Field of the Invention
The present disclosure relates to a photoelectric conversion element and a photoelectric conversion apparatus.
Description of the Related Art
Conventionally, a distance detection sensor of a time-of-flight (TOF) type is known.
Japanese Patent Laid-Open No. 2005-303268 discloses an example of a distance detection sensor. In this example, as illustrated in FIGS. 9A to 9C of Japanese Patent Laid-Open No. 2005-303268, the distance detection sensor includes a first photosensitive unit 11a, a second photosensitive unit 11b, a hole holding unit 13 configured to hold holes generated in the first photosensitive unit 11a, and an electron holding unit 14 configured to hold electrons generated in the second photosensitive unit 11b. When the holes generated in the first photosensitive unit 11a are transferred to the hole holding unit 13, a gate unit 38a is turned on and a gate unit 38b is turned off. On the other hand, when the electrons generated in the second photosensitive unit 11b are transferred to the electron holding unit 14, the gate unit 38b is turned on and the gate unit 38a is turned off. The electrons accumulated in the electron holding unit 14 and the holes accumulated in the hole holding unit 13 are recombined in a recombination unit 15. In the technique disclosed in Japanese Patent Laid-Open No. 2005-303268, it described that it is not necessary to provide an ejection unit for ejecting electrons held in a light emission-off period.
According to an aspect of the present disclosure, a photoelectric conversion element includes a first photoelectric conversion unit configured to generate an electron serving as a signal charge, a second photoelectric conversion unit configured to generate a hole serving as a signal charge, a first floating diffusion region to which the electron generated in the first photoelectric conversion unit is transferred, a second floating diffusion region to which the hole generated in the second photoelectric conversion unit is transferred, an amplifying transistor including a gate electrically connected to the first floating diffusion region and the second floating diffusion region, a first charge ejection unit configured to eject the electron generated in the first photoelectric conversion unit, and a second charge ejection unit configured to eject the hole generated in the second photoelectric conversion unit, wherein the first photoelectric conversion unit and the second photoelectric conversion unit are arranged along a principal surface of a semiconductor substrate.
Further features of the disclosure will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Embodiments of the present disclosure are described below. In the following description and drawings, similar elements are denoted by similar reference numerals, and a description given once somewhere for similar elements is not repeated unless a further description is necessary.
Referring to
The distance detection sensor 101 includes the light emitting apparatus 102 and the photoelectric conversion apparatus 104, and is configured to detect a distance using a time-of-flight (TOF) method.
The light emitting apparatus 102 alternately turns on and off light emission. When the light emitting apparatus 102 turns on, light 113 emitted from the light emitting apparatus 102 is reflected by a target 106, and resultant reflected light 114 is incident on the photoelectric conversion apparatus 104. When the light emitting apparatus 102 turns off, there is no reflected light 114 originating from the light 113 emitted from the light emitting apparatus 102. Therefore, an environmental light 115, which originates from a light source different from the light emitting apparatus 102, is incident on the photoelectric conversion apparatus 104.
It may be advantageous to use a light emitting diode to realize the light emitting apparatus 102, because the light emitting diode is capable of quickly repeating a turning-on/off operation. The wavelength of the light emitted by the light emitting apparatus 102 may be set in an infrared range which is not visible to human eyes and does not interfere with a circumstance. However, the wavelength is not limited to the infrared range. At least one of the light emitting apparatus 102 and the photoelectric conversion apparatus 104 may include an optical system. The optical system may include a lens, an aperture, a mechanical shutter, a scattering plate, an optical lowpass filter, a wavelength selective filter, and/or the like. In a case where a laser is used as a light emitting device, the light emitting apparatus 102 may include a scanning optical system configured to scan the light emitted from the light emitting apparatus 102 toward a particular area.
A time difference occurs between a time at which light is emitted by the light emitting apparatus 102 and a time at which the light is received by the photoelectric conversion apparatus 104. This time difference depends on the speed of light (3.0×108 m/s) and the distance between the distance detection sensor 101 and the target 106. By detecting a physical quantity related to the time difference, it is possible to detect the distance from the distance detection sensor 101 to the target 106, and/or it is possible to obtain information in the form of, for example, an image based on the distance.
If the distance “d” between the light emitting apparatus 102 and the photoelectric conversion apparatus 104 is large, a complicated distance measurement algorithm is necessary. Therefore, it may be advantageous to set the distance “d” between the light emitting apparatus 102 and the photoelectric conversion apparatus 104 to be smaller than required distance measurement accuracy. In view of the above, the distance “d” between the light emitting apparatus 102 and the photoelectric conversion apparatus 104 may be set, for example, in a range of 1 cm to 100 cm.
Note that light incident on the photoelectric conversion apparatus 104 includes, in addition to the reflected light 114 originating from the light emitted from the light emitting apparatus 102, the environmental light 115 originating from a light source in the environment different from the light emitting apparatus. The light source of the environmental light 115 may be natural light or artificial light. In measuring the distance, the environmental light 115 causes a noise component. Therefore, in a case where the ratio of the environmental light 115 to the total amount of light received by the distance detection sensor 101 is high, it becomes difficult to obtain a large dynamic range of the signal of the signal light, i.e., the reflected light 114, or it becomes difficult to obtain a large signal-to-noise (S/N) ratio. Thus, it becomes difficult to obtain high-accuracy distance information from the reflected light 114.
In view of the above, the photoelectric conversion apparatus 104 according to the present embodiment is capable of precisely removing a signal component originating from environmental light from a total signal component generated by the photoelectric conversion apparatus. The total signal component includes a signal component originating from the reflected light 114 originating from the light emitted by the light emitting apparatus 102 and the signal component from the environmental light.
The photoelectric conversion area 202 is an area in which a plurality of photoelectric conversion elements 200 are disposed or arranged in the form of a two-dimensional array. Each of the plurality of photoelectric conversion elements 200 is configured to convert incident light into an electric signal and output the resultant electric signal. The photoelectric conversion elements 200 are connected on a row-by-row basis to the vertical scanning circuit 204 via a corresponding row wiring (scanning line) 207. The vertical scanning circuit 204 supplies a control signal via one of row wirings 207 to photoelectric conversion elements 200 located on the corresponding row in the photoelectric conversion area 202. Examples of the control signals are pSEL1, pSEL2, pRES1, pRES2, pTX1, and pTX2, which will be described in detail later. In what follows, the term “wiring” refers to a connection that is made of an electrically conductive material.
