Photoconductor Overcoat Having Radical Polymerizable Charge Transport Molecules and Hexa-Functional Urethane Acrylates Having a Hexyl Backbone

Information

  • Patent Application
  • 20150185631
  • Publication Number
    20150185631
  • Date Filed
    December 27, 2013
    11 years ago
  • Date Published
    July 02, 2015
    9 years ago
Abstract
An overcoat layer for an organic photoconductor drum of an electrophotographic image forming device is provided. The overcoat layer is prepared from a curable composition including a hexyl-based urethane resin having six radical polymerizable functional groups and a charge transport molecule having at least one radical polymerizable functional group. The amount of the hexyl-based urethane resin having six radical polymerizable functional groups in the curable composition is about 20 percent to about 80 percent by weight. The amount of the charge transport molecules having at least one radical polymerizable functional group in the curable composition is about 20 percent to about 80 percent by weight. This overcoat layer improves wear resistance of the organic photoconductor drum without negatively altering the electrophotographic properties, thus protecting the organic photoconductor drum from damage and extending its service life.
Description
CROSS REFERENCES TO RELATED APPLICATIONS

None.


BACKGROUND

1. Field of the Disclosure


The present disclosure relates generally to electrophotographic image forming devices, and more particularly to an overcoat layer for an organic photoconductor drum having excellent abrasion resistance and electrical properties.


2. Description of the Related Art


Organic photoconductor drums have generally replaced inorganic photoconductor drums in electrophotographic image forming device including copiers, facsimiles and laser printers due to their performance and advantages. These advantages include improved optical properties such as having a wide range of light absorbing wavelengths, improved electrical properties such as having high sensitivity and stable chargeability, availability of materials, good manufacturability, low cost, and low toxicity.


While the performance and advantages offered by organic photoconductor drums are significant, inorganic photoconductor drums offer much higher durability. Inorganic photoconductor drums (e.g., amorphous silicon photoconductor drums) are ceramic-based, thus being extremely hard and abrasion resistant. The surface of organic photoconductor drums is typically comprised of a low molecular weight charge transport material, and an inert polymeric binder. Therefore, the failure mechanism for organic photoconductor drums typically arises from mechanical abrasion of the surface layer due to repeated use. Abrasion of photoconductor drum surface may arise from its interaction with print media (e.g. paper), paper dust, or other components of the electrophotographic image forming device.


The abrasion of photoconductor drum surface degrades its electrical properties, such as sensitivity and charging properties. Electrical degradation results in poor image quality, such as lower optical density, and background fouling. When a photoconductor drum is locally abraded, images often have black toner bands due to the inability to hold charge in the thinner regions. This black banding often marks the end of the life of the photoconductor drum.


Increasing the life of the photoconductor drum will allow the photoconductor drum to become a permanent part of the electrophotographic image forming device. In other words, the photoconductor drum will no longer be a replaceable unit nor be viewed as a consumable. Photoconductor drums with a life-of-the-printer will allow the printer to operate with lower cost-per-page, more stable image quality, and less waste.


To achieve a long life photoconductor drum, especially with organic photoconductor drum, a protective overcoat layer may be coated onto the surface of the photoconductor drum. An overcoat layer formed from a crosslinkable silicon material has been known to improve life of the photoconductor drums used for non-direct-to-paper printing. However, such overcoat layer does not have the robustness for edge wear of photoconductor drums used in direct-to-paper printing. Robust overcoat layers that improves wear resistance and extends life of photoconductor drums regardless how toner image is transferred to paper, is desired.


While a robust overcoat layer improves the life of photoconductor drums, a suitable overcoat layer is required that does not significantly alter the electrophotographic properties of the photoconductor drum. If the overcoat layer is too electrically insulating, the photoconductor drum will not discharge and will result in a poor latent image. On the other hand, if the overcoat layer is too electrically conducting, then the electrostatic latent image will spread resulting in a blurred image. Thus, a protective overcoat layer that improves life of the photoconductor drum must also allow charge migration to the photoconductor surface for development of the latent image with toner.


