The embodiments disclosed herein relate to bone implants, and more particularly to photodynamic devices for replacement of an articular head of a bone.
Bones form the skeleton of the body and allow the body to be supported against gravity and to move and function in the world. Bone fractures can occur, for example, from an outside force or from a controlled surgical cut (an osteotomy). A fracture's alignment is described as to whether the fracture fragments are displaced or in their normal anatomic position. In some instances, surgery may be required to re-align and stabilize the fractured bone. But proper positioning of a bone, particularly in a joint, is difficult to achieve. It would be desirable to have an improved device or method for repairing and positioning a fractured or weakened bone.
Devices for replacement of an articular head of a bone are provided. In one aspect, there is provided an articular bone repair device including a support member and an articular member. The articular member has an articular part, a bearing surface disposed on the articular part, and an attachment part configured to complementarily engage the support member. The support member is sufficiently designed to reside within a cavity of a bone to anchor the articular member inside the cavity.
In an embodiment, the articular member is fixedly attached to the support member. In an embodiment, the articular member is removably attached to the support member. In an embodiment, the device also includes a recess in the articular member wherein the recess is designed to receive the support member. In an embodiment, the articular member has a shaft and the support member includes an opening into which the shaft of the articular member can be inserted to attach the articular member to the support member. In an embodiment, the articular member has at least a portion that is cylindrical, tubular, rounded or ball-shaped. In an embodiment, the bearing surface is configured to enter into an articular engagement with an articular head of a bone opposing the bone to be repaired. In an embodiment, the support member is curable and/or photodynamic.
In an aspect, a joint repair device includes: a first bone repair device having a first support member attached to a first articular member having a first bearing surface; and a second bone repair device having a second photodynamic support member attached to a second articular member having a second bearing surface complementary to and engaged with the first bearing surface.
In an embodiment, the first articular device and the second articular device are used in conjunction with a complementary surface other than another bone repair device. In an embodiment, the complementary surface is an acetabular cup, a liner, or both. In an embodiment, the first bearing surface is able to articulate with respect to the second bearing surface. In an embodiment, the second bearing surface is able to articulate with respect to first bearing surface. In an embodiment, the first support device is curable and/or photodynamic. In an embodiment, the second support device is curable and/or photodynamic.
In an aspect, a system for restructuring or stabilizing a fractured or weakened head of a bone includes: a delivery catheter having an elongated shaft with a proximal end, a distal end, and a longitudinal axis therebetween, the delivery catheter having an inner void for passing at least one light sensitive liquid therethrough, and an inner lumen; an expandable member releasably engaging the distal end of the delivery catheter; an articular member attached to the expandable member and having a bearing surface; and a light conducting fiber sized to pass through the inner lumen of the delivery catheter and into the expandable member. The expandable member is configured to receive the articular member. The expandable member moves from a deflated state to an inflated state when the at least one light sensitive liquid is passed to the expandable member. The expandable member is sufficiently designed to be at least partially placed into a space within the head of the bone. When the light conducting fiber is in the expandable member, the light conducting fiber is able to disperse light energy to initiate hardening of the at least one light sensitive liquid within the expandable member to form a photodynamic implant. In an embodiment, the articular member has a shaft and the expandable member has an opening configured to receive the shaft of the articular member.
In an aspect, a method for repairing a fractured or weakened articular head of a bone includes: removing the fractured or weakened head from the bone; placing an expandable member removably attached to a distal end of a delivery catheter at least partially into an intramedullary cavity of the bone; attaching an articular member having a bearing surface to the expandable member, wherein the expandable member is configured to receive the expandable member; infusing a light sensitive liquid into the expandable member through an inner lumen of the delivery catheter; activating a light conducting fiber to cure the light sensitive liquid inside the expandable member; and separating the expandable member and the articular member from the delivery catheter.
In an embodiment, the method also includes inserting the light conducting fiber into the expandable member. In an embodiment, the method further includes removing the light conducting fiber from the expandable member after curing the light sensitive liquid inside the expandable member. In an embodiment, the method includes inserting a shaft of the articular member into an opening in the expandable member to attach the articular member to the expandable member.
In an aspect, a kit for repairing or stabilizing a fractured or weakened head of a bone includes: a light conducting fiber; at least one light sensitive liquid; a delivery catheter having an elongated shaft with a proximal end, a distal end, and a longitudinal axis therebetween; an expandable member releasably engaging the distal end of the delivery catheter, wherein the delivery catheter has an inner void for passing the at least one light sensitive liquid into the expandable member, and an inner lumen for passing the light conducting fiber into the expandable member; and an articular member configured to be attached to the expandable member and having a bearing surface.
In an embodiment, the kit includes a plurality of expandable members having different sizes or shapes. In an embodiment, the kit includes a plurality of articular members having different sizes or shapes. In an embodiment, the kit includes a light source.
Photodynamic devices for replacement of an articular head of a bone are provided. In one aspect, there is provided an articular photodynamic device that includes a photodynamic support member and an articular member attachable, either fixedly or removably, to the photodynamic support member and having a bearing surface. In an embodiment, the articular member includes a recess designed to receive the photodynamic support member. In an embodiment, the photodynamic support member includes an opening into which a shaft of the articular member can be inserted to attach the articular member to the photodynamic support member.
In an aspect, there is provided a photodynamic joint repair device that includes a first photodynamic bone repair device having a first bearing surface and a second photodynamic bone repair device having a second bearing surface complementary to the first bearing surface. Each of the first and second photodynamic bone repair devices include a photodynamic support member and a articular member having a bearing surface. In an embodiment, an articular photodynamic devices of the present disclosure is used in conjunction with a complementary surface other than another photodynamic bone repair device of the present disclosure, such as for example, an existing acetabular cup and/or liner.
In an aspect, there is provided a device for restructuring or stabilizing a fractured or weakened head of a bone includes a delivery catheter having an elongated shaft with a proximal end, a distal end, and a longitudinal axis therebetween, the delivery catheter having an inner void for passing at least one light sensitive liquid, and an inner lumen; a expandable member releasably engaging the distal end of the delivery catheter, the expandable member moving from a deflated state to an inflated state when the at least one light sensitive liquid is passed to the expandable member; wherein the expandable member is sufficiently designed to be at least partially placed into a space within a head of a bone, and a light conducting fiber sized to pass through the inner lumen of the delivery catheter and into the expandable member, wherein, when the light conducting fiber is in the expandable member, the light conducting fiber is able to disperse the light energy to initiate hardening of the at least one light sensitive liquid within the expandable member to form a photodynamic implant.
In an aspect, there is provided a method for repairing a fractured or weakened articular head of a bone that includes removing the fractured or weakened head of the bone from the bone, placing a expandable member removably attached to a distal end of a delivery catheter at least partially into an intramedullary cavity of the bone, attaching an articular member having a bearing surface to the expandable member, infusing a light sensitive liquid into the expandable member through an inner lumen of the delivery catheter, inserting a light conducting fiber into the expandable member through an inner void of the delivery catheter, and activating the light conducting fiber to cure the light sensitive liquid inside the expandable member and separating the expandable member from the delivery catheter.
The presently disclosed embodiments will be further explained with reference to the attached drawings, wherein like structures are referred to by like numerals throughout the several views. The drawings shown are not necessarily to scale, with emphasis instead generally being placed upon illustrating the principles of the presently disclosed embodiments.
While the above-identified drawings set forth presently disclosed embodiments, other embodiments are also contemplated, as noted in the discussion. This disclosure presents illustrative embodiments by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of the presently disclosed embodiments.
Medical devices and methods for replacing an articular head of a bone are provided. Medical devices and methods for repairing an articular joint are also provided. The term “bone”as used herein refer to an elongated bone having rounded ends, or heads, at its joint with an adjacent bone. The bones include, without limitation, the femurs, tibias, and fibulas of the legs, the humeri, radii, and ulnas of the arms, metacarpals and metatarsals of the hands and feet, the phalanges of the fingers and toes, the spanning or joining of the wrist, the mandible, pelvis, and ribs, and spine. The devices of the present disclosure are suitable for repairing various joints, including, but not limited to, ankle joints, finger joints, toe joints, knee joints, hip joints, wrist joint, elbow joints, mandibular joint, and shoulder joints. In an embodiment, the device is used in a wrist arthrodesis procedure. In an embodiment, an articular joint implant of the present disclosure is used to treat a fractured or weakened bone.
As used herein, the terms “fracture” or “fractured bone” refer to a partial or complete break in the continuity of a bone. The fracture can occur, for example, from an outside force or from a controlled surgical cut (osteotomy). The presently disclosed embodiments can be used to treat any type of bone fracture, including, but not limited to, a displaced fracture, a non-displaced fracture, an open fracture, a closed fracture, a hairline fracture, a compound fracture, a simple fracture, a multi-fragment fracture, a comminuted fracture, an avulsion fracture, a buckle fracture, a compacted fracture, a stress fracture, a compression fracture, spiral fracture, butterfly fracture, other fractures as described by AO Foundation coding, multiple fractures in a bone, and other types of fractures.
