Thompson, R.B., “Fluorescence-Based Fiber-Optic Sensors” in Topics in Fluorescence Spectroscopy, vol. 2: Principles, Lakowicz, J.R. (Ed.) Plenum Press, NY (1991). |
Saari, L.A. et al., “pH Sensor Based on Immobilized Fluoresceinamine,” Anal. Chem. (1982) 54:821-3. |
Thompson, R.B., et al., “Chemistry and Technology of Evanescent Wave Biosensors” in Biosensors with Fiber Optics, Wise, D. and L. Windgard (Eds.) pp. 111-138, Humana Press, Clifton, NJ (1991). |
Tsien, R.Y., “Fluorescent Probes of Cell Signaling,” Ann. Rev. Neurosci. (1989) 12:227-53. |
Opitz, N. et al., Compact CO2 Gas Analyzer with Favourable Signal-to-Noise Ratio and Resolution Using Special Fluorescence Sensors (Optodes) Illuminated by Blue LED's,' Adv. Exp. Med. Biol. (1984) 180:757. |
Thompson, R.B. et al., “Enzyme-Based Fiber Optic Zinc Biosensor,” Anal. Chem. (1993) 65:730-4. |
Demas, J.N. et al., “Design and Applications of Highly Luminescent Transition Metal Complexes” in Topics in Fluorescence Spectroscopy, vol. 4: Probe Design and Chemical Sensing, Lakowicz, J.R. (Ed.) Plenum Press, NY (1994). |
Lippitsch, M.E. et al., “Fibre-Optic Oxygen Sensor wih the Fluorescence Decay Time as the Information Carrier,” Anal. Chim. Acta (1988) 205:1-6. |
Keating, S.M. et al., “Nanosecond Fluorescence Microscopy,” Biophys. J. (1991) 59:186-202. |
Szmacinski, H. et al., “Optical Measurements of pH Using Fluorescence Lifetimes and Phase-Modulation Fluorometry,” Anal. Chem. (1993) 65:1668-74. |
Lakowicz, J.R., “Fluorescence Lifetime Sensing Generates Cellular Images,” Laser Focus World (1992) 28(5):60-80. |
Thompson, R.B. et al., “Fluorescence Lifetime-Based Sensing of Zinc in Solution,” in Proc. of the SPIE Conference on Chemical, Biochemical, and Environmental Fiber Optic Sensors V, Lieberman, R.A. (Ed.) pp. 296-306 (1994) Bellingham, WA. |
Ozinskas, A.J., et al., “Homogeneous Model Immunoassay of Thyroxine by Phase-Modulation Fluorescence Spectroscopy,” Anal. Biochem. (1993) 213:264-270. |
T.M. Eads et al., “Microsecond Rotational Motions of Eosin-labeled Myosin Measured by Time-resolved Anisotropy of Absorption and Phosphores-cence” J. Mol. Biol (1984) 179:55-81. |
Thompson et al., “Performance Enhancement of Fluorescence Energy Transfer-Based Bio-sensors by Site-Directed Mutagenesis of the Transducer”J. Biomed. Opt. (1996), 1(1):131-7. |
Lindskog, S. et al., “Carbonic Anhydrase,” in The Enzymes, vol. 5, Third Ed. (P.D. Boyer, Ed.) pp. 587-665 (1971). |
Thompson, R.B. et al., “Energy transfer-based fiber optic metal ion biosensor,” Proc. SPIE Conf. Advances in Fluorescence Sensing Technology vol. 2388, (Lakowicz, J.R., ed.), pp. 138-147 (1995). |
Thompson, R.B. et al., “Fiber optic biosensor for Co(II) and Cu(II) based on fluorescence energy transfer with an enzyme transducer,” Biosensors& Bioelectronics, (1996) 11(6/7):557-64. |
Thompson, R.B. et al., “Determination of Picomolar Concentrations of Metal Ions Using Fluorescence Anisotropy: Biosensing with a ‘Reagentless’ Enzyme Transducer,” Analytical Chemistry (1998) 70:4717-23. |
Nair, S.K. et al., “Unexpected pH-Dependent Conformation of His-64, the Proton Shuttle of Carbonic Anhydrase II,” JACS (1991) 113:9455-8. |
Kiefer,, L.L. et al., “Hydrogen Bond Network in the Metal Binding Site of Carbonic Anhydrase Enhances Zinc Affinity and Catalytic Efficiency,” JACS (1995), 117:6831-7. |
Hunt, J.B. et al., “A Rapid and Convenient Preparation of Apocarbonic Anhydrase,” Anal Biochem (1997) 79:614-7. |
Thompson, R.B. et al., “Selectivity and Sensitivity of Fluorescence Lifetime-Based Metal Ion Biosensing Using a Carbonic Anhydrase Transducer,” Analytical Bio-chemistry (1999) 267:185-95. |
J. D. Stewart et al, J. Am. Chem. Soc. 1994, 116, 415-416, Jan. 1994. |
R. B. Thompson et al, Anal. Biochem. 1995, 227, 123-128, 1995. |
D. Elbaum et al, J. Am. Chem. Soc. 1996, 118, 8381-8387, 1996. |
E. Kimura et al, Chem. Soc. Rev. 1998, 27, 179-184, 1998. |
Hunt, J.A. et al., “Metal Binding Specificity in Carbonic Anhydrase is Influenced by Conserved Hydrophobic Core Residues,” Biochemistry 38:9054-62 (1999). |