SUMMARY

The present disclosure provides an overcoat layer for an organic photoconductor drum of an electrophotographic image forming device. The overcoat layer is prepared from a curable composition including a hexyl-based urethane resin having six radical polymerizable functional groups and a charge transport molecule having at least one radical polymerizable functional group. The amount of the hexyl-based urethane resin having six radical polymerizable functional groups in the curable composition is about 20 to about 80 percent by weight. The amount of the charge transport molecule having at least one radical polymerizable functional group in the curable composition is about 20 to about 80 percent by weight.


This overcoat layer improves wear resistance of the organic photoconductor drum while still allowing development of the latent image with toner, thus protecting the organic photoconductor drum from damage and extending its service life.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings incorporated in and forming a part of the specification, illustrate several aspects of the present disclosure, and together with the description serve to explain the principles of the present disclosure.



FIG. 1 is a schematic view of an electrophotographic image forming device.



FIG. 2 is a cross-sectional view of a photoconductor drum of the electrophotographic image forming device.





DETAILED DESCRIPTION

It is to be understood that the disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Further, the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.



FIG. 1 illustrates a schematic representation of an example electrophotographic image forming device 100. Image forming device 100 includes a photoconductor drum 101, a charge roll 110, a developer unit 120, and a cleaner unit 130. The electrophotographic printing process is well known in the art and, therefore, is described briefly herein. During a print operation, charge roll 110 charges the surface of photoconductor drum 101. The charged surface of photoconductor drum 101 is then selectively exposed to a laser light source 140 to form an electrostatic latent image on photoconductor drum 101 corresponding to the image being printed. Charged toner from developer unit 120 is picked up by the latent image on photoconductor drum 101 creating a toned image.


Developer unit 120 includes a toner sump 122 having toner particles stored therein and a developer roll 124 that supplies toner from toner sump 122 to photoconductor drum 101. Developer roll 124 is electrically charged and electrostatically attracts the toner particles from toner sump 122. A doctor blade 126 disposed along developer roll 124 provides a substantially uniform layer of toner on developer roll 124 for subsequent transfer to photoconductor drum 101. As developer roll 124 and photoconductor drum 101 rotate, toner particles are electrostatically transferred from developer roll 124 to the latent image on photoconductor drum 101 forming a toned image on the surface of photoconductor drum 101. In one embodiment, developer roll 124 and photoconductor drum 101 rotate in the same rotational direction such that their adjacent surfaces move in opposite directions to facilitate the transfer of toner from developer roll 124 to photoconductor drum 101. A toner adder roll (not shown) may also be provided to supply toner from toner sump 122 to developer roll 124. Further, one or more agitators (not shown) may be provided in toner sump 122 to distribute the toner therein and to break up any clumped toner.


The toned image is then transferred from photoconductor drum 101 to print media 150 (e.g., paper) either directly by photoconductor drum 101 or indirectly by an intermediate transfer member. A fusing unit (not shown) fuses the toner to print media 150. A cleaning blade 132 (or cleaning roll) of cleaner unit 130 removes any residual toner adhering to photoconductor drum 101 after the toner is transferred to print media 150. Waste toner from cleaning blade 132 is held in a waste toner sump 134 in cleaning unit 130. The cleaned surface of photoconductor drum 101 is then ready to be charged again and exposed to laser light source 140 to continue the printing cycle.


The components of image forming device 100 are replaceable as desired. For example, in one embodiment, developer unit 120 is housed in a replaceable unit with photoconductor drum 101, cleaner unit 130 and the main toner supply of image forming device 100. In another embodiment, developer unit 120 is provided with photoconductor drum 101 and cleaner unit 130 in a first replaceable unit while the main toner supply of image forming device 100 is housed in a second replaceable unit. In another embodiment, developer unit 120 is provided with the main toner supply of image forming device 100 in a first replaceable unit and photoconductor drum 101 and cleaner unit 130 are provided in a second replaceable unit. Further, any other combination of replaceable units may be used as desired. In some example embodiment, the photoconductor drum 101 may not be replaced and is a permanent component of the image forming device 100.



