Artificial light is often used in buildings, such a greenhouses and tissue culture labs, to promote organism growth, such as plant growth. Growing organisms within buildings and vertical farms require the usage of powered lighting to provide essential light for growth. These lights often are electrically powered and emit photons used for biological processes such as photosynthesis. Examples of various light or photon sources include but are not limited to metal halide light, fluorescent light, high-pressure sodium light, incandescent light and LEDs (light emitting diodes).
The foregoing examples of related art and limitations related therewith are intended to be illustrative and not exclusive, and they do not imply any limitations on the inventions described herein. Other limitations of the related art will become apparent to those skilled in the art upon a reading of the specification and a study of the drawings.
The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods, which are meant to be exemplary and illustrative, not limiting in scope.
An embodiment of the present invention comprises a system for enhancing growth, destruction or repair in an organism comprising at least one photon emitter in communication with at least one photon emission modulation controller; wherein said at least one photon emitter is configured to emit at least one first photon pulse, wherein said at least one first photon pulse has a duration, intensity, wavelength band and duty cycle; wherein said duration of said at least one first photon pulse is between 0.01 microseconds and 5 minutes and wherein the duration of the delay between said photon pulses is between 0.1 microseconds and 24 hours; wherein said duty cycle of said first photon pulse is between 0.01% and 95% constant emission of said at least one photon emitter; wherein said at least one photon emitter is configured to emit at least one additional photon pulse, wherein said at least one additional photon pulse has a duration, intensity, wavelength band and duty cycle, wherein said duration, intensity, wavelength band and duty cycle of said at least one additional photon pulse is different from the said duration, intensity, wavelength band and duty cycle of said at least one first photon pulse; wherein said at least one photon emission modulation controller controls said emission of photons from said photon emitter; wherein said duration of said at least one additional photon pulse is between 0.01 microseconds and 5 minutes and wherein the duration of the delay between said photon pulses is between 0.1 microseconds and 24 hours; wherein said duty cycle of said at least one additional photon pulse is between 0.01% and 95% constant emission of said at least one photon emitter; and wherein said at least one first photon pulse and said at least one additional photon pulse induce a response in said organism.
Another embodiment of the present invention may comprise a method for inducing a response in an organism wherein said method comprises providing at least one photon emitter; providing at least one photon emission modulation controller in communication with said at least one photon emitter; communicating a command from said at least one photon emission modulation controller to said at least one photon emitter; emitting at least one first photon pulse from said at least one photon emitter toward said organism, wherein said at least one first photon pulse has a duration, intensity, wavelength band and duty cycle; wherein said duration of said at least one first photon pulse is between 0.01 microseconds and 5 minutes and wherein the duration of the delay between said photon pulses is between 0.1 microseconds and 24 hours; wherein said duty cycle of said first photon pulse is between 0.01% and 95% constant emission of said at least one photon emitter; and emitting at least one additional photon pulse from said at least one photon emitter toward said organism, wherein said at least one additional photon pulse has a duration, intensity, wavelength band and duty cycle; wherein said duration, intensity, wavelength band and duty cycle of said at least one additional photon pulse is different from the said duration, intensity, wavelength band and duty cycle of said at least one first photon pulse; wherein said duration of said at least one additional photon pulse is between 0.01 microseconds and 5 minutes and wherein the duration of the delay between said photon pulses is between 0.1 microseconds and 24 hours; wherein said duty cycle of said additional photon pulse is between 0.01% and 95% constant emission of said at least one photon emitter.
An embodiment of the present invention comprises a system for enhancing growth, destruction or repair in an organism comprising at least one photon emitter in communication with at least one photon emission modulation controller; wherein said at least one photon emitter is configured to emit at least one first photon pulse, wherein said at least one first photon pulse has a duration, intensity, wavelength band and duty cycle; wherein said duration of said at least one first photon pulse is between 0.01 microseconds and five (5) minutes and wherein the duration of the delay between said photon pulses is between 0.1 microseconds and 24 hours; wherein said at least one photon emitter is configured to emit at least one additional photon pulse, wherein said at least one additional photon pulse has a duration, intensity, wavelength band and duty cycle, wherein said duration, intensity, wavelength band and duty cycle of said at least one additional photon pulse is different from the said duration, intensity, wavelength band and duty cycle of said at least one first photon pulse; wherein said at least one photon emission modulation controller controls said emission of photons from said photon emitter; wherein said duration of said at least one additional photon pulse is between 0.01 microseconds and 5 minutes and wherein the duration of the delay between said photon pulses is between 0.1 microseconds and 24 hours; and wherein said at least one first photon pulse and said at least one additional photon pulse induce a response in said organism.
Another embodiment of the present invention may comprise a method for inducing a response in an organism wherein said method comprises providing at least one photon emitter; providing at least one photon emission modulation controller in communication with said at least one photon emitter; communicating a command from said at least one photon emission modulation controller to said at least one photon emitter; emitting at least one first photon pulse from said at least one photon emitter toward said organism, wherein said at least one first photon pulse has a duration, intensity, wavelength band and duty cycle; wherein said duration of said at least one first photon pulse is between 0.01 microseconds and 5 minutes and wherein the duration of the delay between said photon pulses is between 0.1 microseconds and 24 hours; and emitting at least one additional photon pulse from said at least one photon emitter toward said organism, wherein said at least one additional photon pulse has a duration, intensity, wavelength band and duty cycle; wherein said duration, intensity, wavelength band and duty cycle of said at least one additional photon pulse is different from the said duration, intensity, wavelength band and duty cycle of said at least one first photon pulse; wherein said duration of said at least one additional photon pulse is between 0.01 microseconds and 5 minutes and wherein the duration of the delay between said photon pulses is between 0.1 microseconds and 24 hours.
In addition to the embodiments described above, further aspects and embodiments will become apparent by reference to the drawings and by study of the following descriptions, any one or all of which are within the invention. The summary above is a list of example implementations, not a limiting statement of the scope of the invention.
The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate some, but not the only or exclusive, example embodiments and/or features. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than limiting.
Embodiments of the present disclosure provide systems, apparatuses and methods for inducing a desired effect in an organism by creating electro-magnetic wave emission pulses (photons) of individual color spectrums in sufficient intensity to drive photochemical activation or response in an organism, using a characteristic frequency or pattern to minimize the required input power necessary to create organism growth, destruction and or repair, while also allowing for the monitoring of the power consumption and other variables of the system. As will be discussed in further detail, by controlling the duty cycle, wavelength band and frequency of photon bursts to an organism, the germination, growth, and reproduction rates of an organism can not only be influenced by a human, but germination, growth and reproduction rates, repair and destruction of an organism can be controlled and increased through the cycling between blue, yellow, near-red, far-red, infrared and ultra violet photon modulation.
It has long been understood that plants need 8 to 16 hours of light followed by 8 to 16 hours of dark in order to grow efficiently. The key proven concept of the present disclosure is that this basic, fundamental of plant growth is intrinsically incorrect. Plants are not capable of utilizing constant photon input during the light cycle and therefore spend an inordinate amount of energy protecting itself from the overdosing of photons.
The present disclosure, synchronizes the ability of the plant to utilize photons with the administration of photons to the plant via a timed lighting system. Specifically by combining multiple wavelengths of photons at specific combination of rates, absorption chemicals in organisms can be optimized and controlled. For example, plants spend less energy fighting excess heat and side effects such as superoxides and maximize growth by synchronizing the timing of photon pulses with the timing of chromophore absorption and transfer of photon energy to electrons through the electron transport chain. This dosage of photons to the plant is done on the order of microseconds and is followed by a dark cycle of similar magnitude. This allows the plant to devote nearly all energy to growth and basic life functions. Furthermore, specific chromophores that were thought to be slow “hormone like” control mechanisms can actually respond rapidly to further control growth.
Experimentation has proven that many of the embodiments of the present disclosure create a faster growing, sturdier, less nutrient intensive plant than that of traditional grow light systems. Each light “recipe (combination of color frequencies, modulation cycles, duty cycles, and durations)” can be optimized for each desired response to each species of organism.
The following are the major additional advantages to the methods, systems and apparatuses of the present disclosure:
While light is the key component of the photon modulation growth system, this system differs from other historical and even cutting edge lighting technology as it is used as the fundamental controller of plant activity rather than simply a basic element of plant growth. Likewise, while LED technology is a core component of lighting in this new system, it is a unique application of LED technology coupled with other engineering that dramatically expands the potential for reducing costs, increasing output, and enhancing control compared to existing commercial production of vegetables, ornamentals, and pharmaceutical etc. whether field or indoor, whether commercial scale or home consumer use. Via the experimentation done to date, it has been found that the same lighting system can be used to control many plant functions including germination, flowering, etc.