As used herein, the term “weakened bone” refers to a bone with a propensity toward a fracture due to a decreased strength or stability due to a disease or trauma. Some bone diseases that weaken the bones include, but are not limited to, osteoporosis, achondroplasia, bone cancer, fibrodysplasia ossificans progressiva, fibrous dysplasia, legg calve perthes disease, myeloma, osteogenesis imperfecta, osteomyelitis, osteopenia, osteoporosis, Paget's disease, and scoliosis. Weakened bones are more susceptible to fracture, and treatment to prevent bone fractures may be desirable.
In an embodiment, the devices are used as an interim spacer in a joint such as a hip. For example, the device is used when an implant needs to be removed, an infection subsides, and then an implant is reinserted. Thus, in an embodiment, the device is used to hold the bone (without an implant) in proper spacial alignment, while not being used as a bearing surface.
In an embodiment, the photodynamic support member 102 is sufficiently designed to reside within an intramedullary cavity 108 of the bone 112 in order to anchor the articular member 104 inside the intramedullary cavity 108. In an embodiment, the photodynamic support member 102 provides longitudinal and rotational stabilization for the articular member 104. In an embodiment, the photodynamic support member 102 acts to center the articular member 104 inside the intramedullary cavity 108. In an embodiment, the photodynamic support member 102 acts to adjust the angle of the articular member 104 relative to the longitudinal axis of the bone 112. In an embodiment, the photodynamic support member 102 enables the user to adjust the length of the repaired bone to avoid foreshortening of the bone.
The articular member 104 is sufficiently designed to approximate the dimensions and size of an articular head of a bone being repaired. The articular member 104 has any suitable size and shape. In an embodiment, at least a portion of the articular member 104 is roughly cylindrical or tubular in shape. In an embodiment, at least a portion of the articular member 104 is rounded or ball-shaped.
The articular member 104 can be construed of any biologically acceptable material, including, without limitation, a ceramic, plastic, metal or alloy. Suitable metals and metal alloys include, but are not limited to, Nb, Zr, Ti, Ta, Co, V, Cr, Al, alloys thereof, stainless steel, cobalt chrome and combinations thereof. Suitable ceramic materials include, but are not limited to, alumina, zirconia, chromium carbide, chromium nitride, silicon carbide, silicon nitride, titanium carbide, zirconium carbide, zirconium nitride, tantalum carbide, tungsten carbide, and any combination thereof.
The articular member 104 includes an attachment part 114 and an articular part 116. The attachment part 114 is the part of the articular member 116 where the photodynamic support member 102 attaches to the articular member 104. The articular part 116 is the part of the articular member 116 upon which the bearing surface 106 is disposed.
In an embodiment, the bearing surface 106 is configured to approximate the dimensions, size and shape of the bearing surface of an articular head of a bone being repaired. As shown in
The photodynamic support member 102 is formed in any suitable manner. For example, as is described in detail below, the photodynamic support member 102 is formed by filling an expandable member 170, such as a balloon, with a photodynamic (light-curable) liquid 165 and exposing the photodynamic (light-curable) liquid 165 to an appropriate frequency of light and intensity to cure the photodynamic liquid 165 inside the expandable member 170 to form a rigid structure within a cavity in a bone, such as the intramedullary cavity 108 (see
In some embodiments, the system includes one or more ports. In the embodiment shown in
As illustrated in
In an embodiment, a contrast material may be added to the light-sensitive liquid 165 without significantly increasing the viscosity. Contrast materials include, but are not limited to, barium sulfate, tantalum, or other contrast materials known in the art. The light-sensitive liquid 165 can be introduced into the proximal end of the flexible delivery catheter 150 and passes within the inner void 152 of the flexible delivery catheter 150 up into an inner cavity 172 of the expandable member 170 to change a thickness of the expandable member 170 without changing a width or depth of the expandable member 170. In an embodiment, the light-sensitive liquid 165 is delivered under low pressure via the syringe 160 attached to the port. The light-sensitive liquid 165 can be aspirated and reinfused as necessary, allowing for thickness adjustments to the expandable member 170 prior to activating the light source 110 and converting the liquid monomer 165 into a hard polymer.
In an embodiment, the light-sensitive liquid may be provided as a unit dose. As used herein, the term “unit dose” is intended to mean an effective amount of light sensitive liquid adequate for a single session. By way of a non-limiting example, a unit dose of a light sensitive liquid of the present disclosure for expanding the expandable member 170 may be defined as enough light-sensitive liquid to expand the expandable member 170 to a desired shape and size. The desired shape and size of the expandable member 170 may vary somewhat from patient to patient. Thus, a user using a unit dose may have excess light-sensitive liquid left over. It is desirable to provide sufficient amount of light-sensitive liquid to accommodate even the above-average patient. In an embodiment, a unit dose of a light-sensitive liquid of the present disclosure is contained within a container. In an embodiment, a unit dose of a light-sensitive liquid of the present disclosure is contained in an ampoule. In an embodiment, the expandable member 170 is sufficiently shaped and sized to fit within a space or a gap in a fractured bone. In an embodiment, the light-sensitive liquid can be delivered under low pressure via a standard syringe attached to the port.
As illustrated in
Light-conducting fibers use a construction of concentric layers for optical and mechanical advantages. The light-conducting fiber can be made from any material, such as glass, silicon, silica glass, quartz, sapphire, plastic, combinations of materials, or any other material, and may have any diameter, as not all embodiments of the present disclosure are intended to be limited in this respect. In an embodiment, the light-conducting fiber is made from a polymethyl methacrylate core with a transparent polymer cladding. The light-conducting fiber can have a diameter between approximately 0.75 mm and approximately 2.0 mm. In some embodiments, the light-conducting fiber can have a diameter of about 0.75 mm, about 1 mm, about 1.5 mm, about 2 mm, less than about 0.75 mm or greater than about 2 mm as not all embodiments of the present disclosure are intended to be limited in this respect. In an embodiment, the light-conducting fiber is made from a polymethyl methacrylate core with a transparent polymer cladding. It should be appreciated that the above-described characteristics and properties of the light-conducting fibers are exemplary and not all embodiments of the present disclosure are intended to be limited in these respects. Light energy from a visible emitting light source can be transmitted by the light-conducting fiber. In an embodiment, visible light having a wavelength spectrum of between about 380 nm to about 780 nm, between about 400 nm to about 600 nm, between about 420 nm to about 500 nm, between about 430 nm to about 440 nm, is used to cure the light-sensitive liquid.
The most basic function of a fiber is to guide light, i.e., to keep light concentrated over longer propagation distances—despite the natural tendency of light beams to diverge, and possibly even under conditions of strong bending. In the simple case of a step-index fiber, this guidance is achieved by creating a region with increased refractive index around the fiber axis, called the fiber core, which is surrounded by the cladding. The cladding may be protected with a polymer coating. Light is kept in the “core” of the light-conducting fiber by total internal reflection. Cladding keeps light traveling down the length of the fiber to a destination. In some instances, it is desirable to conduct electromagnetic waves along a single guide and extract light along a given length of the guide's distal end rather than only at the guide's terminating face.
In some embodiments, at least a portion of a length of an light-conducting fiber is modified, e.g., by removing the cladding, in order to alter the profile of light exuded from the light-conducting fiber. The term “profile of light” refers to, without limitation, direction, propagation, amount, intensity, angle of incidence, uniformity, distribution of light and combinations thereof. In an embodiment, the light-conducting fiber emits light radially in a uniform manner, such as, for example, with uniform intensity, along a length of the light-conducting fiber in addition to or instead of emitting light from its terminal end/tip. To that end, all or part of the cladding along the length of the light-conducting fiber may be removed. It should be noted that the term “removing cladding” includes taking away the cladding entirely to expose the light-conducting fiber as well as reducing the thickness of the cladding. In addition, the term “removing cladding” includes forming an opening, such as a cut, a notch, or a hole, through the cladding. In an embodiment, removing all or part of the cladding may alter the propagation of light along the light-conducting fiber. In another embodiment, removing all or part of the cladding may alter the direction and angle of incidence of light exuded from the light-conducting fiber.
In an embodiment, the cladding is removed by making a plurality of cuts in the cladding to expose the core of the light-conducting fiber. In an embodiment, the cladding is removed in a spiral fashion. In an embodiment, the cladding is removed in such a way that a similar amount of light is exuded along the length of the modified section of the light-conducting fiber. In another embodiment, the cladding is removed in such a way that the amount of light exuded along the length of the modified section of the light-conducting fiber changes from the distal end to the proximal end of the modified section. In another embodiment, the cladding is removed in such a way that the amount of light exuded along the modified section of the light-conducting fiber decreases from the distal end of the modified section of the light-conducting fiber toward the proximal end thereof. In an embodiment, to alter the profile of the light exuded from the modified section, the cuts in the cladding are located along the length of the fiber in a spiral. In an embodiment, the pitch or spacing between the cuts is varied along the length of the modified section of the light-conducting fiber. In an embodiment, the spacing between the cuts increases from the proximal end of the modified section of the light-conducting fiber 165 to the distal end thereof such that the amount of light exuded from the modified section of the light-conducting fiber progressively increases toward the distal end of the modified section of the light-conducting fiber.
In some embodiments, the light conducting fiber 140 is part of the delivery catheter 150 or separately placed in the delivery catheter 150. In some embodiments, the light conducting fiber 140 is part of the expandable member 170, or the light conducting fiber 140 is a separate component that is placed in the expandable member 170 before or after the expandable member 170 is inserted into the cavity of the bone.