The photoelectric conversion elements 200 are also connected on a column-by-column basis to the signal processing unit 205 via corresponding signal lines 223.
The signal processing unit 205 processes signals output from the photoelectric conversion area 202. The signal processing unit 205 may include signal processing circuits such as CDS (correlated double sampling) circuits, amplifier circuits, analog-to-digital converters and/or the like provided in the respective columns of the photoelectric conversion area 202. The scanning unit 208 sequentially outputs the signals, processed by the signal processing unit 205 for the respective columns, from the signal processing unit 205 to the output unit 206.
The output unit 206 outputs the signal from the signal processing unit 205 to elements external to the photoelectric conversion apparatus 104. The output unit 206 may include an amplifier circuit, a protection circuit, an electrode for connection to an external circuit, and/or the like. The control signal generation unit 203 generates the control signal described above thereby controlling operation timings of the vertical scanning circuit 204, the signal processing unit 205, the scanning unit 208, and the output unit 206.
A driving period Td of one photoelectric conversion element 200 includes a reset period Tres in which a reset operation is performed, a charge accumulation period Ts in which a charge is accumulated, and an output period Top in which a signal is output to the signal line 223 based on the accumulated charge. The driving period Td may further include a period in which another operation is performed. A plurality of photoelectric conversion elements 200 located in the same row are driven at the same time in the same driving period Td.
Signals output from the plurality of photoelectric conversion elements 200 located in the same row of the photoelectric conversion area 202 are processed by the signal processing unit 205 shown in
In a frame period, a reset operation, an accumulation operation, and an output operation are performed for all rows of photoelectric conversion elements 200 in the photoelectric conversion area 202. For example, a start point of a first frame period FR1 is a point of time at which a reset operation is started for a first row V1 of the photoelectric conversion area 202. An end point of the first frame period FR1 is a point of time at which an output operation of the photoelectric conversion element 200 in the eighth row V8 is ended. A start point of a second frame period FR2 is a point of time at which a reset operation of the first row V1 is started for the first time after the end of the output operation of the first row V1 in the first frame period FR1. An end point of the second frame period FR2 is a point of time at which an output operation for the eighth row V8 is ended for the first time after the end of the output operation of the eighth row V8 in the first frame period FR1.
By performing the accumulation operation in parallel for a plurality of rows (about five rows in the present example), it becomes possible to increase the accumulation period, which makes it possible to increase the output of the signal obtained in the accumulation period. When the accumulation operation is performed in parallel for a plurality of rows, it is possible to separate signals among the plurality of rows by shifting the timing of performing the output operation among the rows.
Furthermore, as illustrated in
Alternatively, after the reset operation, the accumulation operation, and the output operation are all completed for one row, the reset operation, the accumulation operation, and the output operation for a next row may be started. Alternatively, after the output operation for the last row (e.g., the eighth row) is completed, the reset operation for the first row may be started.
Next, an example of a structure of the photoelectric conversion cell 111 is described below.
The photoelectric conversion element 200 includes a photoelectric conversion unit 301 (first photoelectric conversion unit), a photoelectric conversion unit 302 (second photoelectric conversion unit), an FD 307 (first floating diffusion region), an FD 310 (second floating diffusion region), a charge ejection unit 308 (first charge ejection unit), and a charge ejection unit 309 (second charge ejection unit). The photoelectric conversion element 200 further includes a transfer transistor 303, a transfer transistor 304, a transfer transistor 305, a transfer transistor 306, a reset transistor 314, a reset transistor 331, a first amplification unit 315, and a first selection unit 324.
The photoelectric conversion unit 301 generates an electron serving as a signal charge by photoelectric conversion, and the photoelectric conversion unit 302 generates a hole serving as a signal charge by photoelectric conversion. That is, the polarity of the signal charge is opposite between the photoelectric conversion unit 301 and the photoelectric conversion unit 302. Note that in the photoelectric conversion unit 301, not only the electron but also a hole is generated, while in the photoelectric conversion unit 302 not only the hole but also an electron is generated. However, these charges are respectively ejected via the reference potential supply units 311 and 312, and they are not treated as signal charges.
In the present embodiment, by way of example, photodiodes are used as the photoelectric conversion units 301 and 302, although the photoelectric conversion units 301 and 302 are not limited to photodiodes. The photodiode serving as the photoelectric conversion unit 301 includes a cathode 325 realized with an N-type semiconductor region in which electrons behave as majority carriers and an anode 326 realized with a P-type semiconductor region in which electrons behave as minority carriers. The photodiode serving as the photoelectric conversion unit 302 includes an anode 327 realized with a P-type semiconductor region in which holes behave as majority carriers and a cathode 328 realized with an N-type semiconductor region in which holes behave as minority carriers.
The FD 307 is a capacitor unit to which the electrons generated as the signal charge in the photoelectric conversion unit 301 are transferred, and the FD 310 is a capacitor unit to which the holes generated as the signal charge in the photoelectric conversion unit 302 are transferred. The FD 307 and the FD 310 each function as a charge-voltage conversion unit that converts the transferred charge to a voltage. The FD 307 is realized with an N-type semiconductor region in a PN junction diode structure, and the FD 310 is realized with a P-type semiconductor region in a PN junction diode structure. The FD 307 and the FD 310 are capable of holding the charges transferred from the corresponding photoelectric conversion units.