The systems, apparatuses and methods of the present disclosure provide energy, including individual color spectrums or ranges of color spectrums, at a frequency, intensity and duty cycle, which can be customized, monitored and optimized for the specific and optimal required growing, destruction and or repair characteristics of the target organism with the goal of maximizing growth, destruction and or repair while minimizing energy used in the system. By supplying control over the rates and efficiencies of modulated photon energy to the organism, different parts of the photochemical reaction of the organism is maximized allowing for optimal growth or the desired response (such as root, tissue or hyphal growth, vegetative growth, flower or fruiting body production, fruit, spore or seed production, stopping growth, elongation of a specific plant part, repairing an organism or destruction of the organism) while also allowing for control of an organisms response.
Photons are massless, elementary particles with no electric charge. Photons are emitted from a variety of sources such as molecular and nuclear processes, the quantum of light and all other forms of electromagnetic radiation. Photon energy can be absorbed by molecules called pigments, such as chromophores found in living organisms, and convert it into an electric potential.
The resulting excited pigment molecules are unstable and the energy must be dissipated in one of three possible ways. 1. as heat; 2. remitted as light; or 3. utilized through participation in a photo chemical reaction which is the focus of the present disclosure. For light to be used by plants for example, it must first be absorbed. As light is absorbed, the energy of the absorbed photon is transferred to an electron in the pigment molecule. The photon can be absorbed only if its energy content matches the energy required to raise the energy of the electron to one of the higher, allowable energy states. If matched, the electron is thus elevated from a non-excited state to one of a higher single state. In the example of a chlorophyll pigment, it has many different electrons, each of which may absorb a photon of different energy levels and consequently, different wavelengths. Moreover, each electron may exist in a variety of excitation states.
A normal excited molecule has a very short lifetime (on the order of a nanosecond) and in the absence of any chemical interaction with other molecules in its environment, it must rid itself of any excess energy and return to the ground (non-excited) state. This dissipation of excess energy is accomplished in several ways however the conversion to triplet or metastable state is the primary mechanism of the present disclosure. The excited electron is transferred to an acceptor molecule or photo-oxidation. This energy is then utilized as the primary photochemical act in photosynthesis or conformational change as in the phytochrome molecule.
Most of the photon energy absorbed by pigments never reaches a state that is utilized in a photochemical process. Because of this fact, it makes sense to synchronize the dosing of photons to the absorption capability of the plant and only give it what it can use. Pigments that absorb light for eventual use in physiological process are called photoreceptors. These molecules process the energy and informational content of photons into a form that can be used by the organism. This energy that is utilized is used to drive photosynthesis (or the reduction of carbon dioxide to carbohydrate). Different volumes and energy spectrums (or wavelengths) play a critical role in reactions.
The most common pigments utilized for plant growth are chlorophyll a, b, c, and d, phycobilins, terpenoids, carotenoids, cryptochromes, UV-B receptors (such as riboflavinoids), flavinoids, and betacyanins. These photoreceptors transfer their electrochemical energy to the electron transport chain. The photon absorbing photoreceptors such as chlorophyll, terpenoids, carotenoids etc. are actually conjugated molecules known as chromophores that allow for the conversion of photons into electrical potentials. Chromophores exist in many other biological functions outside of plants, including melanocytosis and color sensing cells in human vision.
This phenomenon can be seen in the vision opsin chromophore in humans. The absorption of a near red photon of light results in the photoisomerisation of the chromophore from the 11-cis to an all-trans conformation. The photoisomerization induces a conformational change in the opsin protein, causing the activation of the phototransduction cascade. The result is the conversion of rhodopsin into prelumirhodopsin with an all-trans chromophore. The opsin remains insensitive to light in the trans form. The change is followed by several rapid shifts in the structure of the opsin and also changes in the relation of the chromophore to the opsin. It is regenerated by the replacement of the all-trans retinal by a newly synthesized 11-cis-retinal provided from the retinal epithelial cells. This reversible and rapid chemical cycle is responsible for the identification and reception to color in humans. Similar biochemical processes exist in plants. Phytochromes and pheophytins behave very similarly to opsins in that they can be rapidly regulated to switch between the Cis and Trans configurations by dosing with differing wavelengths of light. However, if far red light stimulates the Trans form of the opsin, it can skip steps in the natural phototransduction chain and revert to 11-cis much faster.
The responses of plants to the variations in the length of day and night involve photon absorption molecular changes that closely parallel those involved in the vision cycle. Chrysanthemums and kalachoa are great examples of this. They flower in response to the increasing length of the night as fall approaches. If the night is experimentally shorted, the plants will not flower. If the plants are exposed to near red (660 nm) of light then they will not flower. If the plants are then exposed to far red (730 nm) after the exposure to near red then they will flower. It is well known that wheat, soybean, and other commercial crops are best suited or being grown in specific latitudes with different periods of light and darkness. The absorption of near red pigment (cis) converts the pigment to a far red absorption state (trans). The near red/far red chemical reversing also controls seed germination and growth cycles. These photo-absorbing chromophores in plants have been named phytochromes. It is also understood that Pheophytins (Chlorophyll a, b, and c that lack the Mg2+ ion) also naturally exist in plants. The Pheophytins lack of double bond ring can also exhibit the cis tran configuration changes. They are control mechanisms for triggering and controlling both growth cycles and reproduction cycles. These control triggers can be altered and/or controlled by modifying the dosing of photons to cause rapid cis trans configuration changes as compared to naturally occurring or normal artificial light sources.
The photochrome molecule is made up of an open group of atoms closely related to the rings in the chlorophyll molecule. It has two side groups that can change from the cis form to the trans when they are excited by specific pulses of light, however, a shift in the position of the molecule's hydrogen atoms is more likely. The changes in the phytochrome molecule following excitation by a flash of light is similar to those in rhodopsin. These intermediate stages also involve alterations in the molecular form of the protein associated with phytochrome, just as there are alterations in the form of opsin, the protein of rhodopsin. In its final form phytochrome differs from rhodopsin in that the molecule of phytochrome remains linked to the protein rather than being dissociated from it. Far-red light will reverse the process and convert the final form of phytochrome back to its initial red-absorbing form, although a different series of intermediate molecular forms is involved. Again, these are just a few examples of how controlling the modulated pulsing of light can control/enhance growth, repair and destruction of biological organisms.
Furthermore, when organisms are subject to varying amounts of light, often in excess, the efficiency of photosynthesis is decreased and can even damage components of the electron transport chain. In the presence of excess light for example, the chlorophyll may not rapidly transfer its excitation energy to another pigment molecule and thus will react with molecular oxygen to produce a highly reactive and damaging free radical superoxide. The plant must then spend energy otherwise reserved for growth to create protecting molecules such as Carotenoids and superoxide dismutase to absorb the excess superoxides. By supplying control over the rates and efficiencies of modulated photon energy to the organism different parts of the photochemical reaction can be maximized and the amount of electric power used in the process can be reduced.
Traditional light sources, as well as sunlight, create a bottleneck insofar as energy transfer in an organism is concerned. Chromophores of chlorophyll for example absorb protons and through the electron transport chain and redox reactions to convert the energy to sugars. In each lamellae structure in chlorophyll, there is on average one sink for this energy for every 500 chlorophyll molecules. This is one example where the bottleneck in an organism is created insofar as energy transfer is concerned. Giving a plant more light does not directly mean that the plant will be able to process the extra light. In an overly simplified explanation, it is believed that phytochrome molecules are not only involved in the very slow (more hormone based) influence of germination, growth, and reproduction rates of various organisms, but also perform and regulate very fast membrane and energy sink reactions within the lamellae. Therefore, it can be assumed that controlling and altering the natural timing and synchronization of photon pulses to photochromic response will effect germination, growth, and reproduction rates of various organisms.
The present disclosure also provides methods and systems for the amount of electric power used in the process of organism growth, destruction or repair to be monitored and reduced, where the amount of energy delivered can be defined by calculating the total area under the graph of power over time. The present disclosure further provides methods and systems that allow for the monitoring, reporting and control of the amount of electric power used to grow, destroy or repair an organism, allowing an end user or energy provider to identify trends in energy use.
An embodiment of the system of the present disclosure comprises at least one photon emitter, such as a light emitting diode in communication with a photon emission modulation controller, including but not limited to a digital output pulse width modulated signal (i.e. any electrical signal that cycles current level and ON/OFF) or a solid-state relay. Photon emitters are modulated to send a pulse of photons, where each individual pulse comprises at least one color spectrum or wavelength or multiple color spectrums or a wavelength band. Each photon pulse is directed toward an organism for a duration of time, such as two microseconds, with a duration of delay between photon pulses, such as two hundred microseconds or up to 24 hours.