The expandable member 170 may be provided with a shape demanded by, for example, the anatomy of the implantation site, characteristics of the load bearing member 115 or both. Suitable shapes include, but not limited to, round, flat, cylindrical, dog bone, barbell, tapered, oval, conical, spherical, square, rectangular, toroidal and combinations thereof. In an embodiment, the expandable member 170 is tubular or cone shaped having a substantially centerline opening extending for a length of the expandable member. In an embodiment, the external surface of the expandable member 170 is resilient and puncture resistant. The expandable member 170 can be manufactured from a non-compliant (non-stretch/non-expansion) conformable material including, but not limited to urethane, polyethylene terephthalate (PET), nylon elastomer and other similar polymers. In an embodiment, the expandable member 170 is manufactured from a polyethylene terephthalate (PET). In an embodiment, the expandable member 170 is manufactured from a radiolucent material, which permit x-rays to pass through the expandable member 170. In an embodiment, the expandable member 170 is manufactured from a radiolucent polyethylene terephthalate (PET). In an embodiment, the expandable member 170 is manufactured from a conformable compliant material that is limited in dimensional change by embedded fibers. In an embodiment, at least a portion of the external surface of the expandable member 170 is substantially even and smooth.
In an embodiment, at least a portion of the external surface of the expandable member 170 includes at least one textured element such as a bump, a ridge, a rib, an indentation or any other shape. In an embodiment, at least a portion of the external surface of the expandable member 170 protrudes out to form a textured element. In an embodiment, at least a portion of the external surface of the expandable member 170 invaginates to form a textured element. In an embodiment, the textured element increases the friction and improves the grip and stability of the expandable member 170 after the expandable member 170 is inserted into the fracture location. In an embodiment, the textured element results in increased interdigitation of bone-device interface as compared to an expandable member without textured elements. In an embodiment, the textured element can be convex in shape. In an embodiment, the textured element can be concave in shape. In an embodiment, the textured element can be circumferential around the width of the expandable member 170, either completely or partially.
In general, a bone graft or bone graft substitute can be used in conjunction with an expandable member 170 of the present disclosure. In an embodiment, the bone graft is an allogeneic bone graft. In an embodiment, the bone graft is an autologous bone graft. In an embodiment, the bone graft substitute is a hydroxyapatite bone substitute. In an embodiment, a bone graft or bone graft substitute is used to fill in any gaps that may exist, for example, between the external surface of the expandable member 170 and the surfaces of the bone fragments. In an embodiment, a bone graft or bone graft substitute is used to fill any gaps that may exist, for example, between the textured element of the expandable member 170 and the surfaces of the bone fragments.
In general, the expandable member 170 can include an external surface that may be coated with materials including, but not limited to, drugs (for example, antibiotics), proteins (for example, growth factors) or other natural or synthetic additives (for example, radiopaque or ultrasonically active materials). For example, after a minimally invasive surgical procedure an infection may develop in a patient, requiring the patient to undergo antibiotic treatment. An antibiotic drug may be added to the external surface of the expandable member 170 to prevent or combat a possible infection. Proteins, such as, for example, bone morphogenic protein or other growth factors have been shown to induce the formation of cartilage and bone. A growth factor may be added to the external surface of the expandable member 170 to help induce the formation of new bone. Due to the lack of thermal egress of the light-sensitive liquid 165 in the expandable member 170, the effectiveness and stability of the coating is maintained.
In an embodiment, the expandable member 170 is free of any valves. One benefit of having no valves is that the expandable member 170 may be expanded or reduced in size as many times as necessary to assist in the fracture reduction and placement. Another benefit of the expandable member 170 having no valves is the efficacy and safety of the system 100. Since there is no communication passage of light-sensitive liquid 165 to the body there cannot be any leakage of the light-sensitive liquid 165 because all the light-sensitive liquid 165 is contained within the expandable member 170. In an embodiment, a permanent seal is created between the expandable member 170 and the delivery catheter 150 that is both hardened and affixed prior to the delivery catheter 150 being removed.
In an embodiment, abrasively treating the external surface of the expandable member 170 for example, by chemical etching or air propelled abrasive media, improves the connection and adhesion between the external surface of the expandable member 170 and a bone surface. The surfacing significantly increases the amount of surface area that comes in contact with the bone which can result in a stronger grip.
The expandable member 170 can be infused with light-sensitive liquid 165 and the light-sensitive liquid 165 can be cured to form a photodynamic support member 102, which can then be separated from the delivery catheter 150.
In an embodiment, a separation area is located at the junction between the distal end of the expandable member 170 and the delivery catheter 150 to facilitate the release of the photodynamic support member 102 from the delivery catheter 150. The separation area ensures that there are no leaks of reinforcing material from the elongated shaft of the delivery catheter and/or the photodynamic support member 102. The separation area seals the photodynamic support member 102 and removes the elongated shaft of the delivery catheter by making a break at a known or predetermined site (e.g., a separation area). The separation area may be various lengths and up to about an inch long. The separation area may also have a stress concentrator, such as a notch, groove, channel or similar structure that concentrates stress in the separation area. The stress concentrator can also be an area of reduced radial cross section of cured light-sensitive liquid inside a contiguous cross sectional catheter to facilitate separation by the application of longitudinal force. The stress concentrator is designed to ensure that the photodynamic support member 102 is separated from the delivery catheter 150 at the separation area. When tension is applied to the delivery catheter 150, the photodynamic support member 102 separates from the shaft of the delivery catheter 150, substantially at the location of the stress concentrator. The tension creates a sufficient mechanical force to preferentially break the cured material and catheter composite and create a clean separation of the photodynamic implant/shaft interface. It should of course be understood that the photodynamic support member 102 may be separated from the delivery catheter 150 by any other means known and used in the art, including radial twisting, shear impact, and cross-sectional cutting.
In an embodiment, the shape of the photodynamic support member 102 generally corresponds to the shape of the expandable member 170. Modification of light-sensitive liquid 165 infusion allows a user to adjust the span or thickness of the expandable member 170 to provide specific photodynamic support member 102 size and shape to each subject. In that the expandable member 170 is formable and shapeable by the user prior to the photocuring of the light-sensitive liquid 165 in the expandable member 170, the photodynamic support member 102 best mirrors the size and shape of the area into which it is implanted. In an embodiment, the size and shape of the final photodynamic implant attempts to maximize the surface contact area with the surrounding bone, minimizing specific points of concentrated pressure. In an embodiment, the size and shape of the photodynamic support member 102 attempts to maximize the surface contact area with the surrounding bone, minimizing specific points of concentrated pressure.
In an embodiment, as shown in
In an embodiment, similar to the photodynamic support member 502 shown in
The articular photodynamic device 500 also includes an articular member 504 having a shaft 510 designed to be inserted into the opening 510 of the photodynamic support member 502. As the expandable member 170 is infused with the light-sensitive liquid, the articular member 504 is centered in the intramedullary cavity. Curing the light-sensitive material within the expandable member 170 forms the photodynamic support member 502, thereby anchoring the articular member 504 inside the intramedullary cavity and providing longitudinal and rotational stability to the articular member 504. In an embodiment, the shaft 510 of the articular member 504 is secured within the opening 508 in the photodynamic support member 502 by friction fit, set screw, adhesives or any other means known in the art. In an embodiment, the surface of the opening 508 is textured to increase friction between the shaft of the articular member and the photodynamic support member. In an embodiment, the articular member 504 of the articular photodynamic device 500 can be selected from existing joint replacement implants, including, but not limited, to hip replacement implants, knee replacement implants, ankle replacement implants, wrist replacement implants, elbow replacement implants, and shoulder replacement implants. Other joint replacement implants include, for example, mandible, finger and toe implants.
In an embodiment, the photodynamic support member 502 may be formed with a plurality of expandable members 170, where each expandable member 170 can be inflated or deflated independently of other expandable members 170. The individual expandable members 170 can be inflated or deflated as desired to adjust the position, angulation, alignment or combinations thereof of the articular member 504.
In an embodiment, as shown in
In reference to
The access hole 806 extends through a hard compact outer layer of the bone 804 into the relatively porous inner or cancellous tissue of an intramedullary cavity 808. For bones with marrow, the medullary material should be cleared from the intramedullary cavity 808 prior to insertion of the inventive device. Marrow is found mainly in the flat bones such as hip bone, breast bone, skull, ribs, vertebrae and shoulder blades, and in the cancellous material at the proximal ends of the bones like the femur and humerus. Once the intramedullary cavity 808 is reached, the medullary material including air, blood, fluids, fat, marrow, tissue and bone debris should be removed to form a void or a hollowed out space within the intramedullary cavity 808. There are many methods for removing the medullary material that are known in the art and within the spirit and scope on the presently disclosed embodiments. Methods include, for example, those described in U.S. Pat. No. 4,294,251 entitled “Method of Suction Lavage,” U.S. Pat. No. 5,554,111 entitled “Bone Cleaning and Drying system,” U.S. Pat. No. 5,707,374 entitled “Apparatus for Preparing the Medullary Cavity,” U.S. Pat. No. 6,478,751 entitled “Bone Marrow Aspiration Needle,” and U.S. Pat. No. 6,358,252 entitled “Apparatus for Extracting Bone Marrow.”