The electrons generated in the photoelectric conversion unit 301 are ejected to the charge ejection unit 308, and the holes generated in the photoelectric conversion unit 302 are ejected to the charge ejection unit 309. As will be described in detail later, there is basically no overlap between a period in which the electrons (holes) generated in the photoelectric conversion unit 301 (302) are transferred to the FD 307 (310) and a period in which the electrons (holes) generated in the photoelectric conversion unit 301 (302) are ejected to the charge ejection unit 308 (309). On the other hand, there is an overlap between the period in which the electrons (holes) generated in the photoelectric conversion unit 301 (302) are transferred to the FD 307 (310) and a period in which the holes (electrons) generated in the photoelectric conversion unit 302 (301) are ejected to the charge ejection unit 309 (308). Note that the charge ejection unit 308 and the charge ejection unit 309 are set to be at a particular potential via, for example, a reset transistor 331 described below.
Of two types of charges, i.e., electrons and holes generated in the photoelectric conversion unit 301, the electrons serving as the signal charge are transferred to the FD 307 via the transfer transistor 303. Of two types of charges, i.e., electrons and holes generated in the photoelectric conversion unit 302, the holes serving as the signal charge are transferred to the FD 310 via the transfer transistor 306. The transfer transistor 303 and the transfer transistor 306 each has a MIS-type gate structure. That is, the transfer transistor 303 and the transfer transistor 306 each has a multilayer structure (a transfer gate structure) including a semiconductor region (channel region), a gate insulating film, and a gate electrode. When the transfer transistor 303 is in an ON state (conductive state), an N-type channel is formed in the semiconductor region by inversion. When the transfer transistor 306 is in an ON state, a P-type channel is formed in the semiconductor region by inversion.
In the present example, the gate electrode of the transfer transistor 303 and the gate electrode of the transfer transistor 306 are connected together to the transfer node 318. The transfer node 318 is also connected to a transfer signal supply unit 329 such that a control signal pTX1 is input to the transfer node 318 from the transfer signal supply unit 329. The transfer transistor 303 and the transfer transistor 306 are different from each other in terms of the conductivity type such that they operate in a complementary manner. Therefore, when the transfer transistor 303 is in the ON state according to the control signal TX1, the transfer transistor 306 is in the OFF state (non-conductive state), while when the transfer transistor 303 is in the OFF state according to the control signal TX1, the transfer transistor 306 is in the ON state.
There is a potential difference in a range, for example, from 1 V to 5V between the potential HIGH (H-level in
Note that the transfer transistor 303 and the transfer transistor 306 may be connected to different nodes, and turning-on/off of the transfer transistor 303 and the transfer transistor 306 may be controlled individually according to separate control signals. However, it may be more advantageous to connect the transfer transistor 303 and the transfer transistor 306 to the common transfer node 318, and input the same control signal TX1 to the gate electrodes of the transfer transistor 303 and the transfer transistor 306. This makes it possible to more accurately control the timing of turning on/off the transfer transistor 303, and the transfer transistor 306. Furthermore, it is possible to drive the transfer transistors 303 and 306 using a common driving circuit and a common wiring, and thus it is possible to simplify the configuration of the photoelectric conversion element 200.
As described above, the FD 307 is connected to the cathode 325 via the transfer transistor 303. The FD 310 is connected to the anode 327 via the transfer transistor 306.
The FD 307 and the FD 310 are connected to a reference power supply 335 via the reset transistor 314. More specifically, the reference power supply 335 provides a ground potential (GND) or a power supply potential Vdd. It may be advantageous that the reference power supply 335 has a voltage in a range from −2V to +2V. The reset transistor 314 receives a control signal pRES1 from a reset signal supply unit 334.
The transfer transistor 304 performs transferring such that electrons, of electrons and holes generated in the photoelectric conversion unit 301, are transferred to the charge ejection unit 308. The transfer transistor 305 performs transferring such that holes, of electrons and holes generated in the photoelectric conversion unit 302, are transferred to the charge ejection unit 309. The transfer transistor 304 and the transfer transistor 305 each has a MIS-type gate structure.
That is, the transfer transistors 304 and 305 each has a multilayer structure including a semiconductor region (channel region), a gate insulating film, and a gate electrode. When the transfer transistor 304 is in the ON state, an N-type channel is formed in the semiconductor region by inversion. When the transfer transistor 305 is in an ON state, a P-type channel is formed in the semiconductor region by inversion.
In the present example, the gate electrode of the transfer transistor 304 and the gate electrode of the transfer transistor 305 are connected together to a transfer node 319, and the transfer node 319 is also connected to a transfer signal supply unit 330 such that a control signal pTX2 is input to the transfer node 319 from the transfer signal supply unit 330. The transfer transistor 304 and the transfer transistor 305 are different from each other in terms of the conductivity type. Therefore, when the transfer transistor 304 is in the ON state according to the control signal TX2, the transfer transistor 305 is in the OFF state, while when the transfer transistor 304 is in the OFF state according to the control signal TX2, the transfer transistor 305 is in the ON state.
It may be advantageous that threshold voltages of the transfer transistor 304 and the transfer transistor 305 are set such that when the transfer node 319 is at a particular potential, the transfer transistor 304 and the transfer transistor 305 are both in the OFF state. The particular potential may be determined based on the potential of semiconductor regions of the MIS structure and the threshold voltages of the transfer gates.
Note that the transfer transistor 304 and the transfer transistor 305 may be respectively connected to different nodes, and turning-on/off of the transfer transistor 304 and the transfer transistor 305 may be controlled individually according to separate control signals. However, it may be more advantageous to connect the transfer transistor 304 and the transfer transistor 305 to the common transfer node 319, and input the same control signal TX2 to the gate electrodes of the transfer transistor 304 and the transfer transistor 305. This makes it possible to more accurately control the timing of turning-on/off the transfer transistor 304 and the transfer transistor 305. Furthermore, it is possible to drive the transfer transistors 304 and 305 using a common driving circuit and a common wiring, and thus it is possible to simplify the configuration of the photoelectric conversion element 200.
The charge ejection unit 308 and the charge ejection unit 309 are connected to a node 321. The node 321 is connected to a reference power supply 333, for example, via the reset transistor 331. The reset transistor 331 receives a control signal pRES2 from a reset signal supply unit 332. Although in the present example, the charge ejection unit 308 and the charge ejection unit 309 are connected to the reference power supply 333 via the reset transistor, the node 321 may be directly connected to the reference power supply 333 without passing through the reset transistor.