As used herein “organism” includes an assembly of molecules functioning as a more or less stable whole that exhibits the properties of life. As will be discussed further, organisms may include but are not limited to unicells and multicellular life forms, viruses, animals (including but not limited to vertebrates (birds, mammals, amphibians, reptiles, fish); mollusks (clams, oysters, octopuses, squid, snails); arthropods (millipedes, centipedes, insects, spiders, scorpions, crabs, lobsters, shrimp); annelids (earthworms, leeches); sponges; and jellyfish, microorganisms, algae, bacteria, fungi, gymnosperms, angiosperms and pteridophytes, cyanobacteria or eukaryotic green algae.
As used herein, “duty cycle” is the length of time it takes for a device to go through a complete on/off cycle. Duty cycle is the percent of time that an entity spends in an active state as a fraction of the total time under consideration. The term duty cycle is often used pertaining to electrical devices, such as switching power supplies. In an electrical device, a 60% duty cycle means the power is on 60% of the time and off 40% of the time. An example duty cycle of the present disclosure may range from 0.01% to 95% including all real numbers in between. Far-red light will reverse the process and convert the final form of phytochrome back to its initial red-absorbing form, although a different series of intermediate molecular forms is involved. One view is that it regulates enzyme production by controlling the genetic material in cell nuclei. Another view is that the molecule's lipid solubility results in its being attached to membranes in the cell, such as the cell wall and the membrane of the nucleus. Attachment to the nucleus would then affect the permeability of the membranes and therefor the function of the cell. It is thought that in nature, the continuous exposure of an organism such as a plant to blue/near red and far-red wavelengths in the visible spectrum opposes the action of the far-red absorbing form of the phytochrome molecules. It may be that excitation by far-red light causes a continuous displacement of the far-red absorbing molecules from the cell membranes. Continuous excitation of this kind is what happens, for example during the long light periods that so markedly influence the growth of fir trees (Abies sp.). If fir trees are exposed to 12 hours of dark and 12 hours of light, they remain dormant. However, if the length of day increased they grow continuously. If this is intrinsically true, then the manipulation of the dosing of color spectrums to the plant can either interfere with, control, or change the natural cycles of plants that grow in natural sunlight. If for example, far-red light is dosed to the plant followed by near red dosing of the plant at shorter durations than that found in nature, the displacement of far-red absorbing molecules can be modified to accept more near red light and influence the dormancy cycles of some plants.
As used herein “frequency” is the number of occurrences of a repeating event per unit time and any frequency may be used in the system of the present disclosure. Frequency may also refer to a temporal frequency. The repeated period is the duration of one cycle in a repeating event, so the period is the reciprocal of the frequency.
In an embodiment of the present disclosure and as will be described in further detail below, the emission of two or more photon pulses from the growth system described herein for a duration, intensity, wavelength band and duty cycle induces a gain efficiency greater than 1 where Gain=Amplitude out/Amplitude in.
As shown in
In a further embodiment, the MLC 102 may be hard wired or wireless to an external source such as a host, allowing external access to the MLC 102 by a host. This allows remote access by a user to monitor the input and output of the MLC 102, provide instructions or control to the systems while also allowing for remote programming and monitoring of the MLC 102.
In a further embodiment, a power measurement or power consumption sensor may be integrated or embedded into the MLC 102 in the form of an integrated circuit allowing for the measurement and reporting of the power consumption of the system based on the voltage and the current draw of the system of the present disclosure. The power consumption of the system can then be communicated either wirelessly or by hardwire from the MLC to a host. Data, including power consumption may also be sent to an outside receiver such as a database driven software platform that is not connected to the system.
The photon emission modulation controller 104 receives commands and instructions from the MLC 102 including but not limited to the intensity, duty cycle, wavelength band and frequency of a photon pulse 118 from a photon emitter 106, 108, 110, 112, 114 and 116. The photon emission modulation controller 104 may be any device that modulates the quanta and provides the control and command for the intensity, duty cycle, wavelength band and frequency of a photon pulse from a photon emitter 106, 108, 110, 112, 114 and 116. A variety of devices may be used as the photon emission modulation controller 104, including but not limited to a solid-state relay (SSR), such as the Magnacraft 70S2 3V solid-state relay from Magnacraft Inc., light emitting diodes, as well as a chromatically filtered incandescent (Tungsten-halogen and Xenon), chromatically filtered fluorescent (CFL's), chromatically filtered high intensity discharge (Metal Halide, High-Pressure Sodium, Low-Pressure Sodium, Mercury Vapor), chromatically filtered sunlight, light emitting diodeoptical chopper and a device that induces modulation of a photon pulse, all of which are chromatically filtered. It should be understood that this description is applicable to any such system with other types of photon emission modulation controllers, including other methods to cycle a light or photon source on and off, cycling one or more colors or spectrums of light at different times, durations and intensities, such as near red, blue and far-red, allowing multiple pulses of one spectrum before pulsing another spectrum, as will be understood by one skilled in the art, once they understand the principles of this invention.
As shown in
As will be understood by one skilled in art, in an additional embodiment, the system as described in
The systems as shown in
A variety of power supplies may be used in the present disclosure, many of which would be obvious to one skilled in the art. These sources of power may include but are not limited to battery, converters for line power, solar and/or wind power. As will be understand by one skilled in the art, the intensity of the photon pulse may be static with distinct on/off cycles or the intensity may be changes of 1% or larger of the quanta of the photon pulse. The intensity of the photon pulse from the photon emitter can be controlled through the variance of voltage and/or current from the power supplies and delivered to the light source. It will also be appreciated by one skilled in the art as to the support circuitry that will be required for the system of the present disclosure, including the photon emitter control unit and the photon emitters. Further, it will be appreciated that the configuration, installation and operation of the required components and support circuitry are well known in the art. The program code, if a program code is utilized, for performing the operations disclosed herein will be dependent upon the particular processor and programming language utilized in system of the present disclosure. Consequently, it will be appreciated that the generation of program code from the disclosure presented herein would be within the skill of an ordinary artisan.
The modulation of individual color spectrums of photons to an organism by providing specific color spectrum pulses for a duration along with a delay between pulses, allows for peak stimulation of an organism's biological components and responses, such as a photosynthetic organism's stoma, chromophores, chlorophyll pigments, phototropism and other aspects of growth regulation. Examples of the ability to control specific aspects of an organism's biological components or responses through the pulsing of individual color spectrums, specific color wavelength or a range of color wavelengths may include but are not limited to:
The modulation of individual color spectrums, specific wavelength and a range of wavelengths of photons to an organism by providing specific color spectrum pulses for a duration along with a delay between pulses also allows for the control of non-photosynthetic growth or responses, such as phototropism in fungi or other organisms. An example may include one light or through the combination of many lights, cycling the lights on and off to control elongation and growth of an organism, such as inducing elongated growth in the stipe of a mushroom or broad cap growth in a mushroom. Another example may include using a side light source on one side of a plant more often than the other to induce a plant to grow towards that the lighted side then turn the other side on until it grows towards that light. Repeating it will cause an overall increase in growth
As shown in
The photon emission modulation controller 104 receives commands and instructions from the MLC 102 including but not limited to the intensity, duty cycle, color spectrum and frequency of each specific color spectrum photon pulse 202 and 204 or a plurality of pulses of a specific color spectrum from a photon emitter 106, 108, 110, 112, 114 and 116. The photon emission modulation controller 104 provides the control and command for the intensity, duty cycle, color spectrum and frequency of each specific color spectrum photon pulse 202 and 204 or plurality of pulses from a photon emitter 106, 108, 110, 112, 114 and 116.
As shown in
The system of the present disclosure as described in
By way of example, studies have shown that using the pulse of specific color spectrums to a plant, groups of bean plants may be sown and germinated on the same date and managed identically up to the “first open flower”. At this point protocols may be changed on one group to encourage and allow further development through fruit production. Protocols for the other group may be changed to “hold” at full open flower point. Within days the first group had beans ready to harvest while the other was still in open flower stage.
A variety of photon emitters may be used to provide photons, many of which are known in the art. However, an example of a photon emitter appropriate for the present discussion is a light emitting diode (LED), which may be packaged within an LED array designed to create a desired spectrum of photons. While LEDs are shown in this example, it will be understood by one skilled in the art that a variety of sources may be used for the emission of photons including but not limited to metal halide light, fluorescent light, high-pressure sodium light, incandescent light and LEDs (light emitting diode). Please note that if a metal halide light, fluorescent light, sunlight, high-pressure sodium light, incandescent light is used with the methods, systems and apparatuses described herein, the proper use of these forms of photon emitters would be to modulate and then filter the light to control what wavelength for what duration is passed through.