The fractured or weakened articular head 802 (shown in
Next, a guidewire may be introduced into the intramedullary cavity 808 and positioned in the void in the intramedullary cavity 808. As shown in
Once the expandable member 170 is in a desired position, the articular member 104 is coupled to the expandable member 170, as shown in
As explained above, the light-sensitive liquid 165 can then be infused through the inner void in the delivery catheter 150 into the expandable member 170 to move the expandable member from a deflated state to an inflated state. In an embodiment, the expanded expandable member 170 achieves a conformal fit with the intramedullary cavity 808. In reference to
Once the position of the articular member 104 and the fit of the expandable member 170 within the intramedullary cavity 808 is confirmed, the light-sensitive liquid 165 may be hardened within the expandable member 170, such as by illumination with a visible emitting light source (not shown), to form the photodynamic support member 102. After the light-sensitive liquid has been hardened, the light source may be removed from the device. Alternatively, the light source may remain in the expandable member 170 to provide increased rigidity. The photodynamic support member 102 can then be released from the delivery catheter 150 by any known methods in the art, thereby forming an articular photodynamic device 100, as shown in
It should be noted that, in an embodiment, the expandable member 170 can be inserted into the intramedullary cavity 808 through the opening created by excising the fractured or weakened articular head 802. In an embodiment, in order to facilitate setting distance D1 between the articular member 104 and the end of the bone 804, means for limiting the depth of penetration of the expandable member 170 into the intramedullary cavity 808 can be implanted in the intramedullary cavity. In this manner, as the expandable member 170 is expanded in length due to the addition of the light-sensitive liquid 165, the expandable member 170 will be prevented from expanding into the intramedullary cavity, and instead, will expand outside the intramedullary cavity 808. In addition, the articular member 104 may include an opening therethrough to pass the delivery catheter.
The articular photodynamic device 1000 also includes an articular member 1004 engaging the photodynamic support member 1002 at the attachment part 1014 of the articular member 1004. The articular member 1004 includes a bearing surface 1006. The articular member 1004 together with the bearing surface 1006 are configured to approximate the dimensions and size of the head of the radius 1012. In an embodiment, the articular member 1004 has a cylindrical form and the bearing surface 1006 is in the form of a shallow concavity or articular engagement with capitellum of the humerus 1015. The deepest point in the bearing surface 1006 is not axi-symmetric with the long axis of the radius 1012, creating a cam effect during pronation and supination. In an embodiment, the circumference of the articular member 1004 is smooth and the articular member 1004 is broad medially where it articulates with the radial notch of the ulna 1016, narrow in the rest of its extent, which is embraced by the annular ligament (not shown). The photodynamic support member 1002 can be illuminated by a light conducting fiber.
As shown in
In an embodiment, the photodynamic support member 1002 brings the head 1018 and shaft closer together to promote healing of the fractured or weakened bone. In an embodiment, a sleeve is inserted into the space. In an embodiment, the photodynamic support member 1002 brings the head 1018 and shaft into direct contact to promote healing of the fractured or weakened bone.
Although the articular photodynamic implant is described in connection with replacement of a head of a radius, the devices and methods of the present disclosure can also be used to replace a head of other bones, including, without limitation, the femurs, tibias, and fibulas of the legs, the humeri and ulnas of the arms, metacarpals and metatarsals of the hands and feet, the phalanges of the fingers and toes, the clavicles, ankle, wrist, mandible, spinal articular surface bones including, but not limited to, the facet joint and the vertebral body, ribs, temporomandibular joint, and pelvis.
In an embodiment, an articular photodynamic device of the present disclosure includes a photodynamic support member and an articular member attachable, either fixedly or removably, to the photodynamic support member portion and having a bearing surface. In an embodiment, the articular member includes a recess designed to receive the photodynamic support member. In an embodiment, the photodynamic support member includes an opening into which a shaft of the articular member can be inserted to attach the articular member to the photodynamic support member.
In an embodiment, a photodynamic joint repair device of the present disclosure includes a first photodynamic bone repair device having a first bearing surface and a second photodynamic bone repair device having a second bearing surface complementary to the first bearing surface, wherein each of the first and second photodynamic bone repair devices include a photodynamic support member and a articular member having a bearing surface.
In an embodiment, a device for restructuring or stabilizing a fractured or weakened head of a bone includes a delivery catheter having an elongated shaft with a proximal end, a distal end, and a longitudinal axis therebetween, the delivery catheter having an inner void for passing at least one light sensitive liquid, and an inner lumen; a expandable member releasably engaging the distal end of the delivery catheter, the expandable member moving from a deflated state to an inflated state when the at least one light sensitive liquid is passed to the expandable member; wherein the expandable member is sufficiently designed to be at least partially placed into a space within a head of a bone, and a light conducting fiber sized to pass through the inner lumen of the delivery catheter and into the expandable member, wherein, when the light conducting fiber is in the expandable member, the light conducting fiber is able to disperse the light energy to initiate hardening of the at least one light sensitive liquid within the expandable member to form a photodynamic implant.
In an embodiment, a method for repairing a fractured or weakened articular head of a bone includes removing the fractured or weakened head of the bone from the bone, placing a expandable member removably attached to a distal end of a delivery catheter at least partially into an intramedullary cavity of the bone, attaching an articular member having a bearing surface to the expandable member, infusing a light sensitive liquid into the expandable member through an inner lumen of the delivery catheter, inserting a light conducting fiber into the expandable member through an inner void of the delivery catheter, and activating the light conducting fiber to cure the light sensitive liquid inside the expandable member and separating the expandable member from the delivery catheter.
In an embodiment, a kit for repairing or stabilizing a fractured or weakened head of a bone includes an light conducting fiber, a unit dose of at least one light sensitive liquid, a delivery catheter having an elongated shaft with a proximal end, a distal end, and a longitudinal axis therebetween, wherein the delivery catheter has an inner void for passing the at least one light sensitive liquid into a expandable member releasably engaging the distal end of the delivery catheter, and an inner lumen for passing the light conducting fiber into the expandable member, and an articular member configured to engage the expandable member and having a bearing surface. In an embodiment, the kit includes a plurality of expandable members of different sizes or shapes. In an embodiment, the kit includes a plurality of articular members having different sizes or shapes. In an embodiment, the kit includes a light source.
In one aspect, a device for replacement of an articular head of a bone includes a support member and an articular member. The articular member has an articular part, a bearing surface disposed on the articular part, and an attachment part configured to complementarily engage the support member. The support member is sufficiently designed to reside within a cavity of a bone to anchor the articular member inside the cavity.
In one aspect, a joint repair device includes: a first bone repair device having a first support member attached to a first articular member having a first bearing surface; and a second bone repair device having a second photodynamic support member attached to a second articular member having a second bearing surface complementary to and engaged with the first bearing surface.
In one aspect, a system for restructuring or stabilizing a fractured or weakened head of a bone includes: a delivery catheter having an elongated shaft with a proximal end, a distal end, and a longitudinal axis therebetween, the delivery catheter having an inner void for passing at least one light sensitive liquid therethrough, and an inner lumen; an expandable member releasably engaging the distal end of the delivery catheter; an articular member attached to the expandable member and having a bearing surface; and a light conducting fiber sized to pass through the inner lumen of the delivery catheter and into the expandable member. The expandable member is configured to receive the articular member. The expandable member moves from a deflated state to an inflated state when the at least one light sensitive liquid is passed to the expandable member. The expandable member is sufficiently designed to be at least partially placed into a space within the head of the bone. When the light conducting fiber is in the expandable member, the light conducting fiber is able to disperse light energy to initiate hardening of the at least one light sensitive liquid within the expandable member to form a photodynamic implant.
In an aspect, a method for repairing a fractured or weakened articular head of a bone includes: removing the fractured or weakened head from the bone; placing an expandable member removably attached to a distal end of a delivery catheter at least partially into an intramedullary cavity of the bone; attaching an articular member having a bearing surface to the expandable member, wherein the expandable member is configured to receive the expandable member; infusing a light sensitive liquid into the expandable member through an inner lumen of the delivery catheter; activating a light conducting fiber to cure the light sensitive liquid inside the expandable member; and separating the expandable member and the articular member from the delivery catheter.
In an aspect, a kit for repairing or stabilizing a fractured or weakened head of a bone includes: a light conducting fiber; at least one light sensitive liquid; a delivery catheter having an elongated shaft with a proximal end, a distal end, and a longitudinal axis therebetween; an expandable member releasably engaging the distal end of the delivery catheter, wherein the delivery catheter has an inner void for passing the at least one light sensitive liquid into the expandable member, and an inner lumen for passing the light conducting fiber into the expandable member; and an articular member configured to be attached to the expandable member and having a bearing surface.