FIG. 2 illustrates an example photoconductor drum 101 in more detail. In this example embodiment, the photoconductor drum 101 is an organic photoconductor drum and includes a support element 210, a charge generation layer 220 disposed over the support element 210, a charge transport layer 230 disposed over the charge generation layer 220, and a protective overcoat layer 240 formed as an outermost layer of the photoconductor drum 101. Additional layers may be included between the support element 210, the charge generation layer 220 and the charge transport layer 230, including adhesive and/or coating layers.


The support element 210 as illustrated in FIG. 2 is generally cylindrical. However the support element 210 may assume other shapes or may be formed into a belt. In one example embodiment, the support element 210 may be formed from a conductive material, such as aluminum, iron, copper, gold, silver, etc. as well as alloys thereof. The surfaces of the support element 210 may be treated, such as by anodizing and/or sealing. In some example embodiment, the support element 210 may be formed from a polymeric material and coated with a conductive coating.


The charge generation layer 220 is designed for the photogeneration of charge carriers. The charge generation layer 220 may include a binder and a charge generation compound. The charge generation compound may be understood as any compound that may generate a charge carrier in response to light. In one example embodiment, the charge generation compound may comprise a pigment being dispersed evenly in one or more types of binders.


The charge transport layer 230 is designed to transport the generated charges. The charge transport layer 230 may include a binder and a charge transport compound. The charge transport compound may be understood as any compound that may contribute to surface charge retention in the dark and to charge transport under light exposure. In one example embodiment, the charge transport compounds may include organic materials capable of accepting and transporting charges.


In an example embodiment, the charge generation layer 220 and the charge transport layer 230 are configured to combine in a single layer. In such configuration, the charge generation compound and charge transport compound are mixed in a single layer.


The overcoat layer 240 is designed to protect the photoconductor drum 101 from wear and abrasion without altering the electrophotographic properties, thus extending the service life of the photoconductor drum 101. The overcoat layer 240 has a thickness of about 0.1 μm to about 10 μm. Specifically, the overcoat layer 240 has a thickness of about 1 μm pin to about 6 μm, and more specifically a thickness of about 3 μm to about 5 μm. The thickness of the overcoat layer 240 is kept at a range that will not provide adverse effect to the electrophotographic properties of the photoconductor drum 101.


The terms “crosslinkable” and “radical polymerizable,” and derivatives thereof, may be used interchangeably. “Cured” herein refers to, for example, a state in which the hexyl-based urethane resin having six radical polymerizable functional groups, and a charge transport molecule having at least one radical polymerizable functional group in the coating solution form a crosslinked or substantially crosslinked product. “Substantially crosslinked” in embodiments refers to, for example, a state in which about 60% to 100% of the charge transport compounds in the overcoat composition, for example about 70% to 100% or about 80% to 100%, are covalently bound in the composition. Curing in the present invention occurs by exposing the curable composition to radiation of suitable wavelength or by exposure to an electron beam. Crosslinking of the reactive components occurs following application of the overcoat coating composition to the photoconductor.


In an example embodiment, the overcoat layer 240 includes a three-dimensional crosslinked structure formed from a curable composition. The curable composition includes a hexyl-based urethane resin having six radical polymerizable functional groups, and a charge transport molecule having at least one radical polymerizable functional group. In one example embodiment, the curable composition includes about 20 to about 80 percent by weight of the hexyl-based urethane resin having six crosslinkable functional groups, and about 20 to about 80 percent by weight of the charge transport molecule having at least one radical polymerizable functional group. In more particular, the curable composition includes about 40 to about 60 percent by weight of the hexyl-based urethane resin having six radical polymerizable functional groups, and about 40 to about 60 percent by weight of the charge transport molecule having at least one radical polymerizable functional group. Loading the hexyl-based urethane resin having six radical polymerizable functional groups at less than 20% by weight in the curable composition, may not provide sufficient crosslink density to give the overcoat layer 240 with abrasion resistance. Additionally, loading the hexyl-based urethane resin having six radical polymerizable functional groups at greater than 80% by weight in the curable composition may not provide the overcoat layer 240 with sufficient carrier mobility to give sufficient electrical properties for excellent image quality.