Embodiments of the present disclosure can apply to LEDs having various durations of photon emissions, including durations of photon emissions of specific color spectrums and intensity. The pulsed photon emissions of specific color spectrums may be longer or shorter depending on the organism in question, the age of the organism and how the emission will be used in facilitating biochemical processes for organism growth.
The use of an array of LEDs may be controlled to provide the optimal photon pulse of one or more color spectrums for specific organism growth such as growing lettuce or for tomato growth. The user may simply select the photon pulse intensity, color spectrum, frequency and duty cycle for a particular type of organism to encourage efficient biological responses such as photosynthetic process in plants. LED packages can be customized to meet each organism's specific requirements. By using packaged LED arrays with the customized pulsed photon emission, as discussed above, embodiments described herein may be used to control light to alter the vitamin, salt, acid, antioxidant, flavonoid, carotenoid, water, chloroplast and accessory pigment and absorption levels within the target organism.
As shown in
The LED array housing 310, 312, 314 and 316 for each photon emitter 106, 108, 110 and 112 may be made of a variety of suitable materials including, but are not limited to, plastic, thermoplastic, and other types of polymeric materials. Composite materials or other engineered materials may also be used. In some embodiments, the housing may be made by a plastic injection molding manufacturing process, aluminum extrusion, steel and other processes. In some embodiments, the housing may be transparent or semi-transparent and in any color.
Conversely, each slave photon emitter 404, 406, and 408 contains the circuitry to receive command signals 136 from the master photon emitter 402 and the circuitry necessary to emit a pulse of a specific spectrum from an array of LEDs (such as near red, far-red, blue or yellow) housed within each slave photon emitter 404, 406, and 408. For clarity, each slave photon emitter does not contain a controller such as the MLC nor does the slave photon emitter 404, 406, and 408 contain a photon emission modulation controller. All commands and controls for the slave photon emitter 404, 406, and 408 are received from the master photon emitter 402. This master/slave system allows for sharing of a single power supply and microcontroller. Master has the power supply and that power is also transferred to the slaves. Additionally, the master/slave system can be utilized to pulse photons in patterns to help stimulate the photoperiodism or phototrophic response in other organisms response in plants.
A bus system may be included in MLC of the master photon emitter 402 or in each slave photon emitter 404, 406 and 408 to allow for the specific control by the master photon emitter 402 of each individual slave photon emitter 404, 406 and 408. By way of example, the master photon emitter 402 may send a signal 136 to a specific slave photon emitter 404 commanding the slave photon emitter 404 to emit a far-red pulse for a specific duration, while the master photon emitter 402 simultaneously sends a command signal 136 to a second slave photon emitter 406 to emit a near red pulse for a specific duration. While this descriptive example shows an array, plurality or chain of three slave photon emitters 404, 406 and 408 in communication with a master photon emitter 402, it should be understood that this description is applicable to any such system with any number of slave photon emitters in communication and under the control of a master photon emitter, as will be understood by one skilled in the art, once they understand the principles of this invention.
In a further embodiment, the master photon emitter 402 may be hard wired or wireless to allow external access to the master photon emitter 402 by a host, allowing remote access to monitor the input and output of the master photon emitter 402 while also allowing for remote programming of the master photon emitter.
Through the photon emission modulation controller 104, the MLC 102 communicates commands and instructions to each photon emitter 106, 502, 504 and 506 including but not limited to the intensity, duty cycle and frequency of each specific color spectrum photon pulse 508 and 510 from each photon emitter 106, 502, 504 and 506. The MLC 102 also maintains control of the power supply to the system and control the transfer of power to each individual photon emitter 106, 502, 504 and 506.
As shown in
The ability of the MLC 102 to control the photon output or emitted from each individual photon emitter 106, 502, 504 and 506 allows the system of the present disclosure to modify the photon emission to an organism based on the specific needs or requirements for an organism. As discussed in association with
In the example shown in
In a further embodiment, the MLC 102 may be hard wired or wireless, allowing external access to the MLC 102 by a user. This allows remote access by a user to monitor the input and output of the MLC 102 while also allowing for remote programming of the MLC.
The sensors 602, 604, 606 and 608 monitor one or more conditions associated with the plant or organism 618, 620, 622, and 624 and then transmit the data 610, 612, 614 or 616 to the MLC 102. Transferring the data from the one or more sensors 602, 604, 606 and 608 to the MLC 102 can be accomplished in a number of ways, either wirelessly or hard wired. As will be understood by one skilled in art, a variety of communication systems may be used for the delivery of sensor-derived information from the plant 618, 620, 622, and 624 to the a MLC 102.
The data from the one or more sensors 602, 604, 606 and 608 is analyzed by the MLC 102. Based on the information from the sensors, the MLC 102, through the photon emission modulation controller 104, the MLC 102 is able to adjust the intensity, duty cycle and frequency of each specific color spectrum photon pulse 608 and 610 of each individual photon emitter 106, 602, 604 and 606, or to adjust the intensity, duty cycle and frequency of a group of photon emitters based on the needs of the individual plants 618, 620, 622, and 624 associated with a specific sensor 602, 604, 606 and 608 or the needs of the plants as a whole. An example may include adjusting a pulse to comprise both blue and near red 608 at various durations or adjusting duration of a pulse of far-red, near red and blue 610.
In additional embodiments, the system of the present disclosure may also include a watering system, fertilizing system and/or a fertigation system (not shown in
Examples of an irrigation system may include drip irrigation, overhead misting, or fog systems. Examples of nutrient systems or nutrient sources may include nutrient injection, nutrient film, nutrient drips, ebb and flow, or fertigation (a combination of fertilizer and irrigation) where the nutrient source is instructed or is able to provide a nutrient event to an organism by means of directing nutrients to the organism.
As further shown in
The system of the present disclosure may be successfully employed with a wide variety of organisms, including but not limited to wide variety of algae, bacteria, fungi, gymnosperms, angiosperms and pteridophytes, cyanobacteria or eukaryotic green algae. This list of organisms may further include but is not limited to Arthrospira spp., Spirulina spp., Calothrix spp., Anabaena flos-aquae, Aphanizomenon spp., Anadaena spp., Gleotrichia spp., Oscillatoria spp., Nostoc spp., Synechococcus elongatus, Synechococcus spp., Synechosystis spp. PCC 6803, Synechosystis spp., Spirulina plantensis, Chaetoceros spp., Chlamydomonas reinhardii, Chlamydomonas spp., Chlorella vulgaris, Chlorella spp., Cyclotella spp., Didymosphenia spp., Dunaliella tertiolecta, Dunaliella spp., Botryococcus braunii, Botryococcus spp., Gelidium spp., Gracilaria spp., Hantscia spp., Hematococcus spp., Isochrysis spp., Laminaria spp., Navicula spp., Pleurochrysis spp. and Sargassum spp; citrus, table grapes, wine grapes, bananas, papaya, Cannabis sp., coffee, goji berries, figs, avocados, guava, pineapple, raspberries, blueberries, olives, pistachios, pomegranate, artichokes and almonds; vegetables such as artichokes, asparagus, bean, beets, broccoli, brussel sprouts, chinese cabbage, head cabbage, mustard cabbage, cantaloupe, carrots, cauliflower, celery, chicory, collard greens, cucumbers, daikon, eggplant, endive, garlic, herbs, honey dew melons, kale, lettuce (head, leaf, romaine), mustard greens, okra, onions (dry & green), parsley, peas (sugar, snow, green, black-eyed, crowder, etc.), peppers (bell, chile), pimento, pumpkin, radish, rhubarb, spinach, squash, sweet corn, tomatoes, turnips, turnip greens, watercress, and watermelons; flowering type bedding plants, including, but not limited to, Ageratum, Alyssum, Begonia, Celosia, Coleus, dusty miller, Fuchsia, Gazania, Geraniums, gerbera daisy, Impatiens, Marigold, Nicotiana, pansy/Viola, Petunia, Portulaca, Salvia, Snapdragon, Verbena, Vinca, and Zinnia; potted flowering plants including, but not limited to, African violet, Alstroemeria, Anthurium, Azalea, Begonia, Bromeliad, Chrysanthemum, Cineraria, Cyclamen, Daffodil/Narcissus, Exacum, Gardenia, Gloxinia, Hibiscus, Hyacinth, Hydrangea, Kalanchoe, Lily, Orchid, Poinsettia, Primula, regal pelargonium, rose, tulip, Zygocactus/Schlumbergera; foliage plants including, but not limited to, Aglaonema, Anthurium, Bromeliad, Opuntia, cacti and succulents, Croton, Dieffenbachia, Dracaena, Epipremnum, ferns, ficus, Hedera (Ivy), Maranta/Calathea, palms, Philodendron, Schefflera, Spathiphyllum, and Syngonium. cut flowers including, but not limited to, Alstroemeria, Anthurium, Aster, bird of paradise/Strelitzia, calla lily, carnation, Chrysanthemum, Daffodil/Narcissus, daisy, Delphinium, Freesia, gerbera daisy, ginger, Gladiolus, Godetia, Gypsophila, heather, iris, Leptospermum, Liatris, lily, Limonium, Lisianthus, Orchid, Protea, Rose, Statice, Stephanotis, Stock, Sunflower, Tulip; cut cultivated greens including, but not limited to, plumosus, tree fern, boxwood, soniferous greens, Cordyline, Eucalyptus, hedera/Ivy, holly, leatherleaf ferns, Liriope/Lilyturf, Myrtle, Pittosporum, Podocarpus; deciduous shade trees including, but not limited to, ash, birch, honey locust, linden, maple, oak, poplar, sweet gum, and willow; deciduous flowering trees including, but not limited to, Amelanchier, callery pea, crabapple, crapemyrtle, dogwood, flowering cherry, flowering plum, golden rain, hawthorn, Magnolia, and redbud; broadleaf evergreens including, but not limited to, Azalea, cotoneaster, Euonymus, holly, Magnolia, Pieris, Privet, Rhododendron, and Viburnum; coniferous evergreens including, but not limited to, Arborvitae, cedar, cypress, fir, hemlock, juniper, pine, spruce, yew; deciduous shrubs and other ornamentals including, but not limited to, buddleia, hibiscus, lilac, Spirea, Viburnum, Weigela, ground cover, bougainvillea, clematis and other climbing vines, and landscape palms; fruit and nut plants including, but not limited to, citrus and subtropical fruit trees, deciduous fruit and nut trees, grapevines, strawberry plants, other small fruit plants, other fruit and nut trees; cut fresh, strawberries, wildflowers, transplants for commercial production, and aquatic plants; pteridophyte plants including, but not limited to ferns and fungi including but not limited to basidiomycetes, ascomycetes, and sacchromycetes. The system of the present disclosure provides a photon pulse for both C3 and C4 photosystems as well as “CAM” plants (Crassulacean acid metabolism).