The anode 326 of the photoelectric conversion unit 301 and the FD 307 are connected to the reference potential supply unit 311 such that a reference potential VF1 is supplied in common thereto. The cathode 328 of the photoelectric conversion unit 302 and the FD 310 are connected to the reference potential supply unit 312 such that a reference potential VF2 is supplied in common thereto from the reference potential supply unit 312.
A detection node 320 is connected to the FD 307, the FD 310, a main electrode (a source or a drain) of the reset transistor 314, and electrically conductive materials connecting them The detection node 320 is electrically connected to a gate of the first amplification unit 315 described below. Thus, a potential appears at the detection node 320 depending on the amounts of charges transferred to the FD 307 and the FD 310 and the capacitance of the detection node 320, and this potential is applied to the gate of the first amplification unit 315.
In the present example, the FD 307 and the FD 310 are directly connected to each other via the electrically conductive material, and thus the FD 307, the FD 310, and the detection node 320 are at substantially the same potential. The electrically conductive material has a conductivity equal to or larger than 104 S/m (a specific resistance equal to or smaller than 10−4 Ω·m). Note that the insulator has a conductivity equal to or smaller than 10−7 S/m (a specific resistance equal to or larger than 107 Ω·m). The semiconductor has a conductivity in a range of 10−7 S/m to 104 S/m (a specific resistance in a range of 10−4 Ω·m to 107 Ω·m). Examples of electrically conductive materials usable here include metals, metallic compounds, graphite, polycrystalline silicon, etc. Silicon with a high-concentration impurity (with a concentration equal to or higher than 1019/cm3) can behave like an electrically conductive material. The connection between the FD 307 and the FD 310 via the electrically conductive material makes it possible to smoothly transfer electrons between the FD 307 and the FD 310, which allows a reduction in time needed for the potential of the FD 307 and the FD 310 (the potential at the detection node 320) to settle. Alternatively, a switch may be provided between the FD 307 and detection node 320 and/or a switch may be provided between the FD 310 and detection node 320 such that at least two of the FD 307, the FD 310, and the detection node 320 are allowed to be at different potentials.
In the configuration shown in
Hereinafter, let VN1 and VN2 denote the respective potentials of the FD 307 and the FD 310. To easily transfer electrons from the cathode 325 of the photoelectric conversion unit 301 to the FD 307, the reference potential VF1 may be set such that VF1<VN1. Note that VN1 and VN2 may be regarded as potential values of the FD 307 and the FD 310 obtained typically when the detection node 320 is reset by the reset transistor 314.
To easily transfer holes from the anode 327 of the photoelectric conversion unit 302 to the FD 310, potentials may be set such that VN2<VF2. When VF1<VN1 and VN2<VF2, if VN1=VN2, then VF1<VF2. Setting the reference potential VF2 to be higher than the reference potential VF1 (VF1<VF2) as described above makes it possible to achieve higher accuracy in distance measurement than is possible when the reference potential VF2 is equal to or lower than the reference potential VF1 (VF1≥VF2). By making the setting in the above-described manner, it is possible to achieve a high charge collection efficiency, a high-speed operation, and high-accuracy signal acquisition. In practice, it may be advantageous to set the potential VF1 and the potential VF2 such that the difference between them is equal to or larger than 0.10 V. To achieve this, in the present example, two reference potential supply units, i.e., the reference potential supply unit 311 and the reference potential supply unit 312, are provided. Note that the potential VF1 and the potential VF2 are typically set so as to have a potential difference in a range of 1 V to 5V. Note that the reference potential VF1 may be set to be lower than the ground potential (GND) (VF1<GND), and the reference potential VF2 may be set to be higher than the ground potential (GND) (GND<VF2). That is, the reference potential VF1 may be negative, and the reference potential VF2 may be positive.
In the present example, the first amplification unit 315 is a MOS transistor (amplifying transistor) including a gate, a source, and a drain. The first amplification unit 315 forms, together with a constant current source 430, a source follower circuit. The gate of the first amplification unit 315 is electrically connected to the detection node 320. The first amplification unit 315 amplifies a signal based on the potential of the detection node 320 and outputs the resultant amplified signal. The drain of the first amplification unit 315 is connected to the power supply unit 336 such that a power supply voltage VDD is supplied thereto. The first amplification unit 315 outputs the amplified signal to the drain of the first selection unit 324.
The first selection unit 324 controls outputting signals from a plurality of photoelectric conversion elements 200 disposed for each signal line 223 such that a signal is output from one photoelectric conversion element at a time to the signal line 223 or signals from a plurality of photoelectric conversion elements are output at a time to the signal line 223. The drain of the first selection unit 324 is connected to the source of the first amplification unit 315, the source of the first selection unit 324 is connected to the signal line 223, and the gate of the first selection unit 324 is connected to the selection signal supply unit 337. In practice, the first selection unit 324 may be realized using a selection transistor. The first selection unit 324 switches between the ON state and the OFF state according to a control signal pSEL output from the selection signal supply unit 337. In a reading operation, the selection transistor turns on and the first amplification unit 315 generates a pixel signal corresponding to the potential of the detection node 320. The pixel signal is output to the signal line 223 shown in
Next, examples of potentials used in the circuit are described below. In the following description, it is assumed by way of example that the ground potential (GND) is equal to 0 V. In a first example, a reset potential VS1 supplied to the detection node 320 from the reset transistor 314 and a reset potential VS2 supplied to the node 321 from the reset transistor 331 are set such that VS1=VS2=0 V. Furthermore, other potentials are set as follows: VF1=−1 V; VF2=+1 V; the potential HIGH=+2 V; the potential MID=0 V; and the potential LOW=−2 V. In a second example, potentials are set such that VS1=VS2=+1 V, VF1=0V, VF2=+2 V, the potential HIGH=+3 V, the potential MID=+1 V, and the potential LOW=−1 V. In the second example, the potentials in the first example are all shifted by S (V), and more specifically, S=−1. In a third example, potentials are set such that VS1=VS2=0 V, VF1=−2 V, VF2=+2 V, the potential HIGH=+4 V, the potential MID=+0 V, and the potential LOW=−4 V. The potential values in this third example are equal to the respective values in the first examples multiplied by a factor of T, and more specifically, T=2. Note the value of S described above may be positive or negative, and the value of T may be smaller than 1. The second example and the third example may be combined such that the potentials in the first example are respectively shifted by S (V) and then multiplied by a factor of T. In the three examples described above, the actual values may be properly modified while maintaining the relationships in terms of relative magnitude, potential difference, and relative magnitude of potential difference.