All patents, patent applications, and published references cited herein are hereby incorporated by reference in their entirety. It will be appreciated that several of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or application. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 61/509,459, filed on Jul. 19, 2011, U.S. Provisional Patent Application No. 61/509,314, filed on Jul. 19, 2011, and U.S. Provisional Patent Application No. 61/509,391, the entirety of these applications is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4280233 | Raab | Jul 1981 | A |
4294251 | Greenwald et al. | Oct 1981 | A |
4313434 | Segal | Feb 1982 | A |
4341691 | Anuta | Jul 1982 | A |
4369772 | Miller | Jan 1983 | A |
4414608 | Furihata | Nov 1983 | A |
4422719 | Orcutt | Dec 1983 | A |
4433898 | Nasiri | Feb 1984 | A |
4462394 | Jacobs | Jul 1984 | A |
4466435 | Murray | Aug 1984 | A |
4562598 | Kranz | Jan 1986 | A |
4686973 | Frisch | Aug 1987 | A |
4697584 | Haynes | Oct 1987 | A |
4735625 | Davidson | Apr 1988 | A |
4870953 | DonMicheal et al. | Oct 1989 | A |
4888024 | Powlan | Dec 1989 | A |
4892550 | Huebsch | Jan 1990 | A |
4904391 | Freeman | Feb 1990 | A |
4961424 | Kubota et al. | Oct 1990 | A |
4963151 | Ducheyne et al. | Oct 1990 | A |
4969888 | Scholten et al. | Nov 1990 | A |
5030093 | Mitnick | Jul 1991 | A |
5049157 | Mittelmeier et al. | Sep 1991 | A |
5085660 | Lin | Feb 1992 | A |
5092899 | Forte | Mar 1992 | A |
5102413 | Poddar | Apr 1992 | A |
5108404 | Scholten et al. | Apr 1992 | A |
5112333 | Fixel | May 1992 | A |
5207669 | Baker et al. | May 1993 | A |
5295733 | LeBegue | Mar 1994 | A |
5295962 | Crocker et al. | Mar 1994 | A |
5303718 | Krajicek | Apr 1994 | A |
5316550 | Forte | May 1994 | A |
5336699 | Cooke et al. | Aug 1994 | A |
5372598 | Luhr et al. | Dec 1994 | A |
5376123 | Klaue et al. | Dec 1994 | A |
5391144 | Sakurai et al. | Feb 1995 | A |
5415654 | Daikuzono | May 1995 | A |
5423850 | Berger | Jun 1995 | A |
5432876 | Appeldorn et al. | Jul 1995 | A |
5443468 | Johnson | Aug 1995 | A |
5462552 | Kiester | Oct 1995 | A |
5480400 | Berger | Jan 1996 | A |
5538514 | Hawkins | Jul 1996 | A |
5548676 | Savage, Jr. | Aug 1996 | A |
5554111 | Morrey et al. | Sep 1996 | A |
5556429 | Felt | Sep 1996 | A |
5571204 | Nies | Nov 1996 | A |
5658310 | Berger | Aug 1997 | A |
5658963 | Qian et al. | Aug 1997 | A |
5705181 | Cooper et al. | Jan 1998 | A |
5707374 | Schmidt | Jan 1998 | A |
5713901 | Tock | Feb 1998 | A |
5795353 | Felt | Aug 1998 | A |
5824087 | Aspden et al. | Oct 1998 | A |
5827289 | Reiley et al. | Oct 1998 | A |
5888220 | Felt et al. | Mar 1999 | A |
5897557 | Chin et al. | Apr 1999 | A |
5908433 | Eager et al. | Jun 1999 | A |
5972015 | Scribner et al. | Oct 1999 | A |
5980075 | Sheaffer | Nov 1999 | A |
5980253 | Oxman et al. | Nov 1999 | A |
5987199 | Zarian et al. | Nov 1999 | A |
5989230 | Frassica | Nov 1999 | A |
5997570 | Ligtenberg et al. | Dec 1999 | A |
6008264 | Ostler | Dec 1999 | A |
6019761 | Gustilo | Feb 2000 | A |
6019774 | Weiss et al. | Feb 2000 | A |
6033411 | Preissman | Mar 2000 | A |
6039762 | McKay | Mar 2000 | A |
6042380 | De Rowe | Mar 2000 | A |
6048346 | Reiley et al. | Apr 2000 | A |
6053917 | Sherman et al. | Apr 2000 | A |
6059789 | Dinger et al. | May 2000 | A |
6066154 | Reiley et al. | May 2000 | A |
6077265 | Werding et al. | Jun 2000 | A |
6079868 | Rydell | Jun 2000 | A |
6103203 | Fischer | Aug 2000 | A |
6110176 | Shapira | Aug 2000 | A |
6121341 | Sawhney et al. | Sep 2000 | A |
6127597 | Beyar et al. | Oct 2000 | A |
6136011 | Stambaugh | Oct 2000 | A |
6140452 | Felt et al. | Oct 2000 | A |
6159236 | Biel | Dec 2000 | A |
6179852 | Strickland et al. | Jan 2001 | B1 |
6195477 | Denuto et al. | Feb 2001 | B1 |
6200134 | Kovac et al. | Mar 2001 | B1 |
6217581 | Tolson | Apr 2001 | B1 |
6223085 | Dann et al. | Apr 2001 | B1 |
6224630 | Bao et al. | May 2001 | B1 |
6235043 | Reiley et al. | May 2001 | B1 |
6241734 | Scribner et al. | Jun 2001 | B1 |
6248110 | Reiley et al. | Jun 2001 | B1 |
6248131 | Felt et al. | Jun 2001 | B1 |
6258089 | Campbell et al. | Jul 2001 | B1 |
6261289 | Levy | Jul 2001 | B1 |
6280456 | Scribner et al. | Aug 2001 | B1 |
6282013 | Ostler et al. | Aug 2001 | B1 |
6290382 | Bourn et al. | Sep 2001 | B1 |
6299597 | Buscemi et al. | Oct 2001 | B1 |
6306177 | Felt et al. | Oct 2001 | B1 |
6319255 | Grundei et al. | Nov 2001 | B1 |
6332894 | Stalcup et al. | Dec 2001 | B1 |
6336914 | Gillespie, III | Jan 2002 | B1 |
6336930 | Stalcup et al. | Jan 2002 | B1 |
6358252 | Shapira | Mar 2002 | B1 |
6387098 | Cole et al. | May 2002 | B1 |
6395007 | Bhatnagar et al. | May 2002 | B1 |
6416531 | Chen | Jul 2002 | B2 |
6416737 | Manolagas et al. | Jul 2002 | B1 |
6419483 | Adam et al. | Jul 2002 | B1 |
6423055 | Farr et al. | Jul 2002 | B1 |
6423083 | Reiley et al. | Jul 2002 | B2 |
6425923 | Stalcup et al. | Jul 2002 | B1 |
6440444 | Boyce et al. | Aug 2002 | B2 |
6443988 | Felt et al. | Sep 2002 | B2 |
6447514 | Stalcup et al. | Sep 2002 | B1 |
6458375 | Gertzman et al. | Oct 2002 | B1 |
6478751 | Krueger et al. | Nov 2002 | B1 |
6482234 | Weber et al. | Nov 2002 | B1 |
6485512 | Cheng | Nov 2002 | B1 |
6494883 | Ferree | Dec 2002 | B1 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6524313 | Fassier et al. | Feb 2003 | B1 |
6551321 | Burkinshaw et al. | Apr 2003 | B1 |
6551337 | Rabiner et al. | Apr 2003 | B1 |
6565528 | Mueller | May 2003 | B1 |
6579277 | Rabiner et al. | Jun 2003 | B1 |
6579279 | Rabiner et al. | Jun 2003 | B1 |
6620185 | Harvie et al. | Sep 2003 | B1 |
6623505 | Scribner et al. | Sep 2003 | B2 |
6632235 | Weikel et al. | Oct 2003 | B2 |
6648881 | KenKnight et al. | Nov 2003 | B2 |
6652547 | Rabiner et al. | Nov 2003 | B2 |
6652587 | Felt et al. | Nov 2003 | B2 |
6660013 | Rabiner et al. | Dec 2003 | B2 |
6679873 | Rabiner et al. | Jan 2004 | B2 |
6695781 | Rabiner et al. | Feb 2004 | B2 |
6695782 | Rabiner et al. | Feb 2004 | B2 |
6696073 | Boyce et al. | Feb 2004 | B2 |
6716216 | Boucher et al. | Apr 2004 | B1 |
6719773 | Boucher et al. | Apr 2004 | B1 |
6726691 | Osorio et al. | Apr 2004 | B2 |
6730048 | Hare et al. | May 2004 | B1 |
6733451 | Rabiner et al. | May 2004 | B2 |
6733513 | Boyle et al. | May 2004 | B2 |
6740093 | Hochschuler et al. | May 2004 | B2 |
6755862 | Keynan | Jun 2004 | B2 |
6783530 | Levy | Aug 2004 | B1 |
6802835 | Rabiner et al. | Oct 2004 | B2 |
6818018 | Sawhney | Nov 2004 | B1 |
6852095 | Ray | Feb 2005 | B1 |
6866678 | Shenderova et al. | Mar 2005 | B2 |
6869442 | Cheng | Mar 2005 | B2 |
6875212 | Shaolian et al. | Apr 2005 | B2 |
6885246 | Tsutsui et al. | Apr 2005 | B2 |
6887246 | Bhatnagar et al. | May 2005 | B2 |