The following examples are provided to illustrate further the various applications and are not intended to limit the invention beyond the limitations set forth in the appended claims.
Table 1 shows the growth rate of two sets of plants over time (beans, Phaseolus vulgaris var. nanus). One set of plants was grown under the growth system of the present invention and one set of plants grown under a conventional plant grow light system (a 60 watt incandescent growing light). Plant growth was measured by measuring the height of each plant in millimeters. The plants were grown under an automated system where the plants grown under the photon modulation system of the present invention was established at a two-millisecond photon pulse of near-red, blue, and yellow with a duration of the delay between pulses of 200 milliseconds. This was then repeated with a two-millisecond photon pulse of far-red offset by 100 milliseconds with a duration of the delay between pulses of 200 milliseconds. This cycle was then repeated indefinitely for 24 hrs/day This rate of photon pulse and photon pulse delay is estimated to have an energy usage of less than 1% of the energy used the by conventional grow light. The plants grown under the conventional growing light were exposed to the light of the conventional growing light for a period of 12 hours per day. Plants were grown in nine (9) oz. plastic cups with small holes located at the base of the cup for drainage. Seeds were planted in a soil mixture (MiracleGro Moisture control potting mix).
A manual watering system provided an adequate amount of moisture for the plants. The plant containers were placed in a black container or box with a lid that did not allow light to enter unless the lid was removed. A photon emitter comprising an array of LEDs or the 60 watt grow lights were affixed to the top of the respective black containers. The LEDs comprised an array of red LEDs (640 nm and 700 nm), an array of yellow round LEDs (590 nm) and an array of blue round LEDs (450 nm). The photon emitter was wired to a solid-state relay, comprising a Magnacraft 70S2 3V solid-state relay, to allow for communication between the photon emitter and the solid-state relay. The solid-state relay was in communication with a central processing unit to provide input and output instructions to the solid-state relay. The central processing unit was programmed to instruct the solid-state relay to modulate the signals to the photon emitter in order to produce a two millisecond pulse of photons every 200 milliseconds.
As shown in Table 1, column one provides the type of growing system used. Column two provides the type of plant and the individual plant number for each plant. Columns 3 to 8 provide the day of measurement of the plant from the original planting of the seeds. As shown in Table 1, using the photon modulation growing system, within day eight from planting Bean1, Bean2 and Bean3 had grown to a height between 77 mm and 136 mm. By day fourteen Bean1, Bean2 and Bean3 grown under the photon modulation growth system to a height between 200 mm and 220 mm. In comparison, under the conventional 60 watt growing lights by day eight Bean1 and Bean2 had grown between 155 mm and 185 mm and by day fourteen Bean1, Bean2 and Bean3 had grown between 160 mm and 220 mm. This data shows that the photon modulation growing system, using less than 1% of the energy of the conventional growing system, is able to grow bean plants equally as well or better when compared to a conventional growing system.
Table 2 shows the leaf size of two sets of plants over time (beans, Phaseolus vulgaris var. nanus) with one set of plants grown under the photon modulation growth system of the present invention and one set of plants grown under a conventional growing light (a 60 watt incandescent growing light) by measuring the leaf size of each plant in millimeters. Example 1 is repeated and as shown in Table 2, a measurement of leaf size in millimeters is provided with column one providing the type of growing system used. Column 2 provides the type of plant and the individual plant number. Columns 3 to 8 provides the day of leaf measurement from the date of the original planting of the seeds. As shown in Table 2, using the photon modulation growing system, within day eight from planting Bean1, Bean2 and Bean3 had a leaf size between 50 mm×47 mm and 59 mm×55 mm and by day fourteen Bean1, Bean2 and Bean3 had a leaf size between 55×52 mm and 64 mm×58 mm. In comparison, under the conventional 60 watt growing lights by day eight Bean1 and Bean3 had a leaf size between 26 mm×22 mm and 57 mm×50 mm and by day fourteen Bean1 and Bean3 had a leaf size between 33 mm×30 mm and 62 mm×55 mm. This data shows that bean leaf size grown under the photon modulation growing system, using less than 1% of the energy of the conventional growing system, is able to grow beans equally as well or better when compared to a conventional growing system.
As shown in
The data of
As shown in
The data of
As shown in
The data of
As shown in
The data of
As shown in
The data of
For Examples 8-21, a four color LED array consisting of 470 nm, 505 nm, 617 nm, and 740 nm wavelengths were modulated with a varying microseconds (μs) ON cycles followed by a coordinating (μs) OFF cycle repeated in a loop in order to create duty cycles ranging from 5% to 85%. All wavelengths were simultaneously started. With each step in the experiment, various ON cycles (pulse widths) were used. These pulse widths were tested in the following order Full ON (no OFF cycle), 25,000 (μs) ON cycle, 5,000 (μs) ON cycle, 2,500 (μs) ON cycle, 1,250 (μs) ON cycle, 625 (μs) ON cycle, 312 (μs) ON cycle, 156 (μs) ON cycle, and 78 (μs) ON cycle. The corresponding OFF cycle for each of the above ON cycles provided for the individual respective cycle rates was accomplished by varying the respective OFF cycles following the ON cycles in the loop described above.
As shown in Tables 3-12, the experimentation has shown that by modulating light at extremely short intervals (i.e. 78 (μs)-25,000 (μs)) great gains are realized in photosynthetic rate relative to power input when light is not modulated.
Photosynthetic rate (“PSR”) was measured as:
PSR as measured on a single leaf of a bean plant (Phaseolus vulgaris var. nanus) 6 to 8 months of age. Plants were exposed individually to photon pulses composed of four light channels (near red, far red, blue and green) at a specific light duration in microseconds (μs) and a duty cycle of 100% emission, and a duty cycle chosen from 85%, 75%, 65%, 55%, 45%, 33%, 20%, 15%, 10% and 5%. Photosynthetic rate was measured using a LI-6400XT Portable Photosynthesis System, available from Li-Cor, Inc., Lincoln, Nebr.
The LI-6400XT Test Chamber was maintained with a constant content CO2 of 700 ppm and a relative humidity above 50% with controlled airflow of 300 mol/s into the box.
Table 3 below shows the PSR of a bean plant, as measured when exposed to a constant emission (100%) and a duty cycle of 85%. As shown in Table 3, column 1 shows the duration of a photon pulse of a full light spectrum in microseconds (μs). Column 2 shows the PSR of the bean plant when exposed to a constant emission (100%). Column 3 shows the PSR of the tested plant when exposed to the photon pulse at the light duration of column 1, at a 85% duty cycle. Column 4 is the percent PSR of the plant at 85% as compared to the plant's PSR at 100% constant emission. Column 5 is a corrected percentage comparison of the PSR of the plant at 85% duty cycle, where the PSR rate at 85% is multiplied by 1.18 to standardize the PSR with the PSR rate at 100% constant emission.