The photoelectric conversion element shown in
In
Note that the transfer transistor 304 and the transfer transistor 305 may be respectively connected to different nodes, turning-on/off of the transfer transistor 304 and the transfer transistor 305 may be controlled according to separate control signals.
However, it may be advantageous to connect the transfer transistor 304 and the transfer transistor 305 to the common transfer node 319 such that the same control signal TX2 is input to the gate of the transfer transistor 304 and the gate of the transfer transistor 305, because this makes it possible to achieve high timing accuracy in controlling the turning-on/off of the transfer transistor 304 and the transfer transistor 305.
Furthermore, by connecting the charge ejection unit 308 and the charge ejection unit 309 to each other via the node 321 as shown in
Next, referring to
In the present embodiment, one cycle is a period Tcy (from time t1 to time t5). More specifically, one cycle has a length of, for example, 10 nsec to 100 nsec. The light emitting apparatus 102 periodically turns on and off light emission as illustrated in
When the speed of light is denoted by c (m/s) and the distance from the distance measurement apparatus 1 to a target 9 is denoted by d (m), a delay time from a time at which light is emitted to a time at which returned light is sensed is given by 2×d/c (s). Thus measuring the distance is accomplished by detecting a physical quantity corresponding to the delay time from the light emission to the light reception in the period Tcy. The speed of light is equal to 3×108 m/s, that is, 0.3 m/ns, and thus the period Tcy may be set, for example, in a range of 1 ns to 1000 ns, and more preferably in a range of 10 ns to 100 ns. For example, when the distance is 0.3 m, the delay time from emission to reception of light is 2 ns. Therefore, when one cycle Tcy is set to 10 ns, it is possible to detect the distance of 0.3 m by detecting a physical quantity corresponding to the delay time in a period of 10 ns. From the period Tcy and the number of repetitions of turning-on/off of light emission, it can be estimated that the time needed to measure the distance once can be completed within a short period of 1 μs to 10 ms. Therefore, it is possible to read signals from 10 rows to 1000 rows of photoelectric conversion elements 200 (1 frame to 1000 frames) per second.
In the present embodiment, the charge accumulation period Ts is a period from time t1 to time t9 as shown in
In
In the following description, for example, an expression “the solid line 401 goes to the H-level” or the solid line 401 is at the H-level” is used to describe that the potential of the transfer node 318 corresponding to the solid line 401 goes to the H-level or is at the H-level. Similar expressions are used also for the broken line 402, the dash-double-dot line 407, the dash-dot line 408, and the dotted line 409. As represented by the solid line 401 and the broken line 402, the potentials of the transfer node 318 and the transfer node 319 are supplied by rectangular waves or sinusoidal waves with the same period but with opposite polarities from the control signal generation unit 203 shown in
The 0-level of the solid line 401 and that of the broken line 402 are potentials close to the threshold voltages of the transfer transistors 303, 304, 305, and 306 or potentials that cause these transfer transistors to turn off. When the solid line 401 is at the H-level and the broken line 402 is at the L-level, the transfer transistors 303 and 305 are in the ON state, and the transfer transistors 304 and 306 are in the OFF state. When the solid line 401 is at the L-level, and the broken line 402 is at the H-level, the transfer transistors 303 and 305 are in the OFF state, and the transfer transistors 304 and 306 are in the ON state. Threshold values of transistors may be designed such that the 0-level is higher than the threshold value of each P-type transfer transistor, and the 0-level is lower than the threshold value of each N-type transfer transistor thereby making it possible for any transfer to be in the OFF state at the 0-level. The threshold values may be designed using a known method. For example, the threshold values may be controlled by adjusting the impurity concentration of the channel part of each transistor.
On the other hand, 0-levels for the dash-double-dot line 407, the dash-dot line 408, and the dotted line 409 are set at potentials that allow the reset transistor 314, the reset transistor 331, and the selection transistor 324 to sufficiently turn off. When the dash-double-dot line 407 is at the H-level (in a period from time t0 to time t1), the reset transistor 314 is in the ON state, and the detection node 320 is at the reset potential. When the dash-double-dot line 407 is at the L-level (in a period from time t1 to time t10), the reset transistor 314 is in the OFF state. When the dotted line 409 is at the H-level (in a period from time t0 to time t10), the reset transistor 331 is in the ON state, and the node 321 is at the reset potential. In this situation, if the transfer transistor 304 or 305 turns off, the charge is ejected from the photoelectric conversion unit. Although the dotted line 409 is always at the H-level in the present embodiment, the potential of the dotted line 409 may be controlled in a different manner. For example, the dotted line 409 may be at the same potential as that of the dash-double-dot line 407. In this case, when the dotted line 409 is at the L-level, the reset transistor 331 is in the OFF state.
When the dash-dot line 408 is at the H level (in a period from time t9 to time t10), the selection transistor 324 is in the ON state. In this state, the signal output from the first amplification unit 315 is output to the signal line 223. When the dash-dot line 408 is at the L-level, the selection transistor 324 is in the OFF state.
Note that the threshold values do not necessarily need to have the same value (for example 0 V) for all of the transfer transistors 303, 304, 305, and 306, the reset transistor 314, and the selection transistor 324.