The six radical polymerizable functional groups of the hexyl-based urethane resin may be the same or different, and may be selected from the group consisting of acrylate group, methacrylate group, styrenic group, allylic group, vinylic group, glycidyl ether group, epoxy group, or combinations thereof. In an example embodiment, the hexa-functional hexyl-based urethane acrylate resin comprises the following structure:




embedded image


In general, urethane acrylate chemistry involves reaction of an isocyanate with a hydroxy acrylate in the presence of a catalyst. The choice of isocyanate and/or hydroxy acrylate dictates the mechanical and thermal properties of the cured material. More specifically, the linking group separating the two acrylate-containing groups of the multifunctional urethane acrylate is important for determining the physical properties of the cured film. This linking group is typically referred to as the backbone of the urethane acrylate. For example, the backbone of the urethane acrylate shown above is a hexyl group, since this functionality separates the two trifunctional urethane acrylate groups. A photoreceptor overcoat comprising a UV crosslinked layer of hexacoordinate urethane acrylate and UV crosslinkable charge transport molecule is disclosed in U.S. patent application Ser. No. 13/731,594 entitled “PHOTOCONDUCTOR OVERCOATS COMPRISING RADICAL POLYMERIZABLE CHARGE TRANSPORT MOLECULES AND HEXA FUNCTIONAL URETHANE ACRYLATES”, which is assigned to the assignee of the present application and is incorporated by reference herein in its entirety. This application discloses urethane acrylate resins comprising the structure shown below:




embedded image


The inventors were surprised to find that hexafunctional urethane resin formulations comprising materials with a hexyl backbone, such as Hexyl-Based Urethane Acrylate 1, have superior abrasion resistance compared to hexafunctional urethane resin formulations having a cyclohexyl backbone as disclosed in the prior art. The abrasion resistance of Hexyl-Based Urethane Acrylate 1 is expected to be lower than Cyclohexyl-Based Urethane Acrylate 2, since the two triacrylate groups are separated by a straight chain hexyl group versus a cyclohexyl group. The greater space between the two triacrylate groups of Hexyl-Based Urethane Acrylate 1 should therefore lead to lower crosslink density for the cured film, and thus lower abrasion resistance. The abrasion resistance imparted by a urethane acrylate formulation comprising Hexyl-Based Urethane Acrylate 1, is greater than formulations comprising Cyclohexyl-Based Urethane Acrylate 2, and thus represents an unexpected benefit.


The hexyl-based urethane acrylate resin having six functional groups comprises the overcoat layer 240 with excellent abrasion resistance. These materials are most often used when a clear, thin, abrasion or impact resistant coating is required to protect an underlying structure. Consequently, urethane acrylates are most commonly deposited as thin films. Industrial applications include automotive and floor coatings with thicknesses ranging from tens to hundreds of microns. These applications, however, do not require charge migration to occur. In an electrophotographic printer, such as a laser printer, an electrostatic image is created by illuminating a portion of the photoconductor surface in an image-wise manner. The wavelength of light used for this illumination is most typically matched to the absorption max of a charge generation material, such as titanylphthalocyanine. Absorption of light results in creation of an electron-hole pair. Under the influence of a strong electrical field, the electron and hole (radical cation) dissociate and migrate in a field-directed manner. Photoconductors operating in a negative charging manner moves holes to the surface and electrons to ground. The holes discharge the photoconductor surface, thus leading to creation of the latent image. The hexafunctional hexyl-based urethane acrylate resins of the present invention lacks charge transporting properties, thus limiting the thickness of the overcoat layer 240. The addition of charge transport molecules in the curable composition provides the overcoat layer 240 with electrical properties that approach those of the underlying charge transport layer 230. With the presence of charge transport molecules in the overcoat layer 240, the thickness of the overcoat layer 240 may be increased without having significant adverse effects on the electrical properties of the photoconductor drum 101. Ultimately this overcoat formulation of the present invention leads to a photoconductor drum having an ‘ultra long life’, thereby allowing a consumer to successfully print at least 100,000 pages on their printer before they have to go purchase a replacement photoconductor drum.