As shown in Table 3, plant PSR when exposed to a duty cycle of 85% as compared to 100% constant emission was an average increase of 111.27% greater than when the plant photosynthetic rate was measured under 100% constant emission, with a peak increase of 115.63%. Table 3 also shows that PSR at 85% increases as the light duration decreases with a peak PSR of 12.62 at a light duration of 1250 μs.
Table 4 below shows the PSR of a bean plant, as measured when exposed to a constant emission (100%) and a duty cycle of 75%. As shown in Table 4, column 1 shows the duration of a photon pulse of a full light spectrum in microseconds (μs). Column 2 shows the PSR of the bean plant when exposed to a constant emission (100%). Column 3 shows the PSR of the tested plant when exposed to the photon pulse at the light duration of column 1, at a 75% duty cycle. Column 4 is the percent PSR of the plant at 75% as compared to the plant's PSR at 100% constant emission. Column 5 is a corrected percentage comparison of the PSR of the plant at 75% duty cycle, where the PSR rate at 75% is multiplied by 1.33 to standardize the PSR with the PSR rate at 100% constant emission.
As shown in Table 4, plant PSR when exposed to a duty cycle of 75% as compared to 100% constant emission was an average increase of 128.54% greater than when the plant photosynthetic rate was measured under 100% constant emission, with a peak increase of 130.79%. Table 4 also shows that PSR at 75% increases as the light duration decreases with a peak PSR of 12.88 at a light duration of 312 μs.
Table 5 below shows the PSR of a bean plant, as measured when exposed to a constant emission (100%) and a duty cycle of 65%. As shown in Table 5, column 1 shows the duration of a photon pulse of a full light spectrum in microseconds (μs). Column 2 shows the PSR of the bean plant when exposed to a constant emission (100%). Column 3 shows the PSR of the tested plant when exposed to the photon pulse at the light duration of column 1, at a 65% duty cycle. Column 4 is the percent PSR of the plant at 65% as compared to the plant's PSR at 100% constant emission. Column 5 is a corrected percentage comparison of the PSR of the plant at 65% duty cycle, where the PSR rate at 65% is multiplied by 1.54 to standardize the PSR with the PSR rate at 100% constant emission.
As shown in Table 5, plant PSR when exposed to a duty cycle of 65% as compared to 100% constant emission was an average increase of 143.27% greater than when the plant photosynthetic rate was measured under 100% constant emission, with a peak increase of 146.98%. Table 5 also shows that PSR at 65% increases as the light duration decreases with a peak PSR of 12.85 at a light duration of 312 μs.
Table 6 below shows the PSR of a bean plant, as measured when exposed to a constant emission (100%) and a duty cycle of 55%. As shown in Table 6, column 1 shows the duration of a photon pulse of a full light spectrum in microseconds (μs). Column 2 shows the PSR of the bean plant when exposed to a constant emission (100%). Column 3 shows the PSR of the tested plant when exposed to the photon pulse at the light duration of column 1, at a 55% duty cycle. Column 4 is the percent PSR of the plant at 55% as compared to the plant's PSR at 100% constant emission. Column 5 is a corrected percentage comparison of the PSR of the plant at 55% duty cycle, where the PSR rate at 55% is multiplied by 1.82 to standardize the PSR with the PSR rate at 100% constant emission.
As shown in Table 6, plant PSR when exposed to a duty cycle of 55% power as compared to 100% constant emission was an average increase of 170.02% greater than when the plant photosynthetic rate was measured under 100% constant emission, with a peak increase of 174.21%. Table 6 also shows that PSR at 55% increases as the light duration decreases with a peak PSR of 13.05 at a light duration of 312 μs.
Table 7 below shows the PSR of a bean plant, as measured when exposed to a constant emission (100%) and a duty cycle of 45%. As shown in Table 7, column 1 shows the duration of a photon pulse of a full light spectrum in microseconds (μs). Column 2 shows the PSR of the bean plant when exposed to a constant emission (100%). Column 3 shows the PSR of the tested plant when exposed to the photon pulse at the light duration of column 1, at a 45% duty cycle. Column 4 is the percent PSR of the plant at 45% as compared to the plant's PSR at 100% constant emission. Column 5 is a corrected percentage comparison of the PSR of the plant at 45% duty cycle, where the PSR rate at 45% is multiplied by 2.22 to standardize the PSR with the PSR rate at 100% constant emission.
As shown in Table 7, plant PSR when exposed to a duty cycle of 45% as compared to 100% constant emission was an average increase of 201.77% greater than when the plant photosynthetic rate was measured under 100% constant emission, with a peak increase of 207.10%. Table 7 also shows that PSR at 45% increases as the light duration decreases with a peak PSR of 12.87 at a light duration of 312 μs.
Table 8 below shows the PSR of a bean plant, as measured when exposed to a constant emission (100%) and a duty cycle of 33% duty cycle. As shown in Table 8, column 1 shows the duration of a photon pulse of a full light spectrum in microseconds (μs). Column 2 shows the PSR of the bean plant when exposed to a constant emission (100%). Column 3 shows the PSR of the tested plant when exposed to the photon pulse at the light duration of column 1, at a 33% duty cycle. Column 4 is the percent PSR of the plant at 33% as compared to the plant's PSR at 100% constant emission. Column 5 is a corrected percentage comparison of the PSR of the plant at 33% duty cycle, where the PSR rate at 33% is multiplied by three to standardize the PSR with the PSR rate at 100% constant emission.
As shown in Table 8, plant PSR when exposed to a duty cycle of 33% as compared to 100% constant emission was observed at an average of 250.15% greater than when the plant photosynthetic rate of the plant was measured at 100% light. Table 8 also shows that PSR at 33% increases as the light duration decreases with a peak PSR of 9.35 observed at a light duration of 156 μs.
Table 9 below shows the PSR of a bean plant, as measured when exposed to a constant emission (100%) and a duty cycle of 20%. As shown in Table 9, column 1 shows the duration of a photon pulse of a full light spectrum in microseconds (μs). Column 2 shows the PSR of the bean plant when exposed to a constant emission (100%). Column 3 shows the PSR of the tested plant when exposed to the photon pulse at the light duration of column 1, at a 20% duty cycle. Column 4 is the percent PSR of the plant at 20% as compared to the plant's PSR at 100% light. Column 5 is a corrected percentage comparison of the PSR of the plant at 20%, where the PSR rate at 20% duty cycle is multiplied by five to standardize the PSR with the PSR rate at 100% Constant Emission.
As shown in Table 9, plant PSR when exposed to a duty cycle of 20% as compared to 100% constant emission was observed to have an average increase of 400.46% greater than when the plant photosynthetic rate was measured at 100% constant emission. Table 9 also shows that PSR at 20% increases as the light duration decreases with a peak PSR of 5.82 at a light duration of 312 μs.
Table 10 below shows the PSR of a bean plant, as measured when exposed to a constant emission (100%) and a duty cycle of 15%. As shown in Table 10, column 1 shows the duration of a photon pulse of a full light spectrum in microseconds (μs). Column 2 shows the PSR of the bean plant when exposed to a constant emission (100%). Column 3 shows the PSR of the tested plant when exposed to the photon pulse at the light duration of column 1, at a 15% duty cycle. Column 4 is the percent PSR of the plant at 15% as compared to the plant's PSR at 100% light. Column 5 is a corrected percentage comparison of the PSR of the plant at 15% duty cycle, where the PSR rate at 15% is multiplied by 6.67 to standardize the PSR with the PSR rate at 100% constant emission.
As shown in Table 10, plant PSR when exposed to a duty cycle of 15% power as compared to 100% constant emission was observed to have an average PSR 478.21% greater than when the plant photosynthetic rate was measured under 100% constant emission. Table 10 also shows that PSR at 15% increases as the light duration decreases with a peak PSR of 6.05 at a light duration of 312 μs.
Table 11 below shows the PSR of a bean plant, as measured when exposed to a constant emission (100%) and a duty cycle of 10%. As shown in Table 11, column 1 shows the duration of a photon pulse of a full light spectrum in microseconds (μs). Column 2 shows the PSR of the bean plant when exposed to a constant emission (100%). Column 3 shows the PSR of the tested plant when exposed to the photon pulse at the light duration of column 1, at a 10% duty cycle. Column 4 is the percent PSR of the plant at 10% as compared to the plant's PSR at 100% constant emission. Column 5 is a corrected percentage comparison of the PSR of the plant at 10% duty cycle, where the PSR rate at 10% is multiplied by ten to standardize the PSR with the PSR rate at 100% constant emission.