6887275 | Carchidi et al. | May 2005 | B2 |
6899713 | Shaolian et al. | May 2005 | B2 |
6899719 | Reiley et al. | May 2005 | B2 |
6932843 | Smith et al. | Aug 2005 | B2 |
6964667 | Shaolian et al. | Nov 2005 | B2 |
6979341 | Scribner et al. | Dec 2005 | B2 |
6981981 | Reiley et al. | Jan 2006 | B2 |
7001431 | Bao et al. | Feb 2006 | B2 |
7008433 | Voellmicke et al. | Mar 2006 | B2 |
7048731 | Altshuler et al. | May 2006 | B2 |
7052498 | Levy et al. | May 2006 | B2 |
7077865 | Bao et al. | Jul 2006 | B2 |
7124067 | Ascenzi | Oct 2006 | B2 |
7141061 | Williams et al. | Nov 2006 | B2 |
7144414 | Harvie et al. | Dec 2006 | B2 |
7153305 | Johnson et al. | Dec 2006 | B2 |
7156861 | Scribner et al. | Jan 2007 | B2 |
7156880 | Evans et al. | Jan 2007 | B2 |
7169140 | Kume | Jan 2007 | B1 |
7215863 | Arenella et al. | May 2007 | B1 |
7241303 | Reiss et al. | Jul 2007 | B2 |
7252677 | Burwell et al. | Aug 2007 | B2 |
7258692 | Thelen et al. | Aug 2007 | B2 |
7261720 | Stevens et al. | Aug 2007 | B2 |
7320709 | Felt et al. | Jan 2008 | B2 |
7341601 | Eisermann et al. | Mar 2008 | B2 |
7360542 | Nelson et al. | Apr 2008 | B2 |
7407616 | Melikechi et al. | Aug 2008 | B2 |
7419450 | Ito | Sep 2008 | B2 |
7427295 | Ellman et al. | Sep 2008 | B2 |
7465318 | Sennett et al. | Dec 2008 | B2 |
7547319 | Segal et al. | Jun 2009 | B2 |
7628800 | Sherman et al. | Dec 2009 | B2 |
7632277 | Woll et al. | Dec 2009 | B2 |
7632291 | Stephens et al. | Dec 2009 | B2 |
7666205 | Weikel et al. | Feb 2010 | B2 |
7722620 | Truckai et al. | May 2010 | B2 |
7740656 | Mensah et al. | Jun 2010 | B2 |
7744555 | DiMauro et al. | Jun 2010 | B2 |
7766965 | Bao et al. | Aug 2010 | B2 |
7771476 | Justis et al. | Aug 2010 | B2 |
7776075 | Bruneau et al. | Aug 2010 | B2 |
7806900 | Rabiner | Oct 2010 | B2 |
7811284 | Rabiner | Oct 2010 | B2 |
7811286 | Medoff | Oct 2010 | B2 |
7811290 | Rabiner | Oct 2010 | B2 |
7842040 | Rabiner et al. | Nov 2010 | B2 |
7850711 | Stone et al. | Dec 2010 | B1 |
7857748 | Williams et al. | Dec 2010 | B2 |
7879041 | Rabiner et al. | Feb 2011 | B2 |
7912539 | Doty et al. | Mar 2011 | B2 |
7947015 | Herweck et al. | May 2011 | B2 |
8034071 | Scribner et al. | Oct 2011 | B2 |
8123807 | Kim et al. | Feb 2012 | B2 |
8210729 | O'Leary et al. | Jul 2012 | B2 |
8211121 | Quinn et al. | Jul 2012 | B1 |
8246628 | Rabiner | Aug 2012 | B2 |
8328402 | O'Leary et al. | Dec 2012 | B2 |
8348956 | Rabiner | Jan 2013 | B2 |
8366711 | Rabiner et al. | Feb 2013 | B2 |
8403968 | Rabiner et al. | Mar 2013 | B2 |
8413664 | Appling | Apr 2013 | B2 |
8512338 | Rabiner et al. | Aug 2013 | B2 |
8574233 | Rabiner et al. | Nov 2013 | B2 |
8668701 | Rabiner et al. | Mar 2014 | B2 |
8672982 | Rabiner et al. | Mar 2014 | B2 |
8684965 | Rabiner et al. | Apr 2014 | B2 |
8708955 | Tilson et al. | Apr 2014 | B2 |
8734460 | Rabiner et al. | May 2014 | B2 |
8764761 | Truckai et al. | Jul 2014 | B2 |
8870965 | Rabiner et al. | Oct 2014 | B2 |
8906030 | Rabiner et al. | Dec 2014 | B2 |
8906031 | Rabiner et al. | Dec 2014 | B2 |
8915966 | Rabiner et al. | Dec 2014 | B2 |
8936382 | O'Leary et al. | Jan 2015 | B2 |
8936644 | Rabiner et al. | Jan 2015 | B2 |
8939977 | DiPoto et al. | Jan 2015 | B2 |
9005254 | Rabiner et al. | Apr 2015 | B2 |
20010011174 | Reiley et al. | Aug 2001 | A1 |
20010044626 | Reiley et al. | Nov 2001 | A1 |
20020082600 | Shaolian et al. | Jun 2002 | A1 |
20020156482 | Scribner et al. | Oct 2002 | A1 |
20020161373 | Osorio et al. | Oct 2002 | A1 |
20020198526 | Shaolian et al. | Dec 2002 | A1 |
20030028210 | Boyle et al. | Feb 2003 | A1 |
20030083642 | Boyd et al. | May 2003 | A1 |
20030105469 | Karmon | Jun 2003 | A1 |
20030114914 | Cheng | Jun 2003 | A1 |
20030156431 | Gozum et al. | Aug 2003 | A1 |
20030199850 | Chavez et al. | Oct 2003 | A1 |
20030212426 | Olson et al. | Nov 2003 | A1 |
20030229372 | Reiley et al. | Dec 2003 | A1 |
20040006341 | Shaolian et al. | Jan 2004 | A1 |
20040024388 | Altshuler | Feb 2004 | A1 |
20040034434 | Evans et al. | Feb 2004 | A1 |
20040059333 | Carl et al. | Mar 2004 | A1 |
20040059417 | Smith et al. | Mar 2004 | A1 |
20040092948 | Stevens et al. | May 2004 | A1 |
20040098015 | Weikel et al. | May 2004 | A1 |
20040117025 | Reindel | Jun 2004 | A1 |
20040133280 | Trieu | Jul 2004 | A1 |
20040167561 | Boucher et al. | Aug 2004 | A1 |
20040167625 | Beyar et al. | Aug 2004 | A1 |
20040225296 | Reiss et al. | Nov 2004 | A1 |
20040228142 | Takada et al. | Nov 2004 | A1 |
20040230309 | Di Mauro et al. | Nov 2004 | A1 |
20040247641 | Felt et al. | Dec 2004 | A1 |
20050010231 | Myers | Jan 2005 | A1 |
20050015140 | deBeer | Jan 2005 | A1 |
20050015148 | Jansen et al. | Jan 2005 | A1 |
20050018989 | Shimizu et al. | Jan 2005 | A1 |
20050043733 | Eisermann et al. | Feb 2005 | A1 |
20050043808 | Felt et al. | Feb 2005 | A1 |
20050049691 | Mericle et al. | Mar 2005 | A1 |
20050090901 | Studer | Apr 2005 | A1 |
20050119662 | Reiley et al. | Jun 2005 | A1 |
20050142315 | DeSimone et al. | Jun 2005 | A1 |
20050149022 | Shaolian et al. | Jul 2005 | A1 |
20050159749 | Levy et al. | Jul 2005 | A1 |
20050171604 | Michalow | Aug 2005 | A1 |
20050192671 | Bao et al. | Sep 2005 | A1 |
20050197711 | Cachia | Sep 2005 | A1 |
20050228260 | Burwell et al. | Oct 2005 | A1 |
20050234453 | Shaolian et al. | Oct 2005 | A1 |
20050251140 | Shaolian et al. | Nov 2005 | A1 |
20050284485 | Nelson et al. | Dec 2005 | A9 |
20060009550 | Messersmith et al. | Jan 2006 | A1 |
20060015105 | Warren et al. | Jan 2006 | A1 |
20060036253 | Leroux et al. | Feb 2006 | A1 |
20060084985 | Kim et al. | Apr 2006 | A1 |
20060100547 | Rabiner et al. | May 2006 | A1 |
20060100635 | Reiley et al. | May 2006 | A1 |
20060100706 | Shadduck et al. | May 2006 | A1 |
20060111726 | Felt et al. | May 2006 | A1 |
20060122625 | Truckai et al. | Jun 2006 | A1 |
20060142747 | Appling | Jun 2006 | A1 |
20060155296 | Richter | Jul 2006 | A1 |
20060173464 | Ellman et al. | Aug 2006 | A1 |
20060183811 | Melikechi et al. | Aug 2006 | A1 |
20060184246 | Zwirkoski | Aug 2006 | A1 |
20060195165 | Gertner et al. | Aug 2006 | A1 |
20060217747 | Ferree | Sep 2006 | A1 |
20060229617 | Meller et al. | Oct 2006 | A1 |
20060247787 | Rydell et al. | Nov 2006 | A1 |
20060253102 | Nance et al. | Nov 2006 | A1 |
20060253200 | Bao et al. | Nov 2006 | A1 |
20060258981 | Eidenschink | Nov 2006 | A1 |
20060264950 | Nelson et al. | Nov 2006 | A1 |
20060264951 | Nelson et al. | Nov 2006 | A1 |
20060264952 | Nelson et al. | Nov 2006 | A1 |
20060265077 | Zwirkoski | Nov 2006 | A1 |
20060271061 | Beyar et al. | Nov 2006 | A1 |
20060276793 | Berry | Dec 2006 | A1 |
20060276819 | Osorio et al. | Dec 2006 | A1 |
20060282169 | Felt et al. | Dec 2006 | A1 |