The present invention describes a photoconductor overcoat layer comprising the unique combination of a hexyl-based urethane acrylate resin having six functional groups and a charge transport molecule having at least one radical polymerizable functional group. This combination provides both the abrasion resistance of the hexyl-based urethane acrylate and the charge transporting properties of the radical polymerizable charge transport molecule. Additionally, the overcoat of the present invention has (1) excellent adhesion to the photoconductor surface, (2) optical transparency and (3) crack free. Overcoat delamination (poor adhesion) from the photoconductor surface has been noted as a problem in the prior art. Overcoat layers are typically coated in solvent systems designed to solubilize components of the overcoat formulation, while minimizing dissolution of the underlying photoconductor structure. Dissolution of components comprising the underlying photoconductor results in materials with no radical polymerizable functionality entering the overcoat layer. The result is dramatically lower crosslinking density and lower abrasion resistance since the properties of the overcoat layer are optimized by an uninterrupted 3-dimensional network. Ideally, the overcoat layer is distinct from the underlying photoconductor surface. However, the interface between the overcoat and the photoconductor surface often lacks the chemical interactions required for strong adhesion. The overcoat of the present invention have excellent adhesion to the photoconductor surface throughout the print life of the photoconductor. The overcoat must also be optically transparent. Illumination of the photoconductor in an image-wise manner requires that layers not involved in the charge generation process be transparent to the incident light. Additionally, optical transparency is an indicator of material and crosslink homogeneity within the overcoat structure. The overcoat of the present invention has a high degree of optical transparency throughout the print life of the photoconductor. The overcoat must also be crack free. Cured films often exhibit cracks as a result of unrelieved internal stress. These cracks will manifest immediately in print, and will dramatically decrease the functional life of the overcoat. The overcoats of the present invention are crack free throughout the print life of the photoconductor. The charge transport molecules having at least one radical polymerizable functional group may include the charge transport compounds incorporated in the charge transport layer 230. In an example embodiment, the charge transport molecules include tri-arylamine having at least one radical polymerizable functional group, tetraphenylbenzidine having at least one radical polymerizable functional group, or combinations thereof.


Suitable examples of tri-arylamine having at least one radical polymerizable functional group include monofunctional tri-arylamine of the following structures:




embedded image


di-functional tri-arylamine of the following structures:




embedded image


and tri-functional tri-arylamine of the following structures:




embedded image


where R is —CH3 or H; X is —(CH2)n— or —(CH2)nO—; and n is an integer ranging from 1 to 5.


Suitable examples of tetraphenylbenzidine having at least one radical polymerizable functional group include monofunctional tetraphenylbenzidine of the following structures:




embedded image


di-functional tetraphenylbenzidine of the following structures:




embedded image


and tetra-functional tetraphenylbenzidine of the following structures:




embedded image


where R is —CH3 or H; X is —(CH2)n— or —(CH2)nO—; and n is an integer ranging from 1 to 5.


The curable composition may further include a monomer or oligomer having at most five radical polymerizable functional groups. The at most five radical polymerizable functional groups of the monomer or oligomer may be selected from the group consisting of acrylate group, methacrylate group, styrenic group, allylic group, vinylic group, glycidyl ether group, epoxy group, or combinations thereof.


Suitable examples of mono-functional monomer or oligomer include, but are not limited to, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, isobornyl acrylate, isobornyl methacrylate, 2-phenoxyethyl acrylate, and lauryl methacrylate.


Suitable examples of di-functional monomer or oligomer include, but are not limited to, diacrylates and dimethacrylates, comprising 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol diacrylate, triethylene glycol dimethacrylate, 1,3-butylene glycol diacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, 1,12-dodecanediol methacrylate, tripropylene glycol diacrylate, 1,3-butylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, cyclohexane dimethanol diacrylate esters, or cyclohexane dimethanol dimethacrylate esters.