In
In
In
Next, operations associated with
At time t0, in
At time t1, as shown in
At time t2, as shown in
Next, at time t3, as shown in
At time t4, as shown in
At time t5, as shown in
In a period from time t4 to t5, as shown in
In this configuration, if the control signal pSEL supplied to the gate of the selection transistor 324 is set such that it is at the H-level at time t5, then a signal obtained at the signal line 223 via the amplifying transistor 315 includes mainly a signal originating from the component of the reflected light 114 but the signal includes a reduced amount of component of the environmental light 115. A period from time t1 to time t5 is one cycle Tcy. If the control signal pSEL supplied to the gate of the selection transistor 324 is not set such that it is at the H-level at the end of the operation of one cycle (at time t5) but set such that the control signal pSEL is at the H-level at the end of a plurality of periods, then it is possible to obtain a signal with a greater amplitude. If the operation of one cycle is repeated a plurality of times as described above, then, ideally, only a charge corresponding to the reflected light 114 is accumulated, and it is possible to obtain a signal with a large amplitude even when the reflected light is weak.
In the example shown in
At time t9, as shown in
At time t10, as shown in
Furthermore, in the configuration described above, when a signal charge generated in one photoelectric conversion unit is transferred to an FD, a signal charge generated in another photoelectric conversion unit is ejected to a charge ejection unit, and thus it is possible to suppress leakage charge in photoelectric conversion units.
Next, referring to
Furthermore, in an area which is surrounded, in plan view, by the P-type semiconductor region 511, an N-type semiconductor region 508 (fourth semiconductor region), a third transfer gate 519, an N-type semiconductor region 501 (fifth semiconductor region), a first transfer gate 518, and an N-type semiconductor region 507 (sixth semiconductor region) are disposed in this order in the second direction. The photoelectric conversion unit 301 shown in
In an area surrounded, in plan view, by the N-type semiconductor region 512, a P-type semiconductor region 509 (seventh semiconductor region), a fourth transfer gate 521, a P-type semiconductor region 502 (eighth semiconductor region), a second transfer gate 520, and a P-type semiconductor region 510 (ninth semiconductor region) are disposed in this order in the second direction. The photoelectric conversion unit 302 shown in
In an area surrounded, in plan view, by the P-type semiconductor region 517, the reset transistor 314, the amplifying transistor 315, the selection transistor 324, and the reset transistor 331, shown in
The P-type semiconductor region 511 and the N-type semiconductor region 512 are arranged in the first direction along the principal surface of the semiconductor substrate 500. The N-type semiconductor region 512 and the P-type semiconductor region 511 may be in contact with each other as shown in
The N-type semiconductor region 501 and the P-type semiconductor region 502 are also arranged in the first direction along the principal surface of the semiconductor substrate 500, but a part of the P-type semiconductor region 511 and a part of N-type semiconductor region 512 are disposed between the N-type semiconductor region 501 and the P-type semiconductor region 502. The N-type semiconductor region 507 and the P-type semiconductor region 510 are connected to each other via a not-shown wiring and via contact plugs electrically connected to the respective semiconductor regions.
Each contact plug is a metal such as tungsten disposed in a contact hole (e.g., an opening) formed in a part of an insulating film (e.g., an interlayer insulating film) disposed on the principal surface of the semiconductor substrate 500. Each contact plug is connected to a circuit unit configured to supply a control signal or the like or to another contact plug via a wiring made of a metal such as aluminum, copper, or the like disposed on the insulating film. Therefore, wirings connected to the contact plugs extend along the principal surface of the semiconductor substrate 500. The insulating film may include a plurality of layers. The wirings do not need to be disposed in a single layer. For example, the insulating film, the wirings, the contact plugs, and the like may be formed as follows: a multilayer insulating film including three layers is formed on the semiconductor substrate 500; a first-layer wiring is formed between a first-layer insulating film and a second-layer insulating film, a second-layer wiring is formed between the second-layer insulating film and a third-layer insulating film, the first-layer wiring and the second-layer wiring are connected to each other via plugs formed in vias (openings) disposed in a part of the second-layer insulating film. Also in this configuration, the wirings extend along the principal surface of the semiconductor substrate 500 (along the first insulating film). Therefore, an insulating film in which contact plugs are formed, an insulating film disposed between wiring layers, an insulating film formed between a wiring layer and the semiconductor substrate 500 are disposed in a one-on-another fashion on the semiconductor substrate 500 in a third direction crossing both the first direction and the second direction. Typically, the first direction, and the second direction, and the third direction are perpendicular to each other. Thus, the contact plugs are formed such that they extend in the third direction through an insulating film. A structure including contact plugs, insulating films, and wirings is referred to as a wiring structure. Note that such a wiring structure is disposed on the semiconductor substrate 500.
In the present example, an electrically conductive material connecting the semiconductor region 507 and the semiconductor region 510 to each other is realized using a wiring and contact plugs. The electrically conductive material connecting the semiconductor region 507 and the semiconductor region 510 is made of a material such as a metallic material, a metallic compound material, polycrystalline silicon, or the like having an electrical conductivity higher than that of the semiconductor substrate 500. The metallic material or the metallic compound material may be used to form wirings and contact plugs, while polycrystalline silicon may be used to form gate electrodes. An example of the metallic compound material is a semiconductor-metallic compound material such as silicide formed on the surface of the semiconductor substrate. One of such materials or a combination of two or more materials may be used to connect the semiconductor region 507 and the semiconductor region 510 to each other. Typically, the semiconductor region 507 and the semiconductor region 510 are connected via an ohmic contact. By employing an electrically conductive material as a material for connecting the semiconductor region 507 and the semiconductor region 510, it is possible to reduce the relaxation time of the potential difference between the semiconductor region 507 and the semiconductor region 510. This makes it possible to stabilize the output of the detection node 320 and thus it is possible to achieve high-accuracy distance measurement.
The N-type semiconductor region 508 and the P-type semiconductor region 509 are connected to each other via a wiring, which is made of an electrically conductive material, and contact plugs formed in the respective semiconductor regions. The N-type semiconductor region 508 and the P-type semiconductor region 509 are supplied with ground potential GND via the reset transistor 331 described above with reference to
The first transfer gate 518 and the second transfer gate 520 are connected to each other via a not-shown wiring. Via this wiring, the same control signal pTX1 is supplied to the first transfer gate 518 and the second transfer gate 520 from the transfer signal supply unit 329. Thus, the first transfer gate 518 and the second transfer gate 520 are controlled simultaneously. Similarly, the third transfer gate 519 and the fourth transfer gate 521 are connected to each other via a not-shown wiring, and via this wiring the same control signal pTX2 is supplied to the third transfer gate 519 and the fourth transfer gate 521 from the transfer signal supply unit 330. Thus, the third transfer gate 519 and the fourth transfer gate 521 are controlled simultaneously.
