1. Technical Field
The present disclosure relates to photoelectric conversion devices.
2. Description of Related Art
A photoelectric conversion device includes a circuit board, a light emitting module, a light receiving module, and an optical coupling member. The light emitting module and the light receiving module are mounted on the circuit board. The optical coupling member includes a first converging lens and a second converging lens. The first converging lens is to be aligned with and optically coupled with the light emitting module, and the second converging lens is to be aligned with and optically coupled with the light receiving module. Light emitted from the light emitting module passes through the first converging lens, and light from the second converging lens reaches the light receiving module. The transmission efficiency of light depends on the alignment precision between the first converging lens and the light emitting module and between the second converging lens and the light receiving module. In particular, the higher the precision, the higher is the transmission efficiency. Therefore, it is important to design a photoelectric conversion device having precise alignment between the first converging lens and the light emitting module and between the second converging lens and the light receiving module.
Referring to
The circuit board 10 includes a lower surface 12 and an upper surface 14. The lower surface 12 and the upper surface 14 are positioned at opposite sides of the circuit board 10, and the lower surface 12 is parallel to the upper surface 14.
The first light emitting module 20, the first light receiving module 30, the second light emitting module 40, and the second light receiving module 50 are mounted on the upper surface 14 and electrically connected to the circuit board 10. In detail, the first light emitting module 20, the second light emitting module 40, the second light receiving module 50, and the first light receiving module 30 are arranged in one line, and the second light emitting module 40, the second light receiving module 50 are located between the first light emitting module 20 and the first light receiving module 30. That is, centers of the first light emitting module 20, of the second light emitting module 40, of the second light receiving module 50, and of the first light receiving module 30 are arranged in one line. In this embodiment, the first light emitting module 20 and the second light emitting module 30 are vertical cavity surface emitting laser (VCSEL) diodes and are configured for emitting light. The first light receiving module 40 and the second light receiving module 50 are photo diodes and are configured for receiving light.
Referring to
The body portion 61 is a straight triangular prism and includes a light incident surface 612, a first reflection surface 614, and a light output surface 616. The light incident surface 612 is parallel to the upper surface 14 of the circuit board 10. The light output surface 616 perpendicularly extends from the light incident surface 612. The first reflection surface 614 is obliquely interconnected between the light incident surface 612 and the light output surface 616. In this embodiment, an included angle between the light incident surface 612 and the first reflection surface 614 is about 45 degrees, and an included angle between the light output surface 616 and the first reflection surface 614 is about 45 degrees. A recess 610 is defined in the first reflection surface 614. The recess 610 includes a bottom surface 611 parallel to the light incident surface 612 and the upper surface 14.
The first converging lens 62, the third converging lens 64, the fourth converging lens 65, and the second converging lens 63 are formed on the light incident surface 612 and arranged apart from each other. The first converging lens 62, the third converging lens 64, the fourth converging lens 65, and the second converging lens 63 correspond to the first light emitting module 20, the second light emitting module 40, the second light receiving module 50, and the first light receiving module 30 respectively. The fifth converging lens 66 and the sixth converging lens 67 are formed on the light output surface 616 and arranged apart from each other.
The reflection portion 68, which has substantially the same shape as the optical coupling member 60 but in miniature, is positioned in the recess 610 and extends from the bottom surface 611. The reflection portion 68 includes a second reflection surface 682 and a third reflection surface 684. The second reflection surface 682 and the third reflection surface 684 are oblique in relation to the bottom surface 611, and the second reflection 682 is perpendicularly connected to the third reflection surface 684. In detail, an included angle between the second reflection surface 682 and the bottom surface 611 is about 45 degrees, and an included angle between the third reflection surface 684 and the bottom surface 611 is about 45 degrees.
The two supports 69 perpendicularly extend from the light incident surface 612 and are arranged apart from each other. In this embodiment, the first converging lens 62, the third converging lens 64, the fourth converging lens 65, the second converging lens 63, and the two supports 69 are arranged in one line, and the first converging lens 62, the third converging lens 64, the fourth converging lens 65, the second converging lens 63 are located between the two supports 69.