Suitable examples of tri-functional monomer or oligomer include, but are not limited to, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, hydroxypropyl acrylate-modified trimethylolpropane triacrylate, ethylene oxide-modified trimethylolpropane triacrylate, propylene oxide-modified trimethylolpropane triacrylate, and caprolactone-modified trimethylolpropane triacrylate. More specifically, the tri-functional monomer or oligomer includes propoxylated (3) trimethylolpropane triacrylate, ethoxylated (6) trimethylolpropane triacrylate, propoxylated (6) trimethylolpropane triacrylate, and ethoxylated (9) trimethylolpropane triacrylate.


Suitable examples of monomers or oligomers having five radical polymerizable functional groups include, but are not limited to, pentaacrylate esters and dipentaerythritol pentaacrylate esters.


The curable composition may further include a non-radical polymerizable additive such as a surfactant at an amount equal to or less than about 10 percent by weight of the curable composition. More specifically, the amount of non-radical polymerizable additive is about 0.1 to about 5 percent by weight of the curable composition. The non-radical polymerizable additive may improve coating uniformity of the curable composition.


The curable composition is prepared by mixing the hexyl-based urethane resin and charge transport molecules in a solvent. The solvent may include organic solvent such as tetrahydrofuran (THF), toluene, alkanes such as hexane, butanone, cyclohexanone and alcohols. In one example embodiment, the solvent may include a mixture of two or more organic solvents to solubilize the hexyl-based urethane resin and radical polymerizable charge transport molecule while minimizing solubility of components within the underlying photoconductor structure. The curable composition may be coated on the outermost surface of the photoconductor drum 101 through dipping or spraying. If the curable composition is applied through dip coating, an alcohol is used as the solvent to minimize dissolution of the components of the charge transport layer 230. The alcohol solvent includes isopropanol, methanol, ethanol, butanol, or combinations thereof.


The coated curable composition is then exposed a radiation source of sufficient energy to induce formation of free radicals to initiate the crosslinking reaction. The exposed composition is then post-baked to anneal and relieve stresses in the coating. The radiation source of sufficient energy to induce formation of free radicals is either a UV source, or an electron beam source. If a UV source is used to generate free radicals, the curable composition may also contain a photoinitiator.


Specific examples of photo initiators for use under cure conditions include acetone or ketal photo polymerization initiators such as diethoxyacetophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 4-(2-hydroxyethoxyl)phenyl-(2-hydroxy-2-propyl)ketone, 2-benzyl-2-dimethylamino-1-(4-molpholinophenyl)butanone-1,2-hydroxy-2-methyl-1-phenylpropane-1-one and 1-phenyl-1,2-propanedion-2-(o-ethoxycarbonyl)oxime; benzoinether photo polymerization initiators such as benzoin, benzoinmethylether, benzoinethylether, benzoinisobutylether and benzoinisopropylether; benzophenone photo polymerization initiators such as benzophenone, 4-hydroxybenzophenone, o-benzoylmethylbenzoate, 2-benzoylnaphthalene, 4-benzoylviphenyl, 4-benzoylphenylether, acrylated benzophenone and 1,4-benzoylbenzene; thioxanthone photo polymerization initiators such as 2-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone and 2,4-dichlorothioxanthone; phenylglyoxylate photoinitiators such as methylbenzoylformate and other photo polymerization initiators such as ethylanthraquinone, trimethylbenzoyldiphenylphosphineoxide, 2,4,6-trimethylbenzoyldiphenylethoxyphosphineoxide, bis(2,4,6-trimethylbenzoyl)phenylphosphineoxide, bis(2,4-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphineoxi de, methylphenylglyoxyester, 9,10-phenanthrene, acridine compounds, triazine compounds and imidazole compounds. Further, a material having a photo polymerizing effect can be used alone or in combination with the above-mentioned photo polymerization initiators. Specific examples of the materials include triethanolamine, methyldiethanol amine, 4-dimethylaminoethylbenzoate, 4-dimethylaminoisoamylbenzoate, ethyl(2-dimethylamino)benzoate and 4,4-dimethylaminobenzophenone. These polymerization initiators can be used alone or in combination. The loading of photoinitiator is between about 0.5 to about 20 parts by weight and more specifically from about 2 to about 10 parts by weight per 100 parts by weight of the curable composition.