The detection node 320 of the amplifying transistor 315 shown in
In the example shown in
As illustrated in
Note that the P-type semiconductor region 511 and the P-type semiconductor region 517 are isolated from each other by disposing an N-type semiconductor region 531 between the P-type semiconductor region 511 and the P-type semiconductor region 517. However, the N-type semiconductor region 531 may not be provided, and the P-type semiconductor region 511 and the P-type semiconductor region 517 may be combined into a single P-type semiconductor region. Furthermore, instead of providing the N-type semiconductor region 531 to achieve a PN isolation, an insulator such as silicon dioxide or the like may be provided to isolate the P-type semiconductor region 511 and the P-type semiconductor region 517 from each other.
In
The photoelectric conversion unit 302 shown in
In the present example, the first transfer gate (first gate electrode) 518 and the second transfer gate (second gate electrode) 520 are constructed as different gates. Charging and discharging occurs at a gate electrode each time the gate electrode is driven. That is a current depending on MOS capacitance flows each time switching is performed. In a case where high-speed driving is performed, the smaller the gate electrode of the transistor, the smaller the MOS capacitance, and thus the smaller the current, and the smaller the heating and thus the smaller the power consumption. Therefore, by forming the first transfer gate 518 and the second transfer gate 520 separately, the size of the gate electrode may be reduced significantly. However, the first transfer gate 518 and the second transfer gate 520 may be combined into the form of a single gate. This results in a reduction in wirings, which in turn results in a reduction in wiring capacitance and resistance. Thus it is possible to increase accuracy in controlling the complementary operation of the transfer transistors 303 and 306. Furthermore, the reduction in wirings allows an increase in aperture ratio, which results in an increase in sensitivity. The third transfer gate 519 and the fourth transfer gate 521 may also be formed in the above-described manner.
The P-type semiconductor region 511 is supplied with the reference potential VF1 from the reference potential supply unit 311. The N-type semiconductor region 512 is supplied with the reference potential VF2 from the reference potential supply unit 312. In the present embodiment, for example, −2 V is supplied as the reference potential VF1 to the P-type semiconductor region 511, and +2 V is supplied as the reference potential VF2 to the N-type semiconductor region 512. The N-type semiconductor region 508 and the P-type semiconductor region 509 serving as charge ejection units are supplied with 0 V via the reset transistor 331. That is, the potential of the node 321 (the charge ejection units 308 and 309) shown in
According to the present embodiment, as described above, when a signal charge generated in one photoelectric conversion unit is transferred to an FD, a signal charge generated in another photoelectric conversion unit is ejected to a charge ejection unit, and thus it is possible to suppress leakage charge in photoelectric conversion units. Furthermore, for example, by supplying a positive potential to the N-type semiconductor region 512 and a negative potential to the P-type semiconductor region 511, it is possible to set the reference potential VF2 to be higher than the reference potential VF1 to make it possible to efficiently transfer charges, and thus it is possible to achieve a high-speed operation and high-accuracy signal acquisition.
A second embodiment is described below while focusing on differences from the first embodiment described above. In the first embodiment, transferring of electrons from the N-type semiconductor region 501 forming the photoelectric conversion unit 301 to the N-type semiconductor region 508 forming the charge ejection unit 308 is controlled by the transfer gate 519. In contrast, in the second embodiment, transferring of electrons from the N-type semiconductor region 501 to the N-type semiconductor region 508 is controlled by controlling potentials such that the potential difference between the N-type semiconductor region 501 and the N-type semiconductor region 508 has a particular relationship with the potential difference between the N-type semiconductor region 501 and the N-type semiconductor region 507 forming the FD 307.
Similarly, in the first embodiment described above, transferring of holes from the P-type semiconductor region 502 forming the photoelectric conversion unit 302 to the P-type semiconductor region 509 forming the charge ejection unit 309 is controlled by the transfer gate 521. In contrast, in the second embodiment, transferring of holes from the P-type semiconductor region 502 to the P-type semiconductor region 510 is controlled by controlling potentials such that the potential difference between the P-type semiconductor region 502 and the P-type semiconductor region 509 and the potential difference between the P-type semiconductor region 502 and the P-type semiconductor region 510 forming the FD 310 satisfy a particular relationship.
As illustrated in
The P-type semiconductor region 701 is disposed between the N-type semiconductor region 501 and the N-type semiconductor region 508. The N-type semiconductor region 702 is disposed between the P-type semiconductor region 502 and the P-type semiconductor region 509.
Next, referring to
In
That is, the potential height to electros in the region between the N-type semiconductor region 501 and the N-type semiconductor region 508 is lower than the potential height to electrons in the region between the N-type semiconductor region 501 and the N-type semiconductor region 507.
This configuration makes it possible to eject electrons generated in the N-type semiconductor region 501 forming the photoelectric conversion unit 301 to the N-type semiconductor region 508 forming the charge ejection unit 308 in the period in which no electrons are transferred from the N-type semiconductor region 501 to the N-type semiconductor region 507.
Next, referring to
In
The potential profile shown in
That is, the potential height to holes in the region between the P-type semiconductor region 502 and the P-type semiconductor region 509 is lower than the potential height to holes in the region between the P-type semiconductor region 502 and the P-type semiconductor region 510.
This configuration makes it possible to eject holes generated in the P-type semiconductor region 502 forming the photoelectric conversion unit 302 to the P-type semiconductor region 509 forming the charge ejection unit 309 in the period in which no holes are transferred from the P-type semiconductor region 502 to the P-type semiconductor region 510. In the present embodiment, it is possible to eject unnecessary charges to the charge ejection unit without having to provide the third transfer gate 519 and the fourth transfer gate 521, and thus simplification in configuration compared to the first embodiment is achieved.
