The present disclosure relates generally to the field of analog-to-digital converters. Specifically, the present disclosure relates to a system for and method of improving the performance of an analog-to-digital converter.
An analog-to-digital converter converts continuous signals to discrete digital numbers. The analog-to-digital converter converts an analog input (e.g., voltage, current, etc.) to a digital number. Analog-to-digital converters have performance concerns such as jitter.
Jitter is the time variation of a characteristic of a periodic signal in electronics and telecommunications, often in relation to a reference clock source. Jitter may be observed in characteristics such as the frequency of successive pulses, the signal amplitude, or phase of periodic signals. Jitter is a significant, and undesired factor in the design of almost all communications links (e.g., USB, PCI-e, SATA, OC-48).
In clock recovery applications, jitter is often referred to as timing jitter. Jitter can be quantified in the same terms as all time-varying signals (e.g., RMS, or peak-to-peak displacement). Also like other time-varying signals, jitter can be expressed in terms of spectral density (frequency content).
Jitter period can refer to the interval between two times of maximum effect (or minimum effect) of a signal characteristic that varies regularly with time. Jitter frequency may be the inverse of the jitter period. Jitter may decrease the effective number of bits (“ENOB”) for the system.
What is needed is an analog-to-digital converter with improved jitter characteristics. There is also a need for an analog-to-digital converter system that is less susceptible to jitter or other time variations. Further, there is also a need for an analog-to-digital converter including a monitoring device to mitigate jitter effects. It would be desirable to provide a system and/or method that provides one or more of these advantages features.
One embodiment of the disclosure relates to a monitoring device in an analog-to-digital converter. The monitoring device including a monitoring module configured to receive a first radio frequency data provided by a first radio frequency modulator and a second radio frequency data provided by a second radio frequency modulator. The first radio frequency data being associated with a laser data and a radio frequency input data. The laser data being associated with a radio frequency oscillator data. The second radio frequency data being associated with the laser data and the radio frequency oscillator data. The monitoring module being configured to determine a modification factor based on the first radio frequency data and the second radio frequency data. It should be noted that data may be a signal, a sample, or any other type of data.
Another embodiment of the disclosure relates to a method for monitoring data in an analog-to-digital converter. The method including providing a radio frequency oscillator data to a laser source and a reference radio frequency modulator. The method further including providing laser data from the laser source to a radio frequency modulator and the reference radio frequency modulator. In addition, the method includes providing a radio frequency input data to the radio frequency modulator and generating a radio frequency modulator data. The method includes generating a reference radio frequency modulator data and comparing the reference radio frequency modulator data to the radio frequency modulator data. Further, the method includes determining a modification data based on a comparison of the reference radio frequency modulator data to the radio frequency modulator data.
Yet, another embodiment of the disclosure relates to a monitoring device in an analog-to-digital converter. The monitoring device includes means for providing a radio frequency oscillator data to a laser source and a reference radio frequency modulator. The monitoring device includes means for providing laser data from the laser source to a radio frequency modulator and the reference radio frequency modulator. In addition, the monitoring device includes means for providing a radio frequency input data to the radio frequency modulator and means for generating a radio frequency modulator data. Further, the monitoring device includes means for generating a reference radio frequency modulator data and means for comparing the reference radio frequency modulator data to a reference data. The monitoring device includes means for determining a modification data based on a comparison of the reference radio frequency modulator data to the reference data.
Although the description below contains many specificities, these specificities are utilized to illustrate some of the exemplary embodiments of this disclosure and should not be construed as limiting the scope of the disclosure. The scope of this disclosure should be determined by the claims, their legal equivalents and the fact that it fully encompasses other embodiments which may become apparent to those skilled in the art. A method or device does not have to address each and every problem to be encompassed by the present disclosure. All structural, chemical and functional equivalents to the elements of the below-described disclosure that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. A reference to an element in the singular is not intended to mean one and only one, unless explicitly so stated, but rather it should be construed to mean at least one. No claim element herein is to be construed under the provisions of 35 U.S.C. §112, sixth paragraph, unless the element is expressly recited using the phrase “means for.” Furthermore, no element, component or method step in the present disclosure is intended to be dedicated to the public, regardless of whether the element, component or method step is explicitly recited in the claims.