Curing the composition by electron beam does not require the presence of a photoinitiator and thus may result in greater crosslink density. In an example embodiment, the radiation source of sufficient energy to induce formation of free radicals is an electron beam.


Photoconductor drums were formed using an aluminum substrate, a charge generation layer coated onto the aluminum substrate, and a charge transport layer coated on top of the charge generation layer.


Preparation of Example Photoconductor Drum

An Example Photoconductor Drum was formed using an aluminum substrate, a charge generation layer coated onto the aluminum substrate, and a charge transport layer coated on top of the charge generation layer.


The charge generation layer was prepared from a dispersion including type IV titanyl phthalocyanine, polyvinylbutyral, poly(methyl-phenyl)siloxane and polyhydroxystyrene at a weight ratio of 45:27.5:24.75:2.75 in a mixture of 2-butanone and cyclohexanone solvents. The polyvinylbutyral is available under the trade name BX-1 by Sekisui Chemical Co., Ltd. The charge generation dispersion was coated onto the aluminum substrate through dip coating and dried at 100° C. for 15 minutes to form the charge generation layer having a thickness of less than 1 μm, specifically a thickness of about 0.2 to about 0.3 μm.


The charge transport layer was prepared from a formulation including terphenyl diamine derivatives and polycarbonate at a weight ratio of 50:50 in a mixed solvent of THF and 1,4-dioxane. The charge transport formulation was coated on top of the charge generation layer and cured at 120° C. for 1 hour to form the charge transport layer having a thickness of about 17 μm to about 19 μm as measured by an eddy current tester.


Example 1

The overcoat layer of the present invention was prepared from a formulation including a crosslinkable charge transport molecule containing two radical polymerizable functional groups (20 g) shown below:




embedded image


a urethane acrylate resin comprising Hexyl-Based Urethane Acrylate 1 available from Sartomer and sold under the tradename CN968™ (20 g), ethanol (100 g) and CoatOsil 3509 (0.03 g). The formulation was coated through dip coating on the outer surface of the Example Photoconductor Drum formed as outlined above. The coated layer was then exposed to an electron beam source at an accelerating voltage of 90 kV, a current of 3 mA, and an exposure time of 1.2 seconds. The electron beam cured photoreceptor was then thermally cured at 120° C. for 60 minutes. The thickness of the overcoat was determined by eddy current measurement.


Comparative Example 1

Overcoat layer was prepared from a formulation including a crosslinkable charge transport molecule containing two radical polymerizable functional groups (20 g) shown in Example 1, a urethane acrylate resin comprising Cyclohexyl-Based Urethane Acrylate 1 available from Cytec and sold under the tradename EBECRYL 8301™ (20 g), ethanol (100 g) and CoatOsil 3509 (0.03 g). The formulation was coated through dip coating on the outer surface of the Example Photoconductor Drum formed as outlined above in Example 1. The coated layer was then exposed to an electron beam source at an accelerating voltage of 90 kV, a current of 3 mA, and an exposure time of 1.2 seconds. The electron beam cured photoreceptor was then thermally cured at 120° C. for 60 minutes. The thickness of the overcoat was determined by eddy current measurement.


Photoconductor drums prepared in Example 1 and Comparative Example 1 were installed in a Lexmark MS812 Monochrome Laser Printer. The printer was run in a 70 ppm, 4 page/pause, duplex run mode until overcoat wear thru as determined by periodic eddy current measurement. Table 1 summarizes the initial overcoat thickness, and overcoat life as expressed in k prints.