20060287730 | Segal et al. | Dec 2006 | A1 |
20070027547 | Rydell et al. | Feb 2007 | A1 |
20070067032 | Felt et al. | Mar 2007 | A1 |
20070087031 | Ashman et al. | Apr 2007 | A1 |
20070100327 | Smith | May 2007 | A1 |
20070104416 | Shimizu et al. | May 2007 | A1 |
20070118143 | Ralph et al. | May 2007 | A1 |
20070123876 | Czartoski et al. | May 2007 | A1 |
20070123877 | Goldin et al. | May 2007 | A1 |
20070123878 | Shaver et al. | May 2007 | A1 |
20070161991 | Altarac et al. | Jul 2007 | A1 |
20070198023 | Sand et al. | Aug 2007 | A1 |
20070225705 | Osario et al. | Sep 2007 | A1 |
20070233146 | Henniges et al. | Oct 2007 | A1 |
20070239148 | Scheller | Oct 2007 | A1 |
20070255287 | Rabiner | Nov 2007 | A1 |
20080015500 | Herweck et al. | Jan 2008 | A1 |
20080019657 | Maitland et al. | Jan 2008 | A1 |
20080021474 | Bonutti et al. | Jan 2008 | A1 |
20080039854 | Rabiner | Feb 2008 | A1 |
20080080205 | Forrester et al. | Apr 2008 | A1 |
20080103505 | Fransen | May 2008 | A1 |
20080125784 | Rabiner et al. | May 2008 | A1 |
20080154266 | Protopsaltis et al. | Jun 2008 | A1 |
20080154368 | Justis | Jun 2008 | A1 |
20080154373 | Protopsaltis et al. | Jun 2008 | A1 |
20080183122 | Fisher et al. | Jul 2008 | A1 |
20080188858 | Luzzi et al. | Aug 2008 | A1 |
20080234820 | Felt et al. | Sep 2008 | A1 |
20080249529 | Zarda et al. | Oct 2008 | A1 |
20080255560 | Myers et al. | Oct 2008 | A1 |
20080269750 | Justin | Oct 2008 | A1 |
20080287951 | Stoneburger et al. | Nov 2008 | A1 |
20090018524 | Greenhalgh et al. | Jan 2009 | A1 |
20090024166 | Carl et al. | Jan 2009 | A1 |
20090048629 | Rabiner | Feb 2009 | A1 |
20090054900 | Rabiner et al. | Feb 2009 | A1 |
20090093887 | Walter et al. | Apr 2009 | A1 |
20090112196 | Rabiner et al. | Apr 2009 | A1 |
20090118833 | Hudgins et al. | May 2009 | A1 |
20090171265 | Doty et al. | Jul 2009 | A1 |
20090171358 | Chang et al. | Jul 2009 | A1 |
20090177204 | Colleran et al. | Jul 2009 | A1 |
20090182336 | Brenzel et al. | Jul 2009 | A1 |
20090187192 | Rabiner et al. | Jul 2009 | A1 |
20090216232 | Buford, III et al. | Aug 2009 | A1 |
20090228007 | Justin et al. | Sep 2009 | A1 |
20090254064 | Boatman | Oct 2009 | A1 |
20090287309 | Walch et al. | Nov 2009 | A1 |
20090306589 | Tilson et al. | Dec 2009 | A1 |
20100234958 | Linares | Sep 2010 | A1 |
20100241178 | Tilson et al. | Sep 2010 | A1 |
20100249942 | Goswami et al. | Sep 2010 | A1 |
20100256641 | Rabiner et al. | Oct 2010 | A1 |
20100262069 | Rabiner et al. | Oct 2010 | A1 |
20100262188 | Rabiner et al. | Oct 2010 | A1 |
20100265733 | O'Leary et al. | Oct 2010 | A1 |
20100318087 | Scribner et al. | Dec 2010 | A1 |
20100331850 | Rabiner | Dec 2010 | A1 |
20110004213 | Rabiner et al. | Jan 2011 | A1 |
20110009871 | Rabiner | Jan 2011 | A1 |
20110029093 | Bojarski et al. | Feb 2011 | A1 |
20110046746 | Rabiner et al. | Feb 2011 | A1 |
20110082504 | Singhatt et al. | Apr 2011 | A1 |
20110098713 | Rabiner et al. | Apr 2011 | A1 |
20110110114 | Papac et al. | May 2011 | A1 |
20110112588 | Linderman et al. | May 2011 | A1 |
20110118740 | Rabiner et al. | May 2011 | A1 |
20110137317 | O'Halloran et al. | Jun 2011 | A1 |
20110160870 | Baumgartner et al. | Jun 2011 | A1 |
20110166306 | Stansbury et al. | Jul 2011 | A1 |
20110313356 | Rabiner et al. | Dec 2011 | A1 |
20120029102 | Rose et al. | Feb 2012 | A1 |
20120041557 | Frigg | Feb 2012 | A1 |
20120165941 | Rabiner et al. | Jun 2012 | A1 |
20120259375 | Druma et al. | Oct 2012 | A1 |
20120262939 | O'Leary et al. | Oct 2012 | A1 |
20120289968 | Rabiner | Nov 2012 | A1 |
20120316652 | Renganath et al. | Dec 2012 | A1 |
20130003406 | O'Leary et al. | Jan 2013 | A1 |
20130006304 | Rabiner et al. | Jan 2013 | A1 |
20130012998 | Altarac et al. | Jan 2013 | A1 |
20130013008 | Rabiner et al. | Jan 2013 | A1 |
20130013009 | Colleran et al. | Jan 2013 | A1 |
20130013010 | Rabiner et al. | Jan 2013 | A1 |
20130018482 | Meridew et al. | Jan 2013 | A1 |
20130023876 | Rabiner et al. | Jan 2013 | A1 |
20130023877 | Rabiner et al. | Jan 2013 | A1 |
20130023886 | Rabiner et al. | Jan 2013 | A1 |
20130041472 | Rabiner et al. | Feb 2013 | A1 |
20130066326 | Rabiner et al. | Mar 2013 | A1 |
20130158607 | Rabiner et al. | Jun 2013 | A1 |
20130184715 | Rabiner et al. | Jul 2013 | A1 |
20140018806 | DiPoto et al. | Jan 2014 | A1 |
20140135847 | Rabiner et al. | May 2014 | A1 |
20140142581 | Rabiner et al. | May 2014 | A1 |
20140148813 | Rabiner et al. | May 2014 | A1 |
20140163453 | Rabiner et al. | Jun 2014 | A1 |
20140180288 | Rabiner et al. | Jun 2014 | A1 |
20150066028 | Rabiner et al. | Mar 2015 | A1 |
20150066085 | Rabiner et al. | Mar 2015 | A1 |
20150080900 | Rabiner et al. | Mar 2015 | A1 |
20150088268 | Rabiner et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
40 28 466 | Mar 1992 | DE |
0 709 698 | May 1996 | EP |
2001-527437 | Dec 2001 | JP |
2004-526525 | Sep 2002 | JP |
2005-511143 | Apr 2005 | JP |
2006-212425 | Aug 2006 | JP |
9001858 | Mar 1992 | NL |
WO 9838918 | Sep 1998 | WO |
WO9943266 | Sep 1999 | WO |
WO 0243628 | Jun 2002 | WO |
WO 03047472 | Jun 2003 | WO |
WO 2004045393 | Jun 2004 | WO |
WO 2004058045 | Jul 2004 | WO |
WO 2004073563 | Sep 2004 | WO |
WO 2004112661 | Dec 2004 | WO |
WO 2005112804 | Dec 2005 | WO |
WO 2006016807 | Feb 2006 | WO |
WO2007002251 | Jan 2007 | WO |
WO 2007059259 | May 2007 | WO |
WO 2007075375 | Jul 2007 | WO |
WO 2007127255 | Nov 2007 | WO |
WO 2007127260 | Nov 2007 | WO |
WO 2008039811 | Apr 2008 | WO |
WO 2008063265 | May 2008 | WO |
WO 2009059090 | May 2009 | WO |
WO 2009064847 | May 2009 | WO |
WO 2009082688 | Jul 2009 | WO |
WO2009088927 | Jul 2009 | WO |
WO 2009131999 | Oct 2009 | WO |
WO 2010050965 | May 2010 | WO |
WO 2010118158 | Oct 2010 | WO |
WO 2011060062 | May 2011 | WO |
WO 2011071567 | Jun 2011 | WO |
WO 2011162910 | Dec 2011 | WO |
WO2011162910 | Dec 2011 | WO |
WO2012051312 | Apr 2012 | WO |
WO 2012088432 | Jun 2012 | WO |
WO 2013013069 | Jan 2013 | WO |
WO 2013013071 | Jan 2013 | WO |
WO 2013013072 | Jan 2013 | WO |
WO2013059609 | Apr 2013 | WO |
WO2014011669 | Jan 2014 | WO |
WO 2014100427 | Jun 2014 | WO |
Entry |
---|
Extended European Search Report based on EP 10 76 2390 dated Oct. 30, 2013. |
USPTO Office Action in U.S. Appl. No. 12/262,370 mailed Nov. 21, 2013. |
Supplemental European Search Report based on EP 08 87 7881 dated May 15, 2013. |
USPTO Office Action in U.S. Appl. No. 13/617,557 mailed Feb. 4, 2013. |
USPTO Office Action in U.S. Appl. No. 12/755,784 mailed Mar. 13, 2013. |
USPTO Office Action in U.S. Appl. No. 13/616,416 mailed Mar. 25, 2013. |
USPTO Office Action in U.S. Appl. No. 13/561,249 mailed Apr. 23, 2013. |
USPTO Office Action in U.S. Appl. No. 12/262,370 mailed Apr. 26, 2013. |
