12 produces photo-carriers with a number density nc given by:
Where Pl is the laser power, τ is the carrier lifetime, h is Plank's constant and v is the laser frequency.
The conductivity of the semiconductor is then generally given by the product of the density of carriers ne, their charge e and their mobility μ as:
σpc=μenc (3)
It is seen that the conductivity is proportional to the laser power density in the cladding layer 14 of the semiconductor core fiber.
There are multiple ways in which the present disclosure can be implemented and applied for useful purposes as an antenna.
The system 30 includes a laser diode 40 that provides an optical pump beam 42 and optics 44 that focus the pump beam 42 into the cladding layer 38. It would typically be desirable to provide enough pump light to reduce the resistance in the core 36 to be comparable to the radiation resistance of the antenna. In other words, the intensity of the pump light can be selectively controlled to control the efficiency of the antenna. The pump light that is absorbed in the core 36 generates photo-carries, typically electrons, in the semiconductor material that makes the core 36 conductive, and as such a radiating element. The wavelength of the pump beam 42 can be selected to be commensurate with the band-gap energy of the semiconductor material in the core 36 for efficiency purposes. The photo-carries can then be responsive to RF signals in the receive mode for signal reception purposes and transmit signals in the transmit mode for transmission purposes.
An RF signal to be transmitted is provided to the core 36 on line 46 from a transceiver circuit 50 through an RF matching network 48. Likewise, an RF signal that is received by the antenna 32 is sent to the transceiver circuit 50 through the RF matching network 48 on the line 46. The pump beam 42 is focused into the fiber cladding layer 38 by the optics 44, where it propagates down the length of the cladding layer 38 and is absorbed to produce photo-carriers in the semiconductor core 36, as described above. An RF signal to be transmitted is coupled into the semiconductor core 36 by the RF matching network 48 having a suitable design depending on the frequency, antenna length and precise details of the ground plane 34. Design and operation of RF matching networks is well understood to those skilled in the art. The photoconducting semiconductor core 36 functions during laser diode pumping as a conventional Tx/Rx monopole antenna. Monopole antennas are simple antennas that find usage on vehicles, aircraft and fixed installations for which omni-directional coverage is coverable.
Applications for photoconducting semiconductor core fibers are not restricted to simple monopoles. The photoconducting semiconductor fiber itself can be used as either an actively driven radiating element or a parasitic element in an array. The photoconducting semiconductor fiber can be used to construct a dynamic ground plane on a vehicle surface treated with radar absorbing material by simply embedding an appropriate grid or network of controlled photoconductive elements in the surface. An array of such fibers on an LO platform could in principal simulate a primary RCS signature for a variety of aircraft, even simulating engine fans of vibration signatures through appropriate modulating of a laser diode pumping intensity.
Since the photoconducting antenna pattern is impacted by the nature of the ground plane 34 and the presence of parasitic elements, the photoconducting fiber antenna 32 discussed herein can be used to dynamically reconfigure or scan the radiated or receive antenna pattern.
The basic concept of a dynamic reconfigurable antenna enabled by the present disclosure include large structures that can potentially scan beams for commercial applications, such as space communications or cell phone tracking. Consider, for example, a smart cell phone tower that can dynamically steer an antenna beam to different users in synchronism with a code division multiple access (CDMA) code to permit a denser user population.
The foregoing discussion discloses and describes merely exemplary embodiments. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims, that various changes, modifications and variations can be made therein without departing from the spirit and scope of the invention as defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5560776 | Sugai et al. | Oct 1996 | A |
5886670 | Manasson et al. | Mar 1999 | A |
6046705 | Anderson | Apr 2000 | A |
6087993 | Anderson et al. | Jul 2000 | A |
6177909 | Reid et al. | Jan 2001 | B1 |
6476596 | Wraback et al. | Nov 2002 | B1 |
6621459 | Webb et al. | Sep 2003 | B2 |
6657594 | Anderson | Dec 2003 | B2 |
6825814 | Hayes | Nov 2004 | B2 |
6879289 | Hayes | Apr 2005 | B2 |
6922173 | Anderson | Jul 2005 | B2 |
7023393 | Ishii et al. | Apr 2006 | B2 |
7061447 | Bozler et al. | Jun 2006 | B1 |
7307258 | Tao et al. | Dec 2007 | B2 |
7342549 | Anderson | Mar 2008 | B2 |
7456791 | Pellet | Nov 2008 | B2 |
7474273 | Pavliscak et al. | Jan 2009 | B1 |
20040257292 | Wang | Dec 2004 | A1 |
20050242287 | Hakimi | Nov 2005 | A1 |
20090073053 | Nevo et al. | Mar 2009 | A1 |
Entry |
---|
D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments”, Appl. Phys. Lett. 96, 023102 (2010). |
Wei Shi, Hong Xue, Xiangrong Ma, and Zhenzhen Zhang, “Intense Terahertz Radiation from GaAs Photoconductive Antenna Array”, PIERS Proceedings, Mar. 23-27, 2009, pp. 1698-1701, Beijing, China. |
Masayoshi Tonouchi, “Cutting-edge terahertz technology”, Nature Photonics, Feb. 2007, pp. 97-105, vol. 1, Nature Publishing Group. |
Number | Date | Country | |
---|---|---|---|
20110221641 A1 | Sep 2011 | US |