TABLE 1









Overcoat
Overcoat




Image
Thickness
Wear Thru



Example
Quality
(μm)
(k Pages)









Example 1
Excellent
4.3
170



Comparative
Excellent
4.2
100



Example 1










The data in Table 1 shows a dramatic increase in print count from the photoconductor drum of Example 1 having the overcoat with the hexafunctional urethane resin formulations comprising materials with a hexyl backbone compared to Comparative Example 1 having the overcoated drum with the hexafunctional urethane resin formulations comprising materials with a cyclo backbone. The photoconductor drum of Example 1 has a high degree of optical transparency, and show no coating cracks. The overcoated photoconductor drum of Example 1 also has electrical fatigue in the same range as that of a non-overcoated photoconductor drum. Additionally, the overcoated photoconductor drum of Example 1 provides prints having excellent uniformity and darkness levels.


The foregoing description illustrates various aspects of the present disclosure. It is not intended to be exhaustive. Rather, it is chosen to illustrate the principles of the present disclosure and its practical application to enable one of ordinary skill in the art to utilize the present disclosure, including its various modifications that naturally follow. All modifications and variations are contemplated within the scope of the present disclosure as determined by the appended claims. Relatively apparent modifications include combining one or more features of various embodiments with features of other embodiments.

Claims
  • 1. An overcoat layer for an organic photoconductor drum, comprising a curable composition including: about 20 percent to about 80 percent by weight of a hexyl-based urethane resin having six radical polymerizable functional groups; andabout 20 percent to about 80 percent by weight of a charge transport molecule having at least one radical polymerizable functional group.
  • 2. The overcoat layer of claim 1, wherein the curable composition includes: about 40 percent to about 60 percent by weight of a hexyl-based urethane resin having six radical polymerizable functional groups; andabout 40 percent to about 60 percent by weight of a charge transport molecule having at least one radical polymerizable functional group.
  • 3. The overcoat layer of claim 1, wherein the radical polymerizable functional groups of the hexyl-based urethane resin having six radical polymerizable functional groups is selected from the group consisting of acrylate group, methacrylate group, styrenic group, allylic group, vinylic group, glycidyl ether group and epoxy group.
  • 4. The overcoat layer of claim 3, wherein the radical polymerizable functional groups of the hexyl-based urethane resin having six radical polymerizable functional groups is an acrylate group.
  • 5. The overcoat layer of claim 1, wherein the charge transport molecule comprises a tri-arylamine having at least one radical polymerizable functional group.
  • 6. The overcoat layer of claim 5, wherein the radical polymerizable functional group in the tri-arylamine having at least one radical polymerizable functional group is an acrylate group.
  • 7. The overcoat layer of claim 1, wherein a cured curable composition has a thickness of about 0.1 μm to about 10 μm.
  • 8. An organic photoconductor drum comprising: a support element;a charge generation layer disposed over the support element;a charge transport layer disposed over the charge generation layer; anda protective overcoat layer formed as an outermost layer of the organic photoconductor drum, the protective overcoat layer being formed from a curable composition including: about 20 to about 80 percent by weight of a hexyl-based urethane resin having six radical polymerizable functional groups; andabout 20 to about 80 percent by weight of a charge transport molecule having at least one radical polymerizable functional group.
  • 9. The organic photoconductor drum of claim 8, wherein the curable composition includes: about 40 to about 60 percent by weight of a hexyl-based urethane resin having six radical polymerizable functional groups; andabout 40 to about 60 percent by weight of a charge transport molecule having at least one radical polymerizable functional group.
  • 10. The overcoat layer of claim 8, wherein the radical polymerizable functional groups of the hexyl-based urethane resin having six radical polymerizable functional groups is selected from the group consisting of acrylate group, methacrylate group, styrenic group, allylic group, vinylic group, glycidyl ether group and epoxy group.
  • 11. The overcoat layer of claim 10, wherein the radical polymerizable functional groups of the hexyl-based urethane resin having six radical polymerizable functional groups is an acrylate group.
  • 12. The organic photoconductor drum of claim 7, wherein the charge transport molecule comprises a tri-arylamine having at least one radical polymerizable functional group.
  • 13. The overcoat layer of claim 5, wherein the radical polymerizable functional group in the tri-arylamine having at least one radical polymerizable functional group is an acrylate group.
  • 14. The organic photoconductor drum of claim 7, wherein the overcoat layer has a thickness of about 0.1 μm to about 10 μm.