USPTO Office Action in U.S. Appl. No. 13/088,916 mailed May 13, 2013. |
USPTO Office Action in U.S. Appl. No. 12/983,496 mailed Feb. 5, 2014. |
USPTO Office Action in U.S. Appl. No. 12/756,014 mailed Feb. 13, 2014. |
USPTO Office Action in U.S. Appl. No. 13/617,181 mailed Feb. 25, 2014. |
PCT International Search Report based on PCT/US13/076598 dated Mar. 19, 2014. |
USPTO Office Action in U.S. Appl. No. 13/655,808 mailed Mar. 27, 2014. |
USPTO Office Action in U.S. Appl. No. 13/553,247 mailed May 7, 2014. |
Extended European Search Report based on EP 14156473 dated May 13, 2014. |
USPTO Office Action in U.S. Appl. No. 13/800,518 mailed Jun. 10, 2014. |
USPTO Office Action in U.S. Appl. No. 12/262,370 mailed Jun. 26, 2014. |
USPTO Office Action in U.S. Appl. No. 13/617,557 mailed Jun. 27, 2014. |
Jovanovic et al., “Fixion Nails for Humeral Fractures, Injury”, Int. J. Care Injured, vol. 35, Issue 11, pp. 1140-1142, Nov. 2004. |
Maruyama et al., “Metacarpal Fracture Fixation with Absorbable Polyglycolide Rods and Stainless Steel K Wires: A Biomechanical Comparison”, Journal of Biomedical Materials Research (Applied Biomaterials), vol. 33, Issue 1, pp. 9-12, Apr. 1996. |
Waris et al., “Bioabsorbable Miniplating Versus Metallic Fixation for Metacarpal Fractures”, Clinical Orthopaedics and Related Research, No. 410, pp. 310-319, May 2003. |
Waris et al., “Self-Reinforced Bioabsorbable Versus Metallic Fixation Systems for Metacarpal and Phalangeal Fractures: A Biomechanical Study”, The Journal of Hand Surgery, vol. 27A, No. 5, pp. 902-909, Sep. 2002. |
PCT International Search Report based on PCT/US07/20402 dated Apr. 1, 2008. |
PCT International Search Report based on PCT/US07/10050 dated Apr. 17, 2008. |
PCT International Search Report based on PCT/US07/10038 dated Aug. 27, 2008. |
PCT International Search Report based on PCT/US08/81929 dated Jan. 12, 2009. |
PCT International Search Report based on PCT/US08/81924 dated Feb. 9, 2009. |
PCT International Search Report based on PCT/US08/87630 dated Feb. 24, 2009. |
PCT International Search Report based on PCT/US10/30275 dated Aug. 11, 2010. |
PCT International Search Report based on PCT/US10/56219 dated Jan. 20, 2011. |
PCT International Search Report based on PCT/US10/46003 dated May 24, 2011. |
PCT International Search Report based on PCT/US11/38389 dated Sep. 22, 2011. |
PCT International Search Report based on PCT/US11/66871 dated May 1, 2012. |
USPTO Office Action in U.S. Appl. No. 11/789,906 mailed Apr. 29, 2009. |
USPTO Office Action in U.S. Appl. No. 11/789,906 mailed Mar. 11, 2010. |
USPTO Office Action in U.S. Appl. No. 11/789,906 mailed Apr. 30, 2010. |
USPTO Office Action in U.S. Appl. No. 11/789,907 mailed May 11, 2010. |
USPTO Office Action in U.S. Appl. No. 11/903,123 mailed Jul. 1, 2010. |
USPTO Office Action in U.S. Appl. No. 11/964,370 mailed Dec. 9, 2010. |
USPTO Office Action in U.S. Appl. No. 11/964,370 mailed Apr. 28, 2011. |
USPTO Office Action in U.S. Appl. No. 11/964,370 mailed Sep. 23, 2011. |
USPTO Office Action in U.S. Appl. No. 11/964,370 mailed Mar. 16, 2012. |
USPTO Office Action in U.S. Appl. No. 12/262,411 mailed Sep. 1, 2010. |
USPTO Office Action in U.S. Appl. No. 12/755,784 mailed Dec. 23, 2011. |
USPTO Office Action in U.S. Appl. No. 12/756,014 mailed May 11, 2012. |
USPTO Office Action in U.S. Appl. No. 12/858,924 mailed Oct. 24, 2011. |
USPTO Office Action in U.S. Appl. No. 12/858,924 mailed Apr. 4, 2012. |
USPTO Office Action in U.S. Appl. No. 12/875,460 mailed Mar. 8, 2012. |
USPTO Office Action in U.S. Appl. No. 12/886,288 mailed Dec. 27, 2011. |
USPTO Office Action in U.S. Appl. No. 12/262,370 mailed May 29, 2012. |
USPTO Office Action in U.S. Appl. No. 12/943,544 mailed Jun. 8, 2012. |
USPTO Office Action in U.S. Appl. No. 12/886,288 mailed Jun. 26, 2012. |
USPTO Office Action in U.S. Appl. No. 11/964,370 mailed Jul. 6, 2012. |
Extended European Search Report based on EP 07 75 6022 dated Jul. 30, 2012. |
Extended European Search Report based on EP 07 75 6016 dated Jul. 30, 2012. |
USPTO Office Action in U.S. Appl. No. 12/755,784 mailed Aug. 1, 2012. |
USPTO Office Action in U.S. Appl. No. 12/858,924 mailed Aug. 2, 2012. |
USPTO Office Action in U.S. Appl. No. 12/886,288 mailed Aug. 15, 2012. |
PCT International Search Report based on PCT/US12/47447 dated Oct. 2, 2012. |
PCT International Search Report based on PCT/US12/47446 dated Oct. 15, 2012. |
PCT International Search Report based on PCT/US12/47444 dated Oct. 18, 2012. |
USPTO Office Action in U.S. Appl. No. 12/756,014 mailed Oct. 25, 2012. |
USPTO Office Action in U.S. Appl. No. 12/859,680 mailed Nov. 9, 2012. |
USPTO Office Action in U.S. Appl. No. 12/943,544 mailed Dec. 3, 2012. |
USPTO Office Action in U.S. Appl. No. 12/859,680 mailed Jan. 17, 2013. |
USPTO Office Action in U.S. Appl. No. 12/262,370 mailed Dec. 14, 2012. |
International Search Report and Written Opinion for PCT/US2012/061047 mailed Jan. 7, 2013. |
USPTO Office Action in U.S. Appl. No. 12/756,014 mailed Jan. 22, 2013. |
USPTO Office Action in U.S. Appl. No. 13/088,916 mailed Jan. 23, 2013. |
USPTO Office Action in U.S. Appl. No. 13/772,947 mailed Jun. 19, 2013. |
USPTO Office Action in U.S. Appl. No. 12/859,680 mailed Jul. 9, 2013. |
USPTO Office Action in U.S. Appl. No. 13/561,249 mailed Sep. 16, 2013. |
USPTO Office Action in U.S. Appl. No. 13/088,916 mailed Sep. 17, 2013. |
USPTO Office Action in U.S. Appl. No. 12/943,544 mailed Sep. 25, 2013. |
USPTO Office Action in U.S. Appl. No. 13/617,557 mailed Oct. 9, 2013. |
USPTO Office Action in U.S. Appl. No. 13/335,110 mailed Jul. 31, 2014. |
USPTO Office Action in U.S. Appl. No. 13/616,781 mailed Aug. 26, 2014. |
USPTO Office Action in U.S. Appl. No. 13/730,521 mailed Sep. 8, 2014. |
PCT International Search Report based on PCT/US13/049773 dated Oct. 1, 2013. |
USPTO Office Action in U.S. Appl. No. 12/756,014 mailed Oct. 7, 2014. |
USPTO Office Action in U.S. Appl. No. 13/335,110 mailed Oct. 24, 2014. |
USPTO Office Action in U.S. Appl. No. 13/553,247 mailed Dec. 5, 2014. |
USPTO Office Action in U.S. Appl. No. 13/553,051 mailed Dec. 23, 2014. |
USPTO Office Action in U.S. Appl. No. 12/262,370 mailed Jan. 14, 2015. |
USPTO Office Action in U.S. Appl. No. 13/617,557 mailed Jan. 15, 2015. |
USPTO Office Action in U.S. Appl. No. 13/335,110 mailed Feb. 9, 2015. |
USPTO Office Action in U.S. Appl. No. 13/796,085 mailed Feb. 12, 2015. |
USPTO Office Action in U.S. Appl. No. 13/553,051 mailed Mar. 31, 2015. |
Number | Date | Country | |
---|---|---|---|
20130046390 A1 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
61509459 | Jul 2011 | US | |
61509314 | Jul 2011 | US | |
61509391 | Jul 2011 | US |