As shown in Table 11, plant PSR when exposed to a duty cycle of 10% as compared to 100% constant emission was an average increase of 627.30% greater than when the plant photosynthetic rate was measured under 100% constant emission, with a peak increase of 745.10%. Table 11 also shows that PSR at 10% increases as the light duration decreases with a peak PSR of 5.32 at a light duration of 312 μs.
Table 12 below shows the PSR of a bean plant, as measured when exposed to a constant emission (100%) and a duty cycle of 5%. As shown in Table 12, column 1 shows the duration of a photon pulse of a full light spectrum in microseconds (μs). Column 2 shows the PSR of the bean plant when exposed to a constant emission (100%). Column 3 shows the PSR of the tested plant when exposed to the photon pulse at the light duration of column 1, at a 5% power. Column 4 is the percent PSR of the plant at 5% as compared to the plant's PSR at 100% light. Column 5 is a relative PSR of the plant at 5%, where the PSR rate at 5% is multiplied by 20 to standardize the PSR with the PSR rate at 100%.
As shown in Table 12, plant PSR when exposed to a duty cycle of 5% as compared to 100% light was an average increase of 827.12% greater than when the plant photosynthetic rate was measured under 100% light, with a peak increase of 1090.06%, at 312 μs. Table 12 also shows that PSR at 5% was observed to increase as the light duration decreases, with a peak PSR of 3.51 at a light duration of 312 μs.
As shown in
As shown in
Tables 13-18 and
As shown in Tables 13-18, PSR increased consistently as the 740 nm (far red) shift increased in microseconds. Please note that column 2 in Tables 13-18 shows 0, indicating that no shift in far red was measured. As shown in Table 14 and in
Tables 18 and 19 below show 10% duty cycle w/ varied signal duration photosynthetic rate average versus 740 nm wavelength shift (1.5*Period) as measured on nine (9) week old Kalanchoa sp. grown in MIRACLE GRO® soil with an ebb flow watering system. A four-color LED array consisting of 470 nm, 505 nm, 617 nm, and 740 nm wavelengths were modulated at a 100% intensity with a 10% duty cycle.
The photosynthetic rate average is taken across 150 measurements, each of which are approximately 250 ms apart. Flow Rate was 200 μmol, Carbon Dioxide was CO2_R 700 μmol; Temperature: T_Leaf 21° C.; Desiccant: Knob Adjusted to achieve RH_S=60%±1% and Soda Lime: Full Scrub
In the trial represented in Table 18, each individual wavelength was pulsed at the same pulse width, at the same signal duration, and begun at the same time, with the exception of the 740 nm wavelength. The 740 nm wavelength is shifted one and one half periods away from the other cluster of wavelengths (i.e. 1.5*Pulse Width OFF). After each subsequent change in Light Recipe Configuration, photosynthetic rate and reference CO2 is given appropriate time to adjust to the new lighting. This is judged by a relative flat lining of the photosynthetic rate and reference CO2 average over an extended period. For this experiment, a maximum of ±0.05 fluxuation of photosynthetic rate indicated an acceptable stability.
In Table 19 each individual wavelength is pulsed at the same pulse width, at the same signal duration, and begun at the same time.
Please note that the same plant and leaf on for mentioned plant, were used in both trials.
As shown in
Tables 20 and 21 below show 10% duty cycle with varied signal duration photosynthetic rate average versus. 740 nm wavelength shift (0.5*Period) as measured on nine (9) week old Kalanchoa sp grown in MIRACLE GRO® soil with an ebb flow watering system. A four-color LED array consisting of 470 nm, 505 nm, 617 nm, and 740 nm wavelengths were modulated at a 100% intensity with a 10% duty cycle.
The Photosynthetic Rate Average is taken across 150 measurements, each of which are approximately 250 ms apart. Flow Rate was 200 μmol, carbon dioxide was CO2_R 700 μmol; Temperature: T_Leaf 21° C.; Desiccant: Knob Adjusted to achieve RH_S=60%±1% and soda lime: Full Scrub. After each subsequent change in Light Recipe Configuration, photosynthetic rate and Reference CO2 is given appropriate time to adjust to the new lighting. This is judged by a relative flat lining of the photosynthetic rate and Reference CO2 average over an extended period. For this experiment, a maximum of ±0.05 fluxuation of photosynthetic rate indicated an acceptable stability.
In the trial represented in Table 20, each individual wavelength is pulsed at the same pulse width, at the same signal duration, and begun at the same time, with the exception of the 740 nm wavelength. The 740 nm wavelength is shifted one-half period away from the other wavelengths equating to (0.5) Pulse Width Off.
In Table 21 each individual wavelength is pulsed at the same pulse width, at the same signal duration, and begun at the same time.
Please note that the same plant, and leaf on for mentioned plant, were used in both trials.
As shown in
The foregoing description of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and other modifications and variations may be possible in light of the above teachings. The embodiment was chosen and described in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and various modifications as are suited to the particular use contemplated. It is intended that the appended claims be construed to include other alternative embodiments of the invention except insofar as limited by the prior art.
The present application is a continuation of and claims priority to U.S. application Ser. No. 15/506,530, as filed Feb. 24, 2017, which claims priority to PCT Application No. PCT/US15/47239, as filed Aug. 27, 2015 which claims priority to U.S. Application No. 62/043,523, as filed Aug. 29, 2014, the entire contents of all said application are herein incorporated by reference for all the applications teach and disclose.
Number | Name | Date | Kind |
---|---|---|---|
2300727 | Durling | Nov 1942 | A |
2986842 | Toulmin | Jun 1961 | A |
3089280 | Barry | May 1963 | A |
3352058 | Brant | Nov 1967 | A |
3703051 | Weinberger | Nov 1972 | A |
3876907 | Widmayer | Apr 1975 | A |
3930335 | Widmayer | Jan 1976 | A |
3931695 | Widmayer | Jan 1976 | A |
4396872 | Nutter | Aug 1983 | A |
4749916 | Yamazaki et al. | Jun 1988 | A |
5012609 | Ignatius et al. | May 1991 | A |
5173737 | Mitchell et al. | Dec 1992 | A |
5381075 | Jordan | Jan 1995 | A |
5454187 | Wasserman | Oct 1995 | A |
5675931 | Wasserman | Oct 1997 | A |
5818734 | Albright | Oct 1998 | A |
6396938 | Tao et al. | May 2002 | B1 |
6615538 | Hittin | Sep 2003 | B2 |
6860225 | Hebrank | Mar 2005 | B2 |
6940424 | Philiben et al. | Sep 2005 | B2 |
7160717 | Everett | Jan 2007 | B2 |
7600343 | Schultheiss et al. | Oct 2009 | B2 |
8074397 | Yoneda et al. | Dec 2011 | B2 |
8181387 | Loebl et al. | May 2012 | B2 |
8302346 | Hunt et al. | Nov 2012 | B2 |
8384047 | Shur et al. | Feb 2013 | B2 |
8596804 | Grajcar | Dec 2013 | B2 |
8847514 | Reynoso et al. | Sep 2014 | B1 |
8858005 | Grajcar | Oct 2014 | B2 |
8876313 | Grajcar | Nov 2014 | B2 |
9016240 | Delabbio | Apr 2015 | B2 |
9185852 | Aikala et al. | Nov 2015 | B2 |
9185888 | Grajcar | Nov 2015 | B2 |
9232700 | Aikala et al. | Jan 2016 | B2 |
9433194 | Grajcar et al. | Sep 2016 | B2 |