The locational relationship between the first converging lens 62 and the third converging lens 64 is substantially the same as that between the first light emitting module 20 and the second light emitting module 40. The locational relationship between the first converging lens 62 and the fourth converging lens 65 is substantially the same as that between the first light emitting module 20 and the second light receiving module 50. The locational relationship between the second converging lens 63 and the third converging lens 64 is substantially the same as that between the first light receiving module 30 and the second light emitting module 30. The locational relationship between the second converging lens 63 and the fourth converging lens 65 is substantially the same as that between the first light receiving module 30 and the second light receiving module 50.
In this embodiment, the body portion 61, the first converging lens 62, the second converging les 63, the third converging lens 64, the fourth converging lens 65, the fifth converging lens 66, and the sixth converging lens 67 are formed as a unitary piece. The body portion 61, the reflection portion 68, and the two supports 69 are separately formed. In alternative embodiments, the body portion 61, the first converging lens 62, the second converging lens 63, the third converging lens 64, the fourth converging lens 65, the fifth converging lens 66, and the sixth converging lens 67 may be separately formed, and the body portion 61, the reflection portion 68, and the two supports 69 are formed as a unitary piece.
When the photoelectric conversion device 100 is assembled, the optical coupling member 60 is adhered on the upper surface 14 with adhesive. In detail, first, the optical coupling member 60 is placed on the upper surface 14. In this situation, the two supports 69 abut the upper surface 14, and the first converging lens 62, the third converging lens 64, the fourth converging lens 65, and the second converging lens 63 are roughly aligned with the first light emitting module 20, the second light emitting module 40, the second light receiving module 50, and the first light receiving module 30. Second, electrical power is applied to the second light emitting module 40 and the second light receiving module 50 through the circuit board 10. In this situation, light beams emitted from the second light emitting module 40 enter into the third converging lens 64 and become parallel, and are reflected about 90 degrees toward the third reflection surface 684 by the second reflection surface 682, and are then reflected about 90 degrees toward the fourth converging lens 65 by the third reflection surface 684, and finally exit from the light incident surface 612 to reach the second light receiving module 50. Third, the optical coupling member 60 is adjusted until the intensity of the light beams received by the second light receiving module 50 falls within a predetermined range. In this situation, the second light emitting module 40 is finely aligned with the third converging lens 64, the second light receiving module 50 is finely aligned with the fourth converging lens 65, thereby the first light emitting module 20 is finely aligned with the first converging lens 62, and the first light receiving module 30 is finely aligned with the second converging lens 63. Fourth, glue is applied to sidewalls of the supports 69 to fix the optical coupling member 60 on the upper surface 14. Thereby, the photoelectric conversion device 100 has a high alignment precision and a high transmission efficiency of light.
Referring to
Even though numerous characteristics and advantages of the present embodiments have been set forth in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in the matters of shape, size, and arrangement of parts within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
101145345 A | Dec 2012 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4260883 | Onoda et al. | Apr 1981 | A |
5190042 | Hock | Mar 1993 | A |
5781305 | Downes | Jul 1998 | A |
6522443 | Shahar et al. | Feb 2003 | B1 |
7598527 | Behfar et al. | Oct 2009 | B2 |
8837881 | Hung | Sep 2014 | B2 |
8901478 | Hung | Dec 2014 | B2 |
8923671 | Hung | Dec 2014 | B2 |
8939657 | Hung | Jan 2015 | B2 |
8942524 | Hung | Jan 2015 | B2 |
8976346 | Hung | Mar 2015 | B2 |
9000377 | Rossi et al. | Apr 2015 | B2 |
9006643 | Lin | Apr 2015 | B2 |
20020150340 | Ikeda et al. | Oct 2002 | A1 |
20040165828 | Capewell et al. | Aug 2004 | A1 |
20060209379 | Guscho | Sep 2006 | A1 |
20120069336 | Rakitzis | Mar 2012 | A1 |
20130330230 | Uri et al. | Dec 2013 | A1 |
20140145070 | Hung | May 2014 | A1 |
20140151585 | Hung | Jun 2014 | A1 |
20140175268 | Hung | Jun 2014 | A1 |
20140178002 | Hung | Jun 2014 | A1 |
20140294354 | Hung | Oct 2014 | A1 |
20140312214 | Hung | Oct 2014 | A1 |
20140314426 | Wang He et al. | Oct 2014 | A1 |
20150002839 | Hung | Jan 2015 | A1 |
20150049985 | Hung | Feb 2015 | A1 |
20150062565 | Hung | Mar 2015 | A1 |
20150063749 | Hung | Mar 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20140151585 A1 | Jun 2014 | US |