Referring to
Referring to
In
In
In
In
In
In an exemplary embodiment, first sample 51 may lead reference point 52. Since first sample 51 leads reference point 52, monitoring device 20 may determine the timing error associated with first sample 51 based on a voltage and timing error relationship. In another exemplary embodiment, second sample 53 lags reference point 52. Since second sample 53 lags reference point 52, monitoring device 20 may determine a different timing error associated with second sample 53 based on the voltage and timing error relationship. The timing errors may be applied to the real data using the curve fit shown in
In another exemplary embodiment, a third sample 55 may lead reference point 52. Since third sample 55 leads reference point 52, monitoring device 20 may determine the timing error associated with third sample 55 based on the voltage and timing error relationship. In this exemplary embodiment, third sample 55 leads reference point 52 by a lead value that is less than the lead value associated with first sample 51 and reference point 52. Therefore, third sample 55 may have a timing error which is less than or more than the timing error associated with first sample 51. In another exemplary embodiment, a fourth sample 57 lags reference point 52. Since fourth sample 57 lags reference point 52, monitoring device 20 may determine a different timing error associated with fourth sample 57 based on the voltage and timing error relationship. In this exemplary embodiment, fourth sample 57 lags reference point 52 by a lag value that is less than the lag value associated with second sample 53 and reference point 52. Therefore, fourth sample 57 may have a timing error which is less than or more than the timing error associated second sample 53. These timing errors may be applied to the real data using the curve fit shown in
In another exemplary embodiment, a first sample 51 may lead reference point 52. Since first sample 51 leads reference point 52, monitoring device 20 may determine that the amplitude value (e.g., voltage, current, etc.) associated with first sample 51 may need to be modified because the amplitude value is too low, according to an exemplary embodiment. Monitoring device 20 may determine the modification data based on the timing error, the sample's value, and reference point 52. In another exemplary embodiment, a second sample 53 lags reference point 52. Since second sample 53 lags reference point 52, monitoring device 20 may determine that the amplitude value (e.g., voltage, current, etc.) associated with second sample 53 may need to be modified because the amplitude value is too high, according to an exemplary embodiment.
In an exemplary embodiment, first sample 51 may lead reference point 52. Since first sample 51 leads reference point 52, monitoring device 20 may determine that the amplitude value (e.g., voltage, current, etc.) associated with first sample 51 may need to be modified because the amplitude value is too high, according to an exemplary embodiment. In another exemplary embodiment, second sample 53 lags reference point 52. Since second sample 53 lags reference point 52, monitoring device 20 may determine that the amplitude value (e.g., voltage, current, etc.) associated with second sample 53 may need to be modified because the amplitude value is too low, according to an exemplary embodiment.
In another exemplary embodiment, a third sample 55 may lead reference point 52. Since third sample 55 leads reference point 52, monitoring device 20 may determine that the amplitude value (e.g., voltage, current, etc.) associated with third sample 55 may need to be modified because the amplitude value is too low, according to an exemplary embodiment. In this exemplary embodiment, third sample 55 leads reference point 52 by a lead value that is less than the lead value associated with first sample 51 and reference point 52. Therefore, third sample 55 may need to be modified by less than or more than first sample 51. In another exemplary embodiment, a fourth sample 57 lags reference point 52. Since fourth sample 57 lags reference point 52, monitoring device 20 may determine that the amplitude value (e.g., voltage, current, etc.) associated with fourth sample 57 may need to be modified because the amplitude value is too high, according to an exemplary embodiment. In this exemplary embodiment, fourth sample 57 lags reference point 52 by a lag value that is less than the lag value associated with second sample 53 and reference point 52. Therefore, fourth sample 57 may need to be modified by less than or more than second sample 53.
In
In
In
In
By measuring the radio frequency signal of interest while at the same time monitoring a reference signal source, the system may correct for any timing induced uncertainty such as uncertainty due to pulse jitter.
Although specific steps are shown and described in a specific order, it is understood that the method may include more, fewer, different, and/or a different ordering of the steps to perform the function described herein.
The exemplary embodiments illustrated in the figures and described herein are offered by way of example only. Accordingly, the present application is not limited to a particular embodiment, but extends to various modifications that nevertheless fall within the scope of the appended claims. The order or sequence of any processes or method steps may be varied or re-sequenced according to alternative embodiments.
The present application contemplates methods, systems and program products on any machine-readable media for accomplishing its operations. The embodiments of the present application may be implemented using an existing computer processor, or by a special purpose computer processor for an appropriate system, incorporated for this or another purpose or by a hardwired system.
It is important to note that the construction and arrangement of the analog-to digital converter system as shown in the various exemplary embodiments is illustrative only. Although only a few embodiments of the present application have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors and orientations) without materially departing from the novel teachings and advantages of the subject matter recited in the claims. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present application as defined in the appended claims. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. In the claims, any means-plus-function clause is intended to cover the structures described herein as performing the recited function and, not only structural equivalents, but also equivalent structures. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present application as expressed in the appended claims.
As noted above, embodiments within the scope of the present application include program products comprising machine-readable media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media which can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such machine-readable media can comprise RAM, ROM, EPROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store a desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a machine, the machine properly views the connection as a machine-readable medium. Thus, any such connection is properly termed a machine-readable medium. Combinations of the above are also included within the scope of machine-readable media. Machine-executable instructions comprise, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machines to perform a certain function or group of functions.
The foregoing description of embodiments of the application has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the application to the precise form disclosed, and modifications and variations are possible in light of the above teachings, or may be acquired from practice of the application. The embodiments were chosen and described in order to explain the principles of the application and its practical application to enable one skilled in the art to utilize the application in various embodiments and with various modifications as are suited to the particular use contemplated. The scope of this application should be determined by the claims, their legal equivalents, and the fact that it fully encompasses other embodiments which may become apparent to those skilled in the art.
Number | Name | Date | Kind |
---|---|---|---|
6118396 | Song | Sep 2000 | A |
6525682 | Yap et al. | Feb 2003 | B2 |
6661361 | Lewis et al. | Dec 2003 | B1 |
6700517 | Kellar | Mar 2004 | B1 |