9450144 | Aikala et al. | Sep 2016 | B2 |
9456556 | Aikala et al. | Oct 2016 | B2 |
9482397 | Grajcar | Nov 2016 | B2 |
9485920 | Aikala et al. | Nov 2016 | B2 |
9516818 | Aikala | Dec 2016 | B2 |
9526215 | Suntych | Dec 2016 | B2 |
9560837 | Suntych | Feb 2017 | B1 |
9675054 | Grajcar et al. | Jun 2017 | B2 |
9700019 | Grajcar | Jul 2017 | B2 |
9709228 | Grajcar | Jul 2017 | B2 |
9756837 | Grajcar | Sep 2017 | B2 |
9844209 | Suntych | Dec 2017 | B1 |
9844210 | Grajcar et al. | Dec 2017 | B2 |
9883635 | Aikala et al. | Feb 2018 | B2 |
9907296 | Suntych | Mar 2018 | B2 |
9961841 | Aikala et al. | May 2018 | B2 |
10028448 | Grajcar et al. | Jul 2018 | B2 |
10182557 | Suntych | Jan 2019 | B2 |
10212892 | Grajcar | Feb 2019 | B2 |
10244595 | Grajcar | Mar 2019 | B2 |
10334789 | Aikala et al. | Jul 2019 | B2 |
10485183 | Aikala | Nov 2019 | B2 |
10524426 | Grajcar | Jan 2020 | B2 |
10609909 | Suntych | Apr 2020 | B2 |
10638669 | Suntych | May 2020 | B2 |
10653073 | Aikala et al. | May 2020 | B2 |
20030009933 | Yoneda | Jan 2003 | A1 |
20030172878 | Halawani et al. | Sep 2003 | A1 |
20040109302 | Yoneda et al. | Jun 2004 | A1 |
20050076563 | Faris | Apr 2005 | A1 |
20050152143 | Lee et al. | Jul 2005 | A1 |
20050152146 | Owen et al. | Jul 2005 | A1 |
20070151149 | Karpinski | Jul 2007 | A1 |
20090007486 | Corradi | Jan 2009 | A1 |
20090047722 | Wilkerson et al. | Feb 2009 | A1 |
20090280223 | Scott | Nov 2009 | A1 |
20100115830 | Dubé | May 2010 | A1 |
20100121131 | Mathes | May 2010 | A1 |
20100217358 | Hebert et al. | Aug 2010 | A1 |
20100236497 | Philiben et al. | Sep 2010 | A1 |
20100244724 | Jacobs et al. | Sep 2010 | A1 |
20110109236 | Zhurin et al. | May 2011 | A1 |
20110115385 | Waumans et al. | May 2011 | A1 |
20110159562 | Deisseroth et al. | Jun 2011 | A1 |
20110179706 | Hunt | Jul 2011 | A1 |
20110209404 | Scott | Sep 2011 | A1 |
20120042419 | Wilson et al. | Feb 2012 | A1 |
20120067296 | Hornung | Mar 2012 | A1 |
20120107792 | Babbitt et al. | May 2012 | A1 |
20120107921 | Willson et al. | May 2012 | A1 |
20120270304 | Johnson et al. | Oct 2012 | A1 |
20120293472 | Wong et al. | Nov 2012 | A1 |
20130008085 | Aikala et al. | Jan 2013 | A1 |
20130023044 | Gleason | Jan 2013 | A1 |
20130042523 | Lee et al. | Feb 2013 | A1 |
20130042527 | Aikala et al. | Feb 2013 | A1 |
20130044474 | Aikala et al. | Feb 2013 | A1 |
20130047503 | Aikala et al. | Feb 2013 | A1 |
20130076239 | Chung | Mar 2013 | A1 |
20130133947 | Miller | May 2013 | A1 |
20130139437 | Maxik et al. | Jun 2013 | A1 |
20140158050 | Grajcar | Jun 2014 | A1 |
20140250778 | Suntych | Sep 2014 | A1 |
20150089867 | Abbott | Apr 2015 | A1 |
20150150195 | Grajcar | Jun 2015 | A1 |
20150201562 | Aikala et al. | Jul 2015 | A1 |
20150208590 | Wu | Jul 2015 | A1 |
20150237890 | Grajcar | Aug 2015 | A1 |
20150273235 | Grajcar | Oct 2015 | A1 |
20150342126 | Aikala et al. | Dec 2015 | A1 |
20160007424 | Maxik | Jan 2016 | A1 |
20160011497 | Akiyama | Jan 2016 | A1 |
20160014974 | Grajcar et al. | Jan 2016 | A1 |
20160100529 | Grajcar | Apr 2016 | A1 |
20160109107 | Grajcar | Apr 2016 | A1 |
20160120155 | Grajcar | May 2016 | A1 |
20160165698 | Grajcar | Jun 2016 | A1 |
20160165859 | Grajcar | Jun 2016 | A1 |
20160205739 | Grajcar | Jul 2016 | A1 |
20160323960 | Grajcar | Nov 2016 | A1 |
20170000163 | Grajcar | Jan 2017 | A1 |
20170006783 | Aikala et al. | Jan 2017 | A1 |
20170013786 | Aikala et al. | Jan 2017 | A1 |
20170035002 | Ellins et al. | Feb 2017 | A1 |
20170035008 | Ellins et al. | Feb 2017 | A1 |
20170071135 | Aikala | Mar 2017 | A1 |
20170071166 | Grajcar et al. | Mar 2017 | A1 |
20170071167 | Grajcar et al. | Mar 2017 | A1 |
20170071168 | Grajcar et al. | Mar 2017 | A1 |
20170074464 | Grajcar et al. | Mar 2017 | A1 |
20170094920 | Ellins et al. | Apr 2017 | A1 |
20170105391 | Grajcar | Apr 2017 | A1 |
20170135325 | Grajcar et al. | May 2017 | A1 |
20170202157 | Onac | Jul 2017 | A1 |
20170259079 | Grajcar et al. | Sep 2017 | A1 |
20170290124 | Grajcar | Oct 2017 | A1 |
20170347532 | Suntych | Dec 2017 | A1 |
20180125040 | Grajcar et al. | May 2018 | A1 |
20180228093 | Aikala et al. | Aug 2018 | A1 |
20180295787 | Grajcar | Oct 2018 | A1 |
20180295788 | Grajcar et al. | Oct 2018 | A1 |
20190174594 | Grajcar | Jun 2019 | A1 |
20190274260 | Aikala et al. | Sep 2019 | A1 |
20200045892 | Aikala | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
2914575 | Dec 2014 | CA |
2914575 | Jul 2020 | CA |
203840585 | Sep 2014 | CN |
1374665 | Jan 2004 | EP |
2044835 | Apr 2009 | EP |
H0475779 | Jul 1992 | JP |
H09275779 | Oct 1997 | JP |
H10178899 | Jul 1998 | JP |
2014064479 | Apr 2014 | JP |
2015192654 | Nov 2015 | JP |
0162070 | Aug 2001 | WO |
2009046548 | Oct 2009 | WO |
2011086358 | Jul 2011 | WO |
2011115123 | Sep 2011 | WO |
2013113096 | Aug 2013 | WO |
2014138262 | Sep 2014 | WO |
2015106380 | Jul 2015 | WO |
2016033350 | Mar 2016 | WO |
Entry |
---|
CN Application No. 201680073509.6, Response to office action as filed, dated Mar. 2019. |
China Application No. 201480011700.9—China Notification of First Action, dated Sep. 5, 2017. |
China Application No. 201480011700.9—Response and amendment to China Notification of First Action, dated Jan. 18, 2018. |
CN Application No. 201680073509.6, English translation of Office Action dated Dec. 4, 2018. |
CN Application No. 201680073509.6, English translation of Office Action dated May 24, 2019. |
EP Application No. 16781253.6, First office action dated May 29, 2019. |
EP Application No. 16781253.6, response dated Oct. 7, 2019. |
EPO Application EP15834847.4—Response and amendment to claims for European filing from PCT/US2015/47239, dated Nov. 5, 2018. |
EPO Application No. 14761009, European Search Report, dated Sep. 12, 2016, 18 pages. |
EPO Search Report 15834847.4—European Search Report dated Apr. 18, 2018, 13 pages. |
Hendricks, Sterling B.; How Light Interacts With Living Matter; Scientific American, Inc.; 1968; pp. 175-186. |
Japan Application 2015-561614—Notice of Reasons for Rejection, dated Mar. 6, 2018. |
Japan Application: 2018-525590, Notice of Reasons for Rejection; dated Nov. 5, 2019. |
JP Application No. 2015-561614, English translation of Final Office Action dated Oct. 31, 2017. |
JP Application No. 2015-561614, English translation of Office Action dated May 23, 2017. |
PCT/US2014/20809—International Search Report and Written Opinion, dated Jun. 20, 2014. |
PCT/US2015/04723—International Search Report and Written Opinion, dated Aug. 27, 2015. |
U.S. Appl. No. 15/385,517, Non-Final Office action, dated Jun. 26, 2017. |
U.S. Appl. No. 14/197,949, Non-Final Office Action, dated Feb. 17, 2016. |
U.S. Appl. No. 14/197,949, Response to USPTO non-final office action, (Publication 20140250778), dated May 13, 2016. |
U.S. Appl. No. 15/385,517, Response to USPTO final office action, dated Apr. 20, 2018. |
U.S. Appl. No. 15/385,517, Response to USPTO non-final office action, dated Sep. 18, 2017. |
U.S. Appl. No. 15/385,517, Response to non-final office action dated Feb. 26, 2020. |
U.S. Appl. No. 15/385,517, Response to non-final office action dated May 28, 2019. |
Number | Date | Country | |
---|---|---|---|
20200260654 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
62043523 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15506530 | US | |
Child | 16866165 | US |