A third embodiment is described below while focusing on differences from the first embodiment described above. In the first embodiment described above, of charge pairs generated in the photoelectric conversion unit 301, electrons generated as a signal charge are transferred to the FD 307 and the charge ejection unit 308. On the other hand, of charge pairs generated in the photoelectric conversion unit 302, holes generated as a signal charge are transferred to the FD 310 and the charge ejection unit 309. The electrons transferred to the charge ejection unit 308 and the holes transferred to the charge ejection unit 309 are ejected.
In contrast, in the third embodiment, as illustrated in
To the FD 708 (third FD), electrons generated as a signal charge in the photoelectric conversion unit 301 are transferred. To the FD 709 (fourth FD), holes generated as a signal charge in the photoelectric conversion unit 302 are transferred. The FD 708 and the FD 709 respectively have similar structures to the structures of the FD 307 and the FD 310, and more specifically, each is realized in the form of a PN junction type diode such that the FD 708 is an N-type semiconductor region of the diode while the FD 709 is a P-type semiconductor region of the diode. In the case of the FD 708, electrons generated as the signal charge are transferred to the N-type semiconductor region, while in the case of the FD 709, holes generated as the signal charge are transferred to the P-type semiconductor region.
The transfer transistor 704 and the transfer transistor 705 respectively have the same structure as the structures of the transfer transistor 304 and the transfer transistor 305 according to the first embodiment. The gate electrode of the transfer transistor 704 and the gate electrode of the transfer transistor 705 are connected together to the transfer node 719, and this transfer node 719 is connected to the transfer signal supply unit 730 such that the control signal pTX2 is input to the transfer node 719 from the transfer signal supply unit 730 as with the first embodiment.
The FD 708 and the FD 709 are connected via an electrically conductive material such that they are at the same potential. The FD 708, the FD 709, the electrically conductive material, and the source of the reset transistor 331 form the detection node 721 of the second amplification unit 722 described below.
The detection node 721 is connected to the second amplification unit (amplifying transistor) 722 such that the signal based on the potential at the detection node 320 is amplified and output. The drain of the first amplification unit 722 is connected to the power supply unit 336 such that the power supply voltage VDD is supplied thereto from the power supply unit 336. The second amplification unit 722 forms together with a current source a source follower circuit.
The gate of the amplifying transistor 722 is connected to the detection node 721 such that the amplifying transistor 722 amplifies the signal based on the potential of the detection node 721 and outputs the resultant amplified signal to a signal line 724 via a second selection unit (selection transistor) 725.
The configuration according to the third embodiment further includes elements in addition to the elements of the configuration shown in
In
An N-type semiconductor region 808 (fourth semiconductor region) is a region forming the FD 708. A P-type semiconductor region 809 (seventh semiconductor region) is a region forming the FD 709.
The detection node 721 of the second amplification unit (second amplifying transistor) 722 includes the P-type semiconductor region 809 forming the FD 709, the N-type semiconductor region 808 forming the FD 708, the P-type semiconductor region 827 forming the source of the reset transistor 331, and an electrically conductive material connecting the above elements together.
Referring to
In
Examples of applications of the information processing system SYS are described below with reference to
In a second example, the information processing system SYS is applied to a video information processing system configured to provide a combined virtual reality to a user. When the information processing apparatus 107 operates the distance detection sensor 101 and the image capturing apparatus 108, the image capturing apparatus 108 captures an image of an object given as the target 106, and outputs a real-world image. On the other hand, the distance detection sensor 101 outputs a signal including distance information representing the distance to the object given as the target 106. Based on this signal, the information processing apparatus 107 combines a virtual image generated by computer graphics or the like and the real-world image obtained from the image captured by the image capturing apparatus 108 based on the distance information, thereby generating a mixed image. The information processing apparatus 107 displays the mixed image on a head-mounted display or the like functioning as the display apparatus 111.
In a third example, the information processing system SYS is applied to a vehicle (such as a car, a train, or the like) including a driving apparatus configured to drive wheels or the like. When an apparatus (a start button or the like) generates an engine start signal, or a steering wheel or an accelerator serving as an input apparatus 109 sends a command to the information processing apparatus 107 to move the vehicle or to make a preparation for the movement, the information processing apparatus 107 operates the distance detection sensor 101. The distance detection sensor 101 outputs a signal including distance information indicating the distance to an object specified as the target 106. The information processing apparatus 107 processes this signal, for example, such that when the distance to the target 106 becomes too small, an alarm is displayed on the display apparatus 111. The information processing apparatus 107 may display, on the display apparatus 111, information indicating a distance to the target 106. The information processing apparatus 107 may control the driving apparatus 110 such as a brake, an engine, and/or the like according to the distance information to reduce or increase the speed of the vehicle. The information processing apparatus 107 may adjust a relative distance to another vehicle running ahead by driving the driving apparatus 110 such as the brake, the engine, and/or the like based on the distance information.
In a fourth example, the information processing system SYS is applied to a game system as described below. A user is allowed to input a command to a main game machine unit via the input apparatus 109 such as a controller such that the game machine is to operate in a gesture mode. In response to the command issued by the user, the information processing apparatus 107 operates the distance detection sensor 101, such that the distance detection sensor 101 detects an operation (gesture) of the user and generates distance information according to the detected operation. Based on the obtained distance information, the information processing apparatus 107 generates a video image in which a virtual character in a game moves in response to an operation performed by a user. The information processing apparatus 107 displays this video image on the display apparatus 111 connected to the main game machine unit (information processing apparatus 107).
The applications of the photoelectric conversion device according to the present disclosure are not limited to the examples described above, but the photoelectric conversion device may be applied to a wide variety of information processing systems.
While the disclosure has been described with reference to exemplary embodiments, it is to be understood that the disclosure is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2015-157641, filed Aug. 7, 2015, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2015-157641 | Aug 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
9344657 | Kim | May 2016 | B2 |
20070103748 | Hashimoto | May 2007 | A1 |
Number | Date | Country |
---|---|---|
2005-303268 | Oct 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20170038471 A1 | Feb